O conjunto de documentação deste produto faz o possível para usar uma linguagem imparcial. Para os fins deste conjunto de documentação, a imparcialidade é definida como uma linguagem que não implica em discriminação baseada em idade, deficiência, gênero, identidade racial, identidade étnica, orientação sexual, status socioeconômico e interseccionalidade. Pode haver exceções na documentação devido à linguagem codificada nas interfaces de usuário do software do produto, linguagem usada com base na documentação de RFP ou linguagem usada por um produto de terceiros referenciado. Saiba mais sobre como a Cisco está usando a linguagem inclusiva.
A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização. Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional. A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.
Este documento descreve por que você pode ver o alto uso da CPU relatado nas plataformas vManage para vEdge 5000/2000/1000/100B e vEdge Cloud, apesar do desempenho das plataformas estar normal sem que a CPU esteja alta e seja relatada como vista na parte superior.
Com as versões 17.2.x e posteriores, é possível observar um maior consumo de CPU e memória para plataformas vEdge e vEdge Cloud. Isso é observado no painel do vManage para um determinado dispositivo. Em alguns casos, isso também leva a um número maior de alertas e avisos no vManage.
O motivo para o alto uso da CPU relatado quando o dispositivo executa normalmente com carga normal, baixa ou sem carga é devido a uma alteração na fórmula usada para calcular o uso. Com as versões 17.2, a utilização da CPU é calculada com base na Média de carga do show system status no vEdge.
O vManage mostra a utilização da CPU em tempo real para um dispositivo. Ele puxa a Média de 1 minuto [min1_avg] e Média de 5 minutos [min5_avg] com base nos dados históricos. Carga média, por definição, inclui várias coisas e não apenas ciclos de CPU que contribuem para o cálculo de utilização. Por exemplo, o tempo de espera de E/S, o tempo pendente do processo e outros valores são considerados quando você apresenta esse valor para a plataforma. Nesse caso, você ignora os valores mostrados para os estados da CPU e os valores da CPU no comando superior do vShell.
Aqui está um exemplo de como a utilização da CPU, que é na verdade a média de carga de 1 minuto, é calculada e mostrada no painel do vManage:
Quando você verifica a carga de uma CLI vEdge, isso pode ser visto:
vEdge# show system status | include Load Load average: 1 minute: 3.10, 5 minutes: 3.06, 15 minutes: 3.05 Load average: 1 minute: 3.12, 5 minutes: 3.07, 15 minutes: 3.06 Load average: 1 minute: 3.13, 5 minutes: 3.08, 15 minutes: 3.07
Load average: 1 minute: 3.10, 5 minutes: 3.07, 15 minutes: 3.05
Nesse caso, a utilização da CPU é calculada com base na carga média / número de núcleos (vCPUs). Para este exemplo, o nó tem 4 núcleos. A média de carga é então convertida por um fator de 100 antes que você divida pelo número de núcleos. Ao calcular a média de carga de todos os núcleos e multiplicar por 100, você obtém um valor de ~310. Pegue esse valor e divida por 4 rendimentos, uma leitura da CPU de 77,5% da CPU, que se alinha ao valor visto no gráfico em tempo real no vManage capturado durante o tempo em que a saída da CLI foi coletada e como mostrado na imagem.
Para ver as médias de carga e o número de núcleos da CPU no sistema, a saída da parte superior pode ser consultada do vShell no dispositivo.
No exemplo aqui, o vEdge contém 4 vCPUs. O primeiro núcleo (Cpu0) é usado para Controle (visto através da menor utilização pelo usuário) enquanto os 3 núcleos restantes são usados para Dados:
top - 01:14:57 up 1 day, 3:15, 1 user, load average: 3.06, 3.06, 3.08 Tasks: 219 total, 5 running, 214 sleeping, 0 stopped, 0 zombie Cpu0 : 1.7%us, 4.0%sy, 0.0%ni, 94.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 56.0%us, 44.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 54.2%us, 45.8%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 59.3%us, 40.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 7382664k total, 2835232k used, 4547432k free, 130520k buffers Swap: 0k total, 0k used, 0k free, 587880k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 978 root 20 0 3392m 664m 127m R 100 9.2 1635:21 fp-um-2 692 root 20 0 3392m 664m 127m R 100 9.2 1635:18 fp-um-1 979 root 20 0 3392m 664m 127m R 100 9.2 1634:51 fp-um-3 694 root 20 0 1908m 204m 131m S 1 2.8 15:29.95 ftmd 496 root 20 0 759m 72m 3764 S 0 1.0 1:31.50 confd
Para obter o número de CPUs da CLI do vEdge, esse comando pode ser usado:
vEdge# show system status | display xml | include total_cpu <total_cpu_count>4</total_cpu_count>
Outro exemplo do cálculo do valor mostrado no vManage no vEdge 1000 é fornecido aqui. Depois de emitir o top do vShell, eu estou interessado em exibir a carga para todos os núcleos:
top - 18:19:49 up 19 days, 1:37, 1 user, load average: 0.55, 0.71, 0.73
Como um vEdge 1000 tem apenas um núcleo de CPU disponível, a carga relatada aqui é 55% (0,55*100).
Às vezes, você também pode notar de cima que o processo fp-um é executado em alta e mostra até 100% de CPU. Isso é esperado nos núcleos da CPU usados para o processamento do plano de dados.
Do comando superior mencionado anteriormente, 3 núcleos operam em 100% de CPU e 1 núcleo mostra a utilização normal:
top - 01:14:57 up 1 day, 3:15, 1 user, load average: 3.06, 3.06, 3.08 Tasks: 219 total, 5 running, 214 sleeping, 0 stopped, 0 zombie Cpu0 : 1.7%us, 4.0%sy, 0.0%ni, 94.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 56.0%us, 44.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 54.2%us, 45.8%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 59.3%us, 40.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 7382664k total, 2835232k used, 4547432k free, 130520k buffers Swap: 0k total, 0k used, 0k free, 587880k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 978 root 20 0 3392m 664m 127m R 100 9.2 1635:21 fp-um-2 692 root 20 0 3392m 664m 127m R 100 9.2 1635:18 fp-um-1 979 root 20 0 3392m 664m 127m R 100 9.2 1634:51 fp-um-3 ...
Este primeiro núcleo (Cpu0) é usado para Controle e os três núcleos restantes são usados para Dados. Como você pode ver na lista de processos, o processo fp-um usa esses recursos.
fp-um é um processo que usa um driver de modo de pesquisa, o que significa que ele senta e pesquisa a porta subjacente de pacotes constantemente para que ele possa processar qualquer quadro assim que for recebido. Esse processo trata do encaminhamento e é equivalente ao encaminhamento de caminho rápido no vEdge 1000, vEdge 2000 e vEdge 100. Esta arquitetura de modo poll é usada pela Intel para um processamento eficiente de pacotes baseado na estrutura DPDK (Data Plane Development Kit). Como o encaminhamento de pacotes é implementado em um loop apertado, a CPU permanece em ou perto de 100% o tempo todo. Embora isso seja feito, nenhuma latência é introduzida através dessas CPUs, pois esse é o comportamento esperado.
Informações de fundo sobre a pesquisa do DPDK podem ser encontradas aqui.
As plataformas vEdge Cloud e vEdge 5000 usam a mesma arquitetura de encaminhamento e exibem o mesmo comportamento nesse sentido. Aqui está um exemplo de um vEdge 5000 extraído da saída superior. Ele tem 28 núcleos, dos quais 2 (Cpu0 e Cpu1) são usados para o Controle (como o vEdge 2000) e 26 são usados para Dados.
top - 02:18:30 up 1 day, 7:33, 1 user, load average: 26.24, 26.28, 26.31 Tasks: 382 total, 27 running, 355 sleeping, 0 stopped, 0 zombie Cpu0 : 0.7%us, 1.3%sy, 0.0%ni, 98.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 0.7%us, 1.3%sy, 0.0%ni, 98.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 79.4%us, 20.6%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 73.4%us, 26.6%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 73.4%us, 26.6%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu5 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu8 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu9 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu10 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu11 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu12 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu13 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu14 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu15 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu16 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu17 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu18 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu19 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu20 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu21 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu22 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu23 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu24 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu25 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu26 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu27 :100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 32659508k total, 10877980k used, 21781528k free, 214788k buffers Swap: 0k total, 0k used, 0k free, 1039104k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2028 root 20 0 12.1g 668m 124m R 100 2.1 1897:21 fp-um-3 2029 root 20 0 12.1g 668m 124m R 100 2.1 1897:22 fp-um-4 2030 root 20 0 12.1g 668m 124m R 100 2.1 1897:12 fp-um-5 2031 root 20 0 12.1g 668m 124m R 100 2.1 1897:22 fp-um-6 2032 root 20 0 12.1g 668m 124m R 100 2.1 1897:22 fp-um-7 2034 root 20 0 12.1g 668m 124m R 100 2.1 1897:22 fp-um-9 2035 root 20 0 12.1g 668m 124m R 100 2.1 1897:21 fp-um-10 2038 root 20 0 12.1g 668m 124m R 100 2.1 1897:21 fp-um-13 2040 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-15 2041 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-16 2043 root 20 0 12.1g 668m 124m R 100 2.1 1897:22 fp-um-18 2045 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-20 2052 root 20 0 12.1g 668m 124m R 100 2.1 1897:18 fp-um-27 2033 root 20 0 12.1g 668m 124m R 100 2.1 1897:21 fp-um-8 2036 root 20 0 12.1g 668m 124m R 100 2.1 1897:21 fp-um-11 2037 root 20 0 12.1g 668m 124m R 100 2.1 1897:21 fp-um-12 2039 root 20 0 12.1g 668m 124m R 100 2.1 1897:09 fp-um-14 2042 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-17 2044 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-19 2046 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-21 2047 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-22 2048 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-23 2049 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-24 2050 root 20 0 12.1g 668m 124m R 100 2.1 1897:22 fp-um-25 2051 root 20 0 12.1g 668m 124m R 100 2.1 1897:23 fp-um-26 1419 root 20 0 116m 5732 2280 S 0 0.0 0:02.00 chmgrd 1323 root 20 0 753m 70m 3764 S 0 0.2 1:51.20 confd 1432 root 20 0 1683m 172m 134m S 0 0.5 0:58.91 fpmd
Aqui, a Média de Carga é sempre alta porque 26 dos 28 processadores são executados a 100% devido ao processo fp-um.
O uso relatado da CPU no vManage para versões 17.2.x anteriores a 17.2.7 não é o uso real da CPU, mas sim calculado com base na média de carga. Isso pode levar a confusão na compreensão do valor relatado e levar a alarmes falsos relacionados à alta CPU enquanto a plataforma opera normalmente com carga normal, baixa ou sem carga real de tráfego/rede.
Esse comportamento é alterado/modificado com as versões 17.2.7 e 18.2, de modo que a leitura da CPU agora pode ser precisa com base na leitura de cpu_user de cima.
O problema também é mencionado nas notas de versão 17.2.