Procedimento ELAM do módulo Nexus 7000 M-Series

Contents

Introduction Topologia Determine o mecanismo de encaminhamento de entrada Configurar o disparador Iniciar a captura Interpretar os resultados Verificação adicional

Introduction

Este documento descreve as etapas usadas para executar um ELAM nos módulos Cisco Nexus 7000 (N7K) M-Series, explica as saídas mais relevantes e descreve como interpretar os resultados.

Tip: Consulte o documento ELAM Overview para obter uma visão geral sobre ELAM.

Topologia

Neste exemplo, um host na VLAN 2500 (10.0.5.101), a porta Eth4/1 envia uma solicitação ICMP (Internet Control Message Protocol) a um host na VLAN 55 (10.0.3.101), porta Eth3/5. O ELAM é usado para capturar esse único pacote de 10.0.5.101 a 10.0.3.101. É importante lembrar que o ELAM permite capturar um único quadro.

Para executar um ELAM no N7K, você deve primeiro se conectar ao módulo apropriado (isso requer o privilégio de administrador de rede):

```
N7K# attach module 4
Attaching to module 4 ...
To exit type 'exit', to abort type '$.'
module-4#
```

Determine o mecanismo de encaminhamento de entrada

Espera-se que o tráfego ingresse no switch na porta **Eth4/1**. Ao verificar os módulos no sistema, você verá que o **Módulo 4** é um módulo da série M. É importante lembrar que o N7K é totalmente distribuído e que os módulos, não o supervisor, tomam as decisões de encaminhamento para o tráfego de dataplane.

snow me	dule		
Ports	Module-Type	Model	Status
32	10 Gbps Ethernet Module	N7K-M132XP-12	ok
48	10/100/1000 Mbps Ethernet Module	N7K-M148GT-11	ok
0	Supervisor module-1X	N7K-SUP1	active *
0	Supervisor module-1X	N7K-SUP1	ha-standby
	Ports 32 48 0 0	Ports Module-Type 32 10 Gbps Ethernet Module 48 10/100/1000 Mbps Ethernet Module 0 Supervisor module-1X 0 Supervisor module-1X	PortsModule-TypeModel3210 Gbps Ethernet ModuleN7K-M132XP-124810/100/1000 Mbps Ethernet ModuleN7K-M148GT-110Supervisor module-1XN7K-SUP10Supervisor module-1XN7K-SUP1

Para os módulos da série M, execute o ELAM no FE (L2, Layer 2 Forwarding Engine) com o codinome interno **Eureka**. Observe que o L2 FE Data Bus (DBUS) contém as informações originais do cabeçalho antes das pesquisas de L2 e Camada 3 (L3), e o RBUS (Result Bus) contém os resultados após as pesquisas de L3 e L2. A pesquisa L3 é realizada pelo FE L3/Layer 4 (L4) com o nome de código interno **Lamira**, que é o mesmo processo usado na plataforma do switch Cisco Catalyst 6500 Series que executa o mecanismo de supervisão 2T.

Os módulos N7K M-Series podem usar vários FEs para cada módulo, então você deve determinar o ASIC **Eureka** usado para o FE na porta **Eth4/1**. Insira este comando para verificar isso:

<pre>module-4# show hardware internal dev-port-map (some output omitted)</pre>								
CARD_TYPE: 48 port 1G >Front Panel ports:48								
Device	name		Dev	role		Ak	obr num_	_inst:
>Eurek	a.		DEV	LAYER_	_2_LOOKU	JP I	21KP	 L
++++FRONT PANEL PORT TO ASIC INSTANCE MAP++++								
FP por	t PHYS	SECUR	MAC_0	RWR_0	L2LKP	L3LKP	QUEUE	SWICHF
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0

Na saída, você pode ver que a porta Eth4/1 está na instância Eureka (L2LKP)0.

Note: Para os módulos da série M, a sintaxe ELAM usa valores baseados em 1, então a instância **0** se torna a instância **1** quando você configura o ELAM. Não é o caso dos módulos F-Series.

Configurar o disparador

O **Eureka** ASIC suporta acionadores ELAM para IPv4, IPv6 e outros. O gatilho ELAM deve ser alinhado com o tipo de quadro. Se o quadro for um quadro IPv4, o disparador também deve ser IPv4. Um quadro IPv4 não é capturado com um *outro* acionador. A mesma lógica se aplica ao IPv6.

Com o Nexus Operating Systems (NX-OS), você pode usar o caractere de interrogação para separar o disparador do ELAM:

<pre>module-4(eureka-elam)# tri;</pre>	gger dbus dbi ingress ipv4 if ?
(some output omitted)	
destination-flood	Destination Flood
destination-index	Destination Index
destination-ipv4-address	Destination IP Address
destination-mac-address	Destination MAC Address
ip-tos	IP TOS
ip-total-len	IP Total Length
ip-ttl	IP TTL
source-mac-address	Source MAC Address
vlan-id	Vlan ID Number

Para este exemplo, o quadro é capturado de acordo com os endereços IPv4 origem e destino, portanto, somente esses valores são especificados.

Eureka exige que os disparadores sejam configurados para o DBUS e o RBUS. Há dois buffers de pacote (PB) diferentes nos quais os dados de RBUS podem residir. A determinação da instância de PB correta depende do tipo exato de módulo e da porta de entrada. Normalmente, é recomendável configurar PB1 e, se o RBUS não disparar, repita a configuração com PB2.

Aqui está o gatilho do DBUS:

```
module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if source-ipv4-address
10.0.5.101 destination-ipv4-address 10.0.3.101 rbi-corelate
Aqui está o gatilho do RBUS:
```

module-4(eureka-elam)# trigger rbus rbi pb1 ip if cap2 1

Note: A palavra-chave **rbi-correlation** no final do disparo DBUS é necessária para que o RBUS dispare corretamente no bit **cap2**.

Iniciar a captura

Agora que o FE de entrada está selecionado e você configurou o acionador, você pode iniciar a captura:

Para verificar o status do ELAM, insira o comando status:

```
module-4(eureka-elam)# status
Instance: 1
EU-DBUS: Armed
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
    destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Armed
trigger rbus rbi pbl ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration
Quando o quadro que corresponde ao disparador é recebido pelo FE, o status do ELAM é
mostrado como Disparado:
```

```
module-4(eureka-elam)# status
Instance: 1
EU-DBUS: Triggered
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
  destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Triggered
trigger rbus rbi pb1 ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration
```

Interpretar os resultados

Para exibir os resultados do ELAM, insira os comandos **show dbus** e **show rbus**. Se houver um alto volume de tráfego que corresponda aos mesmos disparadores, o DBUS e o RBUS podem disparar em quadros diferentes. Portanto, é importante verificar os números de sequência interna nos dados DBUS e RBUS para garantir que eles correspondam:

```
module-4(eureka-elam)# show dbus | i seq
seq = 0x05
module-4(eureka-elam)# show rbus | i seq
seq = 0x05
```

Aqui está o trecho dos dados ELAM mais relevantes para este exemplo (alguns resultados são omitidos):

```
module-4(eureka-elam)# show dbus
seq = 0x05
vlan = 2500
source_index = 0x00a21
l3_protocol = 0x0 (0:IPv4, 6:IPv6)
l3_protocol_type = 0x01, (1:ICMP, 2:IGMP, 4:IP, 6:TCP, 17:UDP)
dmac = 00.00.0c.07.ac.65
smac = d0.d0.fd.b7.3d.c2
ip_ttl = 0xff
ip_source = 010.000.005.101
ip_destination = 010.000.003.101
```

module-4(eureka-elam)# show rbus
seq = 0x05
flood = 0x0
dest_index = 0x009ed
vlan = 55
ttl = 0xfe
data(rit/dmac/recir) = 00.05.73.a9.55.41
data(rit/smac/recir) = 84.78.ac.0e.47.41
Com os dados DBUS, você pode verificar se o quadro é recebido na VLAN 2500 com um
endereço MAC de origem de d0d0.fdb7.3dc2 e um endereço MAC de destino de 0000.0c07.ac65.
Você também pode ver que esse é um quadro IPv4 originado de 10.0.5.101 e destinado a

10.0.3.101.

Tip: Há vários outros campos úteis que não estão incluídos nessa saída, como o valor de Tipo de Serviço (TOS), flags IP, comprimento de IP e comprimento de quadro L2.

Para verificar em que porta o quadro é recebido, insira o comando **SRC_INDEX** (a LTL (Local Target Logic) de origem). Insira este comando para mapear um LTL para uma porta ou grupo de portas para o N7K:

 N7K# show system internal pixm info ltl 0xa21

 Member info

 Type
 LTL

 PHY_PORT
 Eth4/1

FLOOD_W_FPOE 0x8014

A saída mostra que o **SRC_INDEX** do **0xa21** mapeia para a porta **Eth4/1**. Isso confirma que o quadro é recebido na porta **Eth4/1**.

Com os dados RBUS, você pode verificar se o quadro é roteado para a VLAN 55 e se o TTL é decrementado de **0xff** nos dados **DBUS** para **0xfe** nos **RBUS**. Você pode ver que os endereços MAC origem e destino são regravados para **8478.ac0e.4741** e **0005.73a9.5541**, respectivamente. Além disso, você pode confirmar a porta de saída do **DEST_INDEX** (LTL de destino):

 N7K# show system internal pixm info ltl 0x9ed

 Member info

 Type
 LTL

 PHY_PORT
 Eth3/5

 FLOOD_W_FPOE
 0x8017

 FLOOD_W_FPOE
 0x8016

A saída mostra que o **DEST_INDEX** de **0x9ed** mapeia para a porta **Eth3/5**. Isso confirma que o quadro é enviado da porta **Eth3/5**.

Verificação adicional

Para verificar como o switch aloca o pool LTL, insira o comando **show system internal pixm info Itlregion**. A saída desse comando é útil para entender a finalidade de um LTL se ele não for combinado a uma porta física. Um bom exemplo disso é um LTL **Drop**:

${\tt N7K\#}$ show system internal pixm info ltl 0x11a0 0x11a0 is not configured

N7K# show system internal pixm info ltl-region

LTL POOL TYPE	SIZE	RANGE				
DCE/FC Pool	1024	0x0000 to 0x03ff				
SUP Inband LTL	32	0x0400 to 0x041f				
MD Flood LTL	1	0x0420				
Central R/W	1	0x0421				
UCAST Pool	1536	0x0422 to 0x0a21				
PC Pool	1720	0x0a22 to 0x10d9				
LC CPU Pool	32	0x1152 to 0x1171				
EARL Pool	72	0x10da to 0x1121				
SPAN Pool	48	0x1122 to 0x1151				
UCAST VDC Use Pool	16	0x1172 to 0x1181				
UCAST Generic Pool	30	0x1182 to 0x119f				
LISP Pool	4	0x1198 to 0x119b				
Invalid SI	1	0x119c to 0x119c				
ESPAN SI	1	0x119d to 0x119d				
Recirc SI	1	0x119e to 0x119e				
Drop DI	2	0x119f to 0x11a0				
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf				
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	Ox1fff				
UCAST Reserved for Future Use Region	2048	0x2000 to 0x27ff				
======================================						
VDC OMF Pool	32	0x2800 to 0x281f				