# Identificar e Solucionar Problemas de Alto Uso da CPU em Plataformas de Switch Catalyst Executando IOS-XE 16.x

## **Contents**

Introduction

Informações de Apoio

Fluxo de Trabalho de Solução de Problemas de CPU Alto

Estudo de caso 1. Interrupções do Address Resolution Protocol

Etapa 1. Identificar o Processo que Consome Ciclos da CPU

Etapa 2. Investigar Por que o FED está Punindo Pacotes para o Plano de Controle

Estudo de caso 2. Redirecionamentos de IP com CoPP

Estudo de caso 3. CPU com alto nível intermitente

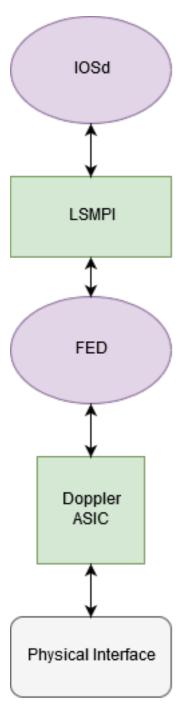
Informações Relacionadas

### Introduction

Este documento descreve como solucionar problemas de alto uso da CPU, principalmente devido a interrupções, nas novas plataformas Cisco IOS®-XE que executam versões 16.x (também conhecidas como Polaris). Além disso, este documento introduz vários comandos novos nesta plataforma que são integrais para solucionar tais problemas.

# Informações de Apoio

Eimportante entender como o Cisco IOS®-XE é construído. Com o Cisco IOS®-XE, a Cisco migrou para um kernel Linux e todos os subsistemas foram divididos em processos. Todos os subsistemas que estavam dentro do Cisco IOS® anteriormente - como os drivers de módulos, High Availability (HA) e assim por diante - agora são executados como processos de software dentro do sistema operacional Linux (SO). O próprio Cisco IOS® é executado como um daemon no sistema operacional Linux (IOSd). O Cisco IOS®-XE mantém não apenas a mesma aparência do Cisco IOS® clássico, mas também sua operação, suporte e gerenciamento.


Aqui estão algumas definições úteis:

- **Driver do mecanismo de encaminhamento (FED)**: Este é o coração do switch Cisco Catalyst e é responsável por toda a programação/encaminhamento de hardware
- IOSd: Este é o daemon do Cisco IOS® que é executado no kernel do Linux. É executado como um processo de software dentro do kernel
- Sistema de entrega de pacotes (PDS): Essa é a arquitetura e o processo de como os pacotes são entregues para e dos vários subsistemas. Como exemplo, ele controla como os pacotes são entregues do FED ao IOSd e vice-versa
- Plano de controle (CP): O plano de controle é um termo genérico usado para agrupar as funções e o tráfego que envolvem a CPU do Switch Catalyst. Isso inclui tráfego como Spanning Tree Protocol (STP), Hot Standby Router Protocol (HSRP) e protocolos de

roteamento destinados ao switch ou enviados do switch. Isso também inclui protocolos da camada de aplicação como Secure Shell (SSH) e Simple Network Management Protocol (SNMP) que devem ser tratados pela CPU

- Plano de dados (DP): Normalmente, o plano de dados abrange os ASICs de hardware e o tráfego que é encaminhado sem assistência do plano de controle
- Punt: Pacote de controle de protocolo de entrada que foi interceptado pelo DP enviado ao CP para processá-lo
- Injetar: Pacote de protocolo gerado pelo PC enviado ao DP para saída em interface(s) de E/S
- LSMPI: Interface de punt de memória compartilhada Linux

Diagrama de alto nível do caminho de comunicação entre o plano de dados e o plano de controle:



# Fluxo de Trabalho de Solução de Problemas de CPU Alto

Esta seção fornece um fluxo de trabalho sistemático para fazer a triagem de problemas de alta utilização da CPU nos switches. Observe que ele abrange um processo selecionado no momento da gravação desta seção.

### Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.