La documentazione per questo prodotto è stata redatta cercando di utilizzare un linguaggio senza pregiudizi. Ai fini di questa documentazione, per linguaggio senza di pregiudizi si intende un linguaggio che non implica discriminazioni basate su età, disabilità, genere, identità razziale, identità etnica, orientamento sessuale, status socioeconomico e intersezionalità. Le eventuali eccezioni possono dipendere dal linguaggio codificato nelle interfacce utente del software del prodotto, dal linguaggio utilizzato nella documentazione RFP o dal linguaggio utilizzato in prodotti di terze parti a cui si fa riferimento. Scopri di più sul modo in cui Cisco utilizza il linguaggio inclusivo.
Cisco ha tradotto questo documento utilizzando una combinazione di tecnologie automatiche e umane per offrire ai nostri utenti in tutto il mondo contenuti di supporto nella propria lingua. Si noti che anche la migliore traduzione automatica non sarà mai accurata come quella fornita da un traduttore professionista. Cisco Systems, Inc. non si assume alcuna responsabilità per l’accuratezza di queste traduzioni e consiglia di consultare sempre il documento originale in inglese (disponibile al link fornito).
In questo documento viene descritto come verificare i LISP di layer 2 in Software-Defined Access (SDA) sugli switch Catalyst 9000.
Cisco raccomanda la conoscenza dei seguenti argomenti:
Le informazioni fornite in questo documento si basano sulle seguenti versioni software e hardware:
Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.
L'architettura SD-Access è supportata dalla tecnologia fabric implementata per il campus. Consente l'utilizzo di reti virtuali (overlay networks) che vengono eseguite nella parte superiore di una rete fisica (underlay network) per creare topologie alternative per connettere i dispositivi. Per ulteriori informazioni sui diversi componenti della soluzione Cisco SD-Access, visitare:
Guida alla progettazione di soluzioni Cisco SD-Access
Il numero effettivo utilizzabile di istanze L2-LISP è 64 in meno del numero massimo sul modello SDM:
EDGE-1#show plat hardware fed switch active fwd-asic resource tcam utilization CAM Utilization for ASIC [0] Table Max Values Used Values -------------------------------------------------------------------------------- Unicast MAC addresses 32768/1024 44/21 L3 Multicast entries 8192/512 4/10 L2 Multicast entries 8192/512 1/9 Directly or indirectly connected routes 24576/8192 33/81 QoS Access Control Entries 5120 153 Security Access Control Entries 5120 180 Ingress Netflow ACEs 256 8 Policy Based Routing ACEs 1024 20 Egress Netflow ACEs 768 8 Flow SPAN ACEs 1024 13 Control Plane Entries 512 255 Tunnels 512 18 Lisp Instance Mapping Entries 512 16 Input Security Associations 256 4 Output Security Associations and Policies 256 5 SGT_DGT 8192/512 0/1 CLIENT_LE 4096/256 0/0 INPUT_GROUP_LE 1024 0 OUTPUT_GROUP_LE 1024 0 Macsec SPD 256 2
In questo caso, il numero effettivo di istanze L2-LISP utilizzabili per un nodo Edge caricato con Cisco IOS® XE 16.9.8 è 448 (512 - 64).
Due host che risiedono sulla stessa VN (Virtual Network), la stessa VLAN/subnet, ma sono collegati a switch perimetrali diversi. Entrambi gli switch Edge fanno parte dello stesso cloud di fabric SDA come illustrato nell'immagine della topologia. I due host Client-1 e Client-2 fanno parte della stessa VPN Campus_VN collegata alla VLAN 1021 / Subnet 10.90.10.1/24. I pacchetti ICMP (ping) vengono usati per verificare la connettività su entrambi gli host.
Client-1>ping 10.90.10.20 Pinging 10.90.10.20 with 32 bytes of data: Reply from 10.90.10.20: bytes=32 time=4ms TTL=128 Reply from 10.90.10.20: bytes=32 time<1ms TTL=128 Reply from 10.90.10.20: bytes=32 time<1ms TTL=128 Ping statistics for 10.90.10.20: Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 4ms, Average = 1ms Client-2>ping 10.90.10.10 Pinging 10.90.10.10 with 32 bytes of data: Reply from 10.90.10.10: bytes=32 time<1ms TTL=128 Reply from 10.90.10.10: bytes=32 time<1ms TTL=128 Reply from 10.90.10.10: bytes=32 time<1ms TTL=128 Ping statistics for 10.90.10.10: Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms
Poiché entrambi gli switch Edge fanno parte dello stesso fabric SDA, tutto il traffico di produzione tra Edge-1 e Edge-2 deve essere incapsulato da VxLAN. In questo caso, gli switch Edge usano l'ID istanza L3 (IID) 4100 e l'ID istanza L2 8191 per incapsulare il traffico.
È necessario innanzitutto verificare che le informazioni relative al piano di controllo siano corrette. Se le informazioni del Control-Plane (stato del software) sono corrette, è necessario verificare lo stato del Data-Plane (stato dell'hardware).
Come accennato in precedenza, entrambi gli host del primo scenario risiedono sulla VLAN 1021 e questa VLAN/subnet è estesa sul fabric SDA. Innanzitutto, è necessario controllare la configurazione della SVI della VLAN 1021 fornita automaticamente dal Digital Network Architecture Center (DNA Center o DNAC) su ciascuno degli switch Edge:
EDGE-1#show run int vlan 1021 Building configuration... Current configuration : 618 bytes ! interface Vlan1021 description Configured from Cisco DNA-Center mac-address 0000.0c9f.f55e vrf forwarding Campus_VN ip address 10.90.10.1 255.255.255.0
ip helper-address 10.122.150.179 no ip redirects ip route-cache same-interface no lisp mobility liveness test lisp mobility CAMPUS-WIRED-IPV4 end
EDGE-2#show run int vlan 1021 Building configuration... Current configuration : 618 bytes ! interface Vlan1021 description Configured from Cisco DNA-Center mac-address 0000.0c9f.f55e vrf forwarding Campus_VN ip address 10.90.10.1 255.255.255.0
ip helper-address 10.122.150.179 no ip redirects ip route-cache same-interface no lisp mobility liveness test lisp mobility CAMPUS-WIRED-IPV4 end
Come si può vedere in questo output, né L2 né L3 ID istanza (IID) fanno parte della configurazione SVI. In un ambiente SDA, queste istanze vengono configurate automaticamente da DNAC. Pertanto, per trovare queste informazioni, è necessario controllare il dispositivo LISP running-configuration. Tuttavia, se si hanno centinaia di VLAN, non è facile trovare le informazioni sulla VLAN che si desidera verificare
Suggerimento: se non si conoscono in anticipo le informazioni sull'ID L2, è possibile eseguire questo comando per trovarle (usare il filtro 'include' per la VLAN in questione, nel nostro caso *VLAN 1021*
EDGE-1#show lisp instance-id * ethernet database | include Vlan 1021 LISP ETR MAC Mapping Database for EID-table Vlan 1021 (IID 8191), LSBs: 0x1
Innanzitutto, è necessario verificare che entrambi gli indirizzi MAC (locale e remoto) siano presenti nella tabella degli indirizzi MAC degli switch Edge. Per il MAC dell'host locale, è necessario disporre anche di una voce ARP. Devi controllare le stesse info su entrambi i dispositivi.
EDGE-1#sh mac address-table | in 1021 1021 0000.0c9f.f55e STATIC Vl1021 1021000c.29ef.34d1 DYNAMIC Gi1/0/13 <<<< Local host
1021 2cab.eb4f.e6f5 STATIC Vl1021 1021000c.297b.3544 CP_LEARN Tu0 <<<< Remote host
EDGE-2#sh mac address-table | in 1021 1021 0000.0c9f.f55e STATIC Vl1021 1021 000c.297b.3544 STATIC Gi1/0/13 <<<< Local host
1021 70d3.79be.9675 STATIC Vl1021 1021 000c.29ef.34d1 CP_LEARN Tu0 <<<< Remote host
Come si può vedere in questo output, esiste una voce con CP_LEARN come tipo di indirizzo per l'host remoto. Questa voce deriva da Tu0, che viene discussa in dettaglio durante la sezione 'decapsulamento'. Indica CP_LEARN perché l'inoltro L2 ha ottenuto queste informazioni dal Control-Plane (CP) LISP.
La tabella ARP include solo una voce per l'host locale, poiché la posizione dell'host remoto viene risolta tramite LISP e non direttamente tramite ARP:
EDGE-1#sh ip arp vrf Campus_VN 10.90.10.10 Protocol Address Age (min) Hardware Addr Type Interface Internet 10.90.10.10 0 000c.29ef.34d1 ARPA Vlan1021 <<<< Local host
EDGE-1#sh ip arp vrf Campus_VN 10.90.10.20
EDGE-1# <<<< Empty for remote host
EDGE-2#sh ip arp vrf Campus_VN 10.90.10.10
EDGE-2# <<<< Empty for remote host
EDGE-2#sh ip arp vrf Campus_VN 10.90.10.20
Protocol Address Age (min) Hardware Addr Type Interface
Internet 10.90.10.20 0 000c.297b.3544 ARPA Vlan1021 <<<< Local host
Le informazioni ottenute dalla tabella degli indirizzi MAC vengono inserite anche nella controparte dello stato dell'hardware, ovvero in MAC Address Table Manager (MATM). Per gli host locali, lo switch Integrated Security Features (SISF, noto anche come Device-Tracking) scarica le informazioni dai client e notifica al provider LISP le informazioni L2-EID (MAC) e L2-AR EID (IP/MAC), così come viene popolato il database LISP:
EDGE-1#show lisp instance-id 8191 ethernet database LISP ETR MAC Mapping Database for EID-table Vlan 1021 (IID 8191), LSBs: 0x1 Entries total 2, no-route 0, inactive 0000c.29ef.34d1/48, dynamic-eid Auto-L2-group-8191, inherited from default locator-set rloc_497d4d09-992e-4eaa-92c8-5c7e27d08734 Locator Pri/Wgt Source State 192.168.3.69 10/10 cfg-intf site-self, reachable
EDGE-2#show lisp instance-id 8191 ethernet database LISP ETR MAC Mapping Database for EID-table Vlan 1021 (IID 8191), LSBs: 0x1 Entries total 1, no-route 0, inactive 0000c.297b.3544/48, dynamic-eid Auto-L2-group-8191, inherited from default locator-set rloc_ccca08ff-fd0f-42e2-9fbb-a6521bb1b65e Locator Pri/Wgt Source State 192.168.3.68 10/10 cfg-intf site-self, reachable
Inoltre, nel database LISP è possibile verificare la risoluzione degli indirizzi per l'host locale. In questo modo è possibile correlare le informazioni L2 ai dati L3. Come accennato in precedenza, le voci relative agli host remoti non vengono inserite nella tabella ARP regolare del dispositivo, pertanto questo comando mostra le informazioni EID LISP apprese tramite ARP solo per gli host locali:
Suggerimento: in questo output è anche possibile trovare l'ID L3 associato all'host/subnet: 4100.
EDGE-1#show lisp instance-id 8191 ethernet database address-resolution LISP ETR Address Resolution for EID-table Vlan 1021 (IID 8191) (*) -> entry being deleted Hardware Address Host Address L3 InstID 000c.29ef.34d1 10.90.10.10/32 4100
EDGE-2#show lisp instance-id 8191 ethernet database address-resolution LISP ETR Address Resolution for EID-table Vlan 1021 (IID 8191) (*) -> entry being deleted Hardware Address Host Address L3 InstID 000c.297b.3544 10.90.10.20/32 4100
Un ulteriore controllo consiste nel verificare la posizione dell'host remoto. è possibile utilizzare il comando LIG per risolvere e identificare il RLOC in cui si trova l'indirizzo MAC remoto (in questo caso, il LIG viene attivato manualmente dalla cli, ma quando lo switch deve inoltrare un frame a un MAC di destinazione sconosciuto, segnala automaticamente il LISP per risolvere la posizione di tale MAC sconosciuto):
Suggerimento: poiché si desidera controllare la connettività L2, è necessario utilizzare l'ID L2 e l'indirizzo MAC dell'host remoto come EID per il LIG. D'altra parte, se si desidera controllare la connettività L3, è necessario utilizzare l'ID L3 (in questo caso 4100) e l'IP effettivo dell'host come EID per il LIG.
EDGE-1#lig instance 8191 000c.297b.3544 Mapping information for EID 000c.297b.3544 from 192.168.2.2 with RTT 1 msecs 000c.297b.3544/48, uptime: 05:32:34, expires: 23:59:59, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID 192.168.3.68 05:32:34 up 10/10 - <<<< RLOC of Edge-2
EDGE-2#lig instance 8191 000c.29ef.34d1 Mapping information for EID 000c.29ef.34d1 from 192.168.2.2 with RTT 1 msecs 000c.29ef.34d1/48, uptime: 05:33:14, expires: 23:59:59, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID 192.168.3.69 05:33:14 up 10/10 - <<<< RLOC of Edge-1
L'RLOC dall'host remoto è presente anche nella tabella della cache delle mappe LISP (se le informazioni dell'host remoto non sono presenti in questo output, provare a eseguire un LIG per l'host e quindi controllare nuovamente). Per gli host remoti, LISP aggiorna le informazioni di inoltro L2 dello switch con le informazioni presenti nella tabella della cache delle mappe LISP. Questo è il motivo per cui l'indirizzo MAC dell'host remoto viene visualizzato nella tabella degli indirizzi MAC dello switch così come appreso con il comando Tu0 con il tipo CP_LEARN:
EDGE-1#show lisp instance-id 8191 ethernet map-cache
LISP MAC Mapping Cache for EID-table Vlan 1021 (IID 8191), 1 entries
000c.297b.3544/48, uptime: 05:36:05, expires: 23:56:28, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID
192.168.3.68 05:36:05 up 10/10 - <<<< RLOC of Edge-2
EDGE-2#show lisp instance-id 8191 ethernet map-cache
LISP MAC Mapping Cache for EID-table Vlan 1021 (IID 8191), 1 entries
000c.29ef.34d1/48, uptime: 05:36:17, expires: 23:56:56, via map-reply, complete Locator Uptime State Pri/Wgt Encap-IID 192.168.3.69 05:36:17 up 10/10 - <<<< RLOC of Edge-1
Il SISF è coinvolto nel processo di snooping tra il layer 3 e il layer 2 per facilitare l'apprendimento degli endpoint (attraverso lo snooping DHCP e ARP). In L2-LISP, i nodi Edge inoltrano il traffico basandosi esclusivamente sulle informazioni di layer 2. Il SISF entra in gioco perché il traffico ARP di trasmissione non viene inoltrato sul fabric attraverso i router del tunnel in entrata/uscita (xTR - un altro nome per i nodi Edge nell'architettura SDA). Il traffico ARP viene tunneling, non flooded, attraverso il fabric.
Il componente SISF del nodo Edge registra le informazioni di risoluzione ARP dagli host locali (queste informazioni sono denominate EID dell'endpoint) sulla funzionalità MSMR (Map Server & Map Resolver) dei nodi Control-Plane (CP). I nodi CP/MSMR gestiscono il database di mapping popolato da tutti i nodi Edge. Quando un host tenta di risolvere tramite la richiesta ARP il binding IP/MAC di un host remoto situato su un nodo perimetrale diverso, il nodo perimetrale locale intercetta e memorizza nella cache la richiesta Broadcast ARP, quindi arresta il pacchetto ed esegue una query sul CCP/MSMR per il binding IP-MAC. Infine, il nodo Edge riscrive il Mac Broadcast Destination sul Mac Unicast Destination, ottenuto da CP/MSMR. in risposta alla sua query, incapsula il pacchetto di richiesta ARP Unicast in formato VxLAN e lo invia tramite la struttura al nodo Edge remoto che contiene tale destinazione.
SISF non solo aiuta a snoopare i pacchetti, ma tiene anche aggiornate le voci locali nel database Device Tracking usando le sonde ARP in modo appropriato.
EDGE-1#sh device-tracking database vlanid 1021 vlanDB has 5 entries for vlan 1021, 2 dynamic <snip> Network Layer Address Link Layer Address Interface vlan prlvl age state Time left ARP 10.90.10.20 000c.297b.3544 Tu0 1021 0005 15s REACHABLE 234s <<<< Remote host (info from the CP node via MSMR query)
ARP 10.90.10.1 0000c.29ef.34d1 Gi1/0/13 1021 0005 15s REACHABLE 300s <<<< Local host
EDGE-1#sh device-tracking database mac MAC Interface vlan prlvl state time left policy <snip> 000c.29ef.34d1 Gi1/0/13 1021 NO TRUST MAC-REACHABLE 284s IPDT_POLICY <<<< Local host
000c.297b.3544 Tu0 1021 NO TRUST MAC-REACHABLE 87s LISP-DT-GUARD-VLAN <<<< Remote host (info from the CP node via MSMR query)
EDGE-1#sh device-tracking database address all Network Layer Address Link Layer Address Interface vlan prlvl age state Time left <snip> ARP 10.90.10.20 000c.297b.3544 Tu0 1021 0005 2s REACHABLE 243s <<<< Remote host (info from the CP node via MSMR query)
ARP 10.90.10.10 000c.29ef.34d1 Gi1/0/13 1021 0005 2s REACHABLE 304s <<<< Local host
EDGE-2#sh device-tracking database vlanid 1021 vlanDB has 5 entries for vlan 1021, 2 dynamic <snip> Network Layer Address Link Layer Address Interface vlan prlvl age state Time left ARP 10.90.10.20 000c.297b.3544 Gi1/0/13 1021 0005 2s REACHABLE 250s <<<< Local host
ARP 10.90.10.10 000c.29ef.34d1 Tu0 1021 0005 2s REACHABLE 244s <<<< Remote host (info from the CP node via MSMR query)
EDGE-2#sh device-tracking database mac MAC Interface vlan prlvl state time left policy <snip> 000c.29ef.34d1 Tu0 1021 NO TRUST MAC-REACHABLE 187s LISP-DT-GUARD-VLAN <<<< Remote host (info from the CP node via MSMR query) 000c.297b.3544 Gi1/0/13 1021 NO TRUST MAC-REACHABLE 239s IPDT_POLICY <<<< Local host
EDGE-2#sh device-tracking database address all Network Layer Address Link Layer Address Interface vlan prlvl age state Time left <snip> ARP 10.90.10.20 000c.297b.3544 Gi1/0/13 1021 0005 29s REACHABLE 211s <<<< Local host
ARP 10.90.10.10 000c.29ef.34d1 Tu0 1021 0005 138s REACHABLE 108s <<<< Remote host (info from the CP node via MSMR query)
Una volta verificato che le informazioni sul piano di controllo siano complete e corrette, è possibile esaminare la parte Piano dati.
MATM sta per MAC Address Table Manager e per l'astrazione hardware della tabella degli indirizzi MAC standard.
Suggerimento: i comandi in questa sezione si riferiscono al livello di astrazione hardware del dispositivo. Ciò significa che, se i dispositivi sono stati distribuiti nella configurazione dello stack, è necessario eseguire il comando non solo per il membro Active, ma anche per lo switch membro che si desidera verificare (ad esempio, se l'host è collegato al membro 2 dello stack, è necessario usare anche lo 'switch 2' sulla cli). Per questo articolo sono stati usati solo switch standalone, quindi vengono verificate solo le informazioni per l'istanza Active.
EDGE-1#show platform software fed switch active matm macTable vlan 1021
VLAN MAC Type Seq# EC_Bi Flags machandle siHandle riHandle diHandle *a_time *e_time ports ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ <snip> 1021 000c.29ef.34d1 0x1 1 0 0 0x7f9e1caa4358 0x7f9e1caf3fc8 0x0 0x7f9e1c7b5228 300 21 GigabitEthernet1/0/13
1021 000c.297b.3544 0x1000001 0 0 64 0x7f9e1cded158 0x7f9e1ce092f8 0x7f9e1ce08de8 0x7f9e1c2f4a48 0 16 RLOC 192.168.3.68 adj_id 23 Total Mac number of addresses:: 1 Summary: Total number of secure addresses:: 0 Total number of drop addresses:: 0 Total number of lisp local addresses:: 0 Total number of lisp remote addresses:: 0 *a_time=aging_time(secs) *e_time=total_elapsed_time(secs) Type: MAT_DYNAMIC_ADDR 0x1 MAT_STATIC_ADDR 0x2 MAT_CPU_ADDR 0x4 MAT_DISCARD_ADDR 0x8 MAT_ALL_VLANS 0x10 MAT_NO_FORWARD 0x20 MAT_IPMULT_ADDR 0x40 MAT_RESYNC 0x80 MAT_DO_NOT_AGE 0x100 MAT_SECURE_ADDR 0x200 MAT_NO_PORT 0x400 MAT_DROP_ADDR 0x800 MAT_DUP_ADDR 0x1000 MAT_NULL_DESTINATION 0x2000 MAT_DOT1X_ADDR 0x4000 MAT_ROUTER_ADDR 0x8000 MAT_WIRELESS_ADDR 0x10000 MAT_SECURE_CFG_ADDR 0x20000 MAT_OPQ_DATA_PRESENT 0x40000 MAT_WIRED_TUNNEL_ADDR 0x80000 MAT_DLR_ADDR 0x100000 MAT_MRP_ADDR 0x200000 MAT_MSRP_ADDR 0x400000 MAT_LISP_LOCAL_ADDR 0x800000 MAT_LISP_REMOTE_ADDR 0x1000000 MAT_VPLS_ADDR 0x2000000
Come mostrato nell'output precedente, il tipo di mappa di bit per gli indirizzi MAC degli host remoti è 0x1000001: il bit 0x1000000 indica una voce remota LISP e il bit 0x1 è impostato per una voce dinamica. Gli altri valori importanti di questa tabella sono il machandle, il siHandle e il riHandle, che mantengono queste informazioni a portata di mano per le successive verifiche.
Il machandle viene usato per verificare le informazioni programmate sull'hardware per questo oggetto, in questo caso per l'indirizzo MAC remoto:
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1cded158 1 Handle:0x7f9e1cded158 Res-Type:ASIC_RSC_HASH_TCAM Res-Switch-Num:0 Asic-Num:255 Feature-ID:AL_FID_L2_WIRELESS Lkp-ftr-id:LKP_FEAT_L2_SRC_MAC_VLAN ref_count:1 priv_ri/priv_si Handle: (nil)Hardware Indices/Handles: handle [ASIC: 0]: 0x7f9e1cded368 Features sharing this resource:Cookie length: 12 7b 29 0c 00 44 35 06 80 07 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Number of HTM Entries: 1 Entry 0: (handle 0x7f9e1cded368) Absolute Index: 4100 Time Stamp: 231
KEY - vlan:6 mac:0xc297b3544 l3_if:0 gpn:3401 epoch:0 static:0 flood_en:0 vlan_lead_wless_flood_en: 0 client_home_asic: 0 learning_peerid 0, learning_peerid_valid 0 MASK - vlan:0 mac:0x0 l3_if:0 gpn:0 epoch:0 static:0 flood_en:0 vlan_lead_wless_flood_en: 0 client_home_asic: 0 learning_peerid 0, learning_peerid_valid 0 SRC_AD - need_to_learn:0 lrn_v:0 catchall:0 static_mac:0 chain_ptr_v:0 chain_ptr: 0 static_entry_v:0 auth_state:0 auth_mode:0 auth_behavior_tag:0 traf_m:0 is_src_ce:0 DST_AD - si:0xd5 bridge:0 replicate:0 blk_fwd_o:0 v4_rmac:0 v6_rmac:0 catchall:0 ign_src_lrn:0 port_mask_o:0 afd_cli_f:0 afd_lbl:0 prio:3 dest_mod_idx:0 destined_to_us:0 pv_trunk:0 smr:1 ==============================================================
Questi sono i campi più importanti dell'output precedente di Edge-1:
L'ID della chiave VLAN restituita dall'output precedente deve corrispondere al valore MVID dell'hardware assegnato alla VLAN 1021, le informazioni contenute in questo output del comando sono:
EDGE-1#show platform software fed switch active vlan 1021 VLAN Fed Information Vlan Id IF Id LE Handle STP Handle L3 IF Handle SVI IF ID MVID ----------------------------------------------------------------------------------------------------------------------- 1021 0x0000000000420010 0x00007f9e1c65d268 0x00007f9e1c65da98 0x00007f9e1c995e18 0x000000000000003a 6
Confermato, il valore MVID è uguale a 6 per la VLAN 1021!
Per controllare il valore GPN usato da L2-LISP Tunnel0, sono necessari due comandi. Innanzitutto, è necessario confermare l'ID interfaccia hardware assegnato al tunnel0:
EDGE-1#show platform software dpidb l2lisp 8191
Instance Id:8191, dpidx:4325400, vlan:1021, Parent Interface:Tunnel0(if_id:64) ### or alternatively you can use command: EDGE-1#show platform software fed sw active ifm interfaces l2-lisp
Interface IF_ID State ----------------------------------------------------------------------
Tunnel0 0x00000040 READY
È ora possibile verificare gli attributi assegnati all'ID interfaccia in Gestione funzionalità interfaccia (IFM):
EDGE-1#show platform software fed switch active ifm if-id 64 <<<< 64 DEC = 0x40 HEX Interface IF_ID : 0x0000000000000040 Interface Name : Tunnel0 Interface Block Pointer : 0x7f9e1c91d5c8 Interface Block State : READY Interface State : Enabled Interface Status : ADD, UPD Interface Ref-Cnt : 2 Interface Type : L2_LISP <<<< Tunnel Type Is top interface : TRUE Asic_num : 0 Switch_num : 0 AAL port Handle : cc00005d Source Ip Address : 192.168.3.69 <<<< Tunnel Source Address (Lo0), RLOC of Edge-1 Vlan Id : 0 Instance Id : 0 Dest Port : 4789 <<<< VxLAN UDP Port SGT : Disable <<<< CTS not configured for this scenario Underlay VRF (V4) : 0 Underlay VRF (V6) : 0 Flood Access-tunnel : Disable Flood unknown ucast : Disable Broadcast : Disable Multicast Flood : Disable Decap Information TT HTM handle : 0x7f9e1c9c40e8 Port Information Handle ............ [0xcc00005d] Type .............. [L2-LISP-top] Identifier ........ [0x40] Unit .............. [64] L2 LISP Topology interface Subblock Switch Num : 1 Asic Num : 0 Encap PORT LE handle : 0x7f9e1c9befe8 Decap PORT LE handle : 0x7f9e1c91d818 L3IF LE handle : 0x7f9e1c9bf2b8 SI handle decap : 0x7f9e1c9c8568 DI handle : 0x7f9e1c2f4a48 RI handle : 0x7f9e1c9c4498 RCP Service ID : 0x0 GPN : 3401 <<<< GPN TRANS CATCH ALL handle : 0x7f9e1c2f5698 <snip>
A parte il valore GPN di 3401, che corrisponde alle informazioni ottenute durante la verifica dell'astrazione hardware del computer per l'indirizzo MAC remoto, nell'output precedente sono presenti altre informazioni utili utilizzate per incapsulare il traffico quando viene inviato tramite il tunnel L2-LISP, ad esempio: Tipo di tunnel, Indirizzo IP origine tunnel, Porta di destinazione UDP e così via.
Con l'indice della stazione è possibile ottenere l'indice di destinazione e riscrivere l'indice utilizzato per inviare il traffico sul tunnel L2-LISP. Queste informazioni ci indicano COME e DOVE inviare i pacchetti:
Suggerimento: in questa fase vengono raccolti altri due valori, l'indice DI (indice di destinazione) e l'indice RI (indice di riscrittura), che possono essere utilizzati come riferimento futuro.
EDGE-1#show platform hardware fed switch active fwd-asic resource asic all station-index range 0xd5 0xd5 ASIC#0: Station Index (SI) [0xd5] RI = 0x28 <<<< Rewrite Index DI = 0x5012 <<<< Destination Index stationTableGenericLabel = 0 stationFdConstructionLabel = 0x7 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: LD ASIC#1: Station Index (SI) [0xd5] RI = 0x28 DI = 0x5012 stationTableGenericLabel = 0 stationFdConstructionLabel = 0x7 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: RD CD
L'aspetto importante di questa sezione è che il valore port-map (pmap) per le porte fisiche è all-zeroes e la port-map di ricircolo (rcp_pmap) è uguale a uno sull'ASIC 0. Poiché questi valori utilizzano una logica booleana, questo output significa che lo switch non utilizza una porta fisica, ma un'interfaccia logica - Tunnel0 -, per inoltrare il traffico. Notare che rcp_pmap è ON solo per ASIC 0.
Suggerimento: l'ASIC effettivo utilizzato per inoltrare il traffico dipende dalle porte fisiche utilizzate per stabilire il tunnel L2-LISP (la connessione sottostante al dispositivo a monte), in quanto ogni porta fisica è mappata a un'istanza ASIC specifica. Tenere presente inoltre che il numero di ASIC sullo switch varia a seconda del modello.
EDGE-1#show platform hardware fed switch active fwd-asic resource asic all destination-index range 0x5012 0x5012 ASIC#0: Destination Index (DI) [0x5012] portMap = 0x00000000 00000000 <<<< All bits for physical ports are off cmi1 = 0 rcpPortMap = 0x1 <<<< Recirculation port-map bit is enabled CPU Map Index (CMI) [0] ctiLo0 = 0 ctiLo1 = 0 ctiLo2 = 0 cpuQNum0 = 0 cpuQNum1 = 0 cpuQNum2 = 0 npuIndex = 0 stripSeg = 0 copySeg = 0
ASIC#1: Destination Index (DI) [0x5012] portMap = 0x00000000 00000000 <<<< All bits for physical ports are off cmi1 = 0 rcpPortMap = 0 CPU Map Index (CMI) [0] ctiLo0 = 0 ctiLo1 = 0 ctiLo2 = 0 cpuQNum0 = 0 cpuQNum1 = 0 cpuQNum2 = 0 npuIndex = 0 stripSeg = 0 copySeg = 0
Per verificare questo indice, è necessario utilizzare il comando riHandle associato all'indirizzo MAC remoto sull'output della tabella MATM del passaggio 1, che in questo caso è 0x7f9e1ce08de8. L'indice di riscrittura fornisce i dettagli finali dell'intestazione VxLAN applicata al pacchetto prima del suo invio sul tunnel L2-LISP:
Suggerimento: il valore RI 40 da questo output deve corrispondere all'indice RI 0x28 del passaggio 5 (40 DEC = 0x28 HEX).
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1ce08de8 1 Handle:0x7f9e1ce08de8 Res-Type:ASIC_RSC_RI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_L2_WIRELESS Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1 priv_ri/priv_si Handle: 0x7f9e1cded678Hardware Indices/Handles: index0:0x28 mtu_index/l3u_ri_index0:0x0 index1:0x28 mtu_index/l3u_ri_index1:0x0 Features sharing this resource:58 (1)] Cookie length: 56 00 00 00 00 00 00 00 00 fd 03 00 00 00 00 00 00 00 00 00 00 07 00 00 0c 29 7b 35 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Rewrite Data Table Entry, ASIC#:0, rewrite_type:116, RI:40 <<<< Must match RI Index 0x28 from Step 5 Src IP: 192.168.3.69 <<<< VxLAN header (RLOC of the Local Edge node Edge-1) Dst IP: 192.168.3.68 <<<< VxLAN header (RLOC of the Remote Edge node Edge-2) iVxlan dstMac: 0x0c:0x297b:0x3544 <<<< MAC address of the Remote host iVxlan srcMac: 0x00:0x00:0x00 IPv4 TTL: 0 iid present: 1 lisp iid: 0 lisp flags: 0 dst Port: 46354 update only l3if: 0 is Sgt: 1 is TTL Prop: 0 L3if LE: 0 (0) Port LE: 276 (0) Vlan LE: 6 (0) Detailed Resource Information (ASIC# 1) ---------------------------------------- Rewrite Data Table Entry, ASIC#:1, rewrite_type:116, RI:40 Src IP: 192.168.3.69 Dst IP: 192.168.3.68 iVxlan dstMac: 0x0c:0x297b:0x3544 iVxlan srcMac: 0x00:0x00:0x00 IPv4 TTL: 0 iid present: 1 lisp iid: 0 lisp flags: 0 dst Port: 46354 update only l3if: 0 is Sgt: 1 is TTL Prop: 0 L3if LE: 0 (0) Port LE: 276 (0) Vlan LE: 6 (0) ==============================================================
La decisione di inoltro del pacchetto ICMP originale diretto all'interfaccia Client-2 - IP:10.90.10.20 punta all'interfaccia LISP:
EDGE-1#sh ip cef vrf Campus_VN 10.90.10.20 10.90.10.0/24 attached to LISP0.4100
Dopo aver incapsulato il pacchetto originale e aver aggiunto le intestazioni VxLAN corrette, è necessario controllare la decisione di inoltro in base ai campi VxLAN superiori. In questo caso, l'indirizzo IP di destinazione 192.168.3.68 che è il RLOC dallo switch Edge-2 remoto:
EDGE-1#show ip route 192.168.3.68 Routing entry for 192.168.3.68/32 Known via "isis", distance 115, metric 30, type level-1 Redistributing via isis Advertised by isis (self originated) Last update from 192.168.3.74 on TenGigabitEthernet1/1/1, 01:15:14 ago Routing Descriptor Blocks: * 192.168.3.74, from 192.168.3.68, 01:15:14 ago, via TenGigabitEthernet1/1/1 Route metric is 30, traffic share count is 1 EDGE-1#show ip cef 192.168.3.68 detail 192.168.3.68/32, epoch 3, per-destination sharing Adj source: IP midchain out of Tunnel0, addr 192.168.3.68 7FEADF30A390 Dependent covered prefix type adjfib, cover 0.0.0.0/0 1 RR source [no flags] nexthop 192.168.3.74 TenGigabitEthernet1/1/1 EDGE-1#show adjacency 192.168.3.68 detail Protocol Interface Address IP Tunnel0 192.168.3.68(4) 0 packets, 0 bytes epoch 0 sourced in sev-epoch 10 Encap length 28 4500000000000000FF113413C0A80345 C0A8034412B512B500000000 Tun endpt <<<< Adjacency type: Tunnel Next chain element: IP adj out of TenGigabitEthernet1/1/1, addr 192.168.3.74 <<<< Upstream connection from Underlay network
Per raggiungere l'IP 192.168.3.68, il traffico deve passare attraverso l'hop successivo 192.168.3.74 sull'interfaccia Te1/1/1, quindi è necessario controllare anche l'adiacenza dell'IP dell'hop successivo:
EDGE-1#show ip route 192.168.3.74 Routing entry for 192.168.3.74/31 Known via "connected", distance 0, metric 0 (connected, via interface) Advertised by isis level-2 Routing Descriptor Blocks: * directly connected, via TenGigabitEthernet1/1/1 Route metric is 0, traffic share count is 1 EDGE-1#show ip cef 192.168.3.74 detail 192.168.3.74/32, epoch 3, flags [attached] Interest List: - fib bfd tracking BFD state up, tracking attached BFD session on TenGigabitEthernet1/1/1 Adj source: IP adj out of TenGigabitEthernet1/1/1, addr 192.168.3.74 7FEADEADCFA8 Dependent covered prefix type adjfib, cover 192.168.3.74/31 1 IPL source [no flags] attached to TenGigabitEthernet1/1/1 EDGE-1#show adjacency 192.168.3.74 detail Protocol Interface Address IP TenGigabitEthernet1/1/1 192.168.3.74(40) 0 packets, 0 bytes epoch 0 sourced in sev-epoch 10 Encap length 14 00A3D14415582CABEB4FE6C60800 <<<< Layer-2 Rewrite Information for the traffic forwarded through this adjacency L2 destination address byte offset 0 L2 destination address byte length 6 Link-type after encap: ip ARP EDGE-1#show interfaces tenGigabitEthernet 1/1/1 | in bia Hardware is Ten Gigabit Ethernet, address is 2cab.eb4f.e6c6 (bia 2cab.eb4f.e6c6) EDGE-1#show ip arp Te1/1/1 Protocol Address Age (min) Hardware Addr Type Interface Internet 192.168.3.74 98 00a3.d144.1558 ARPA TenGigabitEthernet1/1/1
Per verificare come viene gestito dallo switch un pacchetto VxLAN in arrivo, è necessario prima capire come viene decapsulato il traffico quando viene ricevuto sull'interfaccia virtuale Tunnel0. Ricordare il comando Gestione interfaccia (IFM) raccolto in un passaggio precedente? In seguito, dopo aver controllato le informazioni sulla prima parte dell'output del comando, è necessario verificare la seconda parte dell'output, quella relativa a Decap Information:
EDGE-1#show platform software fed switch active ifm if-id 64 Interface IF_ID : 0x0000000000000040 Interface Name : Tunnel0 Interface Block Pointer : 0x7f9e1c91d5c8 <snip> Decap Information TT HTM handle : 0x7f9e1c9c40e8 Port Information Handle ............ [0xcc00005d] Type .............. [L2-LISP-top] Identifier ........ [0x40] Unit .............. [64] L2 LISP Topology interface Subblock Switch Num : 1 Asic Num : 0 Encap PORT LE handle : 0x7f9e1c9befe8 Decap PORT LE handle : 0x7f9e1c91d818 L3IF LE handle : 0x7f9e1c9bf2b8 SI handle decap : 0x7f9e1c9c8568 <<<< Station Index Handle DI handle : 0x7f9e1c2f4a48 RI handle : 0x7f9e1c9c4498 <<<< Rewrite Index Handle RCP Service ID : 0x0 GPN : 3401 TRANS CATCH ALL handle : 0x7f9e1c2f5698 Port L2 Subblock Enabled ............. [No] Allow dot1q ......... [No] Allow native ........ [No] Default VLAN ........ [0] Allow priority tag ... [No] Allow unknown unicast [No] Allow unknown multicast[No] Allow unknown broadcast[No] Allow unknown multicast[Enabled] Allow unknown unicast [Enabled] Protected ............ [No] IPv4 ARP snoop ....... [No] IPv6 ARP snoop ....... [No] Jumbo MTU ............ [0] Learning Mode ........ [0] Vepa ................. [Disabled] Port QoS Subblock Trust Type .................... [0x7] Default Value ................. [0] Ingress Table Map ............. [0x0] Egress Table Map .............. [0x0] Queue Map ..................... [0x0] Port Netflow Subblock Port CTS Subblock Disable SGACL .................... [0x0] Trust ............................ [0x0] Propagate ........................ [0x0] %Port SGT .......................... [1251474769] Ref Count : 2 (feature Ref Counts + 1) IFM Feature Ref Counts FID : 95 (AAL_FEATURE_L2_MULTICAST_IGMP), Ref Count : 1 No Sub Blocks Present
Da questo output è necessario prendere in considerazione due valori: L3 Interface Logical-Entity (L3IF LE) Handle e Station Index (SI)Handle dalla sezione Decap Information.
Per verificare le funzionalità associate all'interfaccia Tunnel0, è necessario estrarre le informazioni dell'handle di risorsa dall'handle L3IF LE associato. In questo output è possibile vedere le funzionalità abilitate su quell'interfaccia in una logica booleana, ad esempio: la funzionalità LISP_VXLAN_ENABLE_IPV4 è abilitata su questa interfaccia tunnel.
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1c9bf2b8 1 | in VXLAN LEAD_L3IF_LISP_VXLAN_ENABLE_IPV4 value 1 Pass <<<< ASIC 0 LEAD_L3IF_LISP_VXLAN_ENABLE_IPV6 value 0 Pass LEAD_L3IF_LISP_VXLAN_ENABLE_IPV4 value 1 Pass <<<< ASIC 1 LEAD_L3IF_LISP_VXLAN_ENABLE_IPV6 value 0 Pass
È necessario usare ancora una volta il comando resource handle per controllare l'indice della stazione (handle SI) e ottenere l'indice di riscrittura (RI) e l'indice di destinazione (DI) utilizzati dal traffico ricevuto sull'interfaccia Tunnel0 e che deve essere decapsulato dallo switch prima di essere inviato alla destinazione finale tramite l'inoltro regolare di livello 2 (tabella degli indirizzi MAC locali):
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1c9c8568 1 Handle:0x7f9e1c9c8568 Res-Type:ASIC_RSC_SI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_LISP Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1 priv_ri/priv_si Handle: 0x7f9e1c9c4498Hardware Indices/Handles: index0:0xac mtu_index/l3u_ri_index0:0x0 index1:0xac mtu_index/l3u_ri_index1:0x0 Features sharing this resource:109 (1)] Cookie length: 56 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Station Index (SI) [0xac] RI = 0xa800 <<<< Rewrite Index DI = 0x5012 <<<< Destination Index stationTableGenericLabel = 0 stationFdConstructionLabel = 0x4 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: LD Detailed Resource Information (ASIC# 1) ---------------------------------------- Station Index (SI) [0xac] RI = 0xa800 DI = 0x5012 stationTableGenericLabel = 0 stationFdConstructionLabel = 0x4 lookupSkipIdIndex = 0 rcpServiceId = 0 dejaVuPreCheckEn = 0 Replication Bitmap: RD CD ==============================================================
Dagli output precedenti si sa già che ID = 0x5012 significa ricircolo interno, il che ha senso, perché lo switch deve ricircolare internamente il pacchetto per fare la deposizione dell'intestazione VxLAN. Ciò significa che quando lo switch riceve un pacchetto VxLAN sull'interfaccia del tunnel, il pacchetto deve essere ricircolato per rimuovere l'intestazione VxLAN e poterlo consegnare alla destinazione finale con l'indirizzo MAC di destinazione del frame originale. Per verificare l'indice di riscrittura, è necessario controllare le informazioni sull'handle della risorsa dall'handle RI raccolto nel passaggio 1 di questa sezione:
Suggerimento: il valore RI 43008 di questo output deve corrispondere all'indice RI 0xa800 del passaggio precedente (43008 DEC = 0xa800 HEX).
EDGE-1#show platform hardware fed switch active fwd-asic abstraction print-resource-handle 0x7f9e1c9c4498 1 Handle:0x7f9e1c9c4498 Res-Type:ASIC_RSC_PORT_LE_RI Res-Switch-Num:255 Asic-Num:255 Feature-ID:AL_FID_LISP Lkp-ftr-id:LKP_FEAT_INVALID ref_count:1 priv_ri/priv_si Handle: 0x7f9e1c9c87f8Hardware Indices/Handles: index0:0xa800 mtu_index/l3u_ri_index0:0x0 index1:0xa800 mtu_index/l3u_ri_index1:0x0 Features sharing this resource:109 (1)] Cookie length: 56 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Detailed Resource Information (ASIC# 0) ---------------------------------------- Rewrite Data Table Entry, ASIC#:0, rewrite_type:114, RI:43008 <<<< 43008 DEC = 0xa800 HEX Port LE handle: 0 Port LE Index: 275 Detailed Resource Information (ASIC# 1) ---------------------------------------- Rewrite Data Table Entry, ASIC#:1, rewrite_type:114, RI:43008 Port LE handle: 0 Port LE Index: 275 ==============================================================
È possibile usare lo strumento EPC per confermare che i pacchetti sono incapsulati con le informazioni VxLAN corrette quando inoltrati tramite l'interfaccia Tunnel0. A tale scopo, è sufficiente impostare l'acquisizione EPC sulle interfacce fisiche che hanno composto Tunnel0 (le connessioni di base al dispositivo a monte) e utilizzare un filtro per intercettare solo le informazioni inviate alla RLOC dell'altro switch Edge:
EDGE-1#show ip access-lists TAC Extended IP access list TAC 10 permit ip host 192.168.3.69 host 192.168.3.68 20 permit ip host 192.168.3.68 host 192.168.3.69 EDGE-1#mon cap tac int te1/1/1 both access-list TAC buffer size 100 EDGE-1#show mon cap tac Status Information for Capture tac Target Type: Interface: TenGigabitEthernet1/1/1, Direction: BOTH Status : Inactive Filter Details: Access-list: TAC Buffer Details: Buffer Type: LINEAR (default) Buffer Size (in MB): 100 File Details: File not associated Limit Details: Number of Packets to capture: 0 (no limit) Packet Capture duration: 0 (no limit) Packet Size to capture: 0 (no limit) Packet sampling rate: 0 (no sampling) EDGE-1#mon cap tac start Started capture point : tac
#### Four ICMP Requests from local host 10.90.10.10 to remote host 10.90.10.20 were sent and then the capture was stopped. EDGE-1#mon cap tac stop Capture statistics collected at software: Capture duration - 19 seconds Packets received - 12 Packets dropped - 0 Packets oversized - 0 Bytes dropped in asic - 0 Capture buffer will exists till exported or cleared Stopped capture point : tac EDGE-1#show mon cap tac buffer brief Starting the packet display ........ Press Ctrl + Shift + 6 to exit 1 0.000000 00:0c:29:ef:34:d1 -> 00:0c:29:7b:35:44 ARP 110 Who has 10.90.10.20? Tell 10.90.10.10 <<<< Unicast ARP Request 2 0.000744 00:0c:29:7b:35:44 -> 00:0c:29:ef:34:d1 ARP 110 10.90.10.20 is at 00:0c:29:7b:35:44 3 0.001387 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=66/16896, ttl=128 4 0.131122 00:0c:29:7b:35:44 -> 00:0c:29:ef:34:d1 ARP 110 Who has 10.90.10.10? Tell 10.90.10.20 <<<< Unicast ARP Request 5 0.132059 00:0c:29:ef:34:d1 -> 00:0c:29:7b:35:44 ARP 110 10.90.10.10 is at 00:0c:29:ef:34:d1 6 0.299394 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=66/16896, ttl=128 (request in 3) 7 0.875191 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=67/17152, ttl=128 8 0.875465 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=67/17152, ttl=128 (request in 7) 9 1.889098 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=68/17408, ttl=128 10 1.889384 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=68/17408, ttl=128 (request in 9) 11 2.902932 10.90.10.10 -> 10.90.10.20 ICMP 124 Echo (ping) request id=0x0001, seq=69/17664, ttl=128 12 2.903234 10.90.10.20 -> 10.90.10.10 ICMP 124 Echo (ping) reply id=0x0001, seq=69/17664, ttl=128 (request in 11) #### You can also see the entire packet details with 'buffer detailed' option (use a filter for the appropriate Frame number): EDGE-1#show mon cap tac buffer detailed | be Frame 7 Frame 7: 124 bytes on wire (992 bits), 124 bytes captured (992 bits) on interface 0 <snip> [Protocols in frame: eth:ethertype:ip:udp:vxlan:eth:ethertype:ip:icmp:data] Ethernet II, Src: 00:00:00:00:00:00 (00:00:00:00:00:00), Dst: 00:00:00:00:00:00 (00:00:00:00:00:00) <<<< Outer Layer-2 Data (VxLAN header). EPC is collected before outer layer-2 fields are added to the original frame, which is the reason why this section is empty (all-zeroes) Destination: 00:00:00:00:00:00 (00:00:00:00:00:00) Address: 00:00:00:00:00:00 (00:00:00:00:00:00) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Source: 00:00:00:00:00:00 (00:00:00:00:00:00) Address: 00:00:00:00:00:00 (00:00:00:00:00:00) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 192.168.3.69, Dst: 192.168.3.68 <<<< Outer IP Data (VxLAN header) 0100 .... = Version: 4 .... 0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) 0000 00.. = Differentiated Services Codepoint: Default (0) .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0) Total Length: 110 Identification: 0x2204 (8708) Flags: 0x02 (Don't Fragment) 0... .... = Reserved bit: Not set .1.. .... = Don't fragment: Set ..0. .... = More fragments: Not set Fragment offset: 0 Time to live: 255 Protocol: UDP (17) Header checksum: 0xd1a0 [validation disabled] [Good: False] [Bad: False] Source: 192.168.3.69 Destination: 192.168.3.68 User Datagram Protocol, Src Port: 65344 (65344), Dst Port: 4789 (4789) Source Port: 65344 Destination Port: 4789 <<<< VxLAN UDP Port Length: 90 Checksum: 0x0000 (none) [Good Checksum: False] [Bad Checksum: False] [Stream index: 0] Virtual eXtensible Local Area Network Flags: 0x8800, GBP Extension, VXLAN Network ID (VNI) 1... .... .... .... = GBP Extension: Defined .... .... .0.. .... = Don't Learn: False .... 1... .... .... = VXLAN Network ID (VNI): True .... .... .... 0... = Policy Applied: False .000 .000 0.00 .000 = Reserved(R): False Group Policy ID: 0 VXLAN Network Identifier (VNI): 8191 <<<< VNI mapped to L2 Instance ID 8191 for L2-LISP Reserved: 0
########## Original Frame starts here (Inner headers) ########## Ethernet II, Src: 00:0c:29:ef:34:d1 (00:0c:29:ef:34:d1), Dst: 00:0c:29:7b:35:44 (00:0c:29:7b:35:44) Destination: 00:0c:29:7b:35:44 (00:0c:29:7b:35:44) <<<< MAC of Remote host Address: 00:0c:29:7b:35:44 (00:0c:29:7b:35:44) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Source: 00:0c:29:ef:34:d1 (00:0c:29:ef:34:d1) <<<< MAC of Local host Address: 00:0c:29:ef:34:d1 (00:0c:29:ef:34:d1) .... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) .... ...0 .... .... .... .... = IG bit: Individual address (unicast) Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 10.90.10.10, Dst: 10.90.10.20 0100 .... = Version: 4 .... 0101 = Header Length: 20 bytes (5) Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT) 0000 00.. = Differentiated Services Codepoint: Default (0) .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0) Total Length: 60 Identification: 0x30b7 (12471) Flags: 0x00 0... .... = Reserved bit: Not set .0.. .... = Don't fragment: Not set ..0. .... = More fragments: Not set Fragment offset: 0 Time to live: 128 Protocol: ICMP (1) Header checksum: 0xe138 [validation disabled] [Good: False] [Bad: False] Source: 10.90.10.10 <<<< IP of Local host Destination: 10.90.10.20 <<<< IP of Remote host Internet Control Message Protocol Type: 8 (Echo (ping) request) Code: 0 Checksum: 0x4d18 [correct] Identifier (BE): 1 (0x0001) Identifier (LE): 256 (0x0100) Sequence number (BE): 67 (0x0043) Sequence number (LE): 17152 (0x4300) Data (32 bytes) 0000 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 abcdefghijklmnop 0010 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi Data: 6162636465666768696a6b6c6d6e6f707172737475767761... [Length: 32]
Revisione | Data di pubblicazione | Commenti |
---|---|---|
1.0 |
14-Jun-2023 |
Versione iniziale |