스위치에서 MSTP(Multiple Spanning Tree Protocol) 구성

목표

STP(Spanning Tree Protocol)는 브리징 LAN(Local Area Network)에 대해 루프 프리(loopfree) 토폴로지를 보장하는 네트워크 프로토콜입니다. MSTP(Multiple Spanning Tree Protocol)는 단일 물리적 네트워크에서 각 VLAN(Virtual LAN)에 대해 여러 스패닝 트리(인스 턴스)를 생성하는 프로토콜입니다. 이렇게 하면 각 VLAN에 구성된 루트 브리지 및 포워딩 토 폴로지가 있을 수 있습니다. 이를 통해 네트워크 전반의 BPDU(Bridge Protocol Data Units) 수 를 줄이고 네트워크 디바이스의 CPU(Central Processing Units)에 대한 부담을 줄입니다.

MSTP는 RSTP(Rapid Spanning Tree Protocol)의 확장입니다. MSTP는 VLAN의 유용성을 더 욱 발전시킵니다. MSTP는 각 VLAN 그룹에 대해 별도의 스패닝 트리를 구성하고 각 스패닝 트리 내에서 하나의 가능한 대체 경로를 제외한 모든 대체 경로를 차단합니다. MSTP에서는 여러 MSTI(MST 인스턴스)를 실행할 수 있는 MST(다중 스패닝 트리) 영역을 생성할 수 있습 니다. 각 VLAN을 MSTI에 매핑할 수 있으며 디바이스가 동일한 영역에 있으려면 MSTI에 대한 VLAN이 동일해야 합니다.

이 문서에서는 스위치에서 MSTP를 구성하는 방법에 대한 지침을 제공합니다.

적용 가능한 디바이스

SX250 시리즈 SX300 시리즈 SX350 시리즈 SG350X 시리즈 SX550X 시리즈

소프트웨어 버전

• 1.4.5.02 - SX300 시리즈

• 2.2.0.66 - SX250 Series, SX350 Series, SG350X Series, SX550X Series

스위치에서 MSTP 구성

MSTP 사용

1단계. 웹 기반 유틸리티에 로그인한 다음 Spanning **Tree(스패닝 트리) > STP Status &** Global Settings(STP 상태 및 전역 설정)를 선택합니다.

중요: 스위치의 사용 가능한 기능 및 기능을 최대한 활용하려면 페이지 오른쪽 상단 모서리의 Display Mode 드롭다운 목록에서 **Advanced**를 클릭하여 Advanced 모드로 변경합니다.

Display Mode:	Advanced v	Logout	About	Help
	Basic			0
	Advanced			

2단계. Global Settings(전역 설정) 영역에서 Spanning **Tree State(스패닝 트리 상태**) 확인란을 선택하여 스위치에서 STP를 활성화합니다.

참고: 스패닝 트리 상태는 기본적으로 활성화되어 있습니다. 스위치에서 STP를 활성화하기 전에 MSTP를 구성할 수 있습니다.

STP Status & Global Settings				
	Global Settings			
	Spanning Tree State:	💽 Enable		
	STP Loopback Guard:	Enable		

3단계. STP Operation Mode(STP 작업 모드) 영역에서 Multiple STP 라디오 버튼을 클릭하여 STP 모드를 MSTP로 구성합니다.

STP Status & Global S	settings
Global Settings	
Spanning Tree State:	Enable
STP Loopback Guard:	Enable
STP Operation Mode:	Classic STP Rapid STP Multiple STP *
BPDU Handling:	 Filtering Flooding
Bridge Settings	
OPriority:	32768 (Range: 0 - 61440, Default: 32768)
Designated Root	
Bridge ID:	32768-40:a6:e8:e6:fa:9f
Root Bridge ID:	32768-40:a6:e8:e6:fa:9f
Root Port:	0
Root Path Cost:	0
Topology Changes Counts:	0
Last Topology Change:	1D/20H/54M/11S
An * indicates an advanced f	feature. Activate advanced display mode to fully configure this feature.
Apply Cancel	

4단계. 적용을 **클릭합니다**.

이제 스위치에서 MSTP를 활성화해야 합니다.

MSTP 속성 구성

MSTP 속성 페이지는 스위치가 속한 영역을 정의하는 데 사용됩니다. 디바이스가 동일한 지 역에 있으려면 동일한 지역 이름과 수정 값이 있어야 합니다.

1단계. 메뉴에서 Spanning Tree(스패닝 트리) > MSTP Properties(MSTP 속성)를 선택합니다.

2단계. 영역 이름 필드에 MSTP 영역의 이름을 입력합니다. 영역 이름은 네트워크의 논리적

경계를 정의합니다. MSTP 영역의 모든 스위치는 동일한 구성 영역 이름을 가져야 합니다.

MSTP Properties					
CREGION Name:	Region 1	(8/32 characters used)			
Revision:	20	(Range: 0 - 65535, Default: 0)			
🗢 Max Hops:	40	(Range: 1 - 40, Default: 20)			
IST Primary:	32768-40:a6:e8:e6:fa:9f				
Apply Cancel					

3단계. 개정 필드에 개정 번호*를* 입력합니다. MSTP 컨피그레이션의 개정을 나타내는 논리적 번호입니다. MSTP 영역의 모든 스위치는 동일한 개정 번호를 가져야 합니다.

4단계. *Max Hops* 필드에 최대 홉의 수를 입력합니다. Max Hops(최대 홉스)는 BPDU의 수명 을 홉으로 지정합니다. 브리지가 BPDU를 수신하면 hop 카운트가 1씩 감소되고 BPDU를 새 hop 카운트로 재전송합니다. 브리지에서 홉이 0인 BPDU를 수신하면 BPDU가 삭제됩니다.

참고: IST *Primary* 필드는 해당 지역의 활성 스위치의 브리지 우선 순위 및 MAC 주소를 표시 합니다.

사용된 용어에 익숙하지 않은 경우 <u>Cisco Business</u>를 확인하십시오<u>. 새 용어 용어집</u>.

5단계. 적용을 **누릅니다**.

MSTP 인스턴스에 VLAN 구성

VLAN to MSTP Instance(VLAN to MSTP 인스턴스에) 페이지는 VLAN을 MST 인스턴스에 매 핑하는 데 사용됩니다. 디바이스가 동일한 영역에 있으려면 VLAN과 MST 인스턴스 간의 매핑 이 동일해야 합니다. 여러 VLAN을 단일 MSTI에 매핑할 수 있지만 VLAN에는 단일 MSTI만 있 을 수 있습니다. VLAN이 MST 인스턴스 중 하나에 매핑되지 않은 경우 스위치는 VLAN을 CIST(Core and Internal Spanning Tree)에 자동으로 매핑합니다. CIST 인스턴스 ID는 인스턴 스 ID 0입니다.

1단계. 메뉴에서 Spanning Tree(스패닝 트리) > VLAN to MSTP Instance(VLAN-MSTP 인스 턴스)를 선택합니다.

2단계. 구성하려는 MSTP 인스턴스에 해당하는 라디오 버튼을 클릭한 다음 Edit를 클릭합니 다.

VLA	VLAN to MSTP Instance						
VLA	N to MSTP Instance	Table					
	MSTP Instance ID	VLANs					
	1						
0	2						
0	3						
0	4						
•	5						
0	6						
	7						
	Edit						

3단계. (선택 사항) MSTP Instance ID 드롭다운 목록에서 편집할 MSTP 인스턴스를 선택합니 다.

MSTP Instance ID:	1 🔻	
VLANs:	1 2	(Example: 1,3,5-10)
Action:	3 4	d 🔵 Remove
Apply Clo	5 56 7	

4단계. MSTI에 매핑할 VLAN을 입력합니다. VLAN은 개별적으로(쉼표로 구분) 또는 범위(하 이픈을 사용하여)로 매핑할 수 있습니다.

MSTP Instance	ID: 1 ¥			
VLANs:	1,5-10	(Example: 1,3,5-10)		
Action:	Add OREMOVE			
Apply Close				

5단계. 조치 영역에서 원하는 작업에 해당하는 라디오 버튼을 클릭합니다.

추가 — MSTI에 VLAN을 추가합니다. 제거 — MSTI에서 VLAN을 제거합니다.

6단계. Apply(적용)를 클릭합니다.

MSTP 인스턴스 설정 구성

MSTP 인스턴스 설정 페이지는 각 MST 인스턴스에 대한 사양을 정의하는 데 사용됩니다.

1단계. 웹 기반 유틸리티 메뉴에서 Spanning Tree(스패닝 트리) > MSTP Instance Settings(MSTP 인스턴스 설정)를 선택합니다.

2단계. Instance ID(인스턴스 ID) 드롭다운 목록에서 구성할 인스턴스를 선택합니다.

참고: Included VLAN 목록에는 인스턴스에 매핑된 VLAN이 표시됩니다.

3단계. Bridge Priority(브리지 우선순위) 필드에 스위치의 우선순위 값을 입력합니다. 우선 순 위가 가장 높은(우선 순위가 가장 낮은) 스위치가 루트 브리지가 됩니다.

	Sridge Priority:	32768	(Range: 0 - 61440, Default: 32768)
	Designated Root Bridge ID:	32768-40:a6:e8:e6:fa:9f	
	Root Port:	0	
	Root Path Cost:	0	
	Bridge ID:	32768-40:a6:e8:e6:fa:9f	
l	Remaining Hops:	20	
	Apply Cancel		

필드에 MSTI에 대한 정보가 표시됩니다.

지정된 루트 브리지 ID — 지정된 인스턴스에 대한 루트 브리지의 브리지 우선 순위 및 MAC 주 소입니다.

루트 포트 — 지정된 인스턴스의 루트 포트입니다. 루트 포트는 스위치가 루트 브리지에 도달하 기 위해 사용하는 단일 포트입니다. 루트 브리지에 대한 경로 비용이 가장 적은 포트에 따라 결정 됩니다. 이 값이 0이면 스위치가 루트 브리지입니다.

루트 경로 비용 — 이 MST 인스턴스에 대한 스위치의 루트 경로 비용입니다. 경로 비용은 스위치 와 네트워크의 다음 디바이스 간의 링크 속도로 정의됩니다. 루트 경로 비용은 스위치에서 루트 브리지에 이르는 경로 비용의 누적 합계입니다. 이 값이 0이면 스위치가 루트 브리지입니다. 브리지 ID — 지정된 인스턴스에 대한 스위치의 브리지 우선 순위 및 MAC 주소입니다.

Remaining Hops — 다음 목적지까지의 홉의 수입니다.

MSTP 인터페이스 설정 구성

MSTP Interface 설정 페이지는 선택한 MSTP 인스턴스의 포트당 MSTP 설정을 구성하는 데 사용됩니다.

1단계. 웹 기반 유틸리티 메뉴에서 Spanning Tree(스패닝 트리) > MSTP Interface Settings(MSTP 인터페이스 설정)를 선택합니다.

2단계. Instance equals to 드롭다운 목록에서 구성할 인스턴스를 클릭합니다.

MSTP Interface Settings									
MST	TP Interface	Setting Ta	bl	е					
Filte	er: Instance	e equals to	٢	1 🔻	N				
	and Inte	erface Type		1	s	0	Port of Unit	1 🔻 Go	
	Entry No.	Interface		3 4	a	ce	Path	Port	Port Role
				5	DI	ty	Cost	State	
0	1	GE1		6	1	28	2000000	Disabled	Designated port
0	2	GE2	L	1	2	28	2000000	Disabled	Designated port
•	3	GE3			12	28	2000000	Disabled	Designated port

3단계. Interface Type equal to(인터페이스 유형 같음) 드롭다운 목록에서 Port(포트) 또는 LAG(LAG)를 클릭한 다음 **Go(이동**)를 클릭합니다.

Filter: Instance equals to 1 •						
and Interface Type equals to Port of Unit 1						
	Entry No.	Interface	Interface	LAG		Port Role
			Priority	Cost	State	
0	1	GE1	128	2000000	Disabled	Designated

4단계. 구성하려는 인터페이스에 해당하는 라디오 버튼을 클릭한 다음 Edit를 클릭합니다.

\odot	48	GE48	128	2000000	Disabled	Designated port	MSTP	
•	49	XG1	128	20000	Forwarding	Designated port	MSTP	
\bigcirc	50	XG2	128	2000000	Disabled	Designated port	MSTP	
0	51	XG3	128	2000000	Disabled	Designated port	MSTP	
0	52	XG4	128	2000000	Disabled	Designated port	MSTP	
	Copy Sett	ings	Edi	t				
* - For	* - For boundary interfaces, the behavior of this parameter is determined by the configurations in							

5단계. (선택 사항) Instance ID 드롭다운 목록에서 구성할 인스턴스를 선택합니다.

Instance ID:	1 🔻
Interface:	● Unit 1 ▼ Port XG4 ▼ ○ LAG 1 ▼
Interface Priority:	128 🔻
Path Cost:	 Use Default User Defined 2000000 (R)
Port State:	Disabled
Port Role:	Designated port
Mode:	N/A
Type:	Internal
Designated Bridge ID): N/A
Designated Port ID:	N/A
Designated Cost:	0
Remain Hops:	20
Forward Transitions:	0
Apply Close	

6단계. (선택 사항) 구성할 인터페이스에 해당하는 라디오 버튼을 클릭합니다.

포트 — 포트 드롭다운 목록에서 구성할 포트를 선택합니다. 이는 선택한 단일 포트에만 영향을 미칩니다.

LAG — LAG 드롭다운 목록에서 구성할 LAG를 선택합니다. 이는 LAG 컨피그레이션에 정의된 포트 그룹에 영향을 미칩니다.

7단계. Interface Priority 드롭다운 목록에서 정의된 인터페이스의 우선순위를 선택합니다. 우 선 순위 값은 브리지에 루프에 두 개의 포트가 연결된 경우 포트 선택을 결정합니다. 값이 낮 을수록 포트에서 브리지에 대한 우선순위가 높습니다.

8단계. Path Cost 영역에서 원하는 경로 비용에 해당하는 라디오 버튼을 클릭합니다. 루트 경 로 비용에 추가되는 포트의 경로 비용입니다. 경로 비용은 스위치와 네트워크의 다음 디바이 스 간의 링크 속도로 정의됩니다. 루트 경로 비용은 스위치에서 루트 브리지에 이르는 경로 비 용의 누적 합계입니다.

기본값 사용 — 시스템에서 생성한 기본 비용을 사용합니다. 사용자 정의 — 경로 비용의 값을 입력합니다.

다음 필드는 인터페이스의 정보를 표시합니다.

포트 상태 — 지정된 포트의 현재 상태입니다.

- Disabled(비활성화됨) - 포트에서 STP가 비활성화됩니다. 포트는 트래픽을 전달하고 MAC 주소를 학습합니다.

- 차단 — 포트가 차단되었습니다. 즉, 포트는 트래픽을 전달하거나 MAC 주소를 학습할 수 없지만 포트는 BPDU 패킷을 전달할 수 있습니다.

- 수신 대기 — 포트가 수신 대기 모드입니다. 이는 포트가 트래픽을 전달할 수 없으며 MAC 주소를 알 수 없음을 의미합니다.

- 학습 — 포트가 학습 모드입니다. 즉, 포트는 트래픽을 전달할 수 없지만 새 MAC 주소를 학습할 수 있습니다.

- 포워딩 — 포트가 포워딩 모드입니다. 즉, 포트가 트래픽을 전달할 수 있으며 새 MAC 주 소를 학습할 수 있습니다.

Port Role(포트 역할) - STP 경로를 제공하기 위해 MSTP에서 할당한 포트 또는 LAG의 역할입니다.

- 루트 — 루트 디바이스로 패킷을 전달하는 데 가장 낮은 비용 경로를 제공하는 포트입니 다.

- Designed(지정됨) - 브리지가 LAN에 연결된 포트입니다. 이렇게 하면 LAN에서 MST 인 스턴스에 대한 루트 브리지에 이르는 가장 낮은 루트 경로 비용이 제공됩니다.

- Alternate — 포트는 루트 인터페이스에서 루트 디바이스에 대한 대체 경로를 제공합니다.

- Backup — 포트는 스패닝 트리를 향하는 지정된 포트 경로에 대한 백업 경로를 제공합니 다. 이는 두 개의 포트가 한 루프에서 한 지점 간 링크로 연결되는 컨피그레이션 때문입니 다. LAN에서 네트워크의 공유 세그먼트에 대해 둘 이상의 연결이 필요한 경우 백업 포트를 사용할 수 있습니다.

- Disabled(비활성화됨) — 포트가 스패닝 트리의 일부가 아닙니다.

모드 — 현재 스패닝 트리 모드(STP, RSTP 또는 MSTP)입니다.

유형 — 포트의 MST 유형입니다.

- 경계 — 포트는 경계 포트입니다. 경계 포트는 원격 LAN에 MST 브리지를 연결하는 데 사 용됩니다. 경계 포트는 연결된 디바이스가 RSTP 또는 STP 모드에서 작동하는지 여부를 나타냅니다.

- 내부 — 포트는 MSTP 인스턴스의 내부 포트입니다.

Designated Bridge ID(지정된 브리지 ID) - 루트에 링크를 연결하는 브리지의 ID 번호입니다. Designated Port ID(지정된 포트 ID) - 루트에 링크를 연결하는 지정된 브리지의 포트 ID 번호입 니다.

지정 비용 — STP 토폴로지에 참여하는 포트의 비용입니다.

Remaining Hops — 다음 목적지까지의 홉의 수입니다.

Forward Transitions — 포트가 전달 상태에서 차단 상태로 변경된 발생 횟수입니다.

9단계. **적용**을 클릭합니다.

이제 스위치에서 MSTP를 구성해야 합니다.