Générer un réseau Resilient Packet Ring avec quatre nœuds via une carte ML sur Cisco ONS 15454

Contenu

Introduction

Conditions préalables

Conditions requises

Components Used

Conventions

Topologie

Créer un RPR à quatre noeuds

Vérification

Étape 1

Étape 2

Étape 3

Étape 4

Informations connexes

Introduction

Ce document décrit la configuration permettant de créer un RPR (Resilient Packet Ring) avec quatre noeuds via des cartes multicouches (ML) sur Cisco ONS 15454.

Conditions préalables

Conditions requises

Cisco vous recommande de prendre connaissance des rubriques suivantes :

- Cisco ONS 15454
- Cartes Ethernet Cisco ONS 15454 ML-Series
- Logiciel Cisco IOSMD
- Pontage et routage IP

Components Used

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

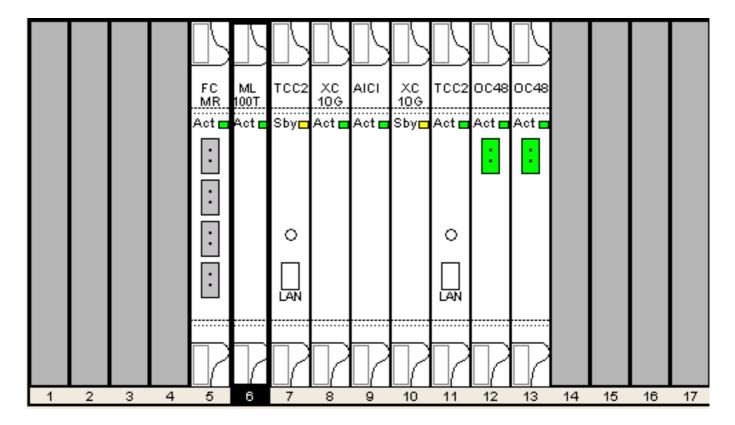
- Cisco ONS 15454 qui exécute ONS version 5.02
- ML (inclus dans la version ONS 5.02) qui exécute le logiciel Cisco IOS Version 12.2.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Pour plus d'informations sur les conventions utilisées dans ce document, reportez-vous à Conventions relatives aux conseils techniques Cisco.

Topologie


Ce document utilise une configuration de travaux pratiques avec quatre noeuds ONS 15454, à savoir : Noeud Studio 1, Noeud Studio 2, Noeud Studio 3 et Noeud Studio 4 (voir <u>Figure 1</u>). Ces quatre noeuds forment un seul anneau UPSR (Unidirectional Path Switched Ring) OC48.

Remarque : Pour faciliter la compréhension, le reste de ce document fait référence à ces noeuds en tant que noeud 1, noeud 2, noeud 3 et noeud 4.

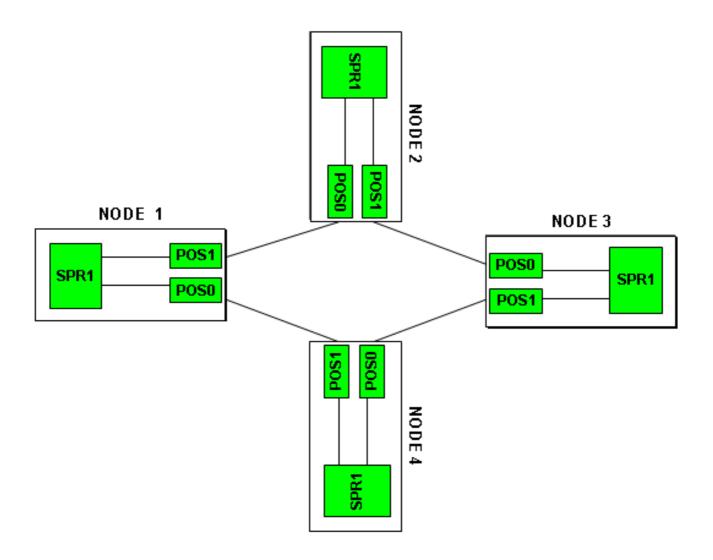
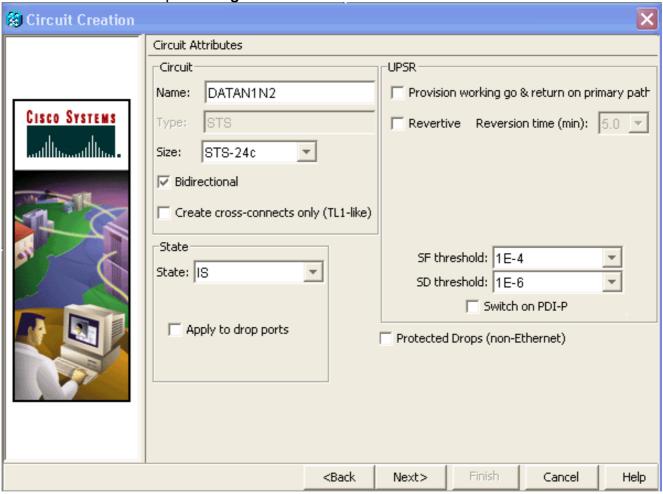

Chaque noeud dispose d'une carte ML 100T installée dans le logement 6 (voir Figure 2).

Figure 2 - Vue du noeud : Carte ML 100T dans le logement 6

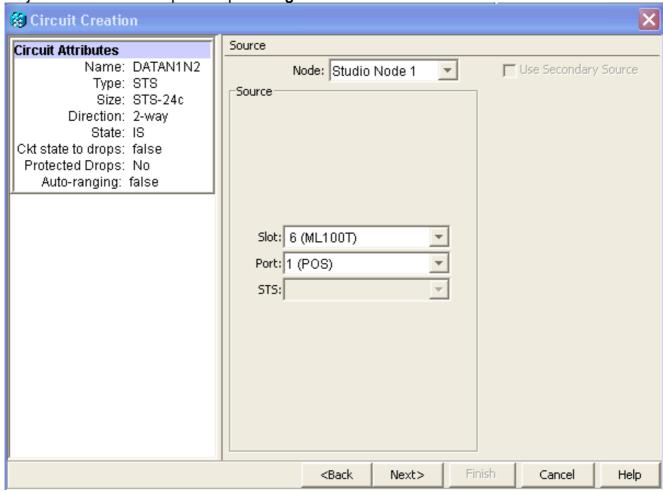
<u>La Figure 3</u> présente la topologie RPR Ring. La configuration RPR est basée sur cette topologie.

Figure 3 - Topologie de la sonnerie RPR

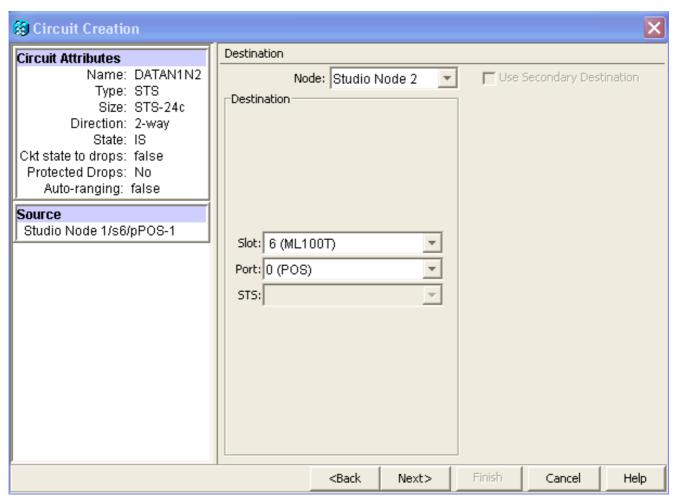
Créer un RPR à quatre noeuds


Complétez ces étapes afin de créer un RPR avec quatre noeuds :

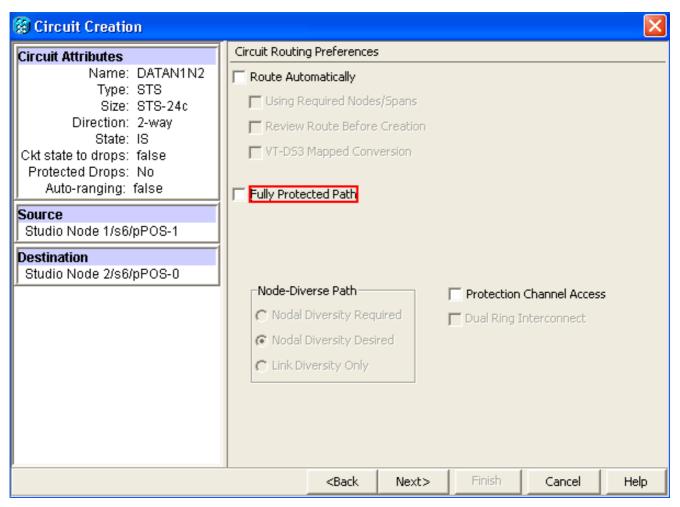
1. Créez un circuit entre POS 1 sur le noeud 1 et POS 0 sur le noeud 2.Procédez comme suit :Choisissez Circuit > Create.La boîte de dialogue Création de circuit apparaît :Figure 4 - Création de circuits

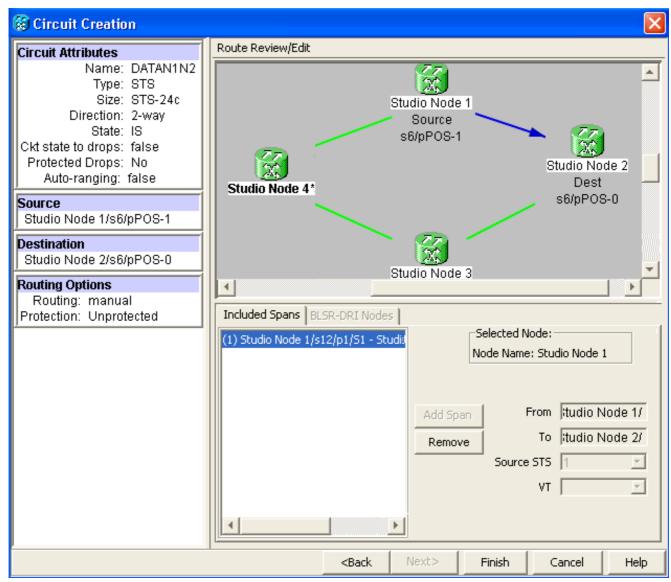

Sélectionnez **STS**,

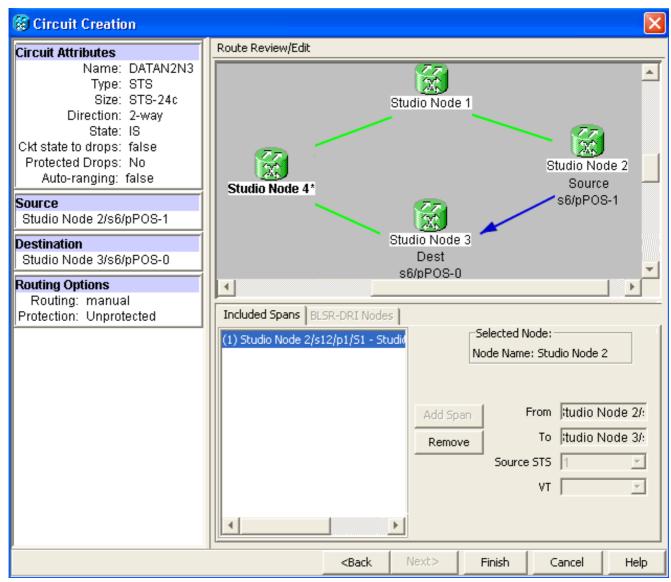
puis cliquez sur **Suivant**.La fenêtre Attributs de circuit apparaît (voir <u>Figure 5</u>).Tapez le nom du circuit dans le champ Nom.**Figure 5 - Fenêtre Attributs de circuit**

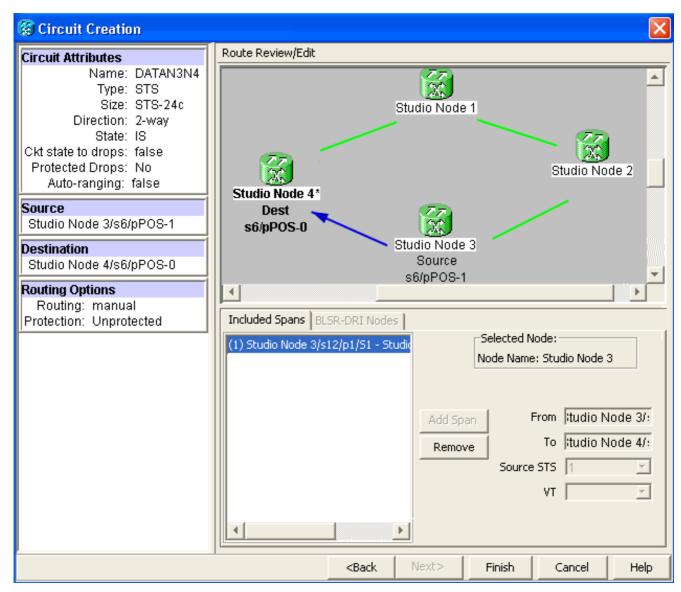


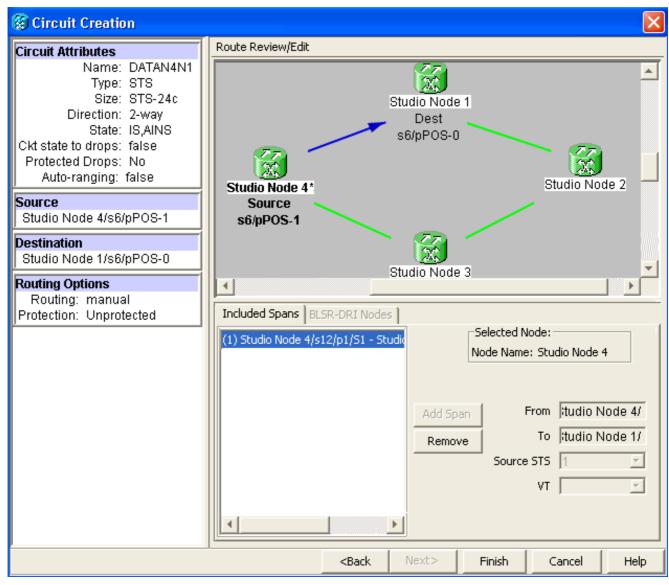
Sélectionnez la taille appropriée du circuit dans la liste Taille et l'état approprié dans la liste


État.Cliquez sur **Next** (Suivant).La fenêtre Source s'affiche (voir <u>Figure 6</u>).Sélectionnez **Noeud Studio 1** comme noeud source dans la liste Noeud.Sélectionnez **6 (ML100T)** dans la liste des logements, puis choisissez **1 (POS)** dans la liste des ports.**Note :** Commencez toujours la sonnerie de pos 0 à pos 1.**Figure 6 - Fenêtre source**


Cliquez sur **Next** (Suivant).La fenêtre Destination s'affiche (voir <u>Figure 7</u>).Sélectionnez **Noeud Studio 2** comme noeud de destination dans la liste Noeud.Sélectionnez **6 (ML100T)** dans la liste des logements, puis choisissez **1 (POS)** dans la liste des ports.**Figure 7 - Fenêtre Destination**


Cliquez sur **Next** (Suivant).La fenêtre Préférences de routage de circuit s'affiche (voir <u>Figure 8</u>).Décochez la case **Chemin entièrement protégé** lorsque la protection est effectuée par le RPR. Vous pouvez vérifier **Route Automatically** ou manuellement le routage du circuit. Si vous choisissez de router manuellement, passez à l'étape m.Décochez la case **Chemin entièrement protégé.Figure 8 - Fenêtre Préférences de routage de circuit**


Cliquez sur **Next** (Suivant).La fenêtre Route Review/Edit s'affiche (voir <u>Figure</u> 9).Sélectionnez le noeud source, puis cliquez sur **Add Span.Cliquez sur Finish.**La création du circuit est terminée. <u>La Figure 9</u> montre le circuit entre POS 1 sur le noeud 1 et POS 0 sur le noeud 2.**Figure 9 - Circuit entre POS1 sur le noeud 1 et POS0 sur le noeud 2**


2. Créez un circuit entre POS 1 sur le noeud 2 et POS 0 sur le noeud 3.Utilisez la même procédure détaillée décrite à l'étape 1. La Figure 10 montre le circuit entre POS 1 sur le noeud 2 et POS 0 sur le noeud 3.Figure 10 - Circuit entre POS 1 sur le noeud 2 et POS 0 sur le noeud 3

3. De même, créez un circuit entre POS 1 sur le noeud 3 et POS 0 sur le noeud 4. Utilisez la même procédure détaillée décrite à l'<u>étape 1</u>. <u>La Figure 11</u> montre le circuit entre POS 1 sur le noeud 3 et POS 0 sur le noeud 4. **Figure 11 - Circuit entre POS 1 sur le noeud 3 et POS 0** sur le noeud 4

4. Enfin, créez un circuit entre POS 1 sur le noeud 4 et POS 0 sur le noeud 1.Utilisez la même procédure détaillée décrite à l'étape 1. La Figure 12 montre le circuit entre POS 1 sur le noeud 4 et POS 0 sur le noeud 1.Figure 12 - Circuit entre POS 1 sur le noeud 4 et POS 0 sur le noeud 1

5. Configurez la carte ML100T sur le noeud 1.Procédez comme suit :Activez le pontage et le routage intégrés (IRB).

bridge irb

Configurez l'interface SRP:

```
interface SPR1
  ip address 10.1.1.1 255.0.0.0
  carrier-delay msec 50
  no keepalive
  spr station-id 1
  spr wrap delayed
  hold-queue 150 in
```

Configurez l'interface POS0 :

```
interface POS0
no ip address
carrier-delay msec 50
spr-intf-id 1
crc 32
```

Configurez l'interface POS1:

```
! interface POS1 no ip address spr-intf-id 1 crc 32 !
```

6. Configurez la carte ML100T sur le noeud 2. Procédez comme suit : Activez le pontage et le

routage intégrés (IRB). bridge irb Configurez l'interface SRP : interface SPR1 ip address 10.1.1.2 255.0.0.0 carrier-delay msec 50 no keepalive spr station-id 2 spr wrap delayed hold-queue 150 in Configurez l'interface POS0 : interface POS0 no ip address carrier-delay msec 50 spr-intf-id 1 crc 32 Configurez l'interface POS1 : interface POS1 no ip address spr-intf-id 1 crc 32

7. Configurez la carte ML100T sur le noeud 3.Procédez comme suit :Activez le pontage et le routage intégrés (IRB).

```
bridge irb
```

Configurez l'interface SRP:

```
interface SPR1
  ip address 10.1.1.3 255.0.0.0
  carrier-delay msec 50
  no keepalive
  spr station-id 3
  spr wrap delayed
  hold-queue 150 in
```

Configurez l'interface POS0 :

```
interface POS0
no ip address
carrier-delay msec 50
spr-intf-id 1
crc 32
```

Configurez l'interface POS1 :

```
! interface POS1 no ip address spr-intf-id 1 crc 32
```

8. Configurez la carte ML100T sur le noeud 4.Procédez comme suit :Activez le pontage et le routage intégrés (IRB).

```
bridge irb
```

Configurez l'interface SRP:

```
interface SPR1
  ip address 10.1.1.4 255.0.0.0
  carrier-delay msec 50
  no keepalive
  spr station-id 4
  spr wrap delayed
  hold-queue 150 in
```

Configurez l'interface POS0 :

```
interface POS0
  no ip address
  carrier-delay msec 50
  spr-intf-id 1
  crc 32

Configurez l'interface POS1:
!
interface POS1
  no ip address
  spr-intf-id 1
  crc 32
```

Vérification

Pour vérifier la configuration, vous devez envoyer une requête ping à chaque noeud à partir de chaque autre noeud. Cette section fournit une procédure de vérification pas à pas pour vous assurer que la configuration est correcte.

Étape 1

Procédez comme suit :

1. Envoyez une requête ping au noeud 2, au noeud 3 et au noeud 4 à partir du noeud 1 :

```
Node_1_Slot_6#ping 10.1.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/11/32 ms
Node_1_Slot_6#ping 10.1.1.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/24 ms
Node_1_Slot_6#ping 10.1.1.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms
```

2. Émettez la commande show cdp neighbor.

```
Node_1_Slot_6#show cdp neighbor
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
              S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
           Local Intrfce Holdtme Capability Platform Port ID
Device ID
Node_4_Slot_6 SPR1
                             137
                                        R
                                                ONS-ML100TSPR1
                             162
                                        RТ
Node_3_Slot_6 SPR1
                                                ONS-ML100TSPR1
Node_2_Slot_6 SPR1
                             128
                                        R
                                               ONS-ML100TSPR1
```

Étape 2

Ensuite, procédez comme suit :

1. Àpartir du noeud 2, envoyez une requête ping aux noeuds 1, 3 et 4.

```
Node_2_Slot_6#ping 10.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms

Node_2_Slot_6#ping 10.1.1.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms

Node_2_Slot_6#ping 10.1.1.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
```

2. Émettez la commande show cdp neighbor.

```
Node_2_Slot_6#show cdp neighbor
```

```
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID
             Local Intrfce Holdtme Capability Platform Port ID
Node_4_Slot_6 SPR1
                              175
                                          R
                                                  ONS-ML100TSPR1
             SPR1
Node_1_Slot_6
                               171
                                          RТ
                                                  ONS-ML100TSPR1
                                         RТ
Node_3_Slot_6 SPR1
                               141
                                                 ONS-ML100TSPR1
```

Étape 3

Procédez comme suit :

1. Àpartir du noeud 3, envoyez une requête ping aux noeuds 1, 2 et 4.

```
Node_3_Slot_6#ping 10.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/12 ms
Node_3_Slot_6#ping 10.1.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/12 ms

Node_3_Slot_6#ping 10.1.1.4

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
!!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 4/5/8 ms
```

2. Émettez la commande show cdp neighbor.

```
Node_3_Slot_6#show cdp neighbor
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
```

```
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID
             Local Intrfce Holdtme Capability Platform Port ID
Node_4_Slot_6 SPR1
                              170
                                                  ONS-ML100TSPR1
                                          R
                                          RТ
Node_1_Slot_6
             SPR1
                               166
                                                  ONS-ML100TSPR1
Node_2_Slot_6 SPR1
                               161
                                          R
                                                  ONS-ML100TSPR1
```

Enfin, procédez comme suit :

1. Àpartir du noeud 4, envoyez une requête ping aux noeuds 1, 2 et 3.

```
Node_4_Slot_6#ping 10.1.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms

Node_4_Slot_6#ping 10.1.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms

Node_4_Slot_6#ping 10.1.1.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms
```

2. Émettez la commande show cdp neighbor.

```
Node_4_Slot_6#show cdp neighbor

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone

Device ID Local Intrfce Holdtme Capability Platform Port ID

Node_1_Slot_6 SPR1 152 R T ONS-ML100TSPR1

Node_3_Slot_6 SPR1 122 R T ONS-ML100TSPR1

Node_2_Slot_6 SPR1 147 R ONS-ML100TSPR1
```

Informations connexes

Support et documentation techniques - Cisco Systems