# Esempio di configurazione statica NAT-PT per IPv6

# Sommario

**Introduzione** 

**Prerequisiti** 

Requisiti

Componenti usati

Configurazione

Esempio di rete

Configurazioni

**Verifica** 

Risoluzione dei problemi

Informazioni correlate

# Introduzione

Questo documento descrive come implementare Static NAT-PT sui dispositivi Cisco IOS<sup>®</sup> tramite una configurazione di esempio. In questo esempio, i nodi di rete IPv6 comunicano con i nodi di rete IPv4 tramite un mapping statico tra un prefisso IPv6 e un indirizzo IPv4. Questo mapping statico viene configurato sul router Network Address Translation - Protocol Translation (NAT-PT).

La funzionalità NAT-PT è un meccanismo di conversione da IPv6 a IPv4 che consente ai dispositivi solo IPv6 di comunicare con i dispositivi solo IPv4 e viceversa. Analogamente al tradizionale NAT IPv4, NAT-PT consente operazioni PAT (Port Address Translation) statiche, dinamiche e per facilitare la comunicazione diretta tra reti solo IPv6 e reti solo IPv4.

# **Prerequisiti**

# Requisiti

Cisco raccomanda la conoscenza dei seguenti argomenti:

- Conoscenze base di concetti e operazioni NAT.
- Conoscenze base dello schema di indirizzamento IPv6
- Conoscenze base di routing statico IPv6

**Nota:** NAT-PT è stato ritenuto deprecato dall'IETF a causa della sua stretta associazione con il DNS (Domain Name System) e le sue limitazioni generali nella traduzione, e si è dimostrato una tecnologia troppo complessa per mantenere servizi di traduzione scalabili. Con l'obsolescenza di NAT-PT e la crescente transizione dell'IPv6 tra gli utenti ha portato all'introduzione di NAT64. Fare riferimento a questi documenti per ulteriori informazioni su NAT64:

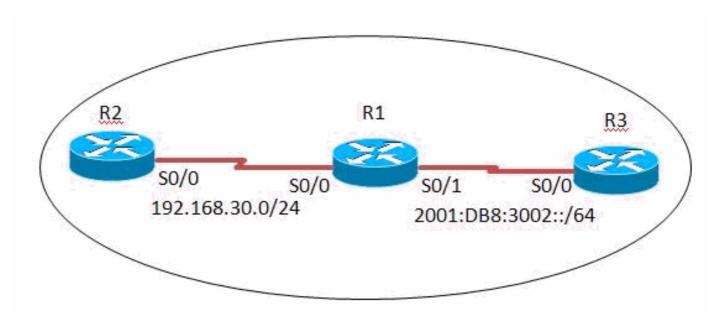
- Tecnologia NAT64: Connessione di reti IPv6 e IPv4

- NAT64-Stateless e Stateful
- Esempio di configurazione NAT64 stateful IPv6

# Componenti usati

Le configurazioni di questo documento si basano sul router Cisco serie 3700 sul software Cisco IOS versione 12.4 (15)T 13.

Le informazioni discusse in questo documento fanno riferimento a dispositivi usati in uno specifico ambiente di emulazione. Su tutti i dispositivi menzionati nel documento la configurazione è stata ripristinata ai valori predefiniti. Se la rete è operativa, valutare attentamente eventuali conseguenze derivanti dall'uso dei comandi.


# Configurazione

Nell'esempio, tre router (R1, R2 e R3) sono connessi tramite interfacce seriali. R1 funge da router NAT-PT, che si connette a R2 utilizzando un indirizzo IPv4 e a R3 utilizzando un indirizzo IPv6.

**Nota:** NAT-PT non è supportato con Cisco Express Forwarding (CEF). Affinché NAT-PT funzioni come previsto, CEF deve essere disabilitato.

# Esempio di rete

In questo esempio viene utilizzata l'impostazione di rete illustrata nel seguente diagramma:



# Configurazioni

In questo esempio vengono utilizzate le configurazioni seguenti:

- Configurazione router R1
- Configurazione router R2
- Configurazione router R3

## Configurazione R1

```
hostname R1
ipv6 unicast-routing
!
interface Serial0/0
ip address 192.168.30.10 255.255.255.0
duplex auto
speed auto
ipv6 nat
!
interface Serial0/1
no ip address
duplex auto
speed auto
ipv6 address 2001:DB8:3002::9/64
ipv6 enable
ipv6 nat ! ipv6 route ::/0 2001:DB8:3002::10 ipv6 nat v4v6 source 192.168.30.9 2000::960B:202 !--- Tran
the ipv4 add of R2 fa0/0 to ipv6 address. ipv6 nat v6v4 source 3001:11:0:1::1 150.11.3.1 !--- Translate
ipv6 add of loop0 of R3 to ipv4 address. ipv6 nat prefix 2000::/96 !--- The destination prefixes that m
2000::/96
!--- are translated by NAT-PT. ! end
```

## Configurazione R2

```
hostname R2
!
interface Serial0/0
ip address 192.168.30.9 255.255.255.0
duplex auto
speed auto
!
ip route 0.0.0.0 0.0.0.0 192.168.30.10
!
```

# Configurazione R3

```
hostname R3
ipv6 unicast-routing
!
interface Loopback0
no ip address
ipv6 address 3001:11:0:1::1/64
!
interface Serial0/0
no ip address
duplex auto
speed auto
ipv6 address 2001:DB8:3002::10/64
!
ipv6 route ::/0 2001:DB8:3002::9
```

# Verifica

Per verificare che la configurazione funzioni correttamente, consultare questa sezione.

#### Nel router R3

Un pacchetto di richiesta echo ICMP generato da R3 e originato dall'indirizzo IPv6 dell'interfaccia Loopback0 di R3 (3001:11:0:1:1) deve raggiungere l'indirizzo IPv4 dell'interfaccia Serial0/0 di R2 (192.168.30.9) utilizzando l'indirizzo IPv6 2000::960B:202. Di seguito è riportato un esempio funzionante:

#### **Ping**

#### R3#ping 2000::960b:202 source Loopback0

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2000::960B:202, timeout is 2 seconds:

Packet sent with a source address of 3001:11:0:1::1

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/60/124 ms

!--- This shows that the router R3 is able to reach

!--- the router R2 through 10 address 3001:11:0:1::1.
```

#### Nel router R2

Un pacchetto di richiesta echo ICMP generato da R2 (che verrà originato automaticamente da 192.168.30.9, che è l'indirizzo IPv4 dell'interfaccia Serial0/0 di R2) deve raggiungere l'indirizzo IPv6 dell'interfaccia Loopback0 di R3 (3001:11:0:1::1) utilizzando l'indirizzo IPv4 150.11.3.1. Di seguito è riportato un esempio di funzionamento:

### **Ping**

```
R2#ping 150.11.3.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 150.11.3.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 24/68/120 ms
!--- The successful ping response shows that the router R2
!--- is able to reach the IPv6 network.
```

#### Nel router R1

Su R1, le conversioni NAT-PT attive tra R2 e R3 possono essere osservate tramite l'output del comando <u>show ipv6 nat translation</u>.

#### mostra traduzioni nat ipv6

#### R1#show ipv6 nat translations

```
--- 150.11.3.1 3001:11:0:1::1
--- !--- This command displays the active NAT-PT translations in the router.
```

L'attivazione di debug NAT IPv6 dettagliati con il comando <u>debug ipv6 nat detail</u> mentre un ping ICMP tra R2 e R3 indica che R1 converte il traffico come previsto.

#### debug ipv6 nat - dettagli

```
R1#debug ipv6 nat detailed
*Mar 1 09:12:41.877: IPv6 NAT: Found prefix 2000::/96
*Mar 1 09:12:41.881: IPv6 NAT: IPv4->IPv6:
                 src (192.168.30.9 -> 2000::960B:202)
                 dst (0.0.0.0 \rightarrow ::)
                 ref_count = 1, usecount = 0, flags = 513,
                 rt_flags = 0, more_flags = 0
*Mar 1 09:12:41.881: IPv6 NAT: IPv4->IPv6:
                 src (0.0.0.0 -> ::)
                 dst (150.11.3.1 -> 3001:11:0:1::1)
                 ref_count = 1, usecount = 0, flags = 257,
                 rt_flags = 0, more_flags = 0
*Mar 1 09:12:41.925: IPv6 NAT: IPv6->IPv4:
                 src (3001:11:0:1::1 -> 150.11.3.1)
                 dst (2000::960B:202 -> 192.168.30.9)
                 ref_count = 1, usecount = 0, flags = 2,
                 rt_flags = 0, more_flags = 0
*Mar 1 09:12:41.925: IPv6 NAT: icmp src (3001:11:0:1::1) -> (150.11.3.1),
                dst (2000::960B:202) -> (192.168.30.9)
*Mar 1 09:12:41.965: IPv6 NAT: Found prefix 2000::/96
*Mar 1 09:12:41.965: IPv6 NAT: IPv4->IPv6:
                 src (192.168.30.9 -> 2000::960B:202)
                 dst (150.11.3.1 -> 3001:11:0:1::1)
                 ref_count = 1, usecount = 0, flags = 2,
                 rt_flags = 0,
```

!--- This command displays detailed information about NAT-PT events.

# Risoluzione dei problemi

Al momento non sono disponibili informazioni specifiche per la risoluzione dei problemi di questa configurazione.

# Informazioni correlate

- Servizi di indirizzamento IP
- Guida di riferimento ai comandi di Cisco IOS IPv6
- Supporto della tecnologia IPv6
- Documentazione e supporto tecnico Cisco Systems