Procedimento ELAM do módulo Nexus 7000 M-Series

Contents

Introduction

Topologia

Determine o mecanismo de encaminhamento de entrada

Configurar o disparador

Iniciar a captura

Interpretar os resultados

Verificação adicional

Introduction

Este documento descreve as etapas usadas para executar um ELAM nos módulos Cisco Nexus 7000 (N7K) M-Series, explica as saídas mais relevantes e descreve como interpretar os resultados.

Tip: Consulte o documento **ELAM Overview** para obter uma visão geral sobre ELAM.

Topologia

Neste exemplo, um host na VLAN 2500 (10.0.5.101), a porta Eth4/1 envia uma solicitação ICMP (Internet Control Message Protocol) a um host na VLAN 55 (10.0.3.101), porta Eth3/5. O ELAM é usado para capturar esse único pacote de 10.0.5.101 a 10.0.3.101. É importante lembrar que o ELAM permite capturar um único quadro.

Para executar um ELAM no N7K, você deve primeiro se conectar ao módulo apropriado (isso requer o privilégio de administrador de rede):

```
N7K# attach module 4
Attaching to module 4 ...
To exit type 'exit', to abort type '$.'
module-4#
```

Determine o mecanismo de encaminhamento de entrada

Espera-se que o tráfego ingresse no switch na porta **Eth4/1**. Ao verificar os módulos no sistema, você verá que o **Módulo 4** é um módulo da série M. É importante lembrar que o N7K é totalmente distribuído e que os módulos, não o supervisor, tomam as decisões de encaminhamento para o tráfego de dataplane.

N7K#	show mo			
Mod	Ports	Module-Type	Model	Status
3	32	10 Gbps Ethernet Module	N7K-M132XP-12	ok
4	48	10/100/1000 Mbps Ethernet Module	N7K-M148GT-11	ok
5	0	Supervisor module-1X	N7K-SUP1	active *
6	0	Supervisor module-1X	N7K-SUP1	ha-standby

Para os módulos da série M, execute o ELAM no FE (L2, Layer 2 Forwarding Engine) com o codinome interno **Eureka**. Observe que o L2 FE Data Bus (DBUS) contém as informações originais do cabeçalho antes das pesquisas de L2 e Camada 3 (L3), e o RBUS (Result Bus) contém os resultados após as pesquisas de L3 e L2. A pesquisa L3 é realizada pelo FE L3/Layer 4 (L4) com o nome de código interno **Lamira**, que é o mesmo processo usado na plataforma do switch Cisco Catalyst 6500 Series que executa o mecanismo de supervisão 2T.

Os módulos N7K M-Series podem usar vários FEs para cada módulo, então você deve determinar o ASIC **Eureka** usado para o FE na porta **Eth4/1**. Insira este comando para verificar isso:

```
module-4# show hardware internal dev-port-map
(some output omitted)
_____
CARD_TYPE: 48 port 1G
>Front Panel ports:48
            Dev role
                       Abbr num inst:
Device name
______
            DEV_LAYER_2_LOOKUP
                        {f L2LKP} 1
+----
+----+++FRONT PANEL PORT TO ASIC INSTANCE MAP+++----+
+-----
FP port | PHYS | SECUR | MAC_0 | RWR_0 | L2LKP | L3LKP | QUEUE | SWICHF
```

Na saída, você pode ver que a porta Eth4/1 está na instância Eureka (L2LKP)0.

Note: Para os módulos da série M, a sintaxe ELAM usa valores baseados em 1, então a instância **0** se torna a instância **1** quando você configura o ELAM. Não é o caso dos módulos F-Series.

Configurar o disparador

O **Eureka** ASIC suporta acionadores ELAM para IPv4, IPv6 e outros. O gatilho ELAM deve ser alinhado com o tipo de quadro. Se o quadro for um quadro IPv4, o disparador também deve ser IPv4. Um quadro IPv4 não é capturado com um *outro* acionador. A mesma lógica se aplica ao IPv6.

Com o Nexus Operating Systems (NX-OS), você pode usar o caractere de interrogação para separar o disparador do ELAM:

```
module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if ?

(some output omitted)

destination-flood Destination Flood

destination-index Destination Index

destination-ipv4-address Destination IP Address

destination-mac-address Destination MAC Address

ip-tos IP TOS

ip-total-len IP Total Length

ip-ttl Source-mac-address Source MAC Address

vlan-id Vlan ID Number
```

Para este exemplo, o quadro é capturado de acordo com os endereços IPv4 origem e destino, portanto, somente esses valores são especificados.

Eureka exige que os disparadores sejam configurados para o DBUS e o RBUS. Há dois buffers de pacote (PB) diferentes nos quais os dados de RBUS podem residir. A determinação da instância de PB correta depende do tipo exato de módulo e da porta de entrada. Normalmente, é recomendável configurar PB1 e, se o RBUS não disparar, repita a configuração com PB2.

Aqui está o gatilho do DBUS:

```
module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101 rbi-corelate Aqui está o gatilho do RBUS:
```

```
module-4(eureka-elam)# trigger rbus rbi pb1 ip if cap2 1
```

Note: A palavra-chave **rbi-correlation** no final do disparo DBUS é necessária para que o RBUS dispare corretamente no bit **cap2**.

Iniciar a captura

Agora que o FE de entrada está selecionado e você configurou o acionador, você pode iniciar a captura:

Para verificar o status do ELAM, insira o comando status:

```
module-4(eureka-elam)# status
Instance: 1
EU-DBUS: Armed
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
  destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Armed
trigger rbus rbi pb1 ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration
```

Quando o quadro que corresponde ao disparador é recebido pelo FE, o status do ELAM é mostrado como **Disparado**:

```
module-4(eureka-elam)# status
Instance: 1
EU-DBUS: Triggered
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
  destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Triggered
trigger rbus rbi pbl ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration
```

Interpretar os resultados

Para exibir os resultados do ELAM, insira os comandos **show dbus** e **show rbus**. Se houver um alto volume de tráfego que corresponda aos mesmos disparadores, o DBUS e o RBUS podem disparar em quadros diferentes. Portanto, é importante verificar os números de sequência interna nos dados DBUS e RBUS para garantir que eles correspondam:

```
module-4(eureka-elam)# show dbus | i seq
seq = 0x05
module-4(eureka-elam)# show rbus | i seq
seq = 0x05
```

Aqui está o trecho dos dados ELAM mais relevantes para este exemplo (alguns resultados são omitidos):

```
module-4(eureka-elam)# show rbus
seq = 0x05
flood = 0x0
dest_index = 0x009ed
vlan = 55
ttl = 0xfe
data(rit/dmac/recir) = 00.05.73.a9.55.41
data(rit/smac/recir) = 84.78.ac.0e.47.41
```

Com os dados **DBUS**, você pode verificar se o quadro é recebido na VLAN 2500 com um endereço MAC de origem de **d0d0.fdb7.3dc2** e um endereço MAC de destino de **0000.0c07.ac65**. Você também pode ver que esse é um quadro IPv4 originado de **10.0.5.101** e destinado a **10.0.3.101**.

Tip: Há vários outros campos úteis que não estão incluídos nessa saída, como o valor de Tipo de Serviço (TOS), flags IP, comprimento de IP e comprimento de quadro L2.

Para verificar em que porta o quadro é recebido, insira o comando **SRC_INDEX** (a LTL (Local Target Logic) de origem). Insira este comando para mapear um LTL para uma porta ou grupo de portas para o N7K:

```
N7K# show system internal pixm info ltl 0xa21

Member info
-----

Type LTL
-----

PHY_PORT Eth4/1

FLOOD_W_FPOE 0x8014
```

A saída mostra que o SRC_INDEX do 0xa21 mapeia para a porta Eth4/1. Isso confirma que o quadro é recebido na porta Eth4/1.

Com os dados RBUS, você pode verificar se o quadro é roteado para a VLAN 55 e se o TTL é decrementado de **0xff** nos dados **DBUS** para **0xfe** nos **RBUS**. Você pode ver que os endereços MAC origem e destino são regravados para **8478.ac0e.4741** e **0005.73a9.5541**, respectivamente. Além disso, você pode confirmar a porta de saída do **DEST_INDEX** (LTL de destino):

A saída mostra que o **DEST_INDEX** de **0x9ed** mapeia para a porta **Eth3/5**. Isso confirma que o quadro é enviado da porta **Eth3/5**.

Verificação adicional

Para verificar como o switch aloca o pool LTL, insira o comando **show system internal pixm info Itl-region**. A saída desse comando é útil para entender a finalidade de um LTL se ele não for combinado a uma porta física. Um bom exemplo disso é um LTL **Drop**:

$\ensuremath{\text{N7K\#}}$ show system internal pixm info ltl 0x11a0

0x11a0 is not configured

N7K# show system internal pixm info ltl-region

LTL POOL TYPE	SIZE	RANGE		
DCE/FC Pool	1024	0x0000 to 0x03ff		
SUP Inband LTL	32	0x0400 to $0x041f$		
MD Flood LTL	1	0x0420		
Central R/W	1	0x0421		
UCAST Pool	1536	0x0422 to $0x0a21$		
PC Pool	1720	0x0a22 to $0x10d9$		
LC CPU Pool	32	0x1152 to 0x1171		
EARL Pool	72	0x10da to 0x1121		
SPAN Pool	48	0x1122 to 0x1151		
UCAST VDC Use Pool	16	0x1172 to 0x1181		
UCAST Generic Pool	30	0x1182 to 0x119f		
LISP Pool	4	0x1198 to 0x119b		
Invalid SI	1	0x119c to 0x119c		
ESPAN SI	1	0x119d to 0x119d		
Recirc SI	1	0x119e to 0x119e		
Drop DI	2 0x119f to 0x11a0			
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf		
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	0x1fff		
UCAST Reserved for Future Use Region	2048	0x2000 to $0x27ff$		
======== UCAST MCAST B	OUNDARY <===	=============	=	
VDC OMF Pool	32	0x2800 to 0x281f		