CPAR AAA VM部署

目錄

<u>簡介</u>

<u>背景資訊</u>

CPAR VM例項部署過程

將RHEL影象上傳到水平線

建立新風格

建立主機聚合/可用性區域

啟動新例項

建立和分配浮動IP地址

<u>啟用SSH</u>

建立SSH會話

上傳CPAR軟體和許可證

上傳RHEL/CentOS映像

建立Yum儲存庫

安裝CPAR所需的RPM

核心升級到3.10.0-693.1.1.el7版本

設定網路引數

修改主機名

<u>設定網路介面</u>

安裝CPAR

設定SNMP

設定CPAR SNMP

設定OS SNMP

配置NTP

CPAR配置備份/恢復過程(可選)

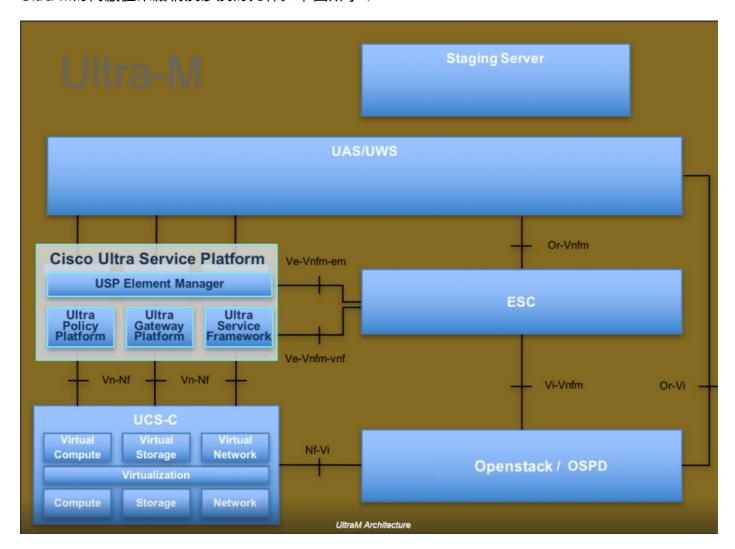
<u>從現有CPAR例項獲取CPAR配置備份檔案</u>

在新VM/伺服器中恢復CPAR配置備份檔案

簡介

本檔案將介紹Cisco Prime Access Registrar(CPAR)身份驗證、授權和記帳(AAA)虛擬機器部署。 此過程適用於使用NEWTON版本的OpenStack環境,其中ESC不管理CPAR,並且CPAR直接安裝在OpenStack上部署的虛擬機器(VM)上。

作者:Karthikeyan Dachanamoorthy,思科高級服務。


背景資訊

Ultra-M是經過預先打包和驗證的虛擬化移動資料包核心解決方案,旨在簡化VNF的部署。

OpenStack是適用於Ultra-M的Virtualized Infrastructure Manager(VIM),包含以下節點型別:

- 計算
- 對象儲存磁碟 計算(OSD 計算)
- 控制器
- OpenStack平台 導向器(OSPD)

Ultra-M的高級體系結構及涉及的元件如下圖所示:

本文檔面向熟悉Cisco Ultra-M平台的思科人員,詳細說明了在OpenStack和Redhat作業系統上執行 的步驟。

💊 註:為定義本文檔中的過程,需要考慮Ultra M 5.1.x版本。

CPAR VM例項部署過程

登入到Horizon介面。

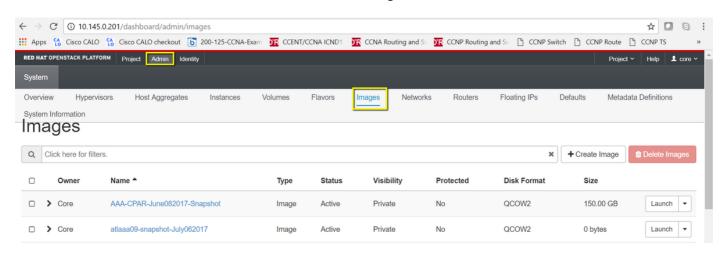
確保在開始VM例項部署過程之前獲得這些資訊。

- 安全外殼(SSH)與VM或伺服器的連線
- 更新主機名,且主機名應該與/etc/hosts中的主機名相同
- 該清單包括安裝CPAR GUI所需的RPM

Required 64-bit rpms for Relevant RHEL OS Versions

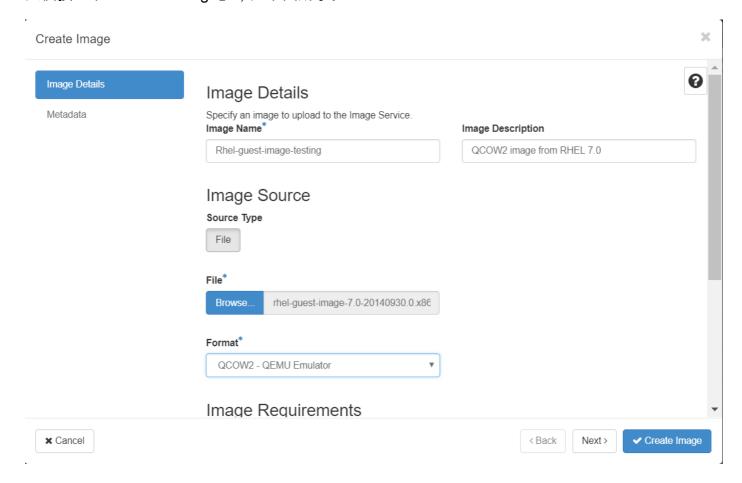
rpm	RHEL OS Version 6.6	RHEL OS Version 7.0	RHEL OS Version 7.2
glibc	Yes	Yes	Yes
gdome2	Yes	Yes	Yes
glib	Yes	Yes	Yes
glib2	Yes	Yes	Yes
libgcc	Yes	Yes	Yes
libstdc++	Yes	Yes	Yes
libxml2	Yes	Yes	Yes
ncurses	No	No	No
nspr	Yes	Yes	Yes
nss	No	No	No
zlib	Yes	Yes	Yes
nss-softokn-freebl	Yes	Yes	Yes
ncurses-libs	Yes	Yes	Yes
nss-util	Yes	Yes	Yes
gamin	Yes	Yes	Yes
libselinux	Yes	Yes	Yes

步驟 1.從Horizon介面開啟任何Internet瀏覽器和相應的IP地址。


步驟 2.輸入正確的使用者憑據,然後按一下Connect按鈕。

If you are not sure which authentication method to use, contact your administrator. User Name * core Password * Connect

將RHEL影象上傳到水平線


步驟 1.導航到內容儲存庫,然後下載名為rhel-image的檔案。這是用於CPAR AAA專案的自定義 QCOW2 Red Hat映像。

步驟 2.返回Horizon頁籤,然後按照路由Admin > Images操作,如下圖所示。

步驟 3.按一下Create Image按鈕。 填寫標籤為Image Name 和Image Description 的檔案,選擇之前在步驟1下載的QCOW2檔案。通過在File 部分按一下Browse ,然後在Format部分選擇QCOW2-

QUEMU Emulator 選項。 然後按一下「Create Image」,如下圖所示。

建立新風格

Flavors表示每個例項的體系結構中使用的資源模板。

步驟 1.在「Horizon」頂部選單中,導航到Admin > Flavors,如下圖所示。

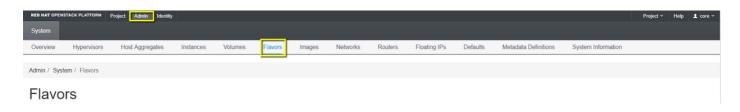


圖4「Horizon Flavors」部分。

步驟 2.按一下Create Flavor按鈕。

步驟 3.在建立風格視窗中,填寫相應的資源資訊。以下是CPAR口味的配置:

<#root>

vCPUs

```
RAM (MB)

32768

Root Disk (GB)

150

Ephemeral Disk (GB) 0

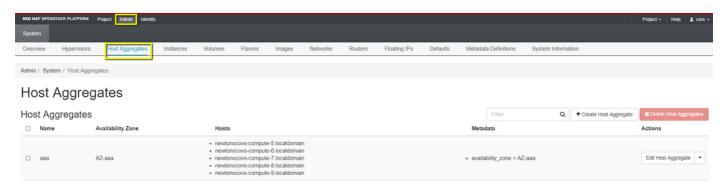
Swap Disk (MB)

29696

RX/TX Factor

1
```

Create Flavor


Flavor Information * Flavor Access	
Name *	Flavors define the sizes for RAM, disk, number of cores,
AAA-Cpar-testing	and other resources and can be selected when users deploy instances.
ID @	
auto	
VCPUs *	
36	
RAM (MB) *	
32768	
Root Disk (GB) *	
150	•

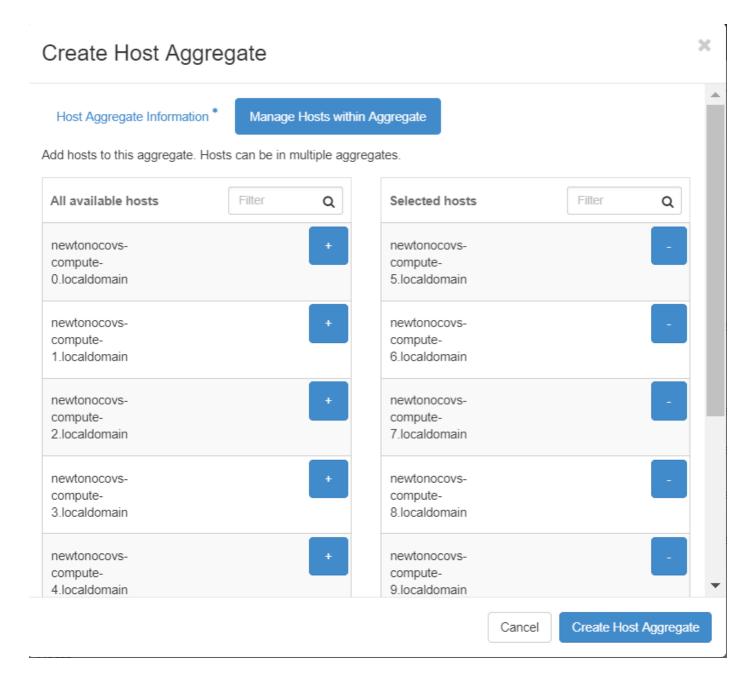
×

步驟 4.在同一視窗中,按一下Flavor Access,然後選擇將使用此風味配置的專案(即Core)。 步驟 5. 按一下Create Flavor。

建立主機聚合/可用性區域

步驟 1.在「Horizon」頂部選單中,導航到Admin > Host Aggregates,如下圖所示。

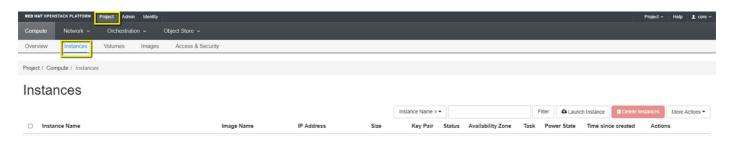
步驟 2.按一下Create Host Aggregate 按鈕。


步驟 3.在標籤Host Aggregate Information* 中,在Name 和Availability Zone 欄位中填寫對應的資訊。對於生產環境,目前使用此資訊,如下圖所示:

• 名稱: aaa

• 可用區: AZ-aaa

Create Host Aggregate Host Aggregate Information * Manage Hosts within Aggregate Name * aaa Host aggregates divide an availability zone into logical units by grouping together hosts. Create a host aggregate then select the hosts contained in it. Availability Zone AZ-aaa Cancel Create Host Aggregate


步驟 4.按一下Manage Hosts within Aggregate頁籤,然後為需要新增到新可用區域的主機按一下+按鈕。

步驟 5.最後,按一下Create Host Aggregate按鈕。

啟動新例項

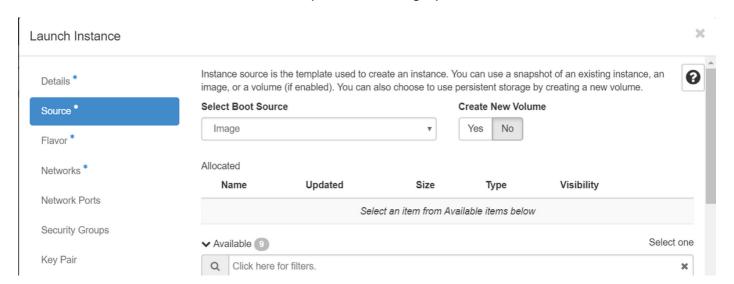
步驟 1.在「水準」頂部選單中,導航到「專案」>「例項」,如下圖所示。

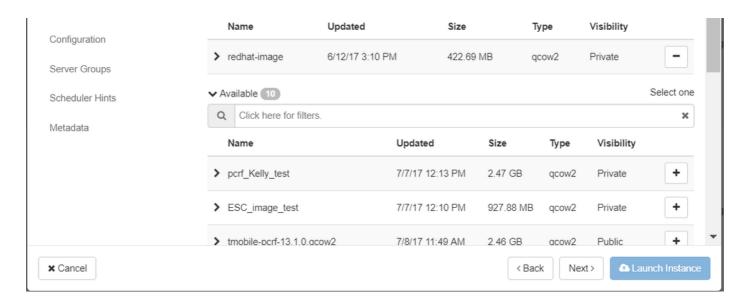
步驟 2.按一下Launch Instance按鈕。

步驟 3.在Details頁籤中,為新虛擬機器輸入正確的Instance Name,選擇對應的Availability Zone(即AZ-aaa),並將Count設定為1,如下圖所示。

Details	Please provide the initial hostname for the instance, the count. Increase the Count to create multiple instances	ne availability zone where it will be deployed, and the instance with the same settings.
Source *	Instance Name *	Total Instances (100 Max)
-, *	AAA-CPAR-testing instance	
Flavor *	Availability Zone	29%
Networks *	AZ-aaa	▼ 28 Current Usage
Network Ports	Count *	1 Added 71 Remaining
Security Groups	1	
Key Pair		
Configuration		
Server Groups		
Scheduler Hints		
Metadata		

步驟 4.按一下Source頁籤,然後選擇並執行下列步驟之一:

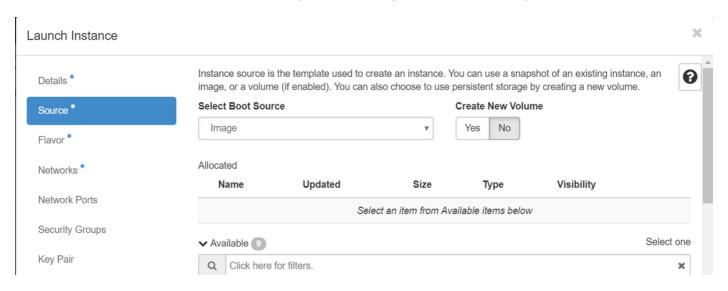

1.基於RHEL映像啟動例項。


按如下所示設定配置引數:

• 選擇引導源:映像

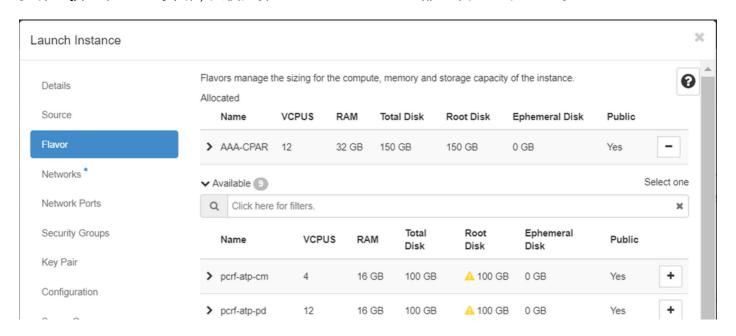
• 創建新卷:否

• 從Available 選單中選擇相應的影象(即redhat-image)

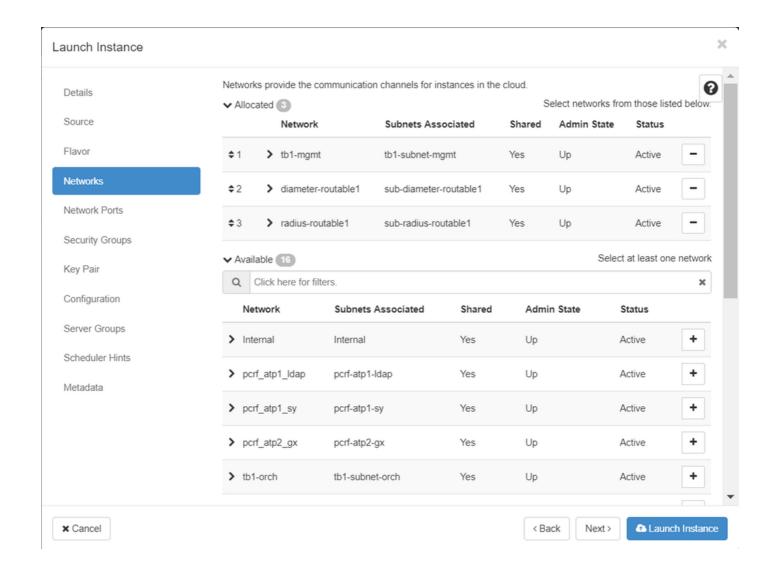

2.基於快照啟動例項。

按如下所示設定配置引數:

• 選擇引導源:例項快照


• 創建新卷:否

• 從「可用」選單中選擇相應的快照(即aaa09-snapshot-June292017)



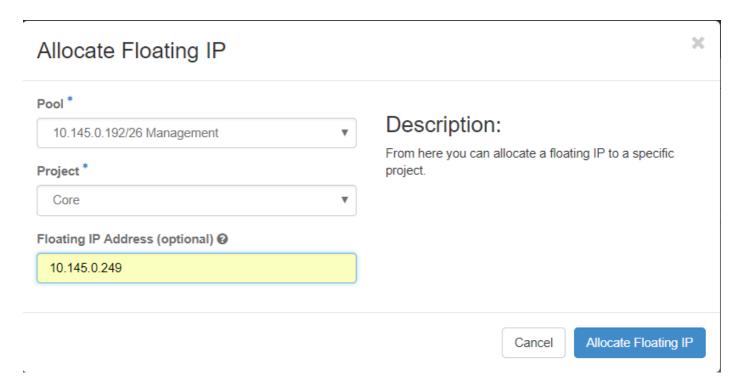
步驟 5.按一下Flavor頁籤,然後選擇Create a New Flavor部分中建立的Flavor。

步驟 6.點選Networks頁籤,然後選擇將用於新例項/VM的每個乙太網介面的相應網路。此安裝程式當前正用於生產環境:

- eth0 = tb1-mgmt
- eth1 = diameter-routable1
- eth2 = radius-routable1

步驟 7.最後,按一下Launch Instance按鈕以開始部署新例項。

建立和分配浮動IP地址

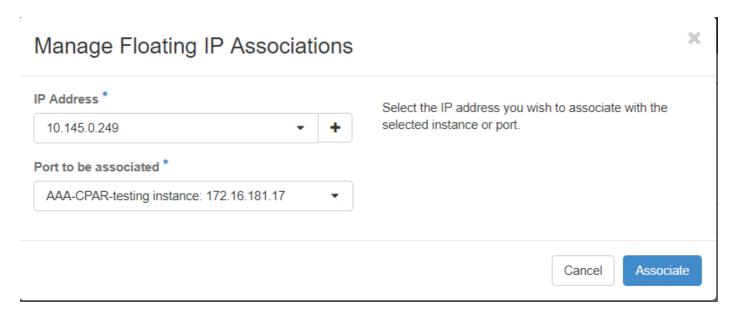

浮動IP地址是可路由地址,這意味著可以從Ultra M/OpenStack架構的外部訪問,並且能夠與網路中的其他節點通訊。

步驟 1.在Horizon頂部選單中,導航到Admin > Floating IPs。

步驟 2.按一下Allocate IP to Project按鈕。

步驟 3.在「Allocate Floating IP」視窗中,選擇新浮動IP所屬的池、將分配它的Project以及新的Floating IP地址本身。

舉例來說:



步驟 4.按一下Allocate Floating IP 按鈕。

步驟 5.在「水準」頂部選單中,導航到「專案」>「例項」。

步驟 6.在「Action」列中,按一下Create Snapshot按鈕中指向下方的箭頭,此時將顯示一個選單。 選擇關聯浮動IP選項。

步驟 7.在IP Address 欄位中選擇要使用的相應浮動IP地址,並從將在要關聯的埠中分配此浮動IP的新例項中選擇相應的管理介面(eth0),如下圖所示。

步驟 8.最後,按一下Associate按鈕。

啟用SSH

步驟 1.在「水準」頂部選單中,導航到「專案」>「例項」。

步驟 2.按一下在啟動新例項一節中建立的例項/VM的名稱。

步驟 3.按一下Console頁籤。這將顯示VM的命令列介面。

步驟 4.顯示CLI後,輸入適當的登入憑證:

使用者名稱:xxxxx

密碼:xxxxx

Red Hat Enterprise Linux Server 7.0 (Maipo)
Kernel 3.10.0-514.el7.x86_64 on an x86_64

aaa-cpar-testing-instance login: root
Password:
Last login: Thu Jun 29 12:59:59 from 5.232.63.159
[root@aaa-cpar-testing-instance ~]#

步驟 5.在CLI中,輸入命令vi /etc/ssh/sshd_config以編輯SSH配置。

步驟 6.開啟SSH配置檔案後,按I以編輯該檔案。然後查詢此處顯示的部分,並將第一行從 PasswordAuthentication no 更改為PasswordAuthentication yes。

To disable tunneled clear text passwords, change to no here! PasswordAuthentication yes_ #PermitEmptyPasswords no PasswordAuthentication no

步驟 7.按ESC並輸入:wq!以儲存sshd_config檔案更改。

步驟 8.執行命令service sshd restart。

[root@aaa-cpar-testing-instance ssh]# service sshd restart Redirecting to /bin/systemctl restart sshd.service [root@aaa-cpar-testing-instance ssh]# _ 步驟 9.為了測試已正確應用SSH配置更改,請開啟任何SSH客戶端,並嘗試與分配給例項的浮動 IP(即10.145.0.249)和使用者root建立遠端安全連線。

```
[2017-07-13 12:12.09] ~
[dieaguil.DIEAGUIL-CWRQ7] ➤ ssh root@10.145.0.249
Warning: Permanently added '10.145.0.249' (RSA) to the list of known hosts
.
root@10.145.0.249's password:
X11 forwarding request failed on channel 0
Last login: Thu Jul 13 12:58:18 2017
[root@aaa-cpar-testing-instance ~]#
[root@aaa-cpar-testing-instance ~]#
[root@aaa-cpar-testing-instance ~]#
```

建立SSH會話

使用將安裝應用程式的相應VM/伺服器的IP地址開啟SSH會話。

```
[dieaguil.DIEAGUIL-CWRQ7] ➤ ssh root@10.145.0.59
K11 forwarding request failed on channel 0
Last login: Wed Jun 14 17:12:22 2017 from 5.232.63.147
[root@dalaaa07 ~]# ■
```

上傳CPAR軟體和許可證

步驟 1.從思科軟體平台下載相應的CPAR版本安裝指令碼(CSCOar-x.x.x.x.-Inx26_64-install.sh): https://software.cisco.com/download/release.html?mdfid=286309432&flowid=&softwareid=2846

Cisco Prime Access Registrar for RHEL CSCOar-7.2.2.3-Inx26_64-install.sh

步驟 2.將CSCOar-x.x.x.x-lnx26 64-install.sh檔案上載到VM/Server(位於/tmp目錄)。

步驟 3.將相應的許可證檔案上傳到/tmp目錄下的新VM/服務器。

```
[cloud-user@rhel-instance tmp]$ ls
CSCOar-7.2.2.2-lnx26_64-install.sh PAR201703171741194350.lic
```

上傳RHEL/CentOS映像

將相應的RHEL或CentOS .iso文件上載到VM/server/tmp目錄。

[cloud-user@rhel-instance tmp]\$ ls | grep rhel hel-server-7.2-source-dvd1.iso

建立Yum儲存庫

Yum是一種Linux工具,幫助使用者安裝新的RPM及其所有依賴項。此工具用於安裝CPAR強制性 RPM以及執行核心升級過程時。

步驟 1. 使用命令cd/mnt導航到/mnt目錄,然後建立一個名為disk1的新目錄,並執行mkdir disk1命 令。

步驟 2.使用cd /tmp命令(該命令之前已上載了RHEL或CentOS .iso檔案)導航到/tmp目錄,並按照 3.3節中提到的步驟操作。

步驟 3.使用命令mount -o loop <iso檔案的名稱> /mnt/disk1,將RHEL/CentOS映像裝載到在步驟 1中建立的目錄中。

步驟 4.在/tmp中,使用命令mkdir repo建立一個名為repo的新目錄。然後,更改此目錄的許可權並 執行命令chmod -R o-w+r repo。

步驟 5. 使用命令cd /mnt/disk1導航到RHEL/CentOS映像的Packages目錄(裝載在步驟3中)。使 用命令cp-v*/tmp/repo將所有軟體包目錄檔案複製到/tmp/repo。

步驟 6.返回回回退目錄並執行cd /tmp/repo, 然後使用以下命令:

rpm -Uhvdeltarpm-3.6-3.el7.x86_64.rpm rpm-Uvh python-deltarpm-3.6-3.el7.x86_64.rpm rpm -Uvh createrepo-0.9.9-26.el7.noarch.rpm

💊 這些命令將安裝三個所需的RPM,以便安裝和使用Yum。前面提到的RPM版本可能不同,取 決於RHEL/CentOS版本。如果其中任何RPM未包含在/Packages目錄中,請參閱 https://rpmfind.net網站,可從該網站下載這些檔案。

步驟 7.使用createrepo /tmp/repo命令建立新的RPM資料檔案庫。

步驟 8. 使用命令cd /etc/yum.repos.d/導航到目錄/etc/yum.repos.d/。使用命令vi myrepo.repo建立 一個名為myrepo.repo的新檔案,其中包含此檔案:

[local]

name=MyRepo

baseurl=file:///tmp/repo

enabled=1

gpgcheck=0

按I以啟用插入模式。若要儲存並關閉,請按Esc鍵,然後輸入「:wq!」,然後按Enter鍵。

安裝CPAR所需的RPM

步驟 1. 使用cd /tmp/repo命令導航到/tmp/repo目錄。

步驟 2.安裝CPAR所需的RPM並執行以下命令:

```
yum install bc-1.06.95-13.el7.x86_64.rpm
yum install jre-7u80-linux-x64.rpm
yum install sharutils-4.13.3-8.el7.x86_64.rpm
yum install unzip-6.0-16.el7.x86_64.rpm
```


💊 註:RPM的版本可能不同,取決於RHEL/CentOS版本。如果這些RPM中的任一個RPM未包含 在/Packages目錄中,請參閱https://rpmfind.net網站,您可以在該網站下載這些檔案。要下載 Java SE 1.7 RPM, 請參閱http://www.oracle.com/technetwork/java/javase/downloads/javaarchive-downloads-javase7-521261.html並下載jre-7u80-linux-x64.rpm。

核心升級到3.10.0-693.1.1.el7版本

步驟 1. 使用命令cd /tmp/repo導航到/tmp/repo目錄。

步驟 2.安裝kernel-3.10.0-514.el7.x86_64 RPM並執行命令yum install kernel-3.10.0-693.1.1.el7.x86_64.rpm。

步驟 3.使用命令reboot重新啟動VM/伺服器。

步驟 4.電腦再次啟動後,驗證核心版本是否已更新,並執行uname -r命令。輸出應為3.10.0-693.1.1.el7.x86_64。

設定網路引數

修改主機名

步驟 1.以寫入模式開啟檔案/etc/hosts並執行vi /etc/hosts命令。

步驟 2.按I以啟用插入模式並寫入對應的主機網路資訊,然後遵循以下格式:

<Diameter interface IP>

<Host's FQDN>

<VM/Server's hostname>

例如: 10.178.7.37 aaa07.aaa.epc.mnc30.mcc10.3gppnetwork.org aaa07

步驟 3.按ESC鍵儲存更改並關閉檔案,然後寫入「:wq!」並按Enter鍵。

步驟 4.執行命令hostnamectl set-hostname <Host's FQDN>。例如: hostnamectl set-hostname aaa.epc.mnc.mcc.3gppnetwork.org。

步驟 5.使用命令service network restart重新啟動網路服務。

步驟 6.驗證是否應用了主機名更改,並執行命令:hostname -a、hostname -f,這些命令應顯示 VM/伺服器的主機名及其FQDN。

步驟 7.使用vi /etc/cloud/cloud_config命令開啟/etc/cloud/cloud_config,然後在「-update hostname」行前插入「#」。這是為了防止在重新啟動後更改主機名。檔案應如下所示:

cloud init modules:

- migrator
- bootcmd
- write-files
- growpart
- resizefs
- set hostname
- <u>" update hostname</u>
 - update etc hosts
 - rsyslog
 - users-groups
 - ssh

設定網路介面

步驟 1. 使用cd /etc/sysconfig/network-scripts導航到目錄/etc/sysconfig/network-scripts。

步驟 2.使用命令vi ifcfg-eth0開啟ifcfg-eth0。這是管理介面;其配置應如下所示。

```
DEVICE="eth0"

BOOTPROTO="dhcp"

ONBOOT="yes"

TYPE="Ethernet"

USERCTL="yes"

PEERDNS="yes"

IPV6INIT="no"

PERSISTENT_DHCLIENT="1"
```

執行任何必需的修改,然後按ESC鍵儲存並關閉檔案,然後輸入:wq!。

步驟 3.使用命令vi ifcfg-eth1建立eth1網路配置檔案。這是直徑的介面。按I進入插入模式並輸入此配置。

```
DEVICE="eth1"

BOOTPROTO="none"

ONBOOT="yes"

TYPE="Ethernet"

USERCTL="yes"

PEERDNS="yes"

IPV6INIT="no"

IPADDR= <eth1 IP>

PREFIX=28

PERSISTENT_DHCLIENT="1"
```

修改<eth1 IP>以確定此例項對應的直徑IP。一旦一切就緒,儲存並關閉檔案。

步驟 4.使用commandvi ifcfg-eth2建立eth2網路配置檔案。這是radius interface。按I進入插入模式並輸入以下配置:

```
DEVICE="eth2"

BOOTPROTO="none"

ONBOOT="yes"
```

```
TYPE="Ethernet"

USERCTL="yes"

PEERDNS="yes"

IPV6INIT="no"

IPADDR= <eth2 IP>

PREFIX=28

PERSISTENT_DHCLIENT="1"
```

修改<eth2 IP>為此例項的對應radius' IP。一旦一切就緒,儲存並關閉檔案。

步驟 5.使用命令service network restart重新啟動網絡服務。使用命令ifconfig驗證是否已應用網路配置更改。根據每個網路介面的網路配置檔案(ifcfg-ethx),每個網路介面都應有IP。如果eth1或eth2沒有自動引導,請執行命令ifup ethx。

安裝CPAR

步驟 1. 通過執行命令cd /tmp導航到/tmp目錄。

步驟 2.使用chmod 775 ./CSCOar-x.x.x.x.-Inx26_64-install.sh命令更改./CSCOar-x.x.x.x.-Inx26_64-install.sh檔案的許可權。

步驟 3.使用命令./CSCOar-x.x.x.x.-Inx26_64-install.sh啟動安裝指令碼。

```
[cloud-user@rhel-instance tmp]$ sudo ./CSCOar-7.2.2.2-lnx26_64-install.sh
./CSCOar-7.2.2.2-lnx26 64-install.sh: line 343: [: 148: unary operator expected
                                           Relocations: /opt/CSCOar
Name
            : CSCOar
Version
           : 7.2.2.2
                                                Vendor: Cisco Systems, Inc.
Release
           : 1491821640
                                            Build Date: Mon Apr 10 04:02:17 2017
Install Date: (not installed)
                                            Build Host: nm-rtp-view4
Signature : (none)
build_tag: [Linux-2.6.18, official]
Copyright (C) 1998-2016 by Cisco Systems, Inc.
This program contains proprietary and confidential information.
All rights reserved except as may be permitted by prior written consent.
Where do you want to install <CSCOar>? [/opt/CSCOar] [?,q]
```

步驟 4.對於「Where do you want to install <CSCOar>?(您要在何處安裝<CSCOar>?)」問題 [/opt/CSCOar] [?,q],按Enter選擇預設位置(/opt/CSCOar/)。

步驟 5.在FLEXIm許可證檔案位於何處?[] [?,q]提供許可證的位置,該位置應為/tmp。

步驟 6.對於問題J2RE安裝在何處?[] [?,q]輸入安裝Java的目錄。例如: /usr/java/jre1.8.0_144/。

驗證這是當前CPAR版本的相應Java版本。

步驟 7.由於此部署中未使用Oracle,因此按Enter可跳過Oracle輸入。

步驟 8.按Enter跳過SIGTRAN-M3UA功能。此部署不需要此功能。

步驟 9.對於問題,是否希望以非根使用者身份運行CPAR?[n]: [y, n, ?,q]按Enter鍵,使用預設答案 n。

步驟 10.對於問題,是否立即安裝示例配置?[n]: [y, n, ?,q]按Enter鍵,使用預設答案n。

步驟 11.等待CPAR安裝過程完成,然後驗證所有CPAR進程是否正在運行。 導航到目錄 /opt/CSCOar/bin,然後執行命令。/arstatus。輸出應如下所示:

```
[root@dalaaa06 bin]# ./arstatus
Cisco Prime AR RADIUS server running (pid: 1192)
Cisco Prime AR Server Agent running (pid: 1174)
Cisco Prime AR MCD lock manager running (pid: 1177)
Cisco Prime AR MCD server running (pid: 1191)
Cisco Prime AR GUI running (pid: 1194)
SNMP Master Agent running (pid: 1193)
```

設定SNMP

設定CPAR SNMP

步驟 1.使用命令/cisco-ar/ucd-snmp/share/snmp/snmpd.conf 開啟檔案snmpd.conf,以便包含所需的SNMP社群、陷阱社群和陷阱接收器IP地址:插入行trap2sink xxx.xxx.xxx cparaasnmp 162。

步驟 2.執行命令cd /opt/CSCOar/bin,然後使用命令./aregcmd登入到CPAR CLI並輸入管理員憑據。

步驟 3.移動到/Radius/Advanced/SNMP,然後發出命令set MasterAgentEnabled TRUE。使用 save和quit CPAR CLI發出exit命令,儲存更改。

```
[ //localhost/Radius/Advanced/SNMP ]
    Enabled = TRUE
    TracingEnabled = FALSE
    InputQueueHighThreshold = 90
    InputQueueLowThreshold = 60
    DiaInputQueueHighThreshold = 90
    DiaInputQueueLowThreshold = 60
    MasterAgentEnabled = TRUE
```

步驟 4.使用snmpwalk -v2c -c public 127.0.0.1 .1命令驗證CPAR OID是否可用。

如果作業系統無法識別snmpwalk命令,請導航到/tmp/repo並執行yum install net-snmp-libs-5.5-49.el6.x86_64.rpm。

設定OS SNMP

步驟 1.編輯檔案/etc/sysconfig/snmpd以指定作業系統SNMP監聽程式的埠50161,否則,將使用當前由CPAR SNMP代理使用的預設埠161。

```
[root@snqaaa06 snmp]# cat /etc/sysconfig/snmpd
# snmpd command line options
# '-f' is implicitly added by snmpd systemd unit file
# OPTIONS="-LS0-6d"
OPTIONS="-LS0-5d -Lf /dev/null -p /var/run/snmpd.pid -x TCP:50161 UDP:50161"
```

步驟 2.使用命令service snmpd restart重新啟動SNMP服務。

```
[root@snqaaa06 bin] # service snmpd restart
Redirecting to /bin/systemctl restart snmpd.service
```

步驟 3.通過發出命令snmpwalk -v2c -c public 127.0.0.1:50161.1驗證OS OID是否可以查詢。

```
[root@snqaaa06 snmp]  # snmpwalk -v2c -c public 127.0.0.1:50161 .1
SNMPv2-MIB::sysDescr.0 = STRING: Linux snqaaa06.aaa.epc.mnc300.mcc310.3gppnetwork.org 3.10.0-514.e17.x86_64  #1 SMF Tue Nov 22 16:42:41 UTC 2016 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAM-EVENT-MIB::sysUpTimeInstance = Timeticks: (3466) 0:00:34.66
SNMPv2-MIB::sysContact.0 = STRING: Root <root@localhost> (configure /etc/snmp/snmp.local.conf)
SNMPv2-MIB::sysName.0 = STRING: snqaaa06.aaa.epc.mnc300.mcc310.3gppnetwork.org
SNMPv2-MIB::sysOcation.0 = STRING: Unknown (edit /etc/snmp/snmpd.conf)
SNMPv2-MIB::sysOcation.0 = STRING: Unknown (edit /etc/snmp/snmpd.conf)
SNMPv2-MIB::sysORID.1 = OID: SNMP-MIB::snmpMPDCompliance
SNMPv2-MIB::sysORID.2 = OID: SNMP-USER-BASED-SM-MIB::usmMIBCompliance
SNMPv2-MIB::sysORID.3 = OID: SNMP-USER-BASED-SM-MIB::snmpFrameworkMIBCompliance
SNMPv2-MIB::sysORID.4 = OID: SNMPv2-MIB::snmpMIB
SNMPv2-MIB::sysORID.5 = OID: TCP-MIB::snmpMIB
SNMPv2-MIB::sysORID.5 = OID: TCP-MIB::tcpMIB
SNMPv2-MIB::sysORID.5 = OID: TCP-MIB::tcpMIB
SNMPv2-MIB::sysORID.5 = OID: TCP-MIB::tcpMIB
SNMPv2-MIB::sysORID.5 = OID: TCP-MIB::tcpMIB
```

配置NTP

步驟 1.驗證NTP RPM是否已安裝,請執行命令rpm -qa | grep ntp。輸出應如下所示。

root@dalaaa06 repo]# rpm -qa ntp-4.2.6p5-25.el7.centos.x86_64 tpdate-4.2.6p5-25.el7.centos.x86 64

如果未安裝RPM,請使用cd /tmp/repo導航到/tmp/repo目錄,然後執行以下命令:

yum install ntp-4.2.6p5-25.el7.centos.x86_64 yum install ntpdate-4.2.6p5-25.el7.centos.x86:64

步驟 2.使用命令vi /etc/ntp.conf開啟/etc/ntp.conf檔案,並為此VM/伺服器新增相應的NTP伺服器的 IP.

步驟 3.關閉ntp.conf檔案,然後使用命令service ntpd restart重新啟動ntpd服務。

步驟 4.使用命令ntpg -p驗證VM/伺服器現在是否已連線到NTP伺服器。

CPAR配置備份/恢復過程(可選)

💊 注意:僅當在此新VM/伺服器中複製現有CPAR配置時,才應執行此部分。此過程僅適用於源 例項和目標例項中使用相同CPAR版本的情況。

從現有CPAR例項獲取CPAR配置備份檔案

步驟 1.開啟與相應的VM的新SSH會話,在該會話中使用根憑證獲取備份檔案。

步驟 2.使用命令cd /opt/CSCOar/bin 導航到目錄/opt/CSCOar/bin。

步驟 3.停止CPAR服務並執行命令。/arserver stop即可執行該操作。

步驟 4.使用命令./arstatus驗證CPAR服務是否已停止,並查詢消息Cisco Prime Access Registrar Server Agent not running.

步驟 5.要建立新備份,請執行命令。/mcdadmin -e /tmp/config.txt。當系統詢問時,輸入CPAR管理 員憑據。

步驟 6. 使用命令cd /tmp導航到目錄/tmp。名為config.txt的檔案是此CPAR例項配置的備份。

步驟 7.將config.txt檔案上傳到要還原備份的新VM/伺服器。使用命令scp config.txt root@<new VM/Server IP>:/tmp。

步驟 8.使用命令cd /opt/CSCOar/bin 返回目錄/opt/CSCOar/bin ,然後使用命令./arserver start再次 啟動CPAR。

在新VM/伺服器中恢復CPAR配置備份檔案

步驟 1.在新的VM/Server中,使用命令cd/tmp導航到目錄/tmp,並驗證是否存在config.txt檔案,該檔案已上載到步驟7。部分<u>從現有CPAR例項獲取CPAR配置備份檔案</u>。如果檔案不存在,請參閱該部分並驗證scp命令是否執行良好。

步驟 2. 使用命令cd /opt/CSCOar/bin 導航到/opt/CSCOar/bin 目錄,然後執行./arserver stop 命令關閉CPAR服務。

步驟 3.若要還原備份,請執行命令。/mcdadmin -coi /tmp/config.txt。

步驟 4.發出命令./arserver start重新開啟CPAR服務。

步驟 5.最後,使用命令./arstatus檢查CPAR狀態。輸出應如下所示。

```
[root@dalaaa06 bin]# ./arstatus
Cisco Prime AR RADIUS server running (pid: 1192)
Cisco Prime AR Server Agent running (pid: 1174)
Cisco Prime AR MCD lock manager running (pid: 1177)
Cisco Prime AR MCD server running (pid: 1191)
Cisco Prime AR GUI running (pid: 1194)
SNMP Master Agent running (pid: 1193)
```

關於此翻譯

思科已使用電腦和人工技術翻譯本文件,讓全世界的使用者能夠以自己的語言理解支援內容。請注意,即使是最佳機器翻譯,也不如專業譯者翻譯的內容準確。Cisco Systems, Inc. 對這些翻譯的準確度概不負責,並建議一律查看原始英文文件(提供連結)。