- Configuring OSPF
- IPv6 Routing: OSPFv3
- IPv6 Routing: OSPFv3 Authentication Support with IPsec
- OSPFv2 Cryptographic Authentication
- OSPFv3 IPSec ESP Encryption and Authentication
- OSPF ABR Type 3 LSA Filtering
- OSPF Stub Router Advertisement
- OSPF Update Packet-Pacing Configurable Timers
- OSPF Sham-Link Support for MPLS VPN
- OSPF Retransmissions Limit
- OSPF Support for Multi-VRF on CE Routers
- OSPFv2 Multiarea Adjacency
- OSPFv2 Autoroute Exclude
- OSPFv3 Multiarea Adjacency
- OSPFv3 Authentication Trailer
- OSPFv3 Autoroute Exclude
- OSPFv2-OSPF Live-Live
- OSPFv3 Address Families
- OSPF Forwarding Address Suppression in Translated Type-5 LSAs
- OSPF Inbound Filtering Using Route Maps with a Distribute List
- OSPFv3 Fast Convergence: LSA and SPF Throttling
- OSPF Shortest Path First Throttling
- OSPF Support for Fast Hello Packets
- OSPF Incremental SPF
- OSPF Limit on Number of Redistributed Routes
- OSPFv3 Max-Metric Router LSA
- OSPF Link-State Advertisement Throttling
- OSPF Support for Unlimited Software VRFs per PE Router
- OSPF Area Transit Capability
- OSPF Per-Interface Link-Local Signaling
- OSPF Link-State Database Overload Protection
- OSPF Enhanced Traffic Statistics for OSPFv2 and OSPFv3
- OSPF MIB Support of RFC 1850 and Latest Extensions
- SNMP ifIndex Value for Interface ID in OSPFv2 and OSPFv3 Data Fields
- OSPFv3 Graceful Restart
- OSPF RFC 3623 Graceful Restart Helper Mode
- OSPF Mechanism to Exclude Connected IP Prefixes from LSA Advertisements
- OSPFv2 Local RIB
- OSPFv3 MIB
- TTL Security Support for OSPFv3 on IPv6
- OSPFv3 VRF-Lite/PE-CE
- Graceful Shutdown Support for OSPFv3
- Prefix Suppression Support for OSPFv3
- OSPFv3 ABR Type 3 LSA Filtering
- Finding Feature Information
- Prerequisites for Interface ID in Data Fields
- Information About Interface ID in Data Fields
- How to Configure the Interface ID in Data Fields
- Configuration Examples for the Interface ID in Data Fields
- Additional References
- Feature Information for SNMP ifIndex Value for Interface ID in Data Fields
- Glossary
SNMP ifIndex Value for Interface ID in OSPFv2 and OSPFv3 Data Fields
This document describes the configuration command that allows you to use either the current interface number or the SNMP MIB-II interface index (ifIndex) value for the interface ID in OSPFv2 and OSPFv3 data fields. The advantage to using the SNMP MIB-II ifIndex value is that this number corresponds to the number that the user will see reported by SNMP.
- Finding Feature Information
- Prerequisites for Interface ID in Data Fields
- Information About Interface ID in Data Fields
- How to Configure the Interface ID in Data Fields
- Configuration Examples for the Interface ID in Data Fields
- Additional References
- Feature Information for SNMP ifIndex Value for Interface ID in Data Fields
- Glossary
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Interface ID in Data Fields
OSPF must be configured on the router.
Information About Interface ID in Data Fields
Before choosing to switch from the current interface numbers to the SNMP MIB-II interface ID numbers, you should understand the following concepts:
- Benefits of Choosing to Identify Interfaces by the SNMP MIB-II ifIndex Value
- How OSPFv2 and OSPFv3 Use the SNMP MIB-II ifIndex Value
Benefits of Choosing to Identify Interfaces by the SNMP MIB-II ifIndex Value
If you use Simple Network Management Protocol (SNMP) for your OSPF network, configuring the OSPF: SNMP ifIndex Value for Interface ID in OSPFv2 and OSPFv3 Data Fields feature can be beneficial for the following reasons:
Using the SNMP MIB-II ifIndex (interface index) identification numbers to identify OSPF interfaces makes it easier for network administrators to identify interfaces because the numbers will correspond to the numbers that they will see reported by SNMP.
When examining link-state advertisements (LSAs), the value used in fields that have the interface ID will be the same as the value that is reported by SNMP.
When looking at the output of the show ipv6 ospf interface command, the interface ID number will have the same value that is reported by SNMP.
Using the SNMP MIB-II IfIndex is also suggested, but not required, by the OSPF RFC 2328 for OSPFv2 and the RFC 2740 for OSPFv3.
How OSPFv2 and OSPFv3 Use the SNMP MIB-II ifIndex Value
The user chooses for OSPF interfaces to use the SNMP MIB-II ifIndex number by entering the interface-id snmp-if-index command for a specific OSPF process. If an interface under the specific OSPF process does not have an SNMP ifIndex number, OSPF will not be enabled on that interface.
For OSPFv2, the ifIndex number is used for the Link Data field in the Router LSA for unnumbered point-to-point interfaces and sham links. When the interface-id snmp-if-index command is entered, the affected LSAs will immediately be reoriginated.
For OSPFv3, the ifIndex number is used for the interface ID in router LSAs, as the LSID in Network and Link LSAs, and also as the interface ID in Hello packets. Intra-Area-Prefix LSAs that reference Network LSAs have the network LSAs LSID in the Referenced LSID field, so they will also be updated when the interface-id snmp-if-index command is entered. The old Network, Link and Intra-Area-Prefix LSAs that are associated with a Network LSA will be flushed.
For both OSPFv2 and OSPFv3, adjacencies are not flapped, except for affected OSPFv3 demand circuits (including virtual links) with full adjacencies.
For both OSPFv2 and OSPFv3, if an interface does not have an SNMP ifIndex number and an interface ID is needed (for OSPFv2 this applies only to unnumbered interfaces and sham links), an error message will be generated and the interface will be disabled. The interface will be reenabled if the no interface-id snmp-if-index command is entered.
How to Configure the Interface ID in Data Fields
Using SNMP MIB-II ifIndex Numbers
Follow the steps in this task to configure OSPF interfaces to use the SNMP MIB-II ifIndex numbers. These steps work for both OSPFv2 and OSPFv3. All OSPF interfaces must use the SNMP MIB-II ifIndex numbers or the interfaces will not be enabled for OSPF. Therefore, repeat the steps within this task for each OSPF process for which you want the interfaces to use the SNMP MIB-II ifIndex numbers.
- router ospf process-id [vrf vpn-name]
- ipv6 router ospf process-id
1.
enable
2.
configure
terminal
3.
Do one of the
following:
4.
interface-id
snmp-if-index
5.
end
6.
show
snmp
mib
ifmib
ifindex
[interface-type]
[slot
/][port-adapter
/][port]
DETAILED STEPS
Configuration Examples for the Interface ID in Data Fields
- Configuring the SNMP ifIndex Value for Interface ID for OSPFv2 Example
- Configuring the SNMP ifIndex Value for Interface ID for OSPFv3 Example
Configuring the SNMP ifIndex Value for Interface ID for OSPFv2 Example
The following example configures the OSPF interfaces to use the SNMP ifIndex values for the interfaces IDs. The show snmp mib ifmib ifindex command confirms that the SNMP MIB-II ifIndex values are used for the Interface ID values in the OSPFv2 data fields.
Device# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Device(config)# router ospf 1 Device(config-router)# interface-id snmp-if-index Device(config-router)# ^Z Device# show ip ospf 1 1 data router self OSPF Router with ID (172.16.0.1) (Process ID 1) Router Link States (Area 1) LS age: 6 Options: (No TOS-capability, DC) LS Type: Router Links Link State ID: 172.16.0.1 Advertising Router: 172.16.0.1 LS Seq Number: 80000007 Checksum: 0x63AF Length: 48 Area Border Router Number of Links: 2 Link connected to: another Router (point-to-point) (Link ID) Neighboring Router ID: 172.17.0.1 (Link Data) Router Interface address: 0.0.0.53 Number of TOS metrics: 0 TOS 0 Metrics: 64 Link connected to: a Stub Network (Link ID) Network/subnet number: 192.168.0.11 (Link Data) Network Mask: 255.255.255.255 Number of TOS metrics: 0 TOS 0 Metrics: 1 Device# show snmp mib ifmib ifindex s13/0 Serial13/0: Ifindex = 53
Configuring the SNMP ifIndex Value for Interface ID for OSPFv3 Example
The following example configures the OSPFv3 interfaces to use the SNMP ifIndex values for the interface IDs.
Device# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Device(config)# ipv6 router ospf 1 Device(config-router)# interface-id snmp-if-index
The output from the show snmp mib ifmib ifindex command confirms that the SNMP MIB-II ifIndex values are being used for the Interface ID values in the OSPFv3 data fields.
Device# show snmp mib ifmib ifindex Ethernet1/0 Ethernet1/0: Ifindex = 5 Device# Device# show ipv6 ospf int OSPF_VL0 is up, line protocol is up Interface ID 71 Area 0, Process ID 1, Instance ID 0, Router ID 172.16.0.1 Network Type VIRTUAL_LINK, Cost: 10 Configured as demand circuit. Run as demand circuit. DoNotAge LSA allowed. Transmit Delay is 1 sec, State POINT_TO_POINT, Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:02 Index 1/2/3, flood queue length 0 Next 0x0(0)/0x0(0)/0x0(0) Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.0.0.1 (Hello suppressed) Suppress hello for 1 neighbor(s) Ethernet2/0 is up, line protocol is up Link Local Address FE80::A8BB:CCFF:FE00:6F02, Interface ID 10 Area 0, Process ID 1, Instance ID 0, Router ID 172.16.0.1 Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 172.16.0.1, local address FE80::A8BB:CCFF:FE00:6F02 No backup designated router on this network Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:06 Index 1/1/2, flood queue length 0 Next 0x0(0)/0x0(0)/0x0(0) Last flood scan length is 0, maximum is 0 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 0, Adjacent neighbor count is 0 Suppress hello for 0 neighbor(s) Ethernet1/0 is up, line protocol is up Link Local Address FE80::A8BB:CCFF:FE00:6F01, Interface ID 6 Area 1, Process ID 1, Instance ID 2, Router ID 172.16.0.1 Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 172.16.0.1, local address FE80::A8BB:CCFF:FE00:6F01 Backup Designated router (ID) 10.0.0.1, local address FE80::A8BB:CCFF:FE00:6E01 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:06 Index 1/1/1, flood queue length 0 Next 0x0(0)/0x0(0)/0x0(0) Last flood scan length is 1, maximum is 2 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.0.0.1 (Backup Designated Router) Suppress hello for 0 neighbor(s) Device# Device# show ipv6 ospf data net adv 172.16.0.1 OSPFv3 Router with ID (172.16.0.1) (Process ID 1) Net Link States (Area 1) LS age: 144 Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Network Links Link State ID: 6 (Interface ID of Designated Router) Advertising Router: 172.16.0.1 LS Seq Number: 80000001 Checksum: 0x1FC0 Length: 32 Attached Router: 172.16.0.1 Attached Router: 10.0.0.1 Device# show ipv6 ospf data prefix adv 172.16.0.1 OSPFv3 Router with ID (172.16.0.1) (Process ID 1) Intra Area Prefix Link States (Area 0) Routing Bit Set on this LSA LS age: 196 LS Type: Intra-Area-Prefix-LSA Link State ID: 0 Advertising Router: 172.16.0.1 LS Seq Number: 80000001 Checksum: 0x6F11 Length: 44 Referenced LSA Type: 2001 Referenced Link State ID: 0 Referenced Advertising Router: 172.16.0.1 Number of Prefixes: 1 Prefix Address: 2002:0:2:: Prefix Length: 64, Options: None, Metric: 10 Intra Area Prefix Link States (Area 1) Routing Bit Set on this LSA LS age: 161 LS Type: Intra-Area-Prefix-LSA Link State ID: 0 Advertising Router: 172.16.0.1 LS Seq Number: 80000001 Checksum: 0xB6E7 Length: 52 Referenced LSA Type: 2001 Referenced Link State ID: 0 Referenced Advertising Router: 172.16.0.1 Number of Prefixes: 1 Prefix Address: 2002:0:2:0:A8BB:CCFF:FE00:6F02 Prefix Length: 128, Options: LA , Metric: 0 Routing Bit Set on this LSA LS age: 151 LS Type: Intra-Area-Prefix-LSA Link State ID: 1006 Advertising Router: 172.16.0.1 LS Seq Number: 80000001 Checksum: 0x6E24 Length: 44 Referenced LSA Type: 2002 Referenced Link State ID: 6 Referenced Advertising Router: 172.16.0.1 Number of Prefixes: 1 Prefix Address: 2002:0:1:: Prefix Length: 64, Options: None, Metric: 0 Device# Device# show ipv6 ospf data router OSPFv3 Router with ID (10.0.0.1) (Process ID 1) Router Link States (Area 0) Routing Bit Set on this LSA LS age: 5 (DoNotAge) Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Router Links Link State ID: 0 Advertising Router: 10.0.0.1 LS Seq Number: 80000004 Checksum: 0xEE5C Length: 40 Area Border Router Number of Links: 1 Link connected to: a Virtual Link Link Metric: 10 Local Interface ID: 70 Neighbor Interface ID: 71 Neighbor Router ID: 172.16.0.1 LS age: 162 Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Router Links Link State ID: 0 Advertising Router: 172.16.0.1 LS Seq Number: 80000004 Checksum: 0xCE7C Length: 40 Area Border Router Number of Links: 1 Link connected to: a Virtual Link Link Metric: 10 Local Interface ID: 71 Neighbor Interface ID: 70 Neighbor Router ID: 10.0.0.1 Router Link States (Area 1) Routing Bit Set on this LSA LS age: 176 Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Router Links Link State ID: 0 Advertising Router: 10.0.0.1 LS Seq Number: 80000003 Checksum: 0xC807 Length: 40 Area Border Router Number of Links: 1 Link connected to: a Transit Network Link Metric: 10 Local Interface ID: 6 Neighbor (DR) Interface ID: 6 Neighbor (DR) Router ID: 172.16.0.1 LS age: 175 Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Router Links Link State ID: 0 Advertising Router: 172.16.0.1 LS Seq Number: 80000004 Checksum: 0xBD10 Length: 40 Area Border Router Number of Links: 1 Link connected to: a Transit Network Link Metric: 10 Local Interface ID: 6 Neighbor (DR) Interface ID: 6 Neighbor (DR) Router ID: 172.16.0.1 Device# Device# show ipv6 ospf data link adv 172.16.0.1 OSPFv3 Router with ID (172.16.0.1) (Process ID 1) Link (Type-8) Link States (Area 0) LS age: 245 Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Link-LSA (Interface: Ethernet2/0) Link State ID: 10 (Interface ID) Advertising Router: 172.16.0.1 LS Seq Number: 80000002 Checksum: 0xA0CB Length: 56 Router Priority: 1 Link Local Address: FE80::A8BB:CCFF:FE00:6F02 Number of Prefixes: 1 Prefix Address: 2002:0:2:: Prefix Length: 64, Options: None Link (Type-8) Link States (Area 1) LS age: 250 Options: (V6-Bit E-Bit R-bit DC-Bit) LS Type: Link-LSA (Interface: Ethernet1/0) Link State ID: 6 (Interface ID) Advertising Router: 172.16.0.1 LS Seq Number: 80000001 Checksum: 0x4F94 Length: 44 Router Priority: 1 Link Local Address: FE80::A8BB:CCFF:FE00:6F01 Number of Prefixes: 0
Additional References
The following sections provide references related to the OSPF: SNMP ifIndex Value for Interface ID in OSPFv2 and OSPFv3 Data Fields feature.
Related Documents
Related Topic |
Document Title |
---|---|
OSPF commands |
Cisco IOS IP Routing: OPSF Command Reference |
OSPF configuration |
"Configuring OSPF" |
Standards
Standard |
Title |
---|---|
None |
-- |
MIBs
MIB |
MIBs Link |
---|---|
None |
To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: |
RFCs
RFC |
Title |
---|---|
RFC 2328 |
OSPF Version 2 |
RFC 2740 |
OSPF Version 3 |
Technical Assistance
Description |
Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for SNMP ifIndex Value for Interface ID in Data Fields
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
Feature Name |
Releases |
Feature Information |
---|---|---|
OSPF: SNMP ifIndex Value for Interface ID in OSPFv2 and OSPFv3 Data Fields |
12.4(6)T 12.2(31)SB2 12.2(33)SRB 15.0(1)SY |
This document describes the configuration command that allows you the choice to use either the current interface number or the SNMP ifIndex value for the interface ID in OSPFv2 and OSPFv3 data fields. The advantage to using the SNMP MIB-II ifIndex value is that this number corresponds to the number that the user will see reported by SNMP. |
Glossary
SNMP --Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite.
Note | See Internetworking Terms and Acronyms for terms not included in this glossary. |