Guia de solução de problemas de memória do roteador ASR 1000 Series

Contents

Introduction Prerequisites Requirements Componentes Utilizados Visão geral do layout da memória ASR Alocação de memória no pool Ismpi io Utilização de memória Verificar o uso da memória no IOS-XE Verificar o uso da memória no IOSd Verificar a utilização do TCAM em um ASR1K Verificar a utilização de memória no QFP

Introduction

Este documento descreve como verificar a memória do sistema e solucionar problemas relacionados à memória nos Cisco ASR 1000 Series Aggregation Services Routers (ASR1K).

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento básico sobre estes tópicos:

- Software Cisco IOS-XE
- CLI ASR

Note: Você pode precisar de uma licença especial para fazer login no shell do Linux no roteador ASR 1001 Series.

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Todas as plataformas ASR1K
- Todas as versões do software Cisco IOS-XE que oferecem suporte à plataforma ASR1K

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Visão geral do layout da memória ASR

Com a maioria das plataformas de roteadores baseadas em software, a maioria dos processos de software internos é executada na memória do Cisco IOS[®]. A plataforma ASR1K introduz uma arquitetura de software distribuído que move muitas responsabilidades do sistema operacional (SO) do processo do IOS. O IOS nessa arquitetura, anteriormente responsável por quase todas as operações internas, agora é executado como um dos muitos processos Linux. Isso permite que outros processos Linux compartilhem a responsabilidade pela operação do roteador.

O ASR1K executa o IOS-XE, não o IOS tradicional. No IOS-XE, um componente Linux executa o kernel e o IOS é executado como um daemon, que em seguida é conhecido como IOSd (IOS-Daemon). Isso cria um requisito para que a memória seja dividida entre o kernel do Linux e a instância do IOSd.

A memória dividida entre IOSd e o resto do sistema é fixa na inicialização e não pode ser modificada. Para um sistema de 4 GB, o IOSd é alocado em aproximadamente 2 GB e, para um sistema de 8 GB, o IOSd é alocado em aproximadamente 4 GB (com redundância de software desabilitada).

Como o ASR1K tem uma arquitetura de 64 bits, qualquer ponteiro que esteja em cada estrutura de dados no sistema consome o dobro da quantidade de memória quando comparado às plataformas tradicionais de CPU única (8 bytes em vez de 4 bytes). O endereçamento de 64 bits permite que o IOS supere a limitação de memória endereçável de 2 GB do IOS, o que permite que ele escale para milhões de rotas.

Note: Verifique se há memória suficiente disponível antes de ativar qualquer recurso novo. A Cisco recomenda que você tenha pelo menos 8 GB de DRAM se receber toda a tabela de roteamento do Border Gateway Protocol (BGP) quando a redundância de software estiver habilitada para evitar o esgotamento da memória.

Alocação de memória no pool lsmpi_io

O pool de memória LSMPI (Shared Memory Punt Interface) do Linux é usado para transferir pacotes do processador de encaminhamento para o processador de roteamento. Esse pool de memória é gravado na inicialização do roteador em buffers pré-alocados, ao contrário do pool de processadores, onde o IOS-XE aloca blocos de memória dinamicamente. Na plataforma ASR1K, o pool Ismpi_io tem pouca memória livre geralmente menos de 1000 bytes â , o que é normal. A Cisco recomenda que você desative o monitoramento do pool de LSMPI pelos aplicativos de gerenciamento de redes para evitar alarmes falsos.

Processor 2C073008 1820510884 173985240 1646525644 1614827804 1646234064 lsmpi_io 996481D0 6295088 6294120 968 968 968

Se houver algum problema no caminho LSMPI, o contador **de falha de saída de dispositivo** parece incrementar nesta saída de comando (alguma saída omitida):

```
ASR1000-1# show platform software infrastructure lsmpi driver
LSMPI Driver stat ver: 3
Packets:
      In: 674572
     Out: 259861
Rings:
      RX: 2047 free 0 in-use 2048 total
     TX: 2047 free 0 in-use 2048 total
  RXDONE: 2047 free 0 in-use 2048 total
  TXDONE: 2047 free 0 in-use 2048 total
Buffers:
     RX: 7721 free 473 in-use 8194 total
Reason for RX drops (sticky):
  Ring full : 0
  Ring put failed : 0
  No free buffer : 0
  Receive failed : 0
  Packet too large : 0
  Other inst buf : 0
  Consecutive SOPs : 0
  No SOP or EOP
                 : 0
  EOP but no SOP : 0
  Particle overrun : 0
  Bad particle ins : 0
  Bad buf cond : 0
  DS rd req failed : 0
  HT rd req failed : 0
Reason for TX drops (sticky):
  Bad packet len : 0
  Bad buf len
                  : 0
  Bad ifindex
                  : 0
  No device : u
  Device xmit fail : 0
  Device xmit rtry : 0
  Tx Done ringfull : 0
  Bad u->k xlation : 0
  No extra skbuff : 0
```

<snip>

Utilização de memória

O ASR1K inclui estes elementos funcionais em seu sistema:

- ASR 1000 Series Route Processor (RP)
- Processador de Serviços integrados ASR 1000 Series (ESP)
- ASR 1000 Series 40Gbps SPA Interface Processor (SIP)

Como tal, é necessário monitorar a utilização da memória por cada um desses processadores em um ambiente de produção.

Os processadores de controle executam o software Cisco IOS-XE que consiste em um kernel baseado em Linux e um conjunto comum de programas utilitários no nível do SO, que inclui o

Cisco IOS executado como um processo do usuário na placa RP.

Verificar o uso da memória no IOS-XE

Insira o **comando show platform software status control-processor brief** para monitorar o uso da memória no RP, no ESP e no SIP. O estado do sistema deve ser idêntico, em relação a aspectos como a configuração e o tráfego do recurso, enquanto você compara o uso da memória.

ASR1K# show platform software status control-processor brief <snip>

Memor	ry (kB)				
Slot	Status	Total	Used (Pct)	Free (Pct) Com	nmitted (Pct)
RPO F	Healthy	3907744	1835628 (47%)	2072116 (53%)	2614788 (67%)
ESP0	Healthy	2042668	789764 (39%)	1252904 (61%)	3108376 (152%)
SIP0	Healthy	482544	341004 (71%)	141540 (29%)	367956 (76%)
SIP1	Healthy	482544	315484 (65%)	167060 (35%)	312216 (65%)

Note: A memória comprometida é uma estimativa de quanto de RAM você precisa para garantir que o sistema nunca está sem memória (OOM) para esta carga de trabalho. Normalmente, o kernel sobrecarrega a memória. Por exemplo, quando você executa uma malloc de 1 GB, nada realmente acontece. Você só recebe memória real sob demanda quando começa a usar essa memória alocada, e somente o quanto você usa.

Cada processador listado na saída anterior pode relatar o status como **Saudável**, **Aviso** ou **Crítico**, que depende da quantidade de memória livre. Se algum dos processadores exibir o status de **Aviso** ou **Crítico**, insira o comando **monitor platform software process<slot>** para identificar o contribuinte principal.

```
ASR1K# monitor platform software process ?

0 SPA-Inter-Processor slot 0

1 SPA-Inter-Processor slot 1

F0 Embedded-Service-Processor slot 0

F1 Embedded-Service-Processor slot 1

FP Embedded-Service-Processor

R0 Route-Processor slot 0

R1 Route-Processor slot 1

RP Route-Processor

<cr>
```

Você pode ser solicitado a definir o tipo de terminal antes de executar o comando **monitor platform software process**:

ASRIK# monitor platform software process r0 Terminal type 'network' unsupported for command Change the terminal type with the 'terminal terminal-type' command. O tipo de terminal é definido como rede por padrão. Para definir o tipo de terminal apropriado, insira o comando terminal terminal-type:

ASR1K#terminal-type vt100

Depois que o tipo de terminal correto for configurado, você poderá inserir o comando monitor

platform software process (alguma saída omitida):

ASR1000# monitor platform software process r0										
top - 00:34:59 up 5:02, 0 users, load average: 2.43, 1.52, 0.73										
Tasks: 136 total, 4 running, 132 sleeping, 0 stopped, 0 zombie										
Cpu(s): 0.8%us, 2.3%sy, 0.0%ni, 96.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st										
Mem: 2009852k total, 1811024k used, 198828k free, 135976k buffers										
Swap: Ok total, Ok used, Ok free, 1133544k cached										
PID USER	PR NI	VII	<1 F	(ES 3	onk S	9CE	20 21	16141 1	LIME+ CC	JMMAND
25956 root	20	0 9	928m	441m	152m	R	1.2	22.5	4:21.32	linux_iosd-imag
29074 root	20	0 1	LOGm	95m	6388	S	0.0	4.9	0:14.86	smand
24027 root	20	0 1	L14m	61m	55m	S	0.0	3.1	0:05.07	fman_rp
25227 root	20	0 25	7096	13m	12m	S	0.0	0.7	0:04.35	imand
23174 root	20	0 33	3760	11m	9152	S	1.0	0.6	1:58.00	cmand
23489 root	20	0 23	3988	7372	4952	S	0.2	0.4	0:05.28	emd
24755 root	20	0 19	9708	6820	4472	S	1.0	0.3	3:39.33	hman
28475 root	20	0 20	0460	6448	4792	S	0.0	0.3	0:00.26	psd
27957 root	20	0 10	5688	5668	3300	S	0.0	0.3	0:00.18	plogd
14572 root	20	0 4	1576	2932	1308	S	0.0	0.1	0:02.37	reflector.sh
<snip></snip>										

Note: Para classificar a saída em ordem decrescente de uso da memória, pressione Shift + M.

Verificar o uso da memória no IOSd

Se você observar que o processo **linux_iosd-imag** contém uma quantidade invulgarmente grande de memória na saída do comando **rp ative do software da plataforma de monitor**, concentre seus esforços de solução de problemas na instância do IOSd. É provável que um processo específico no thread IOSd não liberte a memória. Solucione problemas relacionados à memória na instância do IOSd da mesma forma que você soluciona problemas em qualquer plataforma de encaminhamento baseada em software, como a série Cisco 2800, 3800 ou 3900.

ASR1K# monitor platform software process rp active PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 25794 root 20 0 2929m 1.9g 155m R 99.9 38.9 1415:11 linux_iosd-imag 23038 root 20 0 33848 13m 10m S 5.9 0.4 30:53.87 cmand 9599 root 20 0 2648 1152 884 R 2.0 0.0 0:00.01 top <snip> Insira o comando show process memory sorted para identificar o processo do problema:

ASR1000# show process memory sorted Processor Pool Total: 1733568032 Used: 1261854564 Free: 471713468 lsmpi_io Pool Total: 6295088 Used: 6294116 Free: 972 PID TTY Allocated Freed Holding Getbufs Retbufs Process 522 0 1587708188 803356800 724777608 54432 0 BGP Router 234 0 3834576340 2644349464 232401568 286163388 15876 IP RIB Update 0 0 263244344 36307492 215384208 0 0 *Init

Note: Abra um caso do TAC se precisar de assistência para solucionar problemas ou

identificar se o uso da memória é legítimo.

Verificar a utilização do TCAM em um ASR1K

A classificação de tráfego é uma das funções mais básicas encontradas em roteadores e switches. Muitos aplicativos e recursos exigem que os dispositivos de infraestrutura ofereçam esses serviços diferenciados para diferentes usuários com base em requisitos de qualidade. O processo de classificação de tráfego deve ser rápido, para que o throughput do dispositivo não seja muito degradado. A plataforma ASR1K usa a 4[°] geração de memória endereçável de conteúdo ternário (TCAM4) para essa finalidade.

Para determinar o número total de células TCAM disponíveis na plataforma e o número de entradas livres restantes, insira este comando:

```
ASR1000# show platform hardware qfp active tcam resource-manager usage
```

Note: A Cisco recomenda que você sempre verifique o status do limite antes de fazer alterações nas listas de acesso ou nas políticas de Qualidade de Serviço (QoS), para que o TCAM tenha células livres suficientes disponíveis para programar as entradas.

Se o processador de encaminhamento for executado com um valor criticamente baixo em células TCAM livres, o ESP poderá gerar registros semelhantes aos mostrados abaixo e poderá travar. Se não houver redundância, isso resulta em interrupção de tráfego.

```
%CPPTCAMRM-6-TCAM_RSRC_ERR: SIP0: cpp_sp: Allocation failed because of insufficient TCAM resources in the system.
```

%CPPOSLIB-3-ERROR_NOTIFY: SIP0: cpp_sp:cpp_sp encountered an error -Traceback=1#s7f63914d8ef12b8456826243f3b60d7 errmsg:7EFFC525C000+1175

Verificar a utilização de memória no QFP

Além da memória física, também há memória anexada ao ASIC do Quantum Flow Processor (QFP) que é usado para encaminhar estruturas de dados, que inclui dados como FIB (Forwarding Information Base) e políticas de QoS. A quantidade de DRAM disponível para o QFP ASIC é fixa, com intervalos de 256 MB, 512 MB e 1 GB, dependendo do módulo ESP.

Insira o comando **show platform hardware qfp ative infrastructure exmem statistics** para determinar o uso da memória **exmem**. A soma da memória para IRAM e DRAM usada dá a memória QFP total que está em uso.

BGL.I.05-ASR1000-1# show platform hardware qfp active infra exmem statistics user

Type: Name: I Allocations	RAM, CPP: 0 Bytes-Alloc	Bytes-Total	User-Name				
1	115200	115712	CPP_FIA				
Type: Name: DRAM, CPP: 0							
Allocations	Bytes-Alloc	Bytes-Total	User-Name				
4	1344	4096	P/I				
9	270600	276480	CEF				
9 1	270600 1138256	276480 1138688	CEF QM RM				
9 1 1	270600 1138256 4194304	276480 1138688 4194304	CEF QM RM TCAM				

O IRAM é a memória de instrução do software QFP. Caso a DRAM seja esgotada, a IRAM disponível pode ser usada. Se o IRAM estiver com memória muito baixa, você poderá ver esta mensagem de erro:

%QFPOOR-4-LOWRSRC_PERCENT: F1: cpp_ha: QFP 0 IRAM resource low - 97 percent depleted %QFPOOR-4-LOWRSRC_PERCENT: F1: cpp_ha: QFP 0 IRAM resource low - 98 percent depleted

Para determinar o processo que consome a maior parte da memória, insira o comando **show platform hardware qfp ative infra exmem statistics user**:

ASR1000# show platform hardware qfp active infra exmem statistics user

Type: Name:	IRAM, CPP: 0		
Allocations	s Bytes-Allo	e Bytes-Tota	l User-Name
1	115200	115712	CPP_FIA
Type: Name:	DRAM, CPP: 0		
Allocations	Bytes-Alloc	Bytes-Total	User-Name
4	1344	4096	P/I
9	270600	276480	CEF
1	1138256	1138688	QM RM
1	4194304	4194304	TCAM
1	65536	65536	Qm 16