Exemplo de Configuração dos Modos de Operação H-REAP

Contents

Introduction

Prerequisites

Requirements

Componentes Utilizados

Conventions

Informações de Apoio

H-REAP sobre REAP

Configurar

Diagrama de Rede

Configuração

Primando o AP com um controlador e configurando o H-REAP

Teoria das operações H-REAP

Estados de switching H-REAP

Autenticação central, switching central

Verificar a autenticação central, switching central

Autenticação desativada, switching desativada

Autenticação central, comutação local

Verificar a autenticação central, comutação local

Autenticação inativa, comutação local

Autenticação local, comutação local

Verificar a autenticação local, comutação local

Troubleshoot

Informações Relacionadas

Introduction

Este documento introduz o conceito de Ponto de Acesso Remoto Híbrido da Borda (H-REAP) e explica seus diferentes modos de operação com uma configuração de exemplo.

Prerequisites

Requirements

Certifique-se de atender a estes requisitos antes de tentar esta configuração:

Conhecimento dos Wireless LAN Controllers (WLCs) e como configurar os parâmetros

básicos da WLC

Conhecimento do REAP

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Cisco 4400 Series WLC que executa o firmware versão 7.0.116.0
- Access Point Lightweight (LAP) Cisco 1131AG
- Cisco 2800 Series Routers que executam a versão 12.4(11)T.
- Adaptador de cliente Cisco Aironet 802.11a/b/g que executa o firmware versão 4.0
- Cisco Aironet Desktop Utility versão 4.0
- Cisco Secure ACS que executa a versão 4.0

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Consulte as <u>Convenções de Dicas Técnicas da Cisco para obter mais informações sobre</u> convenções de documentos.

Informações de Apoio

O H-REAP é uma solução sem fio para implantações em filiais e escritórios remotos. O H-REAP permite que os clientes configurem e controlem access points (APs) em uma filial ou escritório remoto do escritório corporativo por meio de um link WAN sem implantar um controlador em cada escritório.

Os H-REAPs podem alternar o tráfego de dados de clientes localmente e executar a autenticação local do cliente quando a conexão com o controlador é perdida. Quando conectados ao controlador, os H-REAPs também podem enviar o tráfego por túnel de volta ao controlador. No modo conectado, o AP REAP híbrido também pode executar a autenticação local.

O H-REAP só é suportado em:

- APs 1130AG, 1140, 1240, 1250, 1260, AP801, AP 802, 1040 e AP3550
- Controladores Cisco 5500, 4400, 2100, 2500 e Flex 7500 Series
- Switch de controlador integrado Catalyst 3750G
- Módulo de serviços sem fio (WiSM) Catalyst 6500 Series
- Módulo controlador de LAN sem fio (WLCM) para roteadores de serviços integrados (ISRs)

O tráfego do cliente em H-REAPs pode ser comutado localmente no AP ou tunelado de volta para um controlador. Isso depende da configuração por WLAN. Além disso, o tráfego de cliente comutado localmente no H-REAP pode ser marcado como 802.1Q para fornecer separação do lado com fio. Durante a interrupção da WAN, o serviço em todas as WLANs localmente comutadas e autenticadas localmente persiste.

Observação: se os APs estiverem no modo H-REAP e forem comutados localmente no local remoto, a atribuição dinâmica de usuários a uma VLAN específica com base na configuração do

servidor RADIUS não é suportada. No entanto, você deve ser capaz de atribuir usuários a VLANs específicas com base na VLAN estática para mapeamento de identificador de conjunto de serviços (SSID) feito localmente no AP. Portanto, um usuário que pertence a um SSID específico pode ser atribuído a uma VLAN específica para a qual o SSID é mapeado localmente no AP.

Observação: se voz sobre WLAN for importante, os APs devem ser executados no modo local para que obtenham suporte CCKM e Controle de Admissão de Conexão (CAC - Connection Admission Control), que não são suportados no modo H-REAP.

H-REAP sobre REAP

Consulte <u>Exemplo de Configuração de Remote-Edge AP (REAP) com APs Lightweight e</u> <u>Controladores Wireless LAN (WLCs)</u> para obter mais informações para ajudar a entender o REAP.

O H-REAP foi introduzido em resultado destas deficiências do REAP:

- O REAP não tem separação do lado da rede com fio. Isso se deve à falta de suporte para 802.1Q. Os dados das WLANs pousam na mesma sub-rede com fio.
- Durante uma falha de WAN, um AP REAP pára o serviço oferecido em todas as WLANs, exceto o primeiro especificado na controladora.

Éassim que o H-REAP supera essas duas deficiências:

- Fornece suporte dot1Q e mapeamento de VLAN para SSID. Esse mapeamento de VLAN para SSID precisa ser feito em H-REAP. Ao executar isso, certifique-se de que as VLANs configuradas sejam permitidas corretamente através das portas em switches e roteadores intermediários.
- Fornece serviço contínuo a todas as WLANs configuradas para comutação local.

Configurar

Nesta seção, você encontrará informações para configurar os recursos descritos neste documento.

Diagrama de Rede

Este documento utiliza a seguinte configuração de rede:

Configuração

Este exemplo pressupõe que o controlador já está configurado com configurações básicas. O controlador usa estas configurações:

- Endereço IP da interface de gerenciamento—172.16.1.10/16
- Endereço IP da interface do gerenciador de AP-172.16.1.11/16
- Endereço IP do roteador do gateway padrão—172.16.1.25/16
- Endereço IP do Virtual Gateway—1.1.1.1

Observação: este documento não mostra as configurações de WAN e a configuração de roteadores e switches disponíveis entre o H-REAP e o controlador. Isso pressupõe que você esteja ciente do encapsulamento da WAN e dos protocolos de roteamento usados. Além disso, este documento pressupõe que você entenda como configurá-los para manter a conectividade entre o H-REAP e o controlador através do link da WAN. Neste exemplo, o encapsulamento HDLC é usado no link da WAN.

Primando o AP com um controlador e configurando o H-REAP

Se você quiser que o AP descubra um controlador de uma rede remota onde os mecanismos de descoberta CAPWAP não estejam disponíveis, você pode usar a preparação. Esse método permite especificar a controladora à qual o AP deve se conectar.

Para preparar um AP com capacidade para H-REAP, conecte o AP à rede com fio no escritório central. Durante a inicialização, o AP com capacidade para H-REAP primeiro procura um endereço IP para si mesmo. Depois de adquirir um endereço IP através de um servidor DHCP, ele é inicializado e procura um controlador para executar o processo de registro.

Um AP H-REAP pode aprender o endereço IP da controladora de qualquer uma das maneiras explicadas no <u>registro LAP (Lightweight AP) em uma WLC (Wireless LAN Controller, Controladora de LAN Wireless).</u>

Observação: você também pode configurar o LAP para descobrir o controlador através dos comandos CLI no AP. Consulte <u>Descoberta do controlador H-REAP usando comandos CLI</u> para obter mais informações.

O exemplo neste documento usa o procedimento da opção 43 do DHCP para o H-REAP aprender o endereço IP do controlador. Em seguida, ele se junta ao controlador, faz o download da imagem e da configuração de software mais recentes do controlador e inicializa o link de rádio. Ele salva a configuração baixada na memória não volátil para uso no modo autônomo.

Quando o LAP estiver registrado na controladora, faça o seguinte:

- 1. Na GUI do controlador, escolha **Wireless>Access Points**. Exibe o LAP registrado com este controlador.
- 2. Clique no AP que deseja

 Na janela APs>Detalhes, clique na guia Alta disponibilidade e defina os nomes de controlador que os APs usarão para registrar-se e clique em

Aplicar.

cisco	MONITOR WLANS S	ONTROLLER WIREL	.ESS <u>S</u> ECURITY M	MANAGEMENT	C <u>O</u> MMANDS	HELP	EEEDBACK
Wireless	All APs > Details for AP001a.a219.ad44						
▼ Access Points All APs ▼ Radios	General Credent	ials Interfaces	High Availability	Inventory	Advanced		
802.11a/n 802.11b/g/n Global Configuration	Primary Controller	Name WLC-4400		Management IP Address			
▶ Advanced	Secondary Controlle	r					
Mesh HREAP Groups	Tertiary Controller						
 ▶ 802.11a/n ▶ 802.11b/g/n ▶ Media Stream Country 	AP Failover Priority	Low					
Timers ▶ Qo5							

Você pode definir até três nomes de controlador (principal, secundário e terciário). Os APs pesquisam o controlador na mesma ordem que você fornece nessa janela. Como este exemplo usa apenas um controlador, o exemplo define o controlador como o controlador principal.

4. Configure o LAP para H-REAP.Para configurar o LAP para operar no modo H-REAP, na janela APs>Detalhes, na guia Geral, escolha o **modo AP** como H-REAP no menu suspenso correspondente.Isso configura o LAP para operar no modo H-REAP.

Observação: neste exemplo, você pode ver que o endereço IP do AP é alterado para o modo estático e o endereço IP estático 172.18.1.10 foi atribuído. Esta atribuição ocorre porque esta é a sub-rede a ser usada no escritório remoto. Portanto, você usa o endereço IP do servidor DHCP, mas somente durante a primeira etapa do registro. Depois que o AP for

registrado no controlador, você alterará o endereço para um endereço IP estático.

Agora que o LAP está ativado com o controlador e configurado para o modo H-REAP, a próxima etapa é configurar o H-REAP no lado do controlador e discutir os estados de switching do H-REAP.

Teoria das operações H-REAP

O LAP compatível com H-REAP opera nestes dois modos diferentes:

- Modo conectado: Diz-se que um H-REAP está no modo conectado quando o link do plano de controle CAPWAP para a WLC está ativo e operacional. Isso significa que o link da WAN entre o LAP e a WLC não está inoperante.
- Modo autônomo: Diz-se que um H-REAP está no modo autônomo quando seu link de WAN para a WLC está inoperante. Por exemplo, quando esse H-REAP não tem mais conectividade com a WLC conectada pelo link da WAN.

O mecanismo de autenticação usado para autenticar um cliente pode ser definido como **Central** ou **Local**.

- Autenticação central—Refere-se ao tipo de autenticação que envolve o processo da WLC a partir do local remoto.
- Autenticação local—Refere-se aos tipos de autenticação que não envolvem nenhum processamento do WLC para autenticação.

Observação: todo o processamento de autenticação e associação do 802.11 ocorre no H-REAP, independentemente do modo em que o LAP está. No modo conectado, o H-REAP faz o proxy dessas associações e autenticações para a WLC. No modo autônomo, o LAP não pode informar a WLC sobre tais eventos.

Quando um cliente se conecta a um AP H-REAP, o AP encaminha todas as mensagens de autenticação para o controlador. Após a autenticação bem-sucedida, seus pacotes de dados são comutados localmente ou encapsulados de volta para o controlador. Isso está de acordo com a configuração da WLAN à qual ela está conectada.

Com o H-REAP, as WLANs configuradas em um controlador podem ser operadas em dois modos diferentes:

- Comutação central:Diz-se que uma WLAN em H-REAP opera no modo de comutação central se o tráfego de dados dessa WLAN estiver configurado para ser encapsulado na WLC.
- Switching local:Diz-se que uma WLAN em H-REAP opera no modo de comutação local se o tráfego de dados dessa WLAN termina localmente na interface com fio do próprio LAP, sem ser encapsulado na WLC. Observação: somente as WLANs de 1 a 8 podem ser configuradas para switching local H-REAP porque somente essas WLANs podem ser aplicadas aos APs das séries 1130, 1240 e 1250 que suportam a funcionalidade H-REAP.

Estados de switching H-REAP

Combinado com os modos de autenticação e comutação mencionados na seção anterior, um H-REAP pode operar em qualquer um destes estados:

Autenticação central, switching central

- Autenticação desativada, switching desativada
- Autenticação central, comutação local
- Autenticação inativa, comutação local
- Autenticação local, comutação local

Autenticação central, switching central

Nesse estado, para a WLAN fornecida, o AP encaminha todas as solicitações de autenticação de cliente ao controlador e encaminha todos os dados de cliente para a WLC. Esse estado é válido somente quando o H-REAP está no modo conectado. Qualquer WLAN configurada para operar nesse modo é perdida durante uma falha de WAN, independentemente do método de autenticação.

Este exemplo usa estas configurações:

Nome da WLAN/SSID: Central
Segurança da camada 2: WPA2

• Switching local H-REAP: Desabilitado

Conclua estes passos para configurar a WLC para autenticação central, comutação central usando GUI:

 Clique em WLANs para criar uma nova WLAN chamada Central e clique em Apply.

Como essa WLAN usa autenticação central, usamos a autenticação WPA2 no campo Layer
 Security. A WPA2 é a segurança de camada 2 padrão para uma
 WLAN.

 Escolha a guia Servidores AAA e escolha o servidor apropriado configurado para autenticação.

4. Como esta WLAN usa comutação central, você precisa garantir que a caixa de seleção Comutação local H-REAP esteja desabilitada (ou seja, a caixa de seleção Comutação local não está selecionada). Em seguida, clique em Aplicar.

Verificar a autenticação central, switching central

Conclua estes passos:

 Configure o cliente sem fio com o mesmo SSID e as mesmas configurações de segurança. Neste exemplo, o SSID é Central e o método de segurança é WPA2.

2. Insira o nome de usuário e a senha configurados no servidor RADIUS>User Setup para ativar o SSID central no cliente. Este exemplo usa *User1* como nome de usuário e

é autenticado centralmente pelo servidor RADIUS e está associado ao AP H-REAP. O H-REAP está agora na **autenticação central**, **comutação central**.

Autenticação desativada, switching desativada

Com a mesma configuração explicada na seção <u>Central Authentication</u>, <u>Central Switching</u>, desative o link da WAN que conecta o controlador. Agora, o controlador espera uma resposta de pulsação do AP. Uma resposta de pulsação é semelhante a mensagens de keepalive. O controlador tenta cinco batimentos de coração consecutivos, a cada segundo.

Como não é recebido com uma resposta de pulsação do H-REAP, a WLC anuncia o registro do LAP.

Execute o comando **debug capwap events enable** na CLI da WLC para verificar o processo de cancelamento de registro. Este é o exemplo de saída deste comando **debug**:

```
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 Did not receive heartbeat reply from
AP 00:15:c7:ab:55:90
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 apfSpamProcessStateChangeInSpamConte
xt: Down capwap event for AP 00:15:c7:ab:55:90 slot 0
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 apfSpamProcessStateChangeInSpamConte
xt: Deregister capwap event for AP 00:15:c7:ab:55:90 slot 0
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 apfSpamProcessStateChangeInSpamConte
xt: Down capwap event for AP 00:15:c7:ab:55:90 slot 1
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 apfSpamProcessStateChangeInSpamConte
xt: Deregister capwap event for AP 00:15:c7:ab:55:90 slot 1
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 Received capwap Down event for AP 00:
15:c7:ab:55:90 slot 0!
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 Deregister capwap event for AP 00:15:
c7:ab:55:90 slot 0
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 Received capwap Down event for AP 00:
15:c7:ab:55:90 slot 1!
Thu Jan 18 03:19:32 2007: 00:15:c7:ab:55:90 Deregister capwap event for AP 00:15:
c7:ab:55:90 slot 1
```

O H-REAP entra no modo autônomo.

Como essa WLAN era previamente autenticada centralmente e comutada centralmente, tanto o tráfego de controle quanto o de dados eram enviados ao túnel para o controlador. Portanto, sem o controlador, o cliente não consegue manter a associação com o H-REAP e é desconectado. Esse estado de H-REAP com associação de cliente e autenticação inoperante é conhecido como Authentication Down (Autenticação inativa), Switching Down (Desativação da autenticação).

Autenticação central, comutação local

Nesse estado, para a WLAN fornecida, a WLC lida com toda a autenticação do cliente e o LAP H-REAP comuta os pacotes de dados localmente. Depois que o cliente se autentica com êxito, o controlador envia comandos de controle capwap ao H-REAP e instrui o LAP a comutar os pacotes de dados do cliente. Esta mensagem é enviada por cliente na autenticação bem-sucedida. Esse estado é aplicável somente no modo conectado.

Este exemplo usa estas configurações:

- Nome da WLAN/SSID: Central-Local
- Segurança da camada 2: WPA2.
- Switching local H-REAP: Habilitado

Na GUI do controlador, faça o seguinte:

- 1. Clique em WLANs para criar uma nova WLAN chamada Central-Local e clique em Aplicar.
- Como essa WLAN usa autenticação central, escolha a autenticação WPA2 no campo Layer
 2

 Na seção Servidores Radius, escolha o servidor apropriado configurado para autenticação.

 Marque a caixa de seleção H-REAP Local Switching para alternar o tráfego do cliente que pertence a esta WLAN localmente no H-REAP.

Verificar a autenticação central, comutação local

Conclua estes passos:

- Configure o cliente sem fio com o mesmo SSID e as mesmas configurações de segurança. Neste exemplo, o SSID é Central-Local e o método de segurança é WPA2.
- 2. Insira o nome de usuário e a senha configurados no servidor RADIUS>User Setup para ativar o SSID local-central no cliente. Este exemplo usa *User1* como nome de usuário e

network	AP-FAST username and password to log on to the wirele
User Name :	User1
Password:	
Log on to :	
Card Name :	Cisco Aironet 802.11a/b/g Wireless Adapter
Profile Name :	WPA-Enterprise

 Click OK.O cliente é autenticado centralmente pelo servidor RADIUS e é associado ao AP H-REAP. O H-REAP está agora na autenticação central, comutação local.

Autenticação inativa, comutação local

Se uma WLAN comutada localmente estiver configurada para qualquer tipo de autenticação que seja necessário processar na WLC (como a autenticação EAP [WEP/WPA/WPA2/802.11i], WebAuth ou NAC), em caso de falha na WAN, ela entra no estado **de falha de autenticação**,

switching local. Nesse estado, para a WLAN fornecida, o H-REAP rejeita qualquer novo cliente que tente autenticar. No entanto, ele continua a enviar beacons e respostas de sondagem para manter os clientes atuais conectados corretamente. Esse estado é válido somente no modo autônomo.

Para verificar esse estado, use a mesma configuração explicada na seção <u>Autenticação Central</u>, <u>Comutação Local</u>.

Se o link da WAN que conecta a WLC estiver inoperante, a WLC passará pelo processo de cancelamento de registro do H-REAP.

Depois de cancelar o registro, o H-REAP entra no modo autônomo.

O cliente associado por meio desta WLAN ainda mantém sua conectividade. No entanto, como o controlador, o autenticador não está disponível, o H-REAP não permite novas conexões desta WLAN.

Isso pode ser verificado pela ativação de outro cliente sem fio na mesma WLAN. Você pode descobrir que a autenticação para este cliente falha e que ele não tem permissão para se associar.

Observação: quando uma contagem de clientes WLAN é igual a zero, o H-REAP cessa todas as funções 802.11 associadas e não mais sinalizadores para o SSID especificado. Isso move a WLAN para o próximo estado H-REAP, **autenticação desativada, alternando para baixo**.

Autenticação local, comutação local

Nesse estado, o LAP H-REAP lida com as autenticações do cliente e comuta os pacotes de dados do cliente localmente. Esse estado é válido somente no modo autônomo e somente para tipos de autenticação que podem ser tratados localmente no AP e não envolvem o processamento do controlador

O H-REAP que estava anteriormente na **autenticação central, no** estado de **comutação local**, move-se para este estado, desde que o tipo de autenticação configurado possa ser manipulado localmente no AP. Se a autenticação configurada não puder ser tratada localmente, como a autenticação 802.1x, então no modo autônomo, o H-REAP vai para a **autenticação desativada, o** modo **de comutação local**.

Estes são alguns dos mecanismos de autenticação populares que podem ser manipulados localmente no AP no modo autônomo:

- Abrir
- Compartilhado
- WPA-PSK
- WPA2-PSK

Observação: todos os processos de autenticação são tratados pela WLC quando o AP está no modo conectado. Enquanto o H-REAP está no modo autônomo, as autenticações de WPA/WPA2-PSK, abertas, compartilhadas e abertas são transferidas para os LAPs onde ocorre toda a autenticação de cliente.

Observação: a autenticação externa da Web não é suportada ao usar o REAP híbrido com a comutação local habilitada na WLAN.

Este exemplo usa estas configurações:

- Nome da WLAN/SSID: Local
- Segurança da camada 2: WPA-PSK
- Switching local H-REAP: habilitado

Na GUI do controlador, faça o seguinte:

- 1. Clique em WLANs para criar uma nova WLAN chamada Local e clique em Aplicar.
- Como essa WLAN usa autenticação local, escolha WPA-PSK ou qualquer um dos mecanismos de segurança mencionados que podem ser tratados localmente no campo Segurança da Camada 2.Este exemplo usa WPA-PSK.

- Depois de selecionado, você precisa configurar a Frase de chave/senha pré-compartilhada a ser usada. Isso deve ser o mesmo no lado do cliente para que a autenticação seja bemsucedida.
- 4. Marque a caixa de seleção **H-REAP Local Switching** para alternar o tráfego do cliente que pertence a esta WLAN localmente no H-REAP.

Verificar a autenticação local, comutação local

Conclua estes passos:

- 1. Configure o cliente com o mesmo SSID e as mesmas configurações de segurança. Aqui, o SSID é *Local* e o método de segurança é *WPA-PSK*.
- 2. Ative o SSID local no cliente. O cliente é autenticado centralmente no controlador e se associa ao H-REAP. O tráfego do cliente é configurado para comutar localmente. Agora, o H-REAP está no estado de autenticação central, comutação local.
- 3. Desative o link da WAN que se conecta ao controlador.O controlador, como de costume, passa pelo processo de cancelamento de registro. O H-REAP é removido do registro da controladora.Depois de cancelar o registro, o H-REAP entra no modo autônomo.No entanto, o cliente que pertence a esta WLAN ainda mantém a associação com H-REAP.Além disso, como o tipo de autenticação aqui pode ser manipulado localmente no AP sem o controlador, o H-REAP permite associações de qualquer novo cliente sem fio através desta WLAN.
- 4. Para verificar isso, ative qualquer outro cliente sem fio na mesma WLAN. Você pode ver que o cliente foi autenticado e associado com êxito.

Troubleshoot

• Para solucionar problemas de conectividade do cliente na porta de console do H-REAP, insira este comando:

AP_CLI#show capwap reap association

 Para solucionar problemas de conectividade do cliente no controlador e limitar a saída de mais depuração, use este comando:

- Para depurar os problemas de conectividade 802.11 de um cliente, use este comando:

 AP_CLI#debug dot11 state enable
- Depurar o processo de autenticação 802.1X de um cliente e as falhas com este comando:

 AP_CLI#debug dot1x events enable
- As mensagens de controlador de back-end/RADIUS podem ser depuradas usando este comando:

AP_CLI#debug aaa events enable

 Como alternativa, para ativar um conjunto completo de comandos debug do cliente, use este comando:

AP_CLI#debug client

Informações Relacionadas

- Exemplo de configuração básica dos controladores LAN sem fio e do access point lightweight
- VLANs no exemplo de configuração de Wireless LAN Controllers
- Guia de configuração de Cisco Wireless LAN Controller, versão 7.0
- Guia de projeto e implantação do REAP híbrido
- Solução básica de problemas do H-REAP (Hybrid Remote Edge Access Point)
- Exemplo de Configuração de Failover do Controlador WLAN para Pontos de Acesso Lightweight
- Suporte de produtos Wireless
- Suporte Técnico e Documentação Cisco Systems