Configurando VLANs de Token Ring e Ethernet no Catalyst 5000 utilizando um RSM

Contents

Introduction Prerequisites Requirements Componentes Utilizados Conventions Material de Suporte Configurar Configurando o token ring com o RSM para o SRB e multianel para IP Comunicação entre VLANs Ethernet e Token Ring no mesmo Switch Verificar Troubleshoot Informações Relacionadas

Introduction

Este documento discute como configurar a comutação Token Ring no Catalyst 5000 e no Route Switch Module (RSM). Em particular, este documento concentra-se na configuração do Catalyst 5000 com o RSM para rotear o IP em um ambiente de ligação de rota de origem e nas etapas envolvidas. Ele também fornece um exemplo de configuração para comunicação entre uma VLAN Ethernet e uma VLAN Token Ring através do RSM. Este documento também discute alguns dos comandos **show** mais usados.

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento destes tópicos:

- Conceitos de Comutação Token Ring, incluindo a TrBRF (Token Ring Bridge Relay Function) e a TrCRF (Token Ring Concentrator Relay Function).
- Como configurar e gerenciar roteadores e switches Cisco.

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

• Catalyst 5505 com Supervisor Engine III Software versão 4.5(6), com estes instalados: Módulo

de switch de rota com o software Cisco IOS® versão 12.1(2) com conjunto de recursos IBMBIade Ethernet com software versão 4.5(6)Token Ring Blade com software versão 3.3(2) The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Consulte as <u>Convenções de Dicas Técnicas da Cisco para obter mais informações sobre</u> <u>convenções de documentos.</u>

Material de Suporte

Diferentemente das VLANs Ethernet, em que uma VLAN representa efetivamente um segmento Ethernet físico (por exemplo, um domínio de broadcast), a comutação Token Ring usa várias VLANs por domínio de broadcast. O conceito central é a VLAN TrBRF (Token Ring Bridge Relay Function). Esta é uma VLAN que representa a funcionalidade de bridging em uma rede Token Ring. Nesse TrBRF, ou ponte, você configura uma ou mais VLANs de função de retransmissão do concentrador Token Ring (TrCRF). Eles são análogos aos anéis físicos em uma rede Token Ring. Como parte da definição, cada um deve receber um número de toque exclusivo.

Os dispositivos finais em diferentes TrCRFs podem se comunicar entre si sem qualquer bridge externa ou roteador através da funcionalidade de bridging no TrBRF. Um switch pode ser configurado com mais de uma VLAN TrBRF, cada uma com suas VLANs TrCRF associadas. No entanto, para comunicação entre os TrBRFs, um dispositivo externo, como um roteador, é necessário.

A VLAN TrBRF pode ser configurada de duas maneiras: como uma ponte transparente ou como uma ponte de rota de origem. Como os switches Token Ring típicos são instalados em lojas IBM que já usam o Source Route Bridging (SRB), a configuração mais comum do TrBRF é como uma Source Route Bridge.

As VLANs Token Ring, como as VLANs Ethernet, precisam executar um algoritmo de spanning tree para evitar loops. No entanto, diferentemente das VLANs Ethernet, elas precisam executar duas instâncias disso, uma no nível TrBRF e outra no nível TrCRF.

Se o TrBRF estiver funcionando como uma ponte transparente (**mode srt** quando você estiver configurando os TrCRFs dependentes), ele deverá ser configurado para executar o IEEE como o Spanning Tree Protocol no nível TrBRF (**stp ieee**).

Se o TrBRF estiver funcionando como uma Source Route Bridge (**mode srb** ao configurar os TrCRFs dependentes), ele deverá ser configurado para executar o IBM como o Spanning Tree Protocol no nível TrBRF (**stp ibm**).

O Spanning Tree Protocol executado no nível TrCRF é automaticamente escolhido com base no modo de bridging. Se o modo de bridging for SRB (por exemplo, o TrBRF está executando o IBM Spanning Tree Protocol), o IEEE Spanning Tree Protocol será executado no nível TrCRF. Se o modo de bridging for Transparent Bridging (o TrBRF já está executando o Protocolo de Árvore Estendida IEEE, por exemplo), o protocolo spanning tree é executado no nível TrCRF.

Para obter mais informações sobre o conceito de TrBRF e TrCRF, consulte Conceitos de

Configurar

Nesta seção, você encontrará informações para configurar os recursos descritos neste documento.

Nota: Use a Command Lookup Tool (somente clientes registrados) para obter mais informações sobre os comandos usados neste documento.

Antes de configurar qualquer VLAN Token Ring, todos os switches Token Ring no domínio devem estar executando o VLAN Trunking Protocol (VTP) V2. Para evitar uma interrupção do domínio VTP existente, você deve configurar switches recém-adicionados como modo Transparente ou Cliente com este comando:

set vtp domain cisco mode transparent V2 enable

Para obter mais informações sobre o VTP, consulte Configuração do VTP. O modo padrão é server.

Em seguida, configure a VLAN ou VLANs TrBRF no switch. Neste exemplo, há dois TrBRFs separados configurados como Source Route Bridges, pois esse é o tipo de configuração mais comum.

1. Crie as VLANs TrBRF no switch. Esse é o pai das VLANs TrCRF que possuem portas com dispositivos finais conectados a ele. Observação: como você está fazendo Source Route Bridging, o Spanning Tree Protocol está definido como ibm.

set vlan 100 type trbrf name test_brf bridge 0xf stp ibm set vlan 200 type trbrf name test_brf2 bridge 0xf stp ibm

2. Crie as VLANs TrCRF. Observação: o modo é definido como SRB e o número do anel pode ser inserido em notação hexadecimal ou decimal, como mostrado no próximo exemplo. No entanto, quando você exibe as configurações, o switch as exibe em hexadecimal.

```
set vlan 101 type trcrf name test_crf101 ring 0x64 parent 100 mode srb
!--- All rings in hexadecimal. set vlan 102 type trcrf name test_crf102 ring 0x65 parent
100 mode srb
set vlan 103 type trcrf name test_crf103 ring 0x66 parent 100 mode srb
set vlan 201 type trcrf name test_crf201 decring 201 parent 200 mode srb
!--- All rings in decimal. set vlan 202 type trcrf name test_crf202 decring 202 parent 200
mode srb
set vlan 203 type trcrf name test_crf203 decring 203 parent 200 mode srb
```

3. Atribua as VLANs às portas pretendidas na rede do switch. Atribua as portas às VLANs de CRF da mesma forma que as portas Ethernet são atribuídas.Por exemplo, aqui você atribui as portas 8/1-4 à VLAN 101, que é o número do anel 100 (0x64). Como a VLAN padrão para todas as portas Token Ring é 1003-da mesma forma que a VLAN 1 é o padrão para todas as portas Ethernet-a VLAN 1003 também é modificada.

ptera-sup (enable) set vlan 101 8/1-4

Depois de atribuir todas as portas Token Ring necessárias às VLANs TrCRF, você concluiu a configuração do switch. Os dispositivos em TrCRFs na mesma VLAN agora podem originar a ponte de rota entre eles.

Para a conectividade IP, como esse é um ambiente de ponte, todos os dispositivos finais devem fazer parte da mesma rede IP. No entanto, como o TrBRF está funcionando como uma ponte de rota de origem, os roteadores conectados a diferentes TrCRFs exigem a opção de vários anéis para armazenar em cache e usar o Campo de Informações de Roteamento (RIF - Routing Information Field).

Por exemplo, um roteador externo conectado ao TrCRF 101 teria sua interface Token Ring configurada de forma semelhante a esta:

```
source-bridge ring-group 2000
!
interface token-ring 0
ip address 1.1.1.10 255.255.255.0
multiring all
source-bridge 100 1 2000
!--- The ring number is 100, to match CRF 101 ring number; !--- and 2000 is the virtual ring
number of the router. source-bridge spanning
```

Configurando o token ring com o RSM para o SRB e multianel para IP

Se você estiver roteando IP em uma rede com bridge de rota de origem, precisará adicionar vários toques à sua configuração, bem como configurar o Source-Route Bridging. Isso ocorre porque, com o RSM, você está estendendo a bridge do switch para o RSM e deve criar um pseudo anel que o código multianel anexa ao RIF. Você cria esse pseudo-anel ao criar um TrCRF sob o TrBRF pai atribuído no RSM sob o código multianel.

Como você também precisa configurar o Source-Route Bridging para o RSM, você deve vincular a VLAN da interface ao anel virtual do RSM. Isso é feito quando você cria um TrCRF em cada TrBRF com um número de anel que corresponde ao do anel virtual no RSM. Na verdade, você pode usar o mesmo TrCRF para fins de bridging de rotas multianel e origem, desde que eles tenham o mesmo número de anel. Veja o próximo diagrama:

Neste exemplo, você vai configurar o RSM como anel virtual 1000 com o comando **source-bridge ring-group 1000** global.

1. Configure os pseudo-TrCRFs correspondentes no switch, um para cada TrBRF, com estes comandos:

set vlan 104 type trcrf name test_crf104 decring 1000 parent 100 mode srb set vlan 204 type trcrf name test_crf204 decring 1000 parent 200 mode srb

Observação: os números de toque dos TrCRFs acima devem corresponder ao anel virtual no RSM, 1000. Além disso, nenhuma porta é atribuída aos pseudo-TrCRFs. As portas físicas são atribuídas ao TrCRF 101 e 201, como mostrado no exemplo na Etapa 3 da seção <u>Configure</u> principal deste documento.

2. Adicione um comando interface vlan no RSM para cada TrBRF configurado no switch:

```
interface vlan100 type trbrf
interface vlan200 type trbrf
```

3. Adicione os comandos multi-ring e source route bridging às interfaces de VLAN.Eles informam ao roteador qual VLAN TrCRF foi atribuída para mapear no anel virtual no roteador. Neste exemplo de documento, são as VLANs 104 e 204, ambas com um número de anel de 1000 para corresponder ao grupo de anel no roteador.Você também precisa adicionar endereços IP para rotear o tráfego IP, de modo que termine com esta configuração:

```
source-bridge ring-group 1000
!
interface vlan100 type trbrf
ip address 1.1.1.1 255.255.255.0
multiring trcrf-vlan 104 ring 1000
```

```
multiring all
source-bridge trcrf-vlan 104 ring-group 1000
source-bridge spanning
!
interface Vlan200 type trbrf
ip address 1.1.2.1 255.255.255.0
multiring trcrf-vlan 204 ring 1000
multiring all
source-bridge trcrf-vlan 204 ring-group 1000
source-bridge spanning
!
```

Observação: as configurações do protocolo IP não são mostradas neste exemplo, por simplicidade.

Comunicação entre VLANs Ethernet e Token Ring no mesmo Switch

Você pode configurar VLANs Token Ring e Ethernet no mesmo switch, mas só pode enviar tráfego entre elas com um RSM ou um roteador externo.

Se você já configurou o switch e o RSM conforme descrito anteriormente neste documento, você pode adicionar uma VLAN Ethernet e configurar a conversão da bridge de origem no RSM, para ligar o tráfego entre os dois meios:

1. Configure a VLAN Ethernet e atribua portas a ela com o comando set vlan: ptera-sup (enable) set vlan 500 3/1-5

2. Configure a interface VLAN no RSM e coloque-a em um grupo de bridge transparente:

interface vlan 500 bridge-group 1

bridge 1 protocol ieee

3. Configure a tradução de bridge de origem com o comando source-bridge transparent ringgroup pseudo-ring bridge-number tb-group em que:ring-group é o anel virtual de grupo de anel de bridge de origem configurado no RSM. Neste caso, são mil.pseudo-anel é o número do anel que será atribuído a este domínio de bridging transparente. Você pode escolher qualquer número, mas ele deve ser exclusivo da mesma forma que os números de anel reais devem ser exclusivos em uma rede de origem-rota interligada. No exemplo anterior, o número do toque é 3000.bridge-number é o número da bridge usado para formar o RIF em quadros que vêm do grupo de bridge transparente e estão sendo enviados à rede de bridge de rota de origem. Nesse caso, você está usando 1.tb-group é o número do grupo de bridge transparente. Neste caso, é 1.

source-bridge transparent 1000 3000 1 1
source-bridge ring-group 1000
!
interface vlan100 type trbrf
 ip address 1.1.1.1 255.255.255.0

```
multiring trcrf-vlan 104 ring 1000
    multiring all
    source-bridge trcrf-vlan 104 ring-group 1000
    source-bridge spanning
    !
interface Vlan200 type trbrf
    ip address 1.1.2.1 255.255.255.0
    multiring trcrf-vlan 204 ring 1000
    multiring all
    source-bridge trcrf-vlan 204 ring-group 1000
    source-bridge spanning
    !
interface vlan 500
  ip address 1.1.3.1 255.255.255.0
 bridge-group 1
bridge 1 protocol ieee
```

Observação: neste cenário, o IP está sendo roteado, não em ponte.

Verificar

Use esta seção para confirmar se a sua configuração funciona corretamente.

A <u>Output Interpreter Tool (somente clientes registrados) (OIT) oferece suporte a determinados</u> <u>comandos show.</u> Use a OIT para exibir uma análise da saída do comando show.

show vlan — No switch, você pode verificar quais VLANs estão configuradas, o modo de bridging e o spanning tree.

ptera	a-sup (enable) show vlan						
VLAN	Name	Status	IfIndex	Mod/Ports	VLANs		
1	default	active	3	3/6-24 6/1-24 10/1-12			
100	test_brf	active	8	8 105	101, 102,	103,	104
101	test_crf101	active	10	8/1-4			
102	test_crf102	active	11				
103	test_crf103	active	12				
104	test_crf104	active	13				
105	test_crf105	active	14				
200	test_brf2	active	9	9	201, 202,	203,	204
				205			
201	test_crf201	active	15	8/5-8			
202	test_crf202	active	16				
203	test_crf203	active	17				
204	test_crf204	active	18				
205	test_crf205	active	19				
210	VLAN0210	active	98				
500	VLAN0500	active	20	3/1-5			
1002	fddi-default	active	4				
1003	trcrf-default	active	7	8/9-16			
1004	fddinet-default	active	5				
1005	trbrf-default	active	6	6	1003		

VLAN	Type	SAID	MTU	Parent	RingNo	BrdaNo	Stp	BrdaMode	Trans1	Trans2				
1	enet	100001	1500	-	-	-	-	-	0	0				
100	trbrf	100100	4472	-	-	0xf	ibm	-	0	0				
101	trcrf	100101	4472	100	0x64	-	-	srb	0	0				
102	trcrf	100102	4472	100	0x65	-	-	srb	0	0				
103	trcrf	100103	4472	100	0x66	-	-	srb	0	0				
104	trcrf	100104	4472	100	0x3e8	-	-	srb	0	0				
105	trcrf	100105	4472	100	0x7d0	-	-	srb	0	0				
200	trbrf	100200	4472	-	-	0xf	ibm	-	0	0				
201	trcrf	100201	4472	200	0жс9	-	-	srb	0	0 !	A11	ring	numbe	rs
are d	display	red in hexa	adecima	1. 202	trcrf :	100202	4	472 200	0хса	-	-	srb	•	0
0														
203	trcrf	100203	4472	200	0xcb	-	-	srb	0	0				
204	trcrf	100204	4472	200	0x3e8	-	-	srb	0	0				
205	trcrf	100205	4472	200	0x7d0	-	-	srb	0	0				
210	enet	100210	1500	-	-	-	-	-	0	0				
500	enet	100500	1500	-	-	-	-	-	0	0				
1002	fddi	101002	1500	-	-	-	-	-	0	0				
1003	trcrf	101003	4472	1005	0xccc	-	-	srb	0	0				
1004	fdnet	101004	1500	-	-	0x0	ieee	-	0	0				
1005	trbrf	101005	4472	-	-	0xf	ibm	-	0	0				
57T 7 NT	DrmCro	2+24												
1	static													
100	static													
101	static													
102	static													
103	static													
104	static													
105	static													
200	static													
201	static													
202	static													
203	static													
204	static													
205	static													
210	static													
500	static													
1002	static													
1003	static													
1004	static													
1005	static													
VI,AN	AREHon	s STEHons	Backup	CRF 1a	VLAN									
101	7	7	off											
102	7	7	off											
103	7	7	off											
104	7	7	off											
105	7	7	off											
201	7	7	off											
202	7	7	off											
203	7	7	off											

 202
 7
 7
 off

 203
 7
 7
 off

 204
 7
 7
 off

 205
 7
 7
 off

 1003
 7
 7
 off

ptera-sup (enable)

show spantree *TrBRF vlan_number* —Exibe informações importantes, como quais portas estão sendo conectadas e encaminhadas, e exibe o modo spanning tree sendo executado no nível TrBRF.

ptera-sup (enable) show spantree 100 VLAN 100 Spanning tree enabled ibm Spanning tree type 00-10-1f-29-f9-63 Designated Root Designated Root Priority 32768 Designated Root Cost 0 Designated Root Port 1/0 Root Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec Bridge ID MAC ADDR00-10-1f-29-f9-63Bridge ID Priority32768Bridge Max Age 10 secHello Time 2 secForward Delay 4 sec Vlan Port-State Cost Priority Portfast Channel_id Port,Vlan _____ ____ 100forwarding54 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled 5/1 0 101 102 103 104 105 * = portstate set by user configuration.

Observação: nessa saída, você vê a porta 5/1 listada na VLAN 100 TrBRF. Isso ocorre porque você tem um RSM no slot 5 e porque um tronco ISL é usado para estender a bridge do switch para o RSM automaticamente. Para obter mais informações sobre ISL Token Ring, consulte Truncamento TR-ISL entre switches e roteadores Cisco Catalyst 5000 e 3900.

show spantree *TrCRF vlan_number* — Exibe informações importantes, como quais portas estão sendo conectadas e encaminhadas, e exibe o modo spanning tree sendo executado no nível de TrCRF.

ptera-sup (enable) show spantree 101 VLAN 101 Spanning tree enabled Spanning tree typeieeeDesignated Root00-10-1f-29-f9-64 Designated Root Priority 32768 Designated Root Cost0Designated Root Port1/0 Root Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec 00-10-1f-29-f9-64 Bridge ID MAC ADDR Bridge ID Priority 32768 Bridge Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec Vlan Port-State Cost Priority Portfast Channel_id Port _____ ____
 101
 forwarding*
 5
 32 disabled
 0

 101
 not-connected
 250
 32 disabled
 0

 101
 not-connected
 250
 32 disabled
 0
 5/1 8/1 8/2 101 not-connected 250 32 disabled 0 8/3 8/4101 not-connected25032 disabled0 * = portstate set by user configuration or set by vlan 100 spanning tree. ptera-sup (enable)

show port — Verifica a existência do tronco ISL.

ptera-sup (enable) **show port 5/1**

show trunk — Exibe quais portas estão encaminhando e quais estão inativas e o modo spanning tree no nível TrBRF.

ptera-sup (enable) show trunk Port Mode Encapsulation Status Native vlan _____ _____ 5/1 isl on trunking 1 7/1-2 lane on trunking 1 Port Vlans allowed on trunk _____ 1-1005 5/1 7/1-2 1-1005 Vlans allowed and active in management domain Port _____ 5/1 7/1-2 1003 Vlans in spanning tree forwarding state and not pruned Port _____ 5/1 100-105,200-205 7/1-2 1003 ptera-sup (enable)

show interface — Exibe as configurações de VLAN no RSM da mesma forma que as interfaces físicas em um roteador.

```
ptera-rsm# show interface
```

Vlan100 is up, line protocol is up Hardware is Cat5k Virtual Token Ring, address is 0009.fa18.3800 (bia0009.fa18.3800) Internet address is 1.1.1.1/24 MTU 4464 bytes, BW 16000 Kbit, DLY 630 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation SNAP, loopback not set ARP type: SNAP, ARP Timeout 04:00:00 Ring speed: 16 Mbps Duplex: half Mode: Classic token ring station Source bridging enabled, srn 0 bn 15 trn 1000 (ring group) spanning explorer enabled Group Address: 0x00000000, Functional Address: 0x08000100 Ethernet Transit OUI: 0x00000 Last input 00:00:01, output 00:00:55, output hang never

```
Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue :0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
     390 packets input, 21840 bytes, 0 no buffer
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     25 packets output, 6159 bytes, 0 underruns
     0 output errors, 1 interface resets
     0 output buffer failures, 0 output buffers swapped out
     3 transitions
Vlan200 is up, line protocol is up
Hardware is Cat5k Virtual Token Ring, address is 0009.fa18.3800 (bia0009.fa18.3800)
 Internet address is 1.1.2.1/24
 MTU 4464 bytes, BW 16000 Kbit, DLY 630 usec,
    reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation SNAP, loopback not set
 ARP type: SNAP, ARP Timeout 04:00:00
 Ring speed: 16 Mbps
 Duplex: half
 Mode: Classic token ring station
 Source bridging enabled, srn 0 bn 15 trn 1000 (ring group)
    spanning explorer enabled
 Group Address: 0x00000000, Functional Address: 0x08000100
 Ethernet Transit OUI: 0x000000
 Last input 00:00:00, output 00:08:43, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue :0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
     381 packets input, 21336 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     9 packets output, 783 bytes, 0 underruns
     0 output errors, 1 interface resets
     0 output buffer failures, 0 output buffers swapped out
     3 transitions
ptera-rsm#
```

show spanning-tree — Exibe informações sobre qual Spanning Tree Protocol está sendo executado no RSM.

ptera-rsm# show spanning-tree

Port 12 (Vlan500) of Bridge group 1 is down

Port path cost 19, Port priority 128 Designated root has priority 32768, address 0090.5f18.1c00 Designated bridge has priority 32768, address 0090.5f18.1c00

```
Designated port is 12, path cost 0
Timers: message age 0, forward delay 0, hold 0
BPDU: sent 0, received 0
```

```
Port 13 (RingGroup1000) of Bridge group 1 is forwarding
```

```
Port path cost 10, Port priority 128
Designated root has priority 32768, address 0090.5f18.1c00
Designated bridge has priority 32768, address 0090.5f18.1c00
Designated port is 13, path cost 0
Timers: message age 0, forward delay 0, hold 0
BPDU: sent 0, received 0
```

```
ptera-rsm#
```

Troubleshoot

Atualmente, não existem informações disponíveis específicas sobre Troubleshooting para esta configuração.

Informações Relacionadas

- Módulo de Switch de Rota Token Ring
- Truncamento de TR-ISL entre Switches e roteadores Cisco Catalyst 5000 e 3900
- Página de suporte de Token Ring
- Suporte à tecnologia IBM
- <u>Suporte de Produto</u>
- Suporte Técnico e Documentação Cisco Systems