아날로그 E&M 음성 신호 개요

목차

소개 사전 요구 사항 요구 사항 사용되는 구성 요소 표기 규칙 아날로그 E&M 매개변수 E&M 인터페이스 유형 및 배선 배열 오디오 구현(2선/4선) 다이얼 감독 신호 시작 주소 신호 관련 정보

소개

아날로그 트렁크 회로는 PBX(Private Branch eXchange)와 같은 자동 시스템과 CO(Central Office)와 같은 네트워크를 연결합니다. 아날로그 트렁킹의 가장 일반적인 형식은 E&M 인터페이스입니다.E&M 시그널링은 일반적으로 "ear & mod" 또는 "recEive 및 transMit"이라고 불리며, 그 원점은 지구와 자석에서 옵니다.지구는 전지를 나타내고 자석은 음조를 생성하는데 사용되는 전자석을나타냅니다.

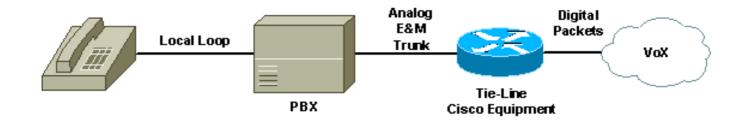
E&M 시그널링은 DCE(Data Circuit-Terminating Equipment) 및 DTE(Data Terminal Equipment) 참조 유형과 유사한 각 연결에 대한 트렁크 회로 측 및 신호 단위 측면을 정의합니다.일반적으로 PBX는 트렁크 회로 측이며, Telco, CO, 채널-뱅크 또는 Cisco 음성 지원 플랫폼은 신호 장치 측입니다.

참고: Cisco Analog E&M 인터페이스는 시그널링 유닛 측면으로 작동하며, 다른 쪽은 트렁크 회로가 될 것으로 예상합니다.E&M 인터페이스 모델 Type II와 Type V를 사용할 경우 신호 처리 리드의적절한 교차 부분을 통해 두 신호 유닛 측면을 다시 연결할 수 있습니다.E&M Type I 인터페이스를 사용하는 경우 두 신호 장치 측면을 뒤로 연결할 수 없습니다.

트렁크 회로 및 신호 장치 배선에 대한 자세한 내용은 <u>아날로그 E&M 인터페이스 유형 및 배선 배열</u>이해 및 문제 해결을 참조하십시오.

사전 요구 사항

<u>요구 사항</u>


- 이 문서를 읽는 사람은 다음 주제에 대해 알고 있어야 합니다.
 - Cisco 2600, 3600 및 VG200 플랫폼에는 음성 네트워크 모듈과 E&M VIC(Voice Interface

Card)가 필요합니다.

- Cisco 1750 및 1760 플랫폼에는 E&M VIC 및 PVDM(Packet Voice DSP Module)만 필요합니다
- Cisco MC3810 플랫폼에는 AVM 및 VCM(Voice Compression Module)에 E&M APM-EM(Analog Personality Module)이 설치된 아날로그 음성 모듈(AVM)이 필요합니다.

음성 네트워크 모듈 및 E&M VIC에 대한 자세한 내용은 음성 네트워크 모듈 이해 및 E&M 음성 인터 페이스 카드 이해를 참조하십시오.

일반적인 아날로그 E&M 회로는 다음 다이어그램에 나와 있습니다.

<u>사용되는 구성 요소</u>

아날로그 E&M은 Cisco 1750, 1760, 2600, 3600, VG200 및 MC3810 모델에서 지원됩니다.

이 문서의 정보는 특정 랩 환경의 디바이스를 토대로 작성되었습니다.이 문서에 사용된 모든 디바이스는 초기화된(기본) 컨피그레이션으로 시작되었습니다.현재 네트워크가 작동 중인 경우, 모든 명령어의 잠재적인 영향을 미리 숙지하시기 바랍니다.

표기 규칙

문서 규칙에 대한 자세한 내용은 Cisco 기술 팁 표기 규칙을 참조하십시오.

아날로그 E&M 매개변수

다양한 아날로그 E&M 구현을 정의하는 네 가지 기본 매개변수가 있습니다.이러한 정보는 다음과 같이 나열됩니다.

- E&M 인터페이스 유형 및 배선 배열(유형 I~V)
- 오디오 구현(2선/4선)
- 다이얼 감독 신호 처리 시작(즉시, 윙크 및 지연)
- 주소 신호 처리(펄스, DTMF)

E&M 인터페이스 유형 및 배선 배열

Type I, II, III, IV 및 V라는 다섯 가지 E&M 인터페이스 유형 또는 모델이 있습니다(Type IV는 Cisco 플랫폼에서 지원되지 않음). 각 유형에는 서로 다른 배선 배선이 있으므로 E&M 감독 신호 전송(온후크/오프후크 신호)에 대한 접근 방식이 다릅니다. 신호 측면이 E-lead를 통해 온후크/오프후크 신호를 보냅니다.트렁킹 측에서 M-리드 위에 온-후크/오프 후크를 전송합니다.

E&M 유형의 핀아웃 다이어그램과 자세한 내용은 <u>아날로그 E&M 인터페이스 유형 및 배선 배열 이</u>해 및 문제 해결을 참조하십시오.

- E&M Type I—북미에서 가장 일반적인 인터페이스입니다.유형 I는 수퍼바이저 신호 처리를 위해 두 개의 리드를 사용합니다.E 및 M비활성 상태에서 E-lead 가 열리고 M-lead 가 접지에 연결됩니다.트렁크 회로 측 역할을 하는 PBX는 M-리드를 배터리에 연결하여 오프후크 상태를 나타냅니다.Cisco 라우터/게이트웨이(신호 단위)는 오프후크 상태를 나타내기 위해 E-리드를 지면에 연결합니다.
- E&M Type II 2개의 신호 노드를 다시 연결할 수 있습니다. Type II는 감독 신호 처리를 위해 4개의 리드를 사용합니다. E, M, SB 및 SG비활동 중에는 E-lead 및 M-lead 가 모두 열려 있습니다. 트렁크 회로 측 역할을 하는 PBX는 M-리드를 신호 측면 배터리에 연결된 신호 배터리(SB) 리드에 연결하여 오프후크 상태를 나타냅니다. Cisco 라우터/게이트웨이(신호 단위)는 E-lead를 트렁크 회로 측 접지에 연결된 SG(Signal Ground) 리드에 연결하여 오프후크 상태를 나타냅니다.
- E&M Type III 현대 시스템에서는 일반적으로 사용되지 않습니다. Type III은 감독 신호에는 4개의 리드를 사용합니다. E, M, SB 및 SG비활성 상태에서 E-lead 가 열리고 M-lead 가 신호 영역의 SG 리드에 연결된 지면으로 설정됩니다. 트렁크 회로 측 역할을 하는 PBX는 SG 리드에서 M-리드의 연결을 끊고 신호 처리 쪽의 SB 리드에 연결하여 오프후크 상태를 나타냅니다. Cisco라우터/게이트웨이(신호 단위)는 오프후크 상태를 나타내기 위해 E-리드를 지면에 연결합니다.
- E&M Type IV—Cisco 라우터/게이트웨이에서 지원되지 않습니다.
- E&M Type V Type V는 대칭적이며 두 개의 신호 노드를 다시 연결할 수 있습니다.이는 북미이외의 지역에서 사용되는 가장 일반적인 인터페이스 유형입니다.유형 V는 수퍼바이저 신호처리를 위해 두 개의 리드를 사용합니다.E 및 M비활동 중에는 E-lead 및 M-lead 가 열려 있습니다.트렁크 회로 측 역할을 하는 PBX는 오프후크 상태를 나타내기 위해 M-리드를 지면에 연결합니다.Cisco 라우터/게이트웨이(신호 단위)는 오프후크 상태를 나타내기 위해 E-리드를 지면에 연결합니다.

오디오 구현(2선/4선)

두 가지 유형의 오디오 인터페이스(2선 또는 4선)가 있습니다. 이러한 구현에서는 오디오 신호를 전송하는 데 사용되는 와이어 수를 설명합니다.

- 2선 구현에서는 전이중 오디오 신호가 팁(T) 및 링(R) 리드로 구성된 단일 쌍을 통해 전송됩니다.
- 4선 구현에서는 T, R, T1, R1 리드로 구성된 오디오 신호를 수신하고 전송하는 별도의 경로를 제공합니다.

참고: E&M 회로는 4선 E&M 회선이라고 할 수 있지만, 사용된 신호 유형 및 오디오 구현에 따라 6개에서 8개의 물리적 와이어가 있을 가능성이 높습니다.

다이얼 감독 신호 시작

시작 다이얼 감리는 장비가 E&M 트렁크를 설정하고 DTMF(dual tone multifrequency) 숫자와 같은 주소 신호 정보를 전달하는 방법을 정의하는 회선 프로토콜입니다.E&M 시작 다이얼 시그널링에 사용되는 세 가지 주요 기술은 다음과 같습니다.

- Immediate Start(즉시 시작) 가장 기본적인 프로토콜입니다.이 기법에서는 발신 스위치가 오 프후크 상태로 전환되어 한정된 시간(예: 200ms)을 기다린 다음 다이얼 숫자를 먼 끝까지 보냅니다.
- Wink Start(윙크 시작) 가장 일반적으로 사용되는 프로토콜입니다.이 기법에서는 원래 스위치가 오프후크 상태로 전환되고 다른 쪽 끝에서 임시 오프후크 펄스를 기다린 다음(계속 진행하라는 표시로 해석됨) 다이얼 숫자를 보냅니다.

• Delay Dial(지연 다이얼) - 이 기법에서는 원래 면이 오프후크 상태로 전환되어 약 200ms를 기다린 다음 먼 끝이 온후크 상태인지 확인합니다.맨 끝이 온-후크이면 다이얼 숫자를 출력합니다.맨 끝의 고리가 풀후크이면 고리가 풀링될 때까지 기다렸다가 다이얼 숫자를 출력합니다.

주소 신호

주소 신호 처리는 일반적으로 전화를 건 숫자(발신자 번호)를 나타냅니다. 주소 정보를 전달하는 데두 가지 옵션이 사용됩니다.펄스 다이얼(회전 다이얼링) 또는 톤 다이얼(DTMF)을 사용할 수 있습니다.Cisco 라우터 및 게이트웨이의 기본값은 DTMF입니다.

관련 정보

- 음성 기술 지원
- 음성 및 IP 커뮤니케이션 제품 지원
- Cisco IP 텔레포니 문제 해결
- Technical Support Cisco Systems