Substituição da placa-mãe no servidor UCS 240M4 Ultra-M - CPS

Contents

Introduction Informações de Apoio **Abreviaturas** Fluxo de trabalho do MoP Substituição da placa-mãe na configuração Ultra-M Substituição da placa-mãe no nó de computação Identificar as VMs hospedadas no nó de computação **Desligamento normal** Computador Node Hosts VMs CPS/ESC Backup ESC Backup do banco de dados ESC Substituir a placa-mãe **Restaure as VMs** Computador Node Hosts CPS, ESC Restaure as VMs do CPS Substituição da placa-mãe no nó de computação OSD Colocar CEPH no modo de manutenção Identifique as VMs hospedadas no nó Osd-Compute **Desligamento normal** Caso 1. OSD-Computing node Hosts ESC Substituir a placa-mãe Mova o CEPH do modo de manutenção **Restaure as VMs** Caso 1. OSD-Compute Node host VMs ESC ou CPS Substituição da placa-mãe no nó da controladora Verifique o status do controlador e coloque o cluster no modo de manutenção Substituir a placa-mãe Restaurar status do cluster

Introduction

Este documento descreve as etapas necessárias para substituir uma placa-mãe defeituosa de um servidor em uma configuração Ultra-M que hospeda as funções de rede virtual (VNFs) do CPS.

Informações de Apoio

O Ultra-M é uma solução de núcleo de pacotes móveis virtualizados pré-embalada e validada, projetada para simplificar a implantação de VNFs. O OpenStack é o Virtualized Infrastructure

Manager (VIM) para Ultra-M e consiste nos seguintes tipos de nó:

- Computação
- Disco de Armazenamento de Objeto Computação (OSD Compute)
- Controlador
- Plataforma OpenStack Diretor (OSPD)

A arquitetura de alto nível da Ultra-M e os componentes envolvidos estão descritos nesta imagem:

Este documento destina-se aos funcionários da Cisco que estão familiarizados com a plataforma Cisco Ultra-M e detalha as etapas necessárias para serem executadas no nível de VNF do OpenStack e do StarOS no momento da substituição da placa-mãe em um servidor.

Note: A versão Ultra M 5.1.x é considerada para definir os procedimentos neste documento.

Abreviaturas

- VNF Função de rede virtual
- ESC Controlador de serviço
- elástico
- MOP Método de Procedimento
- OSD Discos de Armazenamento
 - de Objeto

HDD	Unidade de disco rígido
SSD	Unidade de estado sólido
VIM	Virtual Infrastructure Manager
VM	Máquina virtual
EM	Gestor de Elementos
UAS	Ultra Automation Services
	Identificador de ID universal
UUD	exclusivo

Fluxo de trabalho do MoP

Substituição da placa-mãe na configuração Ultra-M

Em uma configuração Ultra-M, pode haver cenários em que a substituição da placa-mãe é necessária nos seguintes tipos de servidor: Computação, OSD-Compute e Controlador.

Note: Os discos de inicialização com a instalação do openstack são substituídos após a substituição da placa-mãe. Portanto, não há necessidade de adicionar o nó de volta à nuvem. Quando o servidor é ligado após a atividade de substituição, ele se inscreve novamente na pilha de nuvem.

Substituição da placa-mãe no nó de computação

Antes da atividade, as VMs hospedadas no nó Computação são desligadas com facilidade. Depois que a placa-mãe for substituída, as VMs serão restauradas novamente.

Identificar as VMs hospedadas no nó de computação

Identifique as VMs hospedadas no servidor de computação.

O servidor de computação contém VMs CPS ou controlador de serviços elásticos (ESC):

```
[stack@director ~]$ nova list --field name,host | grep compute-8
| 507d67c2-1d00-4321-b9d1-da879af524f8 | VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-
88a2d6fa82ea | pod1-compute-8.localdomain |
| f9c0763a-4a4f-4bbd-af51-bc7545774be2 | VNF2-DEPLOYM_c1_0_df4be88d-b4bf-4456-945a-
3812653ee229 | pod1-compute-8.localdomain |
| 75528898-ef4b-4d68-b05d-882014708694 | VNF2-ESC-ESC-
0 | pod1-compute-8.localdomain |
```

Nota:Na saída mostrada aqui, a primeira coluna corresponde ao UUID (Universal Unique IDentifier), a segunda coluna é o nome da VM e a terceira coluna é o nome do host onde a VM está presente. Os parâmetros dessa saída serão usados em seções subsequentes.

Desligamento normal

Computador Node Hosts VMs CPS/ESC

Etapa 1. Faça login no nó ESC que corresponde ao VNF e verifique o status das VMs.

```
<vm_id>507d67c2-1d00-4321-b9d1-da879af524f8</vm_id>
<vm_id>dc168a6a-4aeb-4e81-abd9-91d7568b5f7c</vm_id>
<vm_id>9ffec58b-4b9d-4072-b944-5413bf7fcf07</vm_id>
<state>SERVICE_ACTIVE_STATE</state>
<vm_name>VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-88a2d6fa82ea</vm_name>
<state>VM_ALIVE_STATE</state>
```

<snip>

Etapa 2. Interrompa as VMs CPS uma a uma com o uso de seu Nome de VM. (Nome da VM observado na seção Identifique as VMs hospedadas no nó de computação).

```
[admin@VNF2-esc-esc-0 esc-cli]$ ./esc_nc_cli vm-action STOP VNF2-DEPLOYM_c1_0_df4be88d-b4bf-
4456-945a-3812653ee229
```

[admin@VNF2-esc-esc-0 esc-cli]\$./esc_nc_cli vm-action STOP VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-88a2d6fa82ea

Etapa 3. Depois de parar, as VMs devem entrar no estado SHUTOFF.

<snip>

Etapa 4. Faça login no ESC hospedado no nó de computação e verifique se ele está no estado mestre. Em caso afirmativo, mudar o sistema ESC para o modo de espera:

```
[admin@VNF2-esc-esc-0 esc-cli]$ escadm status
0 ESC status=0 ESC Master Healthy
[admin@VNF2-esc-esc-0 ~]$ sudo service keepalived stop
Stopping keepalived: [ OK ]
[admin@VNF2-esc-esc-0 ~]$ escadm status
1 ESC status=0 In SWITCHING_TO_STOP state. Please check status after a while.
[admin@VNF2-esc-esc-0 ~]$ sudo reboot
Broadcast message from admin@vnf1-esc-esc-0.novalocal
        (/dev/pts/0) at 13:32 ...
The system is going down for reboot NOW!
```

Backup ESC

Etapa 1. O ESC tem redundância 1:1 na solução UltraM. 2 VMs ESC são implantadas e suportam uma única falha no UltraM. ou seja, o sistema é recuperado se houver uma única falha no sistema.

Note: Se houver mais de uma falha, ela não é suportada e pode exigir a reimplantação do sistema.

Detalhes do backup ESC:

- Configuração running
- CDB ConfD
- Logs ESC
- Configuração de syslog

Etapa 2. A frequência do backup do banco de dados ESC é complicada e precisa ser tratada com cuidado enquanto o ESC monitora e mantém as várias máquinas de estado para várias VMs VNF implantadas. Recomenda-se que esses backups sejam realizados após as seguintes atividades em determinado VNF/POD/Site.

Etapa 3. Verifique se a integridade do ESC é boa para usar o script health.sh.

[root@auto-test-vnfm1-esc-0 admin]# escadm status 0 ESC status=0 ESC Master Healthy [root@auto-test-vnfm1-esc-0 admin]# health.sh esc ui is disabled -- skipping status check esc_monitor start/running, process 836 esc_mona is up and running ... vimmanager start/running, process 2741 vimmanager start/running, process 2741 esc_confd is started tomcat6 (pid 2907) is running... [OK] postgresql-9.4 (pid 2660) is running... ESC service is running... Active VIM = OPENSTACK ESC Operation Mode=OPERATION /opt/cisco/esc/esc_database is a mountpoint DRBD_ROLE_CHECK=0 MNT_ESC_DATABSE_CHECK=0 VIMMANAGER_RET=0 ESC_CHECK=0 STORAGE_CHECK=0 ESC_SERVICE_RET=0 MONA_RET=0 ESC_MONITOR_RET=0 _____

ESC HEALTH PASSED

Etapa 4. Faça um backup da configuração em execução e transfira o arquivo para o servidor de backup.

[root@auto-test-vnfm1-esc-0 admin]# /opt/cisco/esc/confd/bin/confd_cli -u admin -C

admin connected from 127.0.0.1 using console on auto-test-vnfml-esc-0.novalocal auto-test-vnfml-esc-0# show running-config | save /tmp/running-esc-12202017.cfg auto-test-vnfml-esc-0#exit

[root@auto-test-vnfml-esc-0 admin]# ll /tmp/running-esc-12202017.cfg
-rw-----. 1 tomcat tomcat 25569 Dec 20 21:37 /tmp/running-esc-12202017.cfg

Backup do banco de dados ESC

Etapa 1. Faça login na VM ESC e execute esse comando antes de fazer o backup.

```
[admin@esc ~]# sudo bash
[root@esc ~]# cp /opt/cisco/esc/esc-scripts/esc_dbtool.py /opt/cisco/esc/esc-
scripts/esc_dbtool.py.bkup
[root@esc esc-scripts]# sudo sed -i "s,'pg_dump,'/usr/pgsql-9.4/bin/pg_dump,"
/opt/cisco/esc/esc-scripts/esc_dbtool.py
```

#Set ESC to mainenance mode

[root@esc esc-scripts]# escadm op_mode set --mode=maintenance Etapa 2. Verifique o modo ESC e certifique-se de que ele esteja no modo de manutenção.

[root@esc esc-scripts]# escadm op_mode show Etapa 3. Banco de dados de backup usando a ferramenta de restauração de backup de banco de dados disponível em ESC.

[root@esc scripts]# sudo /opt/cisco/esc/esc-scripts/esc_dbtool.py backup --file scp://

Etapa 4. Defina ESC de volta no modo de operação e confirme o modo.

[root@esc scripts]# escadm op_mode set --mode=operation

[root@esc scripts]# escadm op_mode show Etapa 5. Navegue até o diretório scripts e colete os logs.

[root@esc scripts]# /opt/cisco/esc/esc-scripts

sudo ./collect_esc_log.sh Etapa 6. Para criar um instantâneo do ESC, desligue o ESC pela primeira vez.

shutdown -r now

•

Passo 7. A partir do OSPD, crie um instantâneo de imagem.

nova image-create --poll esc1 esc_snapshot_27aug2018 Etapa 8. Verifique se o snapshot foi criado

openstack image list | grep esc_snapshot_27aug2018 Etapa 9. Iniciar o ESC do OSPD

nova start escl

Etapa 10. Repita o mesmo procedimento na VM ESC em standby e transfira os registros para o servidor de backup.

Etapa 11. Colete o backup da configuração do syslog no ESC VMS e transfira-o para o servidor de backup.

```
[admin@auto-test-vnfm2-esc-1 ~]$ cd /etc/rsyslog.d
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/00-escmanager.conf
00-escmanager.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/01-messages.conf
01-messages.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/02-mona.conf
02-mona.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.conf
```

rsyslog.conf

Substituir a placa-mãe

Etapa 1. As etapas para substituir a placa-mãe em um servidor UCS C240 M4 podem ser consultadas a partir de:

Guia de instalação e serviços do servidor Cisco UCS C240 M4

Etapa 2. Faça login no servidor usando o CIMC IP.

Etapa 3. Execute a atualização do BIOS se o firmware não estiver de acordo com a versão recomendada usada anteriormente. As etapas para a atualização do BIOS são fornecidas aqui:

Guia de atualização do BIOS de servidor com montagem em rack Cisco UCS C-Series

Restaure as VMs

Computador Node Hosts CPS, ESC

Recuperação de VM ESC

Etapa 1. VM ESC é recuperável se a VM estiver em estado de erro ou desligamento, faça uma reinicialização forçada para ativar a VM afetada. Execute estas etapas para recuperar o ESC.

Etapa 2. Identifique a VM que está no estado ERROR ou Shutdown, depois de identificar a reinicialização forçada da VM ESC. Neste exemplo, reinicialize o teste automático-vnfm1-ESC-0.

[root@tbl-baremetal scripts]# nova list | grep auto-test-vnfm1-ESC-

[root@tb1-baremetal scripts]# [root@tb1-baremetal scripts]# nova reboot --hard f03e3cac-a78a-439f-952b-045aea5b0d2c\ Request to reboot server <Server: auto-test-vnfm1-ESC-0> has been accepted.

[root@tbl-baremetal scripts]#

Etapa 3. Se a VM ESC for excluída e precisar ser exibida novamente.

[stack@podl-ospd scripts]\$ nova delete vnf1-ESC-ESC-1 Request to delete server vnf1-ESC-ESC-1 has been accepted. Etapa 4. No OSPD, verifique se a nova VM ESC está ATIVA/em execução:

```
[stack@pod1-ospd ~]$ nova list grep -i esc
934519a4-d634-40c0-a51e-fc8d55ec7144 vnf1-ESC-ESC-
                                     ACTIVE | - | running | vnfl-
0
UAS-uas-orchestration=172.168.11.13; vnf1-UAS-uas-
management=172.168.10.3
2601b8ec-8ff8-4285-810a-e859f6642ab6 | vnf1-ESC-ESC-
1
                                     ACTIVE -
                                                | running | vnf1-
UAS-uas-orchestration=172.168.11.14; vnf1-UAS-uas-
management=172.168.10.6
                  #Log in to new ESC and verify Backup state. You may execute health.sh on ESC Master too.
 ESC on vnfl-esc-esc-1.novalocal is in BACKUP state.
 [admin@esc-1 ~]$ escadm status
0 ESC status=0 ESC Backup Healthy
[admin@esc-1 ~]$ health.sh
======= ESC HA (BACKUP) ============
_____
ESC HEALTH PASSED
[admin@esc-1 ~]$ cat /proc/drbd
```

```
version: 8.4.7-1 (api:1/proto:86-101)
GIT-hash: 3a6a769340ef93b1ba2792c6461250790795db49 build by mockbuild@Build64R6, 2016-01-12
13:27:11
1: cs:Connected ro:Secondary/Primary ds:UpToDate/UpToDate C r----
```

ns:0 nr:504720 dw:3650316 dr:0 al:8 bm:0 lo:0 pe:0 ua:0 ap:0 ep:1 wo:f oos:0

Etapa 5. Se a VM ESC não for recuperável e exigir a restauração do banco de dados, restaure o banco de dados do backup anterior.

Etapa 6. Para a restauração do banco de dados ESC, temos que garantir que o serviço esc seja interrompido antes de restaurar o banco de dados; Para o ESC HA, execute primeiro na VM secundária e depois na VM principal.

service keepalived stop

Passo 7. Verifique o status do serviço ESC e certifique-se de que tudo esteja parado nas VMs primária e secundária para HA

escadm status

Etapa 8. Execute o script para restaurar o banco de dados. Como parte da restauração do banco de dados para a instância do ESC recém-criada, a ferramenta também promoverá uma das instâncias para ser um ESC primário, montará sua pasta de banco de dados para o dispositivo drbd e iniciará o banco de dados PostgreSQL.

/opt/cisco/esc/esc-scripts/esc_dbtool.py restore --file scp://

Etapa 9. Reinicie o serviço ESC para concluir a restauração do banco de dados.

Para executar HA em ambas as VMs, reinicie o serviço keepalived

service keepalived start

Etapa 10. Depois que a VM for restaurada e executada com êxito; certifique-se de que toda a configuração específica do syslog seja restaurada a partir do backup conhecido anterior. Verifique se ele foi restaurado em todas as VMs do ESC

```
[admin@auto-test-vnfm2-esc-1 ~]$
[admin@auto-test-vnfm2-esc-1 ~]$ cd /etc/rsyslog.d
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/00-escmanager.conf
00-escmanager.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/01-messages.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/02-mona.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.d/02-mona.conf
[admin@auto-test-vnfm2-esc-1 rsyslog.d]$1s /etc/rsyslog.conf
```

Etapa 11. Se o ESC precisar ser reconstruído do snapshot OSPD, use o comando abaixo usando o snapshot obtido durante o backup.

nova rebuild --poll --name esc_snapshot_27aug2018 esc1 Etapa 12. Verifique o status do ESC após a conclusão da reconstrução.

nova list --fileds name, host, status, networks | grep esc Etapa 13. Verifique a integridade do ESC com o comando abaixo.

health.sh

```
Copy Datamodel to a backup file
/opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli get esc_datamodel/opdata > /tmp/esc_opdata_`date
+%Y%m%d%H%M%S`.txt
```

Restaure as VMs do CPS

A VM do CPS estaria em estado de erro na lista nova:

```
[admin@VNF2-esc-esc-0 ~]$ sudo /opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli recovery-vm-action DO
VNF2-DEPLOYM_s9_0_8bc6cc60-15d6-4ead-8b6a-10e75d0e134d
[sudo] password for admin:
```

Monitore o yangesc.log:

admin@VNF2-esc-esc-0 ~]\$ tail -f /var/log/esc/yangesc.log ... 14:59:50,112 07-Nov-2017 WARN Type: VM_RECOVERY_COMPLETE 14:59:50,112 07-Nov-2017 WARN Status: SUCCESS 14:59:50,112 07-Nov-2017 WARN Status Code: 200 14:59:50,112 07-Nov-2017 WARN Status Msg: Recovery: Successfully recovered VM [VNF2-DEPLOYM_s9_0_8bc6cc60-15d6-4ead-8b6a-10e75d0e134d].

Quando o ESC não inicia a VM

Etapa 1. Em alguns casos, o ESC não iniciará a VM devido a um estado inesperado. Uma solução alternativa é executar um switchover ESC reinicializando o ESC mestre. A transição para o ESC levará cerca de um minuto. Execute health.sh no novo ESC mestre para verificar se ele está ativado. Quando o ESC se tornar Master, o ESC poderá corrigir o estado da VM e iniciar a VM. Como essa operação está agendada, você deve aguardar de 5 a 7 minutos para que seja concluída.

Etapa 2. Você pode monitorar /var/log/esc/yangesc.log e /var/log/esc/escmanager.log. Se você NÃO vir a VM sendo recuperada após 5 a 7 minutos, o usuário precisaria ir e fazer a recuperação manual das VMs afetadas.

Etapa 3. Depois que a VM for restaurada e executada com êxito; certifique-se de que toda a configuração específica do syslog seja restaurada a partir do backup conhecido anterior. Verifique se ele foi restaurado em todas as VMs ESC.

```
root@autotestvnfmlesc2:/etc/rsyslog.d# pwd
/etc/rsyslog.d
root@autotestvnfmlesc2:/etc/rsyslog.d# 11
total 28
drwxr-xr-x 2 root root 4096 Jun 7 18:38 ./
drwxr-xr-x 86 root root 4096 Jun 6 20:33 ../]
-rw-r--r- 1 root root 319 Jun 7 18:36 00-vnmf-proxy.conf
-rw-r--r- 1 root root 317 Jun 7 18:38 01-ncs-java.conf
-rw-r--r- 1 root root 311 Mar 17 2012 20-ufw.conf
-rw-r--r- 1 root root 252 Nov 23 2015 21-cloudinit.conf
-rw-r--r- 1 root root 1655 Apr 18 2013 50-default.conf
```

root@abautotestvnfmlem-0:/etc/rsyslog.d# ls /etc/rsyslog.conf
rsyslog.conf

Substituição da placa-mãe no nó de computação OSD

Antes da atividade, as VMs hospedadas no nó Computação são desligadas graciosamente e o CEPH é colocado no modo de manutenção. Depois que a placa-mãe for substituída, as VMs serão restauradas novamente e o CEPH será removido do modo de manutenção.

Colocar CEPH no modo de manutenção

[heat-admin@pod1-osd-compute-1 ~]\$ sudo ceph osd tree

Etapa 1. Verifique se o status da árvore do cabo está ativo no servidor

ID	WEIGHT	TYPE NAME	UP/DOWN	REWEIGHT	PRIMARY-AFFINITY
-1	13.07996	root default			
-2	4.35999	host pod1-osd-compute-0			
0	1.09000	osd.0	up	1.00000	1.00000
3	1.09000	osd.3	up	1.00000	1.00000
б	1.09000	osd.6	up	1.00000	1.00000
9	1.09000	osd.9	up	1.00000	1.00000
-3	4.35999	host pod1-osd-compute-2			
1	1.09000	osd.1	up	1.00000	1.00000
4	1.09000	osd.4	up	1.00000	1.00000
7	1.09000	osd.7	up	1.00000	1.00000
10	1.09000	osd.10	up	1.00000	1.00000
-4	4.35999	host pod1-osd-compute-1			
2	1.09000	osd.2	up	1.00000	1.00000
5	1.09000	osd.5	up	1.00000	1.00000
8	1.09000	osd.8	up	1.00000	1.00000
11	1.09000	osd.11	up	1.00000	1.00000

Etapa 2. Faça login no nó de computação OSD e coloque CEPH no modo de manutenção.

```
[root@podl-osd-compute-1 ~]# sudo ceph osd set norebalance
[root@podl-osd-compute-1 ~]# sudo ceph osd set noout
[root@podl-osd-compute-1 ~]# sudo ceph status
cluster eb2bb192-blc9-11e6-9205-525400330666
health HEALTH_WARN
noout,norebalance,sortbitwise,require_jewel_osds flag(s) set
monmap e1: 3 mons at {podl-controller-0=11.118.0.40:6789/0,podl-controller-
1=11.118.0.41:6789/0,podl-controller-2=11.118.0.42:6789/0}
election epoch 58, quorum 0,1,2 podl-controller-0,podl-controller-1,podl-controller-2
osdmap e194: 12 osds: 12 up, 12 in
flags noout,norebalance,sortbitwise,require_jewel_osds
pgmap v584865: 704 pgs, 6 pools, 531 GB data, 344 kobjects
1585 GB used, 11808 GB / 13393 GB avail
704 active+clean
client io 463 kB/s rd, 14903 kB/s wr, 263 op/s rd, 542 op/s wr
```

Note: Quando o CEPH é removido, o VNF HD RAID entra no estado Degraded, mas o disco rígido ainda precisa estar acessível

Identifique as VMs hospedadas no nó Osd-Compute

Identifique as VMs hospedadas no servidor de computação OSD.

O servidor de computação contém VMs do controlador de serviços elásticos (ESC) ou do CPS

```
[stack@director ~]$ nova list --field name,host | grep osd-compute-1
| 507d67c2-1d00-4321-b9d1-da879af524f8 | VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-
88a2d6fa82ea | pod1-compute-8.localdomain |
| f9c0763a-4a4f-4bbd-af51-bc7545774be2 | VNF2-DEPLOYM_c1_0_df4be88d-b4bf-4456-945a-
3812653ee229 | pod1-compute-8.localdomain |
| 75528898-ef4b-4d68-b05d-882014708694 | VNF2-ESC-ESC-
0 | pod1-compute-8.localdomain |
| f5bd7b9c-476a-4679-83e5-303f0aae9309 | VNF2-UAS-uas-
0 | pod1-compute-8.localdomain |
```

Note: Na saída mostrada aqui, a primeira coluna corresponde ao UUID (Universal Unique IDentifier), a segunda coluna é o nome da VM e a terceira coluna é o nome do host onde a VM está presente. Os parâmetros dessa saída serão usados em seções subsequentes.

Desligamento normal

Caso 1. OSD-Computing node Hosts ESC

O procedimento para obter a potência normal das VMs ESC ou CPS é o mesmo, independentemente de as VMs estarem hospedadas no nó Computação ou OSD-Compute.

Siga os passos de "Motherboard Replacement in Compute Node" (Substituição da placa-mãe no nó de computação) para desligar as VMs com cuidado.

Substituir a placa-mãe

Etapa 1. As etapas para substituir a placa-mãe em um servidor UCS C240 M4 podem ser consultadas a partir de:

Guia de instalação e serviços do servidor Cisco UCS C240 M4

Etapa 2. Faça login no servidor usando o CIMC IP

3. Execute a atualização do BIOS se o firmware não estiver de acordo com a versão recomendada usada anteriormente. As etapas para a atualização do BIOS são fornecidas aqui:

Guia de atualização do BIOS de servidor com montagem em rack Cisco UCS C-Series

Mova o CEPH do modo de manutenção

Efetue login no nó Computação OSD e mova o CEPH para fora do modo de manutenção.

[root@podl-osd-compute-1 ~]# sudo ceph osd unset norebalance [root@podl-osd-compute-1 ~]# sudo ceph osd unset noout [root@podl-osd-compute-1 ~]# sudo ceph status cluster eb2bb192-blc9-11e6-9205-525400330666 health HEALTH_OK monmap e1: 3 mons at {podl-controller-0=11.118.0.40:6789/0,podl-controller-1=11.118.0.41:6789/0,podl-controller-2=11.118.0.42:6789/0} election epoch 58, quorum 0,1,2 podl-controller-0,podl-controller-1,podl-controller-2 osdmap e196: 12 osds: 12 up, 12 in flags sortbitwise,require_jewel_osds pgmap v584954: 704 pgs, 6 pools, 531 GB data, 344 kobjects 1585 GB used, 11808 GB / 13393 GB avail 704 active+clean client io 12888 kB/s wr, 0 op/s rd, 81 op/s wr

Restaure as VMs

Caso 1. OSD-Compute Node host VMs ESC ou CPS

O procedimento para restaurar VMs CF/ESC/EM/UAS é o mesmo, independentemente de as VMs estarem hospedadas no nó Computação ou OSD-Compute.

Siga as etapas do "Caso 2. Compute Node Hosts CF/ESC/EM/UAS" para restaurar as VMs.

Substituição da placa-mãe no nó da controladora

Verifique o status do controlador e coloque o cluster no modo de manutenção

Do OSPD, faça login no controlador e verifique se os pcs estão em bom estado - todos os três controladores online e galera mostrando os três controladores como Master.

```
Current DC: pod1-controller-2 (version 1.1.15-11.el7_3.4-el74ec8) - partition with quorum
Last updated: Mon Dec 4 00:46:10 2017 Last change: Wed Nov 29 01:20:52 2017 by hacluster via
crmd on pod1-controller-0
3 nodes and 22 resources configured
Online: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Full list of resources:
ip-11.118.0.42 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
ip-11.119.0.47 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
ip-11.120.0.49 (ocf::heartbeat:IPaddr2): Started podl-controller-1
ip-192.200.0.102 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
Clone Set: haproxy-clone [haproxy]
Started: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Master/Slave Set: galera-master [galera]
Masters: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
ip-11.120.0.47 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
Clone Set: rabbitmq-clone [rabbitmq]
Started: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Master/Slave Set: redis-master [redis]
Masters: [ pod1-controller-2 ]
Slaves: [ pod1-controller-0 pod1-controller-1 ]
ip-10.84.123.35 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
openstack-cinder-volume (systemd:openstack-cinder-volume): Started pod1-controller-2
my-ipmilan-for-controller-0 (stonith:fence_ipmilan): Started pod1-controller-0
my-ipmilan-for-controller-1 (stonith:fence_ipmilan): Started pod1-controller-0
my-ipmilan-for-controller-2 (stonith:fence_ipmilan): Started pod1-controller-0
Daemon Status:
```

corosync: active/enabled pacemaker: active/enabled pcsd: active/enabled

Coloque o cluster no modo de manutenção.

```
[heat-admin@pod1-controller-0 ~]$ sudo pcs cluster standby
[heat-admin@pod1-controller-0 ~]$ sudo pcs status
Cluster name: tripleo_cluster
Stack: corosync
Current DC: podl-controller-2 (version 1.1.15-11.el7_3.4-el74ec8) - partition with quorum
Last updated: Mon Dec 4 00:48:24 2017 Last change: Mon Dec 4 00:48:18 2017 by root via
crm_attribute on pod1-controller-0
3 nodes and 22 resources configured
Node pod1-controller-0: standby
Online: [ pod1-controller-1 pod1-controller-2 ]
Full list of resources:
ip-11.118.0.42 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
ip-11.119.0.47 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
ip-11.120.0.49 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
ip-192.200.0.102 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
Clone Set: haproxy-clone [haproxy]
Started: [ pod1-controller-1 pod1-controller-2 ]
Stopped: [ pod1-controller-0 ]
Master/Slave Set: galera-master [galera]
Masters: [ pod1-controller-1 pod1-controller-2 ]
Slaves: [ pod1-controller-0 ]
```

```
ip-11.120.0.47 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
Clone Set: rabbitmq-clone [rabbitmq]
Started: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Master/Slave Set: redis-master [redis]
Masters: [ pod1-controller-2 ]
Slaves: [ pod1-controller-1 ]
Stopped: [ pod1-controller-0 ]
ip-10.84.123.35 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
openstack-cinder-volume (systemd:openstack-cinder-volume): Started pod1-controller-2
my-ipmilan-for-controller-0 (stonith:fence_ipmilan): Started pod1-controller-1
my-ipmilan-for-controller-1 (stonith:fence_ipmilan): Started pod1-controller-1
my-ipmilan-for-controller-2 (stonith:fence_ipmilan): Started pod1-controller-1
```

Substituir a placa-mãe

Etapa 1. As etapas para substituir a placa-mãe em um servidor UCS C240 M4 podem ser consultadas a partir de:

Guia de instalação e serviços do servidor Cisco UCS C240 M4

Etapa 2. Faça login no servidor usando o CIMC IP.

Etapa 3. Execute a atualização do BIOS se o firmware não estiver de acordo com a versão recomendada usada anteriormente. As etapas para a atualização do BIOS são fornecidas aqui:

Guia de atualização do BIOS de servidor com montagem em rack Cisco UCS C-Series

Restaurar status do cluster

Efetue login no controlador afetado e remova o modo de espera definindo **unstandby**. Verifique se o controlador vem on-line com cluster e galera mostra todos os três controladores como Mestre. Isso pode levar alguns minutos.

```
[heat-admin@pod1-controller-0 ~]$ sudo pcs cluster unstandby
[heat-admin@pod1-controller-0 ~]$ sudo pcs status
Cluster name: tripleo_cluster
Stack: corosync
Current DC: pod1-controller-2 (version 1.1.15-11.el7_3.4-el74ec8) - partition with quorum
Last updated: Mon Dec 4 01:08:10 2017 Last change: Mon Dec 4 01:04:21 2017 by root via
crm_attribute on pod1-controller-0
3 nodes and 22 resources configured
Online: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Full list of resources:
ip-11.118.0.42 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
ip-11.119.0.47 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
ip-11.120.0.49 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
ip-192.200.0.102 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
Clone Set: haproxy-clone [haproxy]
Started: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Master/Slave Set: galera-master [galera]
Masters: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
ip-11.120.0.47 (ocf::heartbeat:IPaddr2): Started pod1-controller-2
```

```
Clone Set: rabbitmq-clone [rabbitmq]

Started: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]

Master/Slave Set: redis-master [redis]

Masters: [ pod1-controller-2 ]

Slaves: [ pod1-controller-0 pod1-controller-1 ]

ip-10.84.123.35 (ocf::heartbeat:IPaddr2): Started pod1-controller-1

openstack-cinder-volume (systemd:openstack-cinder-volume): Started pod1-controller-2

my-ipmilan-for-controller-0 (stonith:fence_ipmilan): Started pod1-controller-1

my-ipmilan-for-controller-1 (stonith:fence_ipmilan): Started pod1-controller-1

my-ipmilan-for-controller-2 (stonith:fence_ipmilan): Started pod1-controller-2
```

Daemon Status: corosync: active/enabled pacemaker: active/enabled pcsd: active/enable