Configuración de DOCSIS 2.0 ATDMA en tarjetas de línea MC5x20S y MC28U

Contenido

Introducción 64-QAM a 6,4 MHz **Tipos de canales DOCSIS Beneficios Restricciones** Registro de CM en un entorno mixto Puntos clave Preámbulos y constelaciones Niveles de alimentación ascendentes Configuraciones Perfiles de modulación Ejemplo de Cable Modulation-Profile 121 - Mixed Mode (Modo mixto) 5x20S en modo mixto con miniperíodos de 2 marcas a 3,2 MHz de ancho de canal 28 U en modo mixto con miniperíodos de 2 marcas a 3.2 MHz de ancho de canal Ejemplo de Cable Modulation-Profile 221 - Modo ATDMA 5x20S en modo ATDMA con miniperíodos de 1 marca a 6,4 MHz de ancho de canal 28 U en modo ATDMA con miniperíodos de 1 marca a 6,4 MHz de ancho de canal Verificación de Configuraciones y Tráfico de ATDMA Verificación del tráfico ATDMA Verificación del analizador de espectro Summary Información Relacionada

Introducción

Acceso Múltiple de División de Tiempo Avanzado (ATDMA) es una extensión de Data-over-Cable Service Interface Specifications (DOCSIS) 2.0 para la capacidad ascendente (US). Proporciona un canal US mayor de hasta 6,4 MHz a 5,12 Msym/seg y proporciona esquemas de modulación mayores como modulación de amplitud en cuadratura 8 (8-QAM), 32-QAM y 64-QAM. ATDMA también proporciona más robustez de la capa física en forma de dieciséis T-bytes de corrección de errores de reenvío (FEC), entrelazado de ráfagas US y un ecualizador de 24 canales.

La capa física avanzada (PHY) presente en las tarjetas de línea más recientes también proporciona conversión analógica a digital, procesamiento de señales digitales y cancelación de entrada que puede ayudar a los módems DOCSIS 1.0 más antiguos. Para obtener más información sobre las nuevas funciones avanzadas de PHY, consulte <u>Tecnologías avanzadas de capa PHY para datos de alta velocidad sobre cable</u>.

64-QAM a 6,4 MHz

La figura 1 muestra un canal de 6,4 MHz de ancho que utiliza 64-QAM en un analizador de espectro. El ancho del canal es aparente, pero el esquema de modulación no lo es. El aspecto también se ve afectado por la configuración del analizador y el patrón de tráfico. Utilice un patrón aleatorio de un generador de tráfico para generar un rastro más suave.

Figura 1: 64-QAM a 6,4 MHz

Tipos de canales DOCSIS

DOCSIS 2.0 ha introducido tipos de canal para distinguir los diferentes modos de funcionamiento del canal ascendente. Estos tipos son:

- Tipo 1: solo DOCSIS 1.0 y 1.1.
- Tipo 2: DOCSIS 1.x y ATDMA (modo mixto).Los cablemódems DOCSIS 1.x (CM) utilizan códigos de uso de intervalo (IUC) 5 y 6 mientras que los CM DOCSIS 2.0 transmiten en IUC 9, 10 y 11, recientemente definidos, que podrían utilizar órdenes de modulación superiores no disponibles en 1.x. El IUC 11 se añadió para las corrientes de servicios de subvenciones no solicitados (UGS). Para obtener explicaciones del perfil de modulación, consulte <u>Introducción a los perfiles de modulación ascendentes</u>.

Tipo 3: solo DOCSIS 2.0.Este tipo de canal utiliza el tipo de mensaje MAC 29 en el Descriptor de canal ascendente (UCD) enviado en el canal descendente (DS) para asegurarse de que sólo 2 CMs intenten registrarse. Esto evita que los CM 1.x intenten utilizar este canal US. Además, se añadió otro IUC para las corrientes de servicios de subvenciones no solicitados (UGS). Esto se conoce como IUC 11 para UGS avanzados (a-ugs).Los canales DOCSIS de tipo 3 tienen 2 submodos:Tipo 3A para ATDMATipo 3S para el acceso múltiple por división de código síncrono (SCDMA): este submodo no estará disponible en el sistema de terminación de cable módem (CMTS) de Cisco hasta finales de 2004.

Beneficios

DOCSIS 2.0 proporciona una mayor eficiencia espectral, un mejor uso de los canales existentes, un mayor rendimiento en la dirección de US (hasta 30,72 Mbps), una mayor velocidad por módem con más paquetes por segundo (PPS) y canales más amplios (que proporcionan una mejor multiplexación estadística). Un canal de 6,4 MHz de ancho es estadísticamente mejor que dos canales de 3,2 MHz de ancho, y sólo requiere un puerto US en lugar de dos.

Junto con la compatibilidad con DOCSIS 2.0, la última generación de tarjetas de línea CMTS admite otras funciones, como la cancelación de ingreso mejorada, lo que permite órdenes más altas de modulación y superposición de frecuencia leve. No se recomienda este último punto, pero se puede demostrar que funciona. La cancelación de entrada demuestra ser robusta frente a los peores defectos de las plantas, como la distorsión de la ruta común (CPD), la banda de ciudadanos (CB), la radio de onda corta y la radio ham. Esto abre partes no utilizadas del espectro ascendente y proporciona un seguro para los servicios de salvamento.

ATDMA también mejora la flexibilidad cuando se utiliza en combinación con interfaces virtuales y equilibrio de carga. Un dominio MAC 1x1 podría tener más sentido para los clientes comerciales, mientras que un dominio MAC 1x7 podría ser más adecuado para el residencial.

Restricciones

Estas son algunas de las restricciones actuales a ATDMA:

- No funciona con el balanceo de carga, porque los pesos del balanceo de carga de US son desconocidos cuando se utilizan canales US de tipo 2 (modo mixto). Los pesos están relacionados con la velocidad agregada de la "tubería". En un entorno mixto (DOCSIS 1.x y 2.0), los CM 1.x pueden tener un peso de 10,24 Mbps y los CM 2.0 pueden tener un peso de 15 Mbps.
- Está disponible en la tarjeta MC5x20S en la versión 12.2(15)BC2a y posteriores del software IOS®.
- No funciona completamente con Advanced Spectrum Management, porque sólo hay dos umbrales configurables, pero se podrían justificar tres cuando se utilizan órdenes de modulación superiores con ATDMA.
- El ancho de canal más alto para el modo mixto es de 3,2 MHz, por lo que los CM 2,0 están limitados por CM 1,x.
- No hay soporte SCDMA ni calificación DOCSIS 2.0-CableLabs "completa" hasta que la tarjeta MC5x20T se libere a finales de 2004.

Registro de CM en un entorno mixto

El aprovisionamiento de un cable módem (CM) con su archivo de configuración (en modo 1.0 o 1.1) es independiente del modo PHY utilizado (acceso multiplex por división de tiempo [TDMA], ATDMA o SCDMA). Si se establece el tipo, la longitud y el valor (TLV) 39 igual a 0, se evita que un CM 2.0 aparezca en el modo 2.0. Si se omite TLV 39 (el valor predeterminado) o se establece en 1, un CM 2.0 intenta conectarse en el modo 2.0.

El TLV 40 se utiliza para habilitar los modos de prueba en 2.0 CM. Esto se especifica en la sección C.1.1.20 de SP-RFIv2.0-I02-020617 y se especifica como perteneciente al archivo de configuración DOCSIS en la sección D.3.1. Este campo se debe incluir en el cálculo de verificación de integridad de mensajes (MIC) de CMTS. Consulte DOCSIS 2.0 RFI Apéndice C.1.1.19, página 336.

La figura 2 muestra el archivo que se debe editar para poder configurar TLV 39. El archivo se encuentra en: C:\Program Files\Cisco Systems\Cisco Broadband Configurator\docsisconfig\resources. Haga clic con el botón derecho del ratón en DOCSIS_Config-properties y ábralo con un editor de texto.

Figura 2: Aplicación Configurador para Editar

Ele Edit View Favorites	Tools Help		1
⇔Back + ⇒ - 🔂 🗐 👰 Sei	arch Brolders 3 B C X 20 E.		
Address 🔁 D:\Program Files\Cis	co Systems\Cisco Broadband Configurator\docsisconfig	l/resources	• 🖓 GO
	Name 4	Size	Туре
	i out.of	1 KB	GIF Image
	DOCSIS_Config.properties	8 KB	PROPERTIES FI
resources	guieditor.gif	1 KB	GIF Image
	License	1 KB	File

Busque RemoveUnknownTypeTLV=no y asegúrese de que lee no. El archivo también contiene estas líneas:

This field is editable.

This specifies whether the non-DOCSIS, non-PacketCable TLVs (type in range 128 to 250) &
DOCSIS 2.0 specific TLVs 39 & 40 should be removed when save generated config file.

Esto permite al usuario establecer DOCSIS TLV 39 en la aplicación Configurator. La figura 3 muestra el modo de texto de un archivo DOCSIS 1.1 CM mientras se utiliza la aplicación Configurator.

Figura 3: Modo de texto del configurador

Inserte 39 = 0 para obligar a un CM 2.0 a registrarse en el modo 1.x, o inserte 39 = 1 para el modo 2.0. Después de guardar y volver a abrir, el cambio aparece de la siguiente manera:

39 (Enable 2.0 Mode) = No

Por el contrario, la línea muestra Yes cuando lo establece en 1.

Puntos clave

Asegúrese de que la anchura del canal se ajusta a las necesidades. Por ejemplo, una frecuencia de centro de 8 MHz no es legal porque un canal de 6,4 MHz se extendería más allá del borde de banda de 5 MHz. Cuando utilice grupos de espectro, verifique que la banda sea lo suficientemente grande para el canal deseado. Tenga en cuenta también que los tamaños de las marcas cambian automáticamente con los cambios de ancho de canal. Un canal de 6,4 MHz de ancho utiliza un miniintervalo de 1 marca de forma predeterminada; 3,2 MHz, 2 ticks; 1,6 MHz, 4 ticks; 0,8 MHz, 8 ticks, etc.

Las tarjetas de línea pueden utilizar diferentes chips US y requerir diferentes perfiles de modulación para cada una. La tarjeta de línea MC5x20S utiliza un TI4522 para la desmodulación física de EE. UU. y el MC28U utiliza el Broadcom 3138 para la desmodulación de EE. UU. Ambas tarjetas de línea aprovechan la nueva interfaz MAC-PHY (DMPI) DOCSIS especificada en DOCSIS 2.0. DMPI proporciona flexibilidad a los proveedores de CMTS como Cisco para que utilicen diversos proveedores de chips DOCSIS y ofrezcan un producto menos costoso para los usuarios de CMTS.

Preámbulos y constelaciones

Otro punto clave es que los preámbulos ATDMA son siempre Quadrature Phase-Shift Keying (QPSK) 0 o 1, donde 0 denota un preámbulo de baja potencia y 1 indica un preámbulo de alta potencia. Los CM originales 1.x utilizan un preámbulo que es el mismo que los datos, ya sea QPSK o 16-QAM. Dado que el preámbulo era un patrón consistente entre dos desembarques de símbolos, se trataba esencialmente de la codificación del cambio bifásico (BPSK). La figura 4 muestra las nuevas constelaciones del preámbulo de ATDMA.

Figura 4: Constelaciones de preámbulo de ATDMA

La figura 5 muestra constelaciones de 16-QAM y 64-QAM, respectivamente, mientras que la figura 6 muestra algunas constelaciones menos utilizadas, como 8-QAM y 32-QAM.

Niveles de alimentación ascendentes

DOCSIS proporciona rangos de nivel de potencia basados en el ancho del canal de US. <u>La tabla</u> <u>1</u> enumera los rangos de potencia para los anchos de canal asociados.

Ancho de canal (MHz)	Intervalo @ CMTS (dBmV)
0,2	–16 a 14
0,4	–13 a 17
0.8	–10 a 20
1.6	–7 a 23
3.2	–4 a 26
6.4	–1 a 29

Tabla 1: Ancho de canal frente al alcance de la alimentad	ión
---	-----

Nota: Al duplicar el ancho del canal, la relación portadora-ruido (CNR) disminuye en 3 dB. Si Cisco mantuviera la misma densidad espectral de potencia (PSD), los CM tendrían el mismo CNR, pero podría correr la posibilidad de que los CM se maximicen. Para obtener más información sobre la optimización ascendente, refiérase a <u>Cómo Aumentar la Disponibilidad y el</u> <u>Rendimiento de Trayectoria de Retorno</u>.

La modulación utilizada también dicta la salida de potencia máxima de CM. DOCSIS establece 58 dBmV para QPSK, 55 dBmV para 16-QAM, 54 dBmV para 64-QAM y 53 dBmV para SCDMA. Sin embargo, la mayoría de los CM harán más.

Configuraciones

Todos los comandos y salidas de comando son como se ven en un uBR10k que ejecuta Cisco IOS Software Release 12.2(15)BC2a. Durante la configuración de la interfaz de cable, se puede asignar al puerto US un **modo docsis** como se muestra en este ejemplo:

ubr10k(config-if)# cable upstream 0 docsis-mode ?

atdmaDOCSIS 2.0 ATDMA-only channeltdmaDOCSIS 1.x-only channeltdma-atdmaDOCSIS 1.x and DOCSIS 2.0 mixed channel

Si se selecciona el modo ATDMA, los CM 1.x ni siquiera deberían estar dentro de este US, y se muestra esta información:

ubr10k(config-if)# cable upstream 0 docsis-mode atdma

%Docsis mode set to ATDMA-only (1.x CMs will go offline) %Modulation profile set to 221

Estos anchos de canal están disponibles:

ubr10k(config-if)# cable upstream 0 channel-width ?

1600000	Channel width	1600 kHz, symbol rate 1280 ksym/s
200000	Channel width	200 kHz, symbol rate 160 ksym/s
3200000	Channel width	3200 kHz, symbol rate 2560 ksym/s $$
400000	Channel width	400 kHz, symbol rate 320 ksym/s
6400000	Channel width	$6400\ \rm kHz,$ symbol rate $5120\ \rm ksym/s$
800000	Channel width	800 kHz, symbol rate 640 ksym/s $$

Si se selecciona una anchura de canal de 6,4 MHz, el minislot cambia automáticamente a 1 tic y se muestra esta información:

ubr10k(config-if)# cable upstream 0 channel-width 6400000

%With this channel width, the minislot size is now changed to 1 tick Verifique la configuración de la interfaz con el comando **show controller**:

ubr10k# show controller cable6/0/0 upstream 0

Spectrum Group is overridden SNR - Unknown - no modems online. Nominal Input Power Level 0 dBmV, Tx Timing Offset 0 Ranging Backoff auto (Start 0, End 3) Ranging Insertion Interval auto (60 ms) Tx Backoff Start 3, Tx Backoff End 5 Modulation Profile Group 221 Concatenation is enabled Fragmentation is enabled part_id=0x0952, rev_id=0x00, rev2_id=0x00 nb_agc_thr=0x0000, nb_agc_nom=0x0000 Range Load Reg Size=0x58 Request Load Reg Size=0x0E Minislot Size in number of Ticks is = 1 Minislot Size in Symbols = 32 Bandwidth Requests = 0x0Piggyback Requests = 0x0Invalid BW Requests= 0x0 Minislots Requested= 0x0 Minislots Granted = 0x0Minislot Size in Bytes = 24 Map Advance (Dynamic) : 2180 usecs UCD Count = 313435 ATDMA mode enabled

La interfaz en ejecución aparece de la siguiente manera:

```
interface Cable6/0/0
no ip address
cable bundle 1
cable downstream annex B
cable downstream modulation 64qam
cable downstream interleave-depth 32
cable downstream frequency 45300000
cable downstream channel-id 0
no cable downstream rf-shutdown
cable upstream max-ports 5
cable upstream 0 connector 0
cable upstream 0 frequency 16000000
cable upstream 0 docsis-mode atdma
cable upstream 0 power-level 0
cable upstream 0 channel-width 6400000
cable upstream 0 minislot-size 1
cable upstream 0 modulation-profile 221
cable upstream 0 s160-atp-workaround
no cable upstream 0 shutdown
```

ubr10k# show running interface cable6/0/0

!--- Output suppressed. cable upstream 4 connector 16 cable upstream 4 frequency 15008000 cable
upstream 4 power-level 0 cable upstream 4 channel-width 1600000 cable upstream 4 minislot-size 4
cable upstream 4 modulation-profile 21 cable upstream 4 s160-atp-workaround no cable upstream 4
shutdown

Perfiles de modulación

La introducción de **docsis-mode** permite la configuración de un canal US a un modo deseado. Cada modo tiene su propio rango de perfiles "válidos":

• TDMA: cable modulation-profile *xx* (donde *xx* es igual a 01 a 99) El modo TDMA requiere números de perfil de modulación inferiores a 100.

- ATDMA-TDMA: cable modulation-profile 1 xx (donde xx es igual a 01 a 99, por lo tanto de 101 a 199)
- ATDMA: cable modulation-profile 2xx (donde xx es igual a 01 a 99, de 201 a 299)

Las nuevas ráfagas de ATDMA, conocidas como códigos de uso de intervalos (IUC), se introducen para los modos DOCSIS mixtos y sólo de ATDMA.

- IUC 9: concesión breve de PHY avanzada (corto)
- IUC 10: concesión de larga duración de PHY avanzada (largo)
- IUC 11: UGS PHY avanzados (a-ugs; modo sólo ATDMA)

Precaución: Es posible que los comandos **show run** y **show cable modulation** no sean exactos al ver los perfiles de modulación. Asegúrese de utilizar **show cable modulation** *cablex/y* **upstream** z en Cisco IOS Software Release 12.2(15)BC2a para mostrar el perfil real utilizado.

Nota: Cada tarjeta de línea tiene un esquema de numeración "válido": De 1 a 10 para las tarjetas antiguas, x2x para MC5x20 y x4x para la tarjeta de línea MC28U. <u>La tabla 2</u> enumera los diferentes escenarios:

Números de perfil	Tarjetas de línea	Modo DOCSIS
1–10	MC28C y MC16x	TDMA
21–30	MC5x20S	TDMA
121–130	MC5x20S	TDMA-ATDMA
221–230	MC5x20S	ATDMA
41–50	MC28U	TDMA
141–150	MC28U	TDMA-ATDMA
241–250	MC28U	ATDMA
361–370	MX5x20T	SCDMA

Tabla 2: Número de perfil de modulación para cada modo DOCSIS

Ejemplo de Cable Modulation-Profile 121 - Mixed Mode (Modo mixto)

<u>La tabla 3</u> es un ejemplo de un perfil de modulación para la tarjeta de línea MC5x20S para ATDMA-TDMA, modo mixto. El **texto en negrita** indica los perfiles construidos por Cisco.

IU C	Entrada	Descripción
10	largo	Ráfaga de concesión avanzada de PHY
9	a-short	Ráfaga de concesión corta PHY avanzada
11	a-ugs	Ráfaga de otorgamiento no solicitada de PHY avanzada
1	inicial	Ráfaga de medición inicial
6	largo	Long Grant Burst
	mixto alto	Crear perfil de combinación

Tabla 3: Configuración del perfil de modulación para el modo mixto

		QPSK/ATDMA QAM-64
		predeterminado
	monolo hoio	Crear perfil de combinación
	mezcia baja	predeterminado
	mixto	Crear perfil de combinación QPSK/ATDMA QAM-32
		predeterminado
	mix-qam	Cree el perfil de combinación QAM- 16/ATDMA QAM-64
	-	predeterminado
		Crear perfil QAM-16
	qam-ro	predeterminado
	qpsk	Crear perfil QPSK predeterminado
2	reqdata	Ráfaga de datos/solicitud
3	petición	Solicitar ráfaga
	mezcla baja mixto mix-qam qam-16 qpsk reqdata petición strong-mix- high strong-mix-mid strong-mix-mid corto estación	Cree un perfil de modulación de mezcla QPSK/ATDMA QAM-64 sólido
	strong-mix-mid	Cree un perfil de modulación de combinación QPSK/ATDMA QAM- 32 sólido
	strong-mix- qam	Cree un perfil robusto de modulación de mezcla QAM- 16/ATDMA QAM-64
5	corto	Ráfaga de Subvención Corta
4	estación	Ráfaga de medición de la estación

Estos ejemplos muestran el comando correcto para mostrar los perfiles asignados a los US específicos:

5x20S en modo mixto con miniperíodos de 2 marcas a 3,2 MHz de ancho de canal

ubr10k# show cable modulation-profile cable6/0/0 upstream 0

Mod	IUC	Туре	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Type	
121	request	qpsk	32	no	0x0	0x10	0x152	0	22	no	yes	0	qpsk0	na
121	initial	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	0	qpsk0	na
121	station	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	0	qpsk0	na
121	short	qpsk	64	no	0x3	0x4E	0x152	12	22	yes	yes	0	qpsk0	na
121	long	qpsk	64	no	0x9	0xE8	0x152	0	22	yes	yes	0	qpsk0	na
121	a-short	qpsk	64	no	0x3	0x4E	0x152	12	22	yes	yes	0	qpsk0	no
121	a-long	qpsk	64	no	0x9	0xE8	0x152	0	22	yes	yes	0	qpsk0	no
121	a-ugs	qpsk	64	no	0x9	0xE8	0x152	0	22	yes	yes	0	qpsk0	no
<u>28</u>	U en m	iodo i	mix	to co	n mi	nipe	ríodo	s de	e 2 n	narca	as a	3,2	MHz	de ancho de canal

Mod	IUC	Туре	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Type	
141	request	qpsk	64	no	0x0	0x10	0x152	0	8	no	yes	396	qpsk	no
141	initial	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk	no
141	station	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk	no
141	short	qpsk	100	no	0x3	0x4E	0x152	35	25	yes	yes	396	qpsk	no
141	long	qpsk	80	no	0x9	0xE8	0x152	0	135	yes	yes	396	qpsk	no
141	a-short	64qam	100	no	0x9	0x4E	0x152	14	14	yes	yes	396	qpsk1	no
141	a-long	64qam	160	no	0xB	0xE8	0x152	96	56	yes	yes	396	qpsk1	no
141	a-ugs	64qam	160	no	0xB	0xE8	0x152	96	56	yes	yes	396	qpsk1	no
						_								

Ejemplo de Cable Modulation-Profile 221 - Modo ATDMA

La tabla 4 es un ejemplo de un perfil de modulación para la tarjeta de línea MC5x20 para el modo ATDMA. El **texto en negrita** indica los perfiles construidos por Cisco.

Entrada	Descripción
largo	Ráfaga de concesión avanzada de PHY
a-short	Ráfaga de concesión corta PHY avanzada
a-ugs	Ráfaga de otorgamiento no solicitada de PHY avanzada
inicial	Ráfaga de medición inicial
mixto alto	Crear el perfil de combinación ATDMA QPSK/QAM-64 predeterminado
mezcla baja	Crear perfil de combinación ATDMA QPSK/QAM-16 predeterminado
mixto	Crear el perfil de combinación ATDMA QPSK/QAM-32 predeterminado
mix-qam	Cree el perfil de combinación ATDMA QAM-16/QAM-64 predeterminado
qam-16	Crear perfil ATDMA QAM-16 predeterminado
qam-32	Crear perfil ATDMA QAM-32 predeterminado
qam-64	Crear perfil ATDMA QAM-64 predeterminado
qam-8	Crear perfil ATDMA QAM-8 predeterminado
qpsk	Crear perfil ATDMA QPSK predeterminado
reqdata	Ráfaga de datos/solicitud
petición	Solicitar ráfaga
strong-mix-high	Cree un perfil robusto de modulación de mezcla ATDMA QPSK/QAM-64
strong-mix-low	Cree un perfil de modulación de combinación ATDMA QPSK/QAM-16 sólido
strong-mix-mid	Cree un perfil robusto de modulación

Tabla 4: Configuración del perfil de modulación para el modo ATDMA

	de mezcla ATDMA QPSK/QAM-32
estación	Ráfaga de medición de la estación

5x20S en modo ATDMA con miniperíodos de 1 marca a 6,4 MHz de ancho de canal

ubr10k# show cable modulation-profile cable6/0/0 upstream 0

Mod	IUC	Type	Pre	Diff	FEC	FEC	Scrm	Мах	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Type	
221	request	qpsk	32	no	0x0	0x10	0x152	0	22	no	yes	0	qpsk0	no
221	initial	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	64	qpsk0	no
221	station	qpsk	64	no	0x5	0x22	0x152	0	48	no	yes	64	qpsk0	no
221	a-short	64qam	64	no	0x6	0x4E	0x152	6	22	yes	yes	64	qpsk1	no
221	a-long	64qam	64	no	0x8	0xE8	0x152	0	22	yes	yes	64	qpsk1	no
221	a-ugs	64qam	64	no	0x8	0xE8	0x152	0	22	yes	yes	64	qpskl	no

28 U en modo ATDMA con miniperíodos de 1 marca a 6,4 MHz de ancho de canal

ubr7246-2# show cable modulation-profile cable6/0 upstream 0

Mod	IUC	Туре	Pre	Diff	FEC	FEC	Scrm	Max	Grd	Last	Scrm	Pre	Pre	RS
			len	enco	Т	k	seed	В	time	CW		offst	Type	
241	request	qpsk	64	no	0x0	0x10	0x152	0	8	no	yes	396	qpsk0	no
241	initial	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk0	no
241	station	qpsk	128	no	0x5	0x22	0x152	0	48	no	yes	6	qpsk0	no
241	a-short	64qam	100	no	0x9	0x4E	0x152	6	10	yes	yes	396	qpsk1	no
241	a-long	64qam	160	no	0xB	0xE8	0x152	96	56	yes	yes	396	qpsk1	no
241	a-ugs	16qam	108	no	0x9	0xE8	0x152	18	16	yes	yes	396	qpsk1	no

Para obtener más información sobre los perfiles de modulación ascendente, refiérase a <u>Comprensión de los Perfiles de Modulación Ascendente</u>.

Verificación de Configuraciones y Tráfico de ATDMA

Para verificar que los módems utilizan ATDMA cuando se lo desea, ejecute estos comandos para mostrar las capacidades y configuraciones de CM:

ubr7246-2# show cable modem mac

MAC Address	MAC	Prim	Ver	QoS	Frag	Cnct	PHS	Priv	DS	US	
	State	Sid		Prov					Saids	Sids	
0090.8343.9c07	online	11	DOC1.1	DOC1.1	yes	yes	yes	BPI	22	5	
00e0.6f1e.3246	online	1	DOC2.0	DOC1.1	yes	yes	yes	BPI+	255	16	
Ese comando muestra las capacidades de CM, no necesariamente lo que está haciendo.											

ubr7246-2# show cable modem phy

MAC Address	I/F	Sid	USPwr	USSNR	Timing	uReflec	DSPwr	DSSNR	Mode
			(dBmV)	(dB)	Offset	(dBc)	(dBmV)	(dB)	
0006.5305.ad7d	C3/0/U0	1	41.03	31.13	2806	16	-1.00	34.05	tdma
0000.39f7.8e6b	C6/0/U0	5	50.01	36.12	1469	22	0.02	34.08	atdma
000b.06a0.7120	C6/1/U1	1	32.00	36.12	2010	41	6.02	41.05	tdma

Ese comando muestra el modo y otras configuraciones de capa física que está utilizando el CM. Algunas de estas entradas no aparecen a menos que se configure remote-query.

Verificación del tráfico ATDMA

Al verificar el tráfico ATDMA, es más fácil monitorear un cable módem en un US. El comando **ping** no se concatena, por lo que es una prueba fácil para verificar que se utilizan concesiones cortas para paquetes pequeños, como tramas Ethernet de 64 bytes. Ejecute el comando **ping** con 46 bytes del CMTS al CM.

En primer lugar, verifique la configuración adecuada, como el perfil de modulación, la configuración en ejecución y el tipo de CM.

1. Ejecutar este comando: ubr7246-2# show cable modulation-profile cable6/0 upstream 0 242 a-short 64qam 100 no 0x9 0x4E 0x152 7 14 yes yes 396 qpsk1 no 242 a-long 64qam 160 no 0xB 0xE8 0x152 245 255 yes yes 396 qpsk1 no 2. Ejecutar este comando: ubr7246-2# show cable modem cable6/0

000b.06a0.7116 10.200.100.158 C6/0/U0 online 11 1.00 2065 0 N

3. Haga ping en la dirección IP deseada y verifique que las ranuras a-short se incrementen adecuadamente.Pueden aumentar más de lo previsto debido al tráfico SNMP (del inglés Simple Network Management Protocol, protocolo simple de administración de red) o al mantenimiento de la estación.Ejecutar este comando: ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc slots

ATDMA Short Grant Slots 2100, ATDMA Long Grant Slots 20871 Ejecutar este comando: ubr7246-2# ping

ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc Slots

ATDMA Short Grant Slots 3100, ATDMA Long Grant Slots 20871 Una manera fácil de verificar que se utilizan concesiones largas para paquetes grandes, como tramas Ethernet de 1518 bytes, es ejecutar el comando **ping** con 1500 bytes del CMTS al CM.

1. Ejecutar este comando: ubr7246-2# show interface cable6/0 mac-scheduler 0 | inc Slots

ATDMA Short Grant Slots 3281, ATDMA Long Grant Slots 20871

 Ping con tramas Ethernet de 1500 bytes para verificar el tráfico largo de ATDMA se utiliza correctamente.

```
ubr7246-2# ping
```

ATDMA Short Grant Slots 3515, ATDMA Long Grant Slots 21871

Verificación del analizador de espectro

Otra manera de verificar los atributos de capa física es ver el paquete US en el dominio de tiempo de un analizador de espectro. La figura 7 muestra un paquete de 1518 bytes usando 64-QAM a 6,4 MHz.

Figura 7 - Paquete de 1518 bytes con 64-QAM a 6,4 MHz

El paquete sólo requiere unos 400 µs porque está utilizando un esquema de modulación alto y una velocidad de símbolos.

La figura 8 muestra el mismo paquete usando 16-QAM a 3,2 MHz.

Figura 8 - Paquete de 1518 bytes con 16-QAM a 3,2 MHz

El paquete requiere unos 1200 µs porque está utilizando un esquema de modulación inferior y una velocidad de símbolo. El rendimiento de 64-QAM a 6,4 MHz es de aproximadamente 30 Mbps: compare esto con el rendimiento de 16-QAM a 3,2 MHz, que es de aproximadamente 10 Mbps. La diferencia es un factor de tres, que coincide con un tiempo de paquete tres veces más largo.

La figura 9 muestra un paquete de 1518 bytes que utiliza QPSK a 3,2 MHz.

Figura 9 - Paquete de 1518 bytes con QPSK a 3,2 MHz

El paquete requiere unos 2500 µs porque está utilizando el esquema de modulación más bajo y la velocidad de símbolo Msym/sec de 2,56. QPSK a 3,2 MHz es aproximadamente de 5 Mbps y es dos veces más lento que la Figura 8, lo que da lugar a un paquete que tarda dos veces más en serializarse.

Summary

Cisco proporcionará DOCSIS 2.0, Advanced PHY, con estas funciones:

 MAC de circuito integrado específico de la aplicación (ASIC) de Cisco (la interfaz DMPI es un requisito 2.0)

- Texas Instruments (TI) ATDMA US, Broadcom DS (5x20), Broadcom US y DS (28U)
- Convertidor ascendente integrado
- Gestión integrada del espectro
- Procesamiento distribuido
- Asignación flexible de US y DS (interfaces virtuales)
- Conector denso (5 x 20)

Si el motivo por el que utiliza ATDMA es para velocidades por módem más rápidas, se deben cambiar muchos otros parámetros, como las ticks de minislot, el perfil de modulación, la configuración de ráfaga máxima, **cable default-phy-burst** y otros ajustes. Para obtener más información, consulte <u>Introducción al rendimiento de los datos en un mundo DOCSIS</u>.

Hay otros factores que pueden afectar directamente al rendimiento de la red de cable, como el perfil de calidad de servicio (QoS), el ruido de la planta de cable, el límite de velocidad, la combinación de nodos, la utilización excesiva, etc. La mayoría de estos temas se tratan en detalle en <u>Resolución de problemas de rendimiento lento en redes de cablemódem</u> y <u>Comprensión del</u> <u>Rendimiento de Datos en un Mundo DOCSIS</u>.

Nota: Asegúrese de que los CM 1.0, que no pueden fragmentarse, tengan una ráfaga máxima inferior a 2000 bytes.

Un estado que podría aparecer en el comando **show cab modem** es reject(na), lo que indica una respuesta de rechazo. El rechazo(na) ocurre en estas situaciones:

- Cuando el módem envía un "NACK de registro" al CMTS después de recibir una respuesta de registro del CMTS.
- Si el CM DOCSIS 1.1 (o posterior) no puede enviar una "ACK de registro" dentro del período de tiempo correcto.

Información Relacionada

- <u>Compatibilidad con tecnología de cable</u>
- <u>Soporte Técnico Cisco Systems</u>