Sustitución de PCRF de OSD-Compute UCS 240M4

Contenido

Introducción **Antecedentes** Comprobación de estado Copia de seguridad Identificación de las VM alojadas en el nodo de informática OSD Apagado Graceful Migrar ESC al modo en espera Eliminación De Nodo Osd-Compute Eliminar de Overcloud Eliminar nodo de cómputo de Osd de la lista de servicios Eliminar agentes neutrales Eliminar de la base de datos de Nova e Ironic Instalación del nuevo nodo informático Agregue el nuevo nodo OSD-Compute a Overcloud Restauración de las VM Adición a la lista de agregación Nova Recuperación de VM ESC

Introducción

Este documento describe los pasos necesarios para sustituir un servidor de procesamiento operativo defectuoso en una configuración Ultra-M que aloja Cisco Policy Suite (CPS) Virtual Network Functions (VNF).

Antecedentes

Este documento está dirigido al personal de Cisco familiarizado con la plataforma Cisco Ultra-M y detalla los pasos necesarios para llevarse a cabo en el nivel de VNF de OpenStack y CPS en el momento de la sustitución del servidor de cómputo OSD.

Nota: Se considera la versión Ultra M 5.1.x para definir los procedimientos en este documento.

Comprobación de estado

Antes de reemplazar un nodo de Osd-Compute, es importante comprobar el estado actual de su entorno de Red Hat OpenStack Platform. Se recomienda que verifique el estado actual para evitar complicaciones cuando el proceso de reemplazo de Compute está activado.

```
De OSPD
```

[root@director ~]\$ su - stack
[stack@director ~]\$ cd ansible
[stack@director ansible]\$ ansible-playbook -i inventory-new openstack_verify.yml -e
platform=pcrf
Paso 1. Verifique el estado del sistema a partir del informe de estado del ultram que se genera
cada quince minutos.

```
[stack@director ~]# cd /var/log/cisco/ultram-health
Verifique el archivo ultram_health_os.report.
```

Los únicos servicios deben mostrar como estado XXX son neutron-sriov-nic-agent.service.

Paso 2. Verifique si **rabbitmq** se ejecuta para todos los controladores, que a su vez se ejecuta desde OSPD.

[stack@director ~]# for i in \$(nova list| grep controller | awk '{print \$12}'| sed 's/ctlplane=//g') ; do (ssh -o StrictHostKeyChecking=no heat-admin@\$i "hostname;sudo rabbitmqctl eval 'rabbit_diagnostics:maybe_stuck().'") & done Paso 3. Verificar que el stonith esté habilitado.

[stack@director ~]# sudo pcs property show stonith-enabled Para todos los controladores, verifique el estado de PCS

- Todos los nodos del controlador se inician bajo haproxy-clone
- Todos los nodos del controlador son Master bajo galera
- Todos los nodos del controlador se inician bajo Rabbitmq
- 1 nodo del controlador es Master y 2 Slaves bajo redis

De OSPD

```
[stack@director ~]$ for i in $(nova list| grep controller | awk '{print $12}'| sed
's/ctlplane=//g') ; do (ssh -o StrictHostKeyChecking=no heat-admin@$i "hostname;sudo pcs status"
) ;done
```

Paso 4. Verifique que todos los servicios openstack estén activos, desde OSPD ejecute este comando:

[stack@director ~]# sudo systemctl list-units "openstack*" "neutron*" "openvswitch*" Paso 5. Verifique que el estado de CEPH sea HEALTH_OK para los controladores.

```
[stack@director ~]# for i in $(nova list| grep controller | awk '{print $12}'| sed
's/ctlplane=//g') ; do (ssh -o StrictHostKeyChecking=no heat-admin@$i "hostname;sudo ceph -s" )
;done
```

Paso 6. Verifique los registros de componentes de OpenStack. Busque cualquier error:

```
Neutron:
[stack@director ~]# sudo tail -n 20 /var/log/neutron/{dhcp-agent,l3-agent,metadata-
agent,openvswitch-agent,server}.log
Cinder:
[stack@director ~]# sudo tail -n 20 /var/log/cinder/{api,scheduler,volume}.log
Glance:
[stack@director ~]# sudo tail -n 20 /var/log/glance/{api,registry}.log
Paso 7. Desde OSPD realice estas verificaciones para API.
```

```
[stack@director ~]$ source
```

[stack@director ~]\$ nova list
[stack@director ~]\$ glance image-list
[stack@director ~]\$ cinder list
[stack@director ~]\$ neutron net-list

Paso 8. Verifique el estado de los servicios.

Every service status should be "up":
[stack@director ~]\$ nova service-list

Every service status should be " :-)":
[stack@director ~]\$ neutron agent-list

Every service status should be "up": [stack@director ~]\$ cinder service-list

Copia de seguridad

En caso de recuperación, Cisco recomienda realizar una copia de seguridad de la base de datos OSPD con el uso de estos pasos.

Paso 1. Tome Mysql dump.

```
[root@director ~]# mysqldump --opt --all-databases > /root/undercloud-all-databases.sql
[root@director ~]# tar --xattrs -czf undercloud-backup-`date +%F`.tar.gz /root/undercloud-all-
databases.sql
/etc/my.cnf.d/server.cnf /var/lib/glance/images /srv/node /home/stack
tar: Removing leading `/' from member names
Este proceso asegura que un nodo se pueda reemplazar sin afectar la disponibilidad de ninguna
instancia.
```

Paso 2. Para realizar una copia de seguridad de las VM CPS desde la VM Cluster Manager:

[root@CM ~]# config_br.py -a export --all /mnt/backup/CPS_backup_\$(date +\%Y-\%m-\%d).tar.gz

or

[root@CM ~] # config_br.py -a export --mongo-all --svn --etc --grafanadb --auth-htpasswd -haproxy /mnt/backup/\$(hostname)_backup_all_\$(date +\%Y-\%m-\%d).tar.gz

Identificación de las VM alojadas en el nodo de informática OSD

Identifique las VM alojadas en el servidor informático:

Paso 1. El servidor informático contiene Elastic Services Controller (ESC).

[stack@director ~]\$ nova list --field name,host,networks | grep osd-compute-1
50fd1094-9c0a-4269-b27b-cab74708e40c | esc | pod1-osd-compute-0.localdomain
tb1-orch=172.16.180.6; tb1-mgmt=172.16.181.3

Nota: En el resultado que se muestra aquí, la primera columna corresponde al identificador único universal (UUID), la segunda columna es el nombre de la máquina virtual y la tercera columna es el nombre de host donde está presente la máquina virtual. Los parámetros de este resultado se utilizarán en secciones posteriores.

Nota: Si el nodo de cómputo OSD que se va a reemplazar está completamente inactivo y no se puede acceder a él, continúe con la sección titulada "Eliminar el nodo de cómputo de Osd de la lista de agregación de Nova". De lo contrario, proceda de la siguiente sección.

Paso 2. Verifique que CEPH tenga capacidad disponible para permitir que se elimine un único servidor OSD.

[root@pod1-osd-compute-0 ~]# sudo ceph df GLOBAL: SIZE AVAIL RAW USED %RAW USED 13393G 11804G 1589G 11.87 POOLS: NAME ID USED %USED MAX AVAIL OBJECTS 0 0 0 3876G rbd 0 4157M 0.10 3876G 215385 metrics 1 6731M 3876G 897 2 0.17 images 3876G backups 3 0 0 0 399G 102373 volumes 4 9.34 3876G 5 122G 3.06 3876G 31863 vms

Paso 3. Verifique que el estado del árbol de osd de la ceph esté activo en el servidor de osd-

compute.

[he	eat-admin(<pre>Ppod1-osd-compute-0 ~]\$ sudo</pre>	ceph osd tree		
ID	WEIGHT	TYPE NAME	UP/DOWN	REWEIGHT	PRIMARY-AFFINITY
-1	13.07996	root default			
-2	4.35999	host pod1-osd-compute-0			
0	1.09000	osd.0	up	1.00000	1.00000
3	1.09000	osd.3	up	1.00000	1.00000
6	1.09000	osd.6	up	1.00000	1.00000
9	1.09000	osd.9	up	1.00000	1.00000
-3	4.35999	host pod1-osd-compute-2			
1	1.09000	osd.1	up	1.00000	1.00000
4	1.09000	osd.4	up	1.00000	1.00000
7	1.09000	osd.7	up	1.00000	1.00000
10	1.09000	osd.10	up	1.00000	1.00000
-4	4.35999	host pod1-osd-compute-1			
2	1.09000	osd.2	up	1.00000	1.00000
5	1.09000	osd.5	up	1.00000	1.00000
8	1.09000	osd.8	up	1.00000	1.00000
11	1.09000	osd.11	up	1.00000	1.00000

Paso 4. Los procesos CEPH están activos en el servidor de osd-compute.

[root@pod1-osd-compute-0 ~]# systemctl list-units *ceph*

UNIT	LOAD	ACTIVE	SUB	DESCRIPTION
var-lib-ceph-osd-ceph\x2d11.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-11
var-lib-ceph-osd-ceph\x2d2.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-2
var-lib-ceph-osd-ceph\x2d5.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-5
var-lib-ceph-osd-ceph\x2d8.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-8
ceph-osd@11.service	loaded	active	running	Ceph object storage daemon
ceph-osd@2.service	loaded	active	running	Ceph object storage daemon
ceph-osd@5.service	loaded	active	running	Ceph object storage daemon
ceph-osd@8.service	loaded	active	running	Ceph object storage daemon
system-ceph\x2ddisk.slice	loaded	active	active	system-ceph\x2ddisk.slice

system-ceph\x2dosd.slice loaded active active system-ceph\x2dosd.slice
ceph-mon.target loaded active active ceph target allowing to start/stop all
ceph-osd.target loaded active active ceph target allowing to start/stop all
ceph-osd@.service instances at once
ceph-radosgw.target loaded active active ceph target allowing to start/stop all
ceph-radosgw@.service instances at once
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph.target loaded active active ceph target allowing to start/stop all
ceph*@.service instances at once

Paso 5. Desactive y detenga cada instancia de la ceph y quite cada instancia de osd y desmonte el directorio. Repita el procedimiento para cada instancia de la cepa.

[root@pod1-osd-compute-0 ~] # systemctl disable ceph-osd@11

[root@pod1-osd-compute-0 ~] # systemctl stop ceph-osd@11

[root@pod1-osd-compute-0 ~]# ceph osd out 11

marked out osd.11.

[root@pod1-osd-compute-0 ~]# ceph osd crush remove osd.11

removed item id 11 name 'osd.11' from crush map

[root@pod1-osd-compute-0 ~]# ceph auth del osd.11

updated

[root@pod1-osd-compute-0 ~]# ceph osd rm 11

removed osd.11

[root@pod1-osd-compute-0 ~] # umount /var/lib/ceph/osd/ceph-11

[root@pod1-osd-compute-0 ~]# rm -rf /var/lib/ceph/osd/ceph-11
 (Or)

Paso 6. Se puede utilizar la secuencia de comandos **Clean.sh** para realizar la tarea anterior de una vez.

```
[heat-admin@pod1-osd-compute-0 ~]$ sudo ls /var/lib/ceph/osd
ceph-11 ceph-3 ceph-6 ceph-8
[heat-admin@pod1-osd-compute-0 ~]$ /bin/sh clean.sh
[heat-admin@pod1-osd-compute-0 ~]$ cat clean.sh
#!/bin/sh
set -x
CEPH=`sudo ls /var/lib/ceph/osd`
for c in $CEPH
do
 i=`echo $c |cut -d'-' -f2`
 sudo systemctl disable ceph-osd@$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo systemctl stop ceph-osd@$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph osd out $i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph osd crush remove osd.$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph auth del osd.$i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo ceph osd rm $i || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo umount /var/lib/ceph/osd/$c || (echo "error rc:$?"; exit 1)
 sleep 2
 sudo rm -rf /var/lib/ceph/osd/$c || (echo "error rc:$?"; exit 1)
 sleep 2
done
```

sudo ceph osd tree

Después de que se hayan migrado/eliminado todos los procesos OSD, el nodo se puede quitar de la nube excesiva.

Nota: Cuando se elimina CEPH, el RAID HD VNF pasa al estado de degradado a, pero el

disco duro debe seguir estando accesible.

Apagado Graceful

Migrar ESC al modo en espera

Paso 1. Inicie sesión en el ESC alojado en el nodo de cálculo y verifique si está en el estado principal. Si la respuesta es sí, cambie el modo ESC al modo en espera.

Paso 2. Quite el nodo Osd-Compute de la lista de agregación Nova.

 Enumere los agregados nova e identifique el agregado que corresponde al servidor informático basado en el VNF alojado por él. Normalmente, tendría el formato <VNFNAME>-EM-MGMT<X> y <VNFNAME>-CF-MGMT<X>

```
[stack@director ~]$ nova aggregate-list
+----+
| Id | Name | Availability Zone |
+----+
| 3 | esc1 | AZ-esc1 |
| 6 | esc2 | AZ-esc2 |
| 9 | aaa | AZ-aaa |
+---+
```

En nuestro caso, el servidor osd-compute pertenece a esc1. Entonces, los agregados que corresponden serían **esc1**

Paso 3. Quite el nodo osd-compute del agregado identificado.

nova aggregate-remove-host

[stack@director ~]\$ nova aggregate-remove-host esc1 pod1-osd-compute-0.localdomain Paso 4. Verifique si el nodo osd-compute se ha eliminado de los agregados. Ahora, asegúrese de que el Host no aparezca en los agregados.

```
[stack@director ~]$ nova aggregate-show esc1
[stack@director ~]$
```

Eliminación De Nodo Osd-Compute

Los pasos mencionados en esta sección son comunes independientemente de las VM alojadas en el nodo informático.

Eliminar de Overcloud

Paso 1. Cree un archivo de script denominado delete_node.sh con el contenido como se muestra. Asegúrese de que las plantillas mencionadas sean las mismas que las utilizadas en el script **Deploy.sh** utilizado para la implementación de la pila.

delete_node.sh

```
openstack overcloud node delete --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/puppet-pacemaker.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/storage-environment.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/neutron-sriov.yaml -e /home/stack/custom-templates/network.yaml -e
/home/stack/custom-templates/ceph.yaml -e /home/stack/custom-templates/compute.yaml -e
/home/stack/custom-templates/layout.yaml -e /home/stack/custom-templates/layout.yaml --stack
```

[stack@director ~]\$ source stackrc

```
[stack@director ~]$ /bin/sh delete_node.sh
```

```
+ openstack overcloud node delete --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/puppet-pacemaker.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/storage-environment.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/neutron-sriov.yaml -e /home/stack/custom-templates/network.yaml -e
/home/stack/custom-templates/ceph.yaml -e /home/stack/custom-templates/compute.yaml -e
/home/stack/custom-templates/layout.yaml -e /home/stack/custom-templates/layout.yaml --stack
pod1 49ac5f22-469e-4b84-badc-031083db0533
Deleting the following nodes from stack pod1:
- 49ac5f22-469e-4b84-badc-031083db0533
Started Mistral Workflow. Execution ID: 4ab4508a-c1d5-4e48-9b95-ad9a5baa20ae
real 0m52.078s
```

```
real 0m52.078
user 0m0.383s
sys 0m0.086s
```

Paso 2. Espere a que la operación de pila OpenStack pase al estado COMPLETE.

stack@director ~]\$ openstack stack list							
+ ID	Stack Name		Creation Time				
Updated Time ++		+	-+	+			
5df68458-095d-43bd-a8c4-033e68k 05-08T20:42:48Z	a79a0 pod1 UPDA	re_complete 201	8-05-08T21:30:06Z	2018-			
+	+	+	-+	+			

Eliminar nodo de cómputo de Osd de la lista de servicios

Elimine el servicio informático de la lista de servicios.

```
[stack@director ~]$ source corerc
[stack@director ~]$ openstack compute service list | grep osd-compute-0
| 404 | nova-compute | pod1-osd-compute-0.localdomain | nova | enabled | up |
2018-05-08T18:40:56.000000 |
```

openstack compute service delete

[stack@director ~]\$ openstack compute service delete 404

Eliminar agentes neutrales

Elimine el agente neutrón asociado antiguo y abra el agente vswitch para el servidor informático.

```
[stack@director ~]$ openstack network agent list | grep osd-compute-0
| c3ee92ba-aa23-480c-ac81-d3d8d01dcc03 | Open vSwitch agent | pod1-osd-compute-0.localdomain
| None | False | UP | neutron-openvswitch-agent |
| ec19cb01-abbb-4773-8397-8739d9b0a349 | NIC Switch agent | pod1-osd-compute-0.localdomain
| None | False | UP | neutron-sriov-nic-agent |
```

```
openstack network agent delete
```

[stack@director ~]\$ openstack network agent delete c3ee92ba-aa23-480c-ac81-d3d8d01dcc03
[stack@director ~]\$ openstack network agent delete ec19cb01-abbb-4773-8397-8739d9b0a349

Eliminar de la base de datos de Nova e Ironic

Borre un nodo de la lista nova junto con la base de datos irónica y luego verifíquelo.

```
[stack@director ~]$ source stackrc
```

[stack@al01-pod1-ospd ~]\$ **nova list | grep osd-compute-0** | c2cfa4d6-9c88-4ba0-9970-857d1a18d02c | pod1-osd-compute-0 | ACTIVE | - | Running | ctlplane=192.200.0.114 |

```
[stack@al01-pod1-ospd ~]$ nova delete c2cfa4d6-9c88-4ba0-9970-857d1a18d02c
```

nova show

```
[stack@director ~]$ nova show pod1-osd-compute-0 | grep hypervisor
| OS-EXT-SRV-ATTR:hypervisor_hostname | 4ab21917-32fa-43a6-9260-02538b5c7a5a
```

ironic node-delete

[stack@director ~]\$ ironic node-delete 4ab21917-32fa-43a6-9260-02538b5c7a5a
[stack@director ~]\$ ironic node-list (node delete must not be listed now)

Instalación del nuevo nodo informático

Los pasos para instalar un nuevo servidor UCS C240 M4 y los pasos iniciales de configuración se pueden consultar en: <u>Guía de instalación y servicio del servidor Cisco UCS C240 M4</u>

Paso 1. Después de la instalación del servidor, inserte los discos duros en las ranuras respectivas como el servidor antiguo.

Paso 2. Inicie sesión en el servidor con la IP de CIMC.

Paso 3.Realice la actualización del BIOS si el firmware no es conforme a la versión recomendada utilizada anteriormente. Los pasos para la actualización del BIOS se indican a continuación: <u>Guía</u> de actualización del BIOS del servidor de montaje en bastidor Cisco UCS C-Series

Paso 4. Verifique el estado de las unidades físicas. Debe ser Unconimaged Good.

Paso 5. Cree una unidad virtual desde las unidades físicas con RAID Level 1.

	≆ dude Cis	co Integrated Management C	Controller		🕂 🗹 0 ad	min@10.65.33.67	- C240-FCH2114V1NW
Chassis •	▲ / / Cisco 12 (SLOT-HBA) /	2G SAS Modular Raid Controll Physical Drive Info	ler	Refresh	Host Power Launch K	/M Ping Reb	oot Locator LED 🔞 (
Compute	Controller Info	Physical Drive Info Virtual Drive In	fo Battery Backup Unit	Storage Log			
Networking	Physical Driv	Physical Drives					Selected 0 / Total 2 🖧 🔻
Storage •	PD-1	Make Global Hot Spare Make	Dedicated Hot Spare	ove From Hot Spare Pools	Prepare For Rem	oval	>>
Cisco 12G SAS Modular Raid		Controller	Physical Drive Number	Status	Health	Boot Drive	Drive Firmware
Cisco FlexFlash		SLOT-HBA	1	Unconfigured Good	Good	false	N003
Admin •	sco FlexFlash	SLOT-HBA	2	Unconfigured Good	Good	false	N003

Paso 6. Vaya a la sección de almacenamiento y seleccione Cisco 12G Sas Modular Raid Controller y verifique el estado y el estado del controlador raid como se muestra en la imagen.

Nota: La imagen de arriba es sólo para fines ilustrativos, en el CIMC real OSD-Compute verá siete unidades físicas en las ranuras [1,2,3,7,8,9,10] en buen estado no imaginado, ya que no se crean unidades virtuales a partir de ellas.

	Create	Virtual I	Drive from Un	used Physical	Drives			_		
hassis 🔸			RAID Level:	1		¥	Enable Full Disk Encr	yption:		
ompute										
etworking +	Crea	te Drive	Groups				_			
	Phys	sical Driv	ves		Selected 2 /	Total 2 ζ	× +	Drive Groups		ζ
orage 🔹		ID	Size(MB)	Model	Interface	Type		Name		
Cisco 12G SAS Modular Raid		1	1906394 MB	SEAGA	HDD	SAS		No data available		
Cisco FlexFlash		2	1906394 MB	SEAGA	HDD	SAS	>>			
min							<<			
	Virtu	al Drive	Properties							
			Name: RAID	21			Disk Cache Policy:	Unchanged	*	
		Acces	s Policy: Read	d Write		Ŧ	Write Policy:	Write Through	•	
		Rea	d Policy: No R	lead Ahead		Ŧ	Strip Size (MB):	64k	•	

		€ dialo	Cisco I	Integrated Man	agement C	ontrolle				
	- * 1	Create Virtual	Drive from	m Unused Physic	al Drives					0 2
Chassis			RAID Lev	el: 1		۳	Enable Full Disk Encr	yption:		1
Compute										
Networking	•	Create Drive Physical Drive	e Groups		Selected 0 / 1	otal 0 🛱	*	Drive Groups		۵.
Storage	*	ID	Size(MB)	Model	Interface	Туре		Name		
Cisco 12G SAS Mo	dular Raid	No data availat	ole				30	DG [1.2]		
Admin	,	Virtual Drive	e Propert	ies		_				
			Name:	BOOTOS			Disk Cache Policy:	Unchanged	•	
		Acce	ss Policy:	Read Write		•	Write Policy:	Write Through	•	
		Cac	the Policy:	Direct IO		-	Strip Size (MB):	1905394	•	MB
		0.00	ner oney.	P. 001 10		· .	0120	1000001		

Paso 7. Ahora cree una unidad virtual desde una unidad física sin usar desde la información del

controlador, bajo el controlador de raid modular SAS 12G de Cisco.

	∓ ³ € 1	cisco Cis	sco Integrated Ma	anagement Co	ontroller	-	• 🗹 و	admin@10.65.33.6	7 - C240-FCH2114V1NW	\$
Chassis	• 1 /	Cisco 12 F-HBA) /	2G SAS Modular Virtual Drive Info	Raid Controlle	r	Refn	esh Host Power Laur	nch KVM Ping Rel	boot Locator LED (0
Compute	Control	ler Info	Physical Drive Info	Virtual Drive Info	Battery Backup U	nit Storage Log				
Networking	► Vit	rtual Drives	Virtual Drives						Selected 1 / Total 1	<u>ب</u> چ
Storage	-	✓ VD-0	Initialize Ca	ncel Initialization	Set as Boot Drive	Delete Virtual Drive	Edit Virtual Drive	Hide Drive	>>	
Cisco 12G SAS Modular	Ra Storage		Virtual Drive Nur	mber Na	ne	Status	Health	Size	RAID Level	Во
Cisco FlexFlash] o	BO	DTOS	Optimal	Good	1906394 MB	RAID 1	fals
Admin	•									

Paso 8. Seleccione el VD y configure set as boot drive.

	- the Cisco Integrate	ed Management Controller		
Chassis •	↑ / / Communication Ser	rvices / Communications Servi	ices 🖈	min@10.65.33.67 - C240-FCH2141V113
Compute	Communications Services SN	NMP Mail Alert		
Networking •				
Storage	HTTP Properties	: V Session Timeout(seconds):	▼ IPMI over LAN Properties	: V
Admin •	Redirect HTTP to HTTPS Enabled:	Max Session : 80	4 Privilege Level Limit	admin V
User Management	HTTPS Port:	Active Sessions:	1 Encryption Key	Randomize
Networking Communication Services	XML API Properties			
	XML API Enabled:	: 🗸		

Paso 9. Habilite IPMI sobre LAN desde Servicios de comunicación en la pestaña Admin.

	Cisco Integrated Management Co	ontroller	🜲 🔽 3 admin@10.65.33.67 - C240)-FCH2141V113					
Chassis •	A / Compute / BIOS ★								
Compute	RIOS Remote Management Troubleshooting	Power Policies PID Catalog	Refresh Host Power Launch KVM Ping Reboot Lo	ocator LED 🔞					
Networking •	Enter BIOS Setup Clear BIOS CMOS Restore Manufacturing Cu	Inter BIOS Setup Clear BIOS CMOS Restore Manufacturing Custom Settings							
Storage	Configure BIOS Configure Boot Order Configure	BIOS Profile							
Admin •	dmin Main Advanced Server Management								
	Note: Default values are shown in bold.								
	Reboot Host Immediately:								
	Processor Configuration								
	Intel(R) Hyper-Threading Technology	Disabled -	Number of Enabled Cores	All					
	Execute Disable	Enabled v	Intel(R) VT	Enabled					
	Intel(R) VT-d	Enabled v	Intel(R) Interrupt Remapping	Enabled					
	Intel(R) Pass Through DMA	Disabled v	Intel(R) VT-d Coherency Support	Disabled					
	Intel(R) Pass Through DMA ATS Support	Enabled V	CPU Performance	Enterprise					

Paso 10. Inhabilite Hyper-Threading en la configuración de BIOS avanzada bajo el nodo Compute como se muestra en la imagen.

Paso 11. Al igual que BOOTOS VD creado con las unidades físicas 1 y 2 , cree cuatro unidades virtuales más como

DIARIO - Desde la unidad física número 3

OSD1: desde la unidad física número 7

OSD2: desde la unidad física número 8

OSD3 - Desde la unidad física número 9

OSD4: desde la unidad física número 10

Paso 7. Al final, las unidades físicas y las virtuales deben ser similares.

Nota: La imagen que se muestra aquí y los pasos de configuración mencionados en esta sección se refieren a la versión de firmware 3.0(3e) y puede haber ligeras variaciones si trabaja en otras versiones.

Agregue el nuevo nodo OSD-Compute a Overcloud

Los pasos mencionados en esta sección son comunes independientemente de la máquina virtual alojada por el nodo informático.

Paso 1. Agregue el servidor de cómputo con un índice diferente.

Cree un archivo **add_node.json** con sólo los detalles del nuevo servidor informático que se agregará. Asegúrese de que el número de índice del nuevo servidor de osd-compute no se haya utilizado antes. Normalmente, aumente el siguiente valor de cálculo más alto.

Ejemplo: El más alto anterior fue osd-compute-0 así creado osd-compute-3 en el caso del sistema 2-vnf.

Nota: Tenga en cuenta el formato json.

```
[stack@director ~]$ cat add_node.json
{
   "nodes":[
       {
           "mac":[
               "<MAC_ADDRESS>"
           1,
           "capabilities": "node:osd-compute-3,boot_option:local",
           "cpu":"24",
           "memory":"256000",
           "disk":"3000",
           "arch": "x86_64",
           "pm_type":"pxe_ipmitool",
           "pm_user":"admin",
           "pm_password": "<PASSWORD>",
           "pm_addr":"192.100.0.5"
       }
```

Paso 2. Importe el archivo json.

1

}

```
[stack@director ~]$ openstack baremetal import --json add_node.json
Started Mistral Workflow. Execution ID: 78f3b22c-5c11-4d08-a00f-8553b09f497d
Successfully registered node UUID 7eddfa87-6ae6-4308-b1d2-78c98689a56e
Started Mistral Workflow. Execution ID: 33a68c16-c6fd-4f2a-9df9-926545f2127e
Successfully set all nodes to available.
```

Paso 3. Ejecute la introspección del nodo con el uso del UUID observado desde el paso anterior.

```
[stack@director ~]$ openstack baremetal node manage 7eddfa87-6ae6-4308-b1d2-78c98689a56e
[stack@director ~]$ ironic node-list |grep 7eddfa87
| 7eddfa87-6ae6-4308-b1d2-78c98689a56e | None | None
                                                                                     power off
  manageable
                      False
[stack@director ~]$ openstack overcloud node introspect 7eddfa87-6ae6-4308-b1d2-78c98689a56e --
provide
Started Mistral Workflow. Execution ID: e320298a-6562-42e3-8ba6-5ce6d8524e5c
Waiting for introspection to finish...
Successfully introspected all nodes.
Introspection completed.
Started Mistral Workflow. Execution ID: c4a90d7b-ebf2-4fcb-96bf-e3168aa69dc9
Successfully set all nodes to available.
[stack@director ~]$ ironic node-list |grep available
| 7eddfa87-6ae6-4308-b1d2-78c98689a56e | None | None
                                                                                     | power off
  available
                       False
```

Paso 4. Agregue direcciones IP a custom-templates/layout.yml en OsdComputeIP. En este caso, al reemplazar osd-compute-0, agrega esa dirección al final de la lista para cada tipo.

```
OsdComputeIPs:

internal_api:

- 11.120.0.43

- 11.120.0.44

- 11.120.0.45

- 11.120.0.43 <<< take osd-compute-0 .43 and add here

tenant:

- 11.117.0.43

- 11.117.0.44

- 11.117.0.45

- 11.117.0.43 << and here

storage:
```

- 11.118.0.43
- 11.118.0.44
- 11.118.0.45
- 11.118.0.43 << and here

```
storage_mgmt:
```

- 11.119.0.43
- 11.119.0.44
- 11.119.0.45
- 11.119.0.43 << and here

Paso 5. Ejecute el script **Deploy.**sh que se utilizó anteriormente para implementar la pila, para agregar el nuevo nodo de cálculo a la pila de nube superpuesta.

```
[stack@director ~]$ ./deploy.sh
++ openstack overcloud deploy --templates -r /home/stack/custom-templates/custom-roles.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/puppet-pacemaker.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/storage-environment.yaml -e
/usr/share/openstack-tripleo-heat-templates/environments/neutron-sriov.yaml -e
/home/stack/custom-templates/network.yaml -e /home/stack/custom-templates/ceph.yaml -e
/home/stack/custom-templates/compute.yaml -e /home/stack/custom-templates/layout.yaml --stack
ADN-ultram --debug --log-file overcloudDeploy_11_06_17__16_39_26.log --ntp-server 172.24.167.109
--neutron-flat-networks phys_pcie1_0,phys_pcie1_1,phys_pcie4_0,phys_pcie4_1 --neutron-network-
vlan-ranges datacentre:1001:1050 --neutron-disable-tunneling --verbose --timeout 180
Starting new HTTP connection (1): 192.200.0.1
"POST /v2/action_executions HTTP/1.1" 201 1695
HTTP POST <a href="http://192.200.0.1:8989/v2/action_executions">http://192.200.0.1:8989/v2/action_executions</a> 201
Overcloud Endpoint: http://10.1.2.5:5000/v2.0
Overcloud Deployed
clean_up DeployOvercloud:
END return value: 0
      38m38.971s
real
     0m3.605s
user
sys
       0m0.466s
```

Paso 6. Espere a que el estado de la pila abierta esté COMPLETO.

[stack@director ~]\$	openstack stack li	st					
ID Updated Time	+	Stack	Name	Stack S	Status	Creation Time	
5df68458-095d-43bd 11-06T21:40:58Z	+ l-a8c4-033e68ba79a0	+		TE_COMPLE	ETE 2017-	-11-02T21:30:06	z 2017-
	+	+					

Paso 7. Verifique que el nuevo nodo osd-compute esté en estado Activo.

```
[stack@director ~]$ source stackrc
[stack@director ~]$ nova list |grep osd-compute-3
| 0f2d88cd-d2b9-4f28-b2ca-13e305ad49ea | pod1-osd-compute-3 | ACTIVE | - | Running
| ctlplane=192.200.0.117 |
[stack@director ~]$ source corerc
[stack@director ~]$ openstack hypervisor list |grep osd-compute-3
| 63 | pod1-osd-compute-3.localdomain |
```

Paso 8. Inicie sesión en el nuevo servidor osd-compute y verifique los procesos ceph. Inicialmente, el estado se encuentra en HEALTH_WARN mientras la ceph se recupera.

```
[heat-admin@pod1-osd-compute-3 ~]$ sudo ceph -s
   cluster eb2bb192-b1c9-11e6-9205-525400330666
   health HEALTH_WARN
           223 pgs backfill_wait
           4 pgs backfilling
           41 pgs degraded
           227 pgs stuck unclean
           41 pgs undersized
           recovery 45229/1300136 objects degraded (3.479%)
           recovery 525016/1300136 objects misplaced (40.382%)
   monmap e1: 3 mons at {Pod1-controller-0=11.118.0.40:6789/0,Pod1-controller-
1=11.118.0.41:6789/0, Pod1-controller-2=11.118.0.42:6789/0}
           election epoch 58, quorum 0,1,2 Pod1-controller-0, Pod1-controller-1, Pod1-controller-2
    osdmap e986: 12 osds: 12 up, 12 in; 225 remapped pgs
           flags sortbitwise, require_jewel_osds
     pgmap v781746: 704 pgs, 6 pools, 533 GB data, 344 kobjects
           1553 GB used, 11840 GB / 13393 GB avail
           45229/1300136 objects degraded (3.479%)
           525016/1300136 objects misplaced (40.382%)
                477 active+clean
                186 active+remapped+wait_backfill
                 37 active+undersized+degraded+remapped+wait_backfill
                  4 active+undersized+degraded+remapped+backfilling
```

Paso 9. Sin embargo, después de un período corto (20 minutos), CEPH vuelve a un estado HEALTH_OK.

[heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph -s

cluster eb2bb192-b1c9-11e6-9205-525400330666

health **HEALTH_OK**

monmap e1: 3 mons at {Pod1-controller-0=11.118.0.40:6789/0,Pod1-controller-1=11.118.0.41:6789/0,Pod1-controller-2=11.118.0.42:6789/0}

election epoch 58, quorum 0,1,2 Pod1-controller-0,Pod1-controller-1,Pod1-controller-2

osdmap e1398: 12 osds: 12 up, 12 in

flags sortbitwise,require_jewel_osds

pgmap v784311: 704 pgs, 6 pools, 533 GB data, 344 kobjects

1599 GB used, 11793 GB / 13393 GB avail

704 active+clean

client io 8168 kB/s wr, 0 op/s rd, 32 op/s wr

[heat-admin@pod1-osd-compute-3 ~]\$ **sudo ceph osd tree**

ID WEIGHT TYPE NAME

UP/DOWN REWEIGHT PRIMARY-AFFINITY

- -1 13.07996 root default
- -2 0 host pod1-osd-compute-0
- -3 4.35999 host pod1-osd-compute-2

1	1.09000	osd.1	up	1.00000	1.00000
4	1.09000	osd.4	up	1.00000	1.00000
7	1.09000	osd.7	up	1.00000	1.00000
10	1.09000	osd.10	up	1.00000	1.00000
-4	4.35999	host pod1-osd-compute-1			
2	1.09000	osd.2	up	1.00000	1.00000
5	1.09000	osd.5	up	1.00000	1.00000
8	1.09000	osd.8	up	1.00000	1.00000
11	1.09000	osd.11	up	1.00000	1.00000
-5	4.35999	host pod1-osd-compute-3			
0	1.09000	osd.0	up	1.00000	1.00000
3	1.09000	osd.3	up	1.00000	1.00000
6	1.09000	osd.6	up	1.00000	1.00000
9	1.09000	osd.9	up	1.00000	1.00000

Restauración de las VM

Adición a la lista de agregación Nova

Agregue el nodo osd-compute a los hosts agregados y verifique si se agrega el host.

nova aggregate-add-host

[stack@director ~]\$ nova aggregate-add-host esc1 pod1-osd-compute-3.localdomain

nova aggregate-show

[stack@director ~]\$ nova aggregate-show esc1 +---+---+----+ | Id | Name | Availability Zone | Hosts | Metadata | +---+------+ | 3 | esc1 | AZ-esc1 | 'pod1-osd-compute-3.localdomain' | 'availability_zone=AZ-esc1', 'esc1=true' | +---+----+

Recuperación de VM ESC

Paso 1. Verifique el estado de la VM ESC de la lista nova y elimínelo.

If can not delete esc then use command: nova force-delete esc Paso 2. En OSPD, navegue hasta el directorio ECS-Image y asegúrese de que las versiones **bootvm.py** y qcow2 para ESC estén presentes, si no muévalo a un directorio.

```
[stack@atospd ESC-Image-157]$ 11
total 30720136
-rw-r--r-. 1 root root 127724 Jan 23 12:51 bootvm-2_3_2_157a.py
-rw-r--r-. 1 root root 55 Jan 23 13:00 bootvm-2_3_2_157a.py.md5sum
```

Paso 3. Cree la imagen.

[stack@director ESC-image-157]\$ glance image-create --name ESC-2_3_2_157 --disk-format "qcow2" --container "bare" --file /home/stack/ECS-Image-157/ESC-2_3_2_157.qcow2 Paso 4. Verifique que exista la imagen ESC.

stack@director ~]\$ glance image-list

ID	Name
8f50acbe-b391-4433-aa21-98ac36011533 2f67f8e0-5473-467c-832b-e07760e8d1fa c5485c30-45db-43df-831d-61046c5cfd01 2f84b9ec-61fa-46a3-a4e6-45f14c93d9a9 25113ecf-8e63-4b81-a73f-63606781ef94 595673e8-c99c-40c2-82b1-7338325024a9 8bce3a60-b3b0-4386-9e9d-d99590dc9033 e5c835ad-654b-45b0-8d36-557e6c5fd6e9 879dfcde-d25c-4314-8da0-32e4e73ffc9f 7747dd59-c479-4c8a-9136-c90ec894569a	ESC-2_3_2_157 tmobile-pcrf-13.1.1.iso tmobile-pcrf-13.1.1.qcow2 tmobile-pcrf-13.1.1_cco_20170825.iso wscaaa01-sept072017 wscaaa02-sept072017 wscaaa03-sept072017 wscaaa04-sept072017 WSP1_cluman_12_07_2017 WSP2_cluman_12_07_2017

[stack@ ~]\$ openstack flavor list

+ ID Public	Name	RAM	Disk	Ephemeral	VCPUs	Is
++ 1e4596d5-46f0-46ba-9534-cfdea788f734	pcrf-smb	+	100	0	8	+ True
 251225f3-64c9-4b19-a2fc-032a72bfe969	pcrf-oam	65536	100	0	10	True
 4215d4c3-5b2a-419e-b69e-7941e2abe3bc	pcrf-pd	16384	100	0	12	True
 4c64a80a-4d19-4d52-b818-e904a13156ca	pcrf-qns	14336	100	0	10	True
 8b4cbba7-40fd-49b9-ab21-93818c80a2e6	esc-flavor	4096	0	0	4	True
 9c290b80-f80a-4850-b72f-d2d70d3d38ea	pcrf-sm	100352	100	0	10	True
 e993fc2c-f3b2-4f4f-9cd9-3afc058b7ed1	pcrf-arb	16384	100	0	4	True
 f2b3b925-1bf8-4022-9f17-433d6d2c47b5 	pcrf-cm	14336	100	0	6	True
++	+	+		+	++	+

Paso 5. Cree este archivo en el directorio de imágenes e inicie la instancia ESC.

[root@director ESC-IMAGE]# cat esc_params.conf
openstack.endpoint = publicURL

[root@director ESC-IMAGE]./bootvm-2_3_2_157a.py esc --flavor esc-flavor --image ESC-2_3_2_157 -net tb1-mgmt --gateway_ip 172.16.181.1 --net tb1-orch --enable-http-rest --avail_zone AZ-esc1 --

user_pass "admin:Cisco123" --user_confd_pass "admin:Cisco123" --bs_os_auth_url http://10.250.246.137:5000/v2.0 --kad_vif eth0 --kad_vip 172.16.181.5 --ipaddr 172.16.181.4 dhcp --ha_node_list 172.16.181.3 172.16.181.4 --esc_params_file esc_params.conf

Nota: Después de que la máquina virtual ESC problemática se vuelva a implementar con exactamente el mismo comando **bootvm.py** que la instalación inicial, ESC HA realiza la sincronización automáticamente sin ningún procedimiento manual. Asegúrese de que ESC Master esté activo y en ejecución.

Paso 6. Inicie sesión en el nuevo ESC y verifique el estado de la copia de seguridad.

[admin@esc ~]\$ escadm status
0 ESC status=0 ESC Backup Healthy