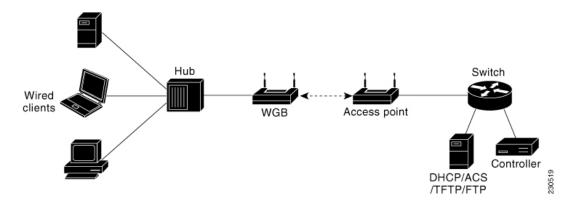


Workgroup Bridges

- Cisco Workgroup Bridges, on page 1
- Non-Cisco Workgroup Bridges, on page 39


Cisco Workgroup Bridges

A workgroup bridge (WGB) is a Cisco access point that can be configured in a mode that permits it to associate with a wireless infrastructure, providing network access on behalf of wired clients. The WGB mode is supported on autonomous IOS (Wave 1) APs and on some Wave 2 APs.

A Cisco WGB provides information about its wired clients via Internet Access Point Protocol (IAPP) messaging. This enables the wireless infrastructure to know the MAC addresses of the WGB's wired clients. Up to 20 wired clients are supported behind a Cisco WGB.

In 8.10 release, the following APs support WGB operational mode: 2800, 3800, 4800, 1560 and 6300.

Figure 1: WGB Example

Note

If the lightweight access point fails, the WGB attempts to associate to another access point.

The following are some guidelines for Cisco Workgroup Bridges:

• The WGB can be any autonomous access point that supports the workgroup bridge mode and is running Cisco IOS Release 12.4(3g)JA or later releases (on 32-MB access points) or Cisco IOS Release 12.3(8)JEB

or later releases (on 16-MB access points). These access points include the AP1120, AP1121, AP1130, AP1231, AP1240, and AP1310. Cisco IOS releases prior to 12.4(3g)JA and 12.3(8)JEB are not supported.

Note

If your access point has two radios, you can configure only one for workgroup bridge mode. This radio is used to connect to the lightweight access point. We recommend that you disable the second radio.

Enable the workgroup bridge mode on the WGB as follows:

- On the WGB access point GUI, choose **Workgroup Bridge** for the role in radio network on the Settings > Network Interfaces page.
- On the WGB access point CLI, enter the station-role workgroup-bridge command.
- The following features are supported for use with a WGB:
 - Guest N+1 redundancy
 - Local EAP
 - Open, WPA+TKIP, WPA2+AES, LEAP, EAP-FAST, PEAP, and EAP-TLS authentication modes
- Wired clients connected to the WGB are not authenticated for security. Instead, the WGB is authenticated
 against the access point to which it associates. Therefore, we recommend that you physically secure the
 wired side of the WGB.
- Wired clients connected to a WGB inherit the WGB's QoS and AAA override attributes.
- To enable the WGB to communicate with the lightweight access point, create a WLAN and make sure that Aironet IE is enabled.
- If you have to apply ACL to WGB during run time, do not modify the ACL configuration for interface in the controller during run time. If you need to modify any ACLs, then you must disable all WLANs that are in the controller or disable both the 802.11a and 80.11b networks. Also, ensure that there are no clients associated and mapped to that interface and then you can modify the ACL settings.

This section contains the following subsections:

Guidelines and Restrictions for Cisco Workgroup Bridges

- The WGB can associate only with Cisco lightweight access points.
- The following features are not supported for use with a WGB:
 - · Idle timeout
 - · Web authentication
- Aironet WGBs are not supported if the parent AP is configured for FlexConnect local switching with local authentication, if the parent AP is a Wave 2 AP (that is, 802.11ac Wave 2 or 802.11ax). For more information, see CSCvh22645.

- With Layer 3 roaming, if you plug a wired client into the WGB network after the WGB has roamed to another controller (for example, to a foreign controller), the wired client's IP address displays only on the anchor controller, not on the foreign controller.
- If a wired client does not send traffic for an extended period of time, the WGB removes the client from its bridge table, even if traffic is continuously being sent to the wired client. As a result, the traffic flow to the wired client fails. To avoid the traffic loss, prevent the wired client from being removed from the bridge table by configuring the aging-out timer on the WGB to a large value using the following Cisco IOS commands on the WGB:

```
configure terminal
bridge bridge-group-number aging-time seconds
exit
end
```

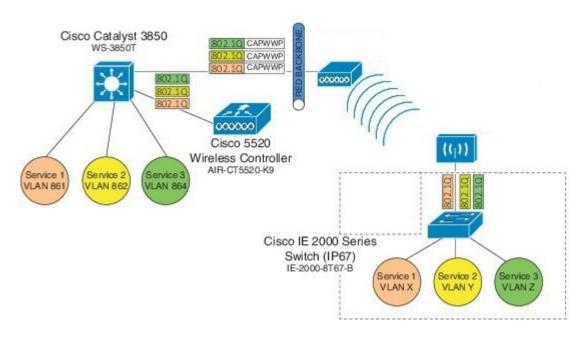
where *bridge-group-number* is a value between 1 and 255, and *seconds* is a value between 10 and 1,000,000 seconds. We recommend configuring the *seconds* parameter to a value greater than the wired client's idle period.

- When you deauthenticate a WGB record from a controller, all of the WGB wired clients' entries are also deleted.
- These features are not supported for wired clients connected to a WGB:
 - MAC filtering
 - · Link tests
 - Idle timeout
- The broadcast forwarding toward wired WGB clients works only on the native VLAN. If additional VLANs are configured, only the native VLAN forwards broadcast traffic.
- Associating a WGB to a WLAN that is configured for Adaptive 802.11r is not supported.

Workgroup Bridge (WGB) Downstream Broadcast On Multiple VLANs

Cisco Wireless LAN Controller (WLC) Release 8.3 provides an enhancement to broadcast traffic support on multiple 802.1Q VLAN workgroup bridge (WGB) deployments that traverse mesh networks and in Local mode. Specifically, support for WGB downstream broadcasts over multiple VLANs (to differentiate and prioritize traffic); and, bridging of VLAN traffic to wired clients connected to the WGB. Applications for this functionality are commonly found in the transportation and mining industries. For more information, see CSCub87583.

Supported platforms:


- Access point (AP) and WGB support:
 - IW3700 Series
 - 1552H/SA/SD Series

Supported AP mode:

· Local mode

· Bridge mode

Figure 2: Workgroup Downstream Broadcast on Multiple VLAN

Prerequisites

You need to create the dynamic interfaces and bind them to the interface group before you proceed with the configuration.

- 1. Create the dynamic interfaces, by choosing **CONTROLLER** > **Interfaces** > **New** on WLC. Add any dynamic interface that needs to support the downstream broadcast on Multiple VLANs feature into the interface group.
- 2. Bind the dynamic interfaces with Interface Groups, by choosing CONTROLLER > Interface Groups > Add Group on WLC.
- **3.** Bind the Interface Groups to WLAN. Choose **WLAN**. Under the specific WLAN General confirmation tab, choose the proper interface group.

Cisco Wireless Controller Configuration (CLI Only)

To enable or disable the downlink broadcast packet VLAN tagging on a WLAN (new command):

(Cisco Controller) >config wlan wgb broadcast-tagging {enable | disable} wlan-id

Note

This feature is disabled by default.

Note

To enable this feature, you need to enable **Broadcast Forwarding** on WLC, by choosing **Controller** > **General** and choose **Enabled** from the **Broadcast Forwarding** drop-down list.

Note

To enable this feature, you should also configure the AP Multicast Mode to Multicast rather than Unicast, by clicking **Controller** > **General** > **AP Multicast Mode** and choosing **Multicast**, and then assign Multicast Group Address.

WGB Configuration (CLI Only)

You can configure the following on Workgroup Bridges:

- Broadcast Tagging
- Native VLANs

By default, Broadcast Tagging is disabled.

By default, only Native VLAN broadcasts can be forwarded to wired clients in Native VLANs.

You use the no command to disable VLAN configurations on the WGB as shown in the examples below.

Note

When you have multiple VLAN configurations on WGB, you need to configure the encryption cipher mode and keys as the following example shows:

```
encryption vlan 861 mode ciphers aes-ccm encryption vlan 862 mode ciphers aes-ccm encryption vlan 864 mode ciphers aes-ccm
```

Then, you should configure the encryption cipher mode globally on the multicast or broadcast interface by entering the following command:

encryption mode ciphers aes-ccm

VLAN Broadcast Tagging Configuration

• To enable broadcast tagging on a VLAN (new command):

```
(WGB) (config) #workgroup-bridge unified-vlan-client broadcast-tagging
```

• To disable broadcast tagging on a VLAN:

(WGB) (config) #no workgroup-bridge unified-vlan-client broadcast-tagging

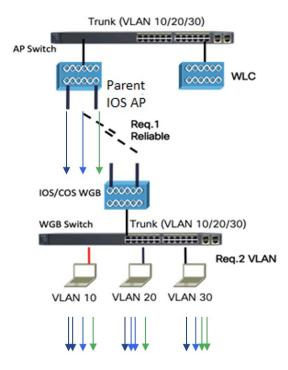
Note

The **no workgroup-bridge unified-vlan-client broadcast-tagging** command will disable **workgroup-bridge unified-vlan-client** as well. Make sure you have **workgroup-bridge unified-vlan-client** configured properly to enable the multiple vlan feature.

Reliable WGB Downstream Broadcast for Multiple VLANs

Cisco Wireless Controller (WLC) Release 8.10.130.0 provides an enhancement for the Workgroup Bridge (WGB) Downstream Broadcast On Multiple VLANs, on page 3 feature, which was first introduced in Release 8.3. Legacy broadcast without 802.11 ACK mechanism's may have more chance to cause packet loss over the air. With reliable downstream broadcast feature, broadcast packet can be converted to unicast packet. Hence the Root AP will receive the ACK for converted broadcast packet and retransmit in case of missing ACK.

The converted unicast packet's header will be changed from 3-address to 4-address format. WGB's MAC address will be used as receiver address (RA) instead of broadcast address and special multicast address with VLAN information will be used as destination address (DA). This BC2UC conversion for multiple VLAN's is possible for WGB and its wired clients. Since the converted packet is a unicast packet, Root AP will receive the ACK for each packet and retransmit based on the retry logic by the Root AP for every ACK which is not received for this broadcast to unicast conversion.


Note

This enhancement is for WGB and its wired clients. It will not impact the non-WGB wireless clients.

- Supported AP platforms:
 - Cisco Industrial Wireless 3700 Series Access Points
 - · Cisco Aironet 1570 Series Access Points
- Supported WGB platforms:
 - Cisco Industrial Wireless 3700 Series Access Points
- Supported AP modes:
 - Local
 - Bridge

As shown in the following figure, a WGB with wired clients of three different VLANs (VLAN 10, 20, and 30) joins the IOS AP wireless network. The broadcast traffic from AP to WGB will be transmitted to the clients with corresponding VLAN and retransmission will happen if traffic is lost on air.

Figure 3: WGB Bridged Network

The Receiver address (RA) of legacy broadcast packet is FF:FF:FF:FF:FF:FF and there will not be any retransmission if the packet is lost in the air. The reliable downstream broadcast feature replaces this RA with WGB address and Destination address (DA) with special multicast address 01:00:5e:80:xx:xx. This will make the packet as a unicast packet and enables ACK mechanism. The packet will be retransmitted when the ACK is not received.

The multicast address **01:00:5e:80:xx:xx** is introduced to transmit the VLAN information between AP and WGB. The VLAN value is embedded in 2 LSB of this multicast address. Both IOS and COS WGB support to decode this type of packet.

Root AP will make "N" copies for single broadcast packet for "N" WGBs associated to it on the specific VLAN. Also, non-converted packet will be sent for the benefit of non-WGB clients. Broadcast packets will not get converted if there is no WGBs associated on the specific VLAN.

QOS behavior:

- The new packet is a 802.11e Qos data.
- The 802.11e QoS priority of reliable broadcast packets will follow multicast default priority value from WLAN's QOS configuration.

The configuration similarities and changes between Release 8.10.130.0 and Release 8.3 are as following:

• Similarities:

- Dynamic interface for all VLANs must be created on the WLC. It is necessary for multi-vlan support in both Release 8.10.130.0 and Release 8.3.
- Broadcast-tagging configurations are same on WLC and WGB for both Release 8.10.130.0 and Release 8.3.

· Changes:

- Interface-group must be configured in Release 8.3 to support downstream multiple VLANs. But in 8.10.130.0, it can be supported with or without interface-group configuration on the WLAN.
- Broadcast packets are converted to multicast packets by Root AP in Release 8.3. While in Release 8.10.130.0, broadcast packets will be converted to unicast packets by Root AP.

The following figures illustrate an example of 802.11 packet forwarding from VLAN 106 (0x006a). The receiver address changes from FF:FF:FF:FF:FF:FF to the MAC address of WGB Radio (d4:c9:3c:e3:16:ec), and the destination address changes from FF:FF:FF:FF:FF:FF:FF:FF:FF:601:00:5E:80:00:6a (the last two bytes in MAC address represents corresponding VLAN in hexadecimal).

Figure 4: Normal Broadcast Packet

Figure 5: Reliable Broadcast Packet

Cisco Wireless Controller (WLC) Configuration

This section provides the basic configuration for AireOS controller.

• To enable or disable reliable broadcast traffic for IOS AP, configure broadcast-tagging on the WLAN from AireOS WLC:

```
(Cisco Controller) > config wlan wgb broadcast-tagging <enable | disable > <wlan-id>
```

- To support reliable broadcast feature, basic broadcasting forwarding and global multicast feature should be enabled on WLC first. The following commands are for basic broadcast forwarding and global multicast configuration.
 - To enable global broadcast forwarding:

```
(Cisco Controller) > config network broadcast enable
```

To configure AP multicast mode:

(Cisco Controller) > config network multicast mode multicast multicast_Group_Address

WGB Configuration

To support multiple VLAN on IOS WGB, the following CLI should be configured on WGB:

WGB (config) #workgroup-bridge unified-vlan-client

To enable broadcast tagging on a VLAN:

WGB(config) #workgroup-bridge unified-vlan-client broadcast-tagging

To disable broadcast tagging on a VLAN:

```
WGB (config) #no workgroup-bridge unified-vlan-client broadcast-tagging
```

WGB will received both FF:FF:FF:FF:FF:FF and 01:00:5e:80:xx:xx packet on the native VLAN. By default, WGB will forward the normal broadcast (FF:FF:FF:FF:FF:FF) and discard the reliable broadcast (01:00:5e:80:xx:xx). If the CLI is enabled, WGB will forward the reliable broadcast (01:00:5e:80:xx:xx) to corresponding VLAN's wired client and discard the normal broadcast (FF:FF:FF:FF:FF).

Troubleshooting Reliable Broadcast

This section describes the troubleshooting of reliable broadcast on WLC, Root AP, and WGB.

- Troubleshooting on WLC:
 - Use the **show wlan** <*wlanid*> command to check if broadcast tagging is enabled.

• Use **debug capwap payload enable** to check the mgid information sent to AP.

```
*spamApTask0: Feb 19 18:14:51.384: b0:8b:cf:75:b2:20 L2_MCAST_MGID_INFO : payload 0 addOrDelete 1, mgidByte[0] 0, mgidByte[1] 10 
*spamApTask0: Feb 19 18:14:51.384: b0:8b:cf:75:b2:20 MCAST_MGID_INFO_PAYLOAD vapId 3, isL3Mgid FALSE, numOfMgid 1, vlanInterfaceId 10
```

• Use the **debug pem events** command to check the association of WGB and its wired clients.

```
*iappSocketTask: Feb 19 14:05:38.379: 00:e0:4c:53:44:58 sending to spamAddMobile (wgb wired client) vlanId 106 mgid 11 numOfMgid 1
```

- Troubleshooting on Root AP:
 - Use the **show capwap meast mgid all** command to display L2 MGID information.

```
L2 MGID = 11 WLAN bit map (all slots) = 0x0001 VLAN ID = 106
Slot map/tx-cnt: R0:0x0001/14 R1:0x0001/14 R2:0x0001/0
```

 Use the show capwap mcast mgid id <mgid value> command to display the details of a specific MGID

```
IOS-AP#show capwap mcast mgid id 11
L2 MGID = 11 WLAN bit map (all slots) = 0 \times 0001 VLAN ID = 106
 Slot map/tx-cnt: R0:0x0001/979 R1:0x0001/979 R2:0x0001/0
rx pkts = 979
tx packets:
                                               7
wlan : 0
                     2
                          3
                               4
                                     5
                                          6
                                                     8
                                                              10
                                                                    11
               1
    13
         14
              15
12
slots0 : 0
                Ω
                      Ω
                           0
                                Ω
                                      Ω
                                           Ω
                                                Ω
                                                      0
                                                           Ω
                                                                Ω
                                                                      Ω
      0
           0
  0
                 0
slots1 : 979
                0
                      0
                           0
                                0
                                      0
                                           0
                                                      0
                                                                      0
       0 0
  Ω
                 0
slots2: 0
                0
                           0
                                0
                                      0
                                                                      0
  0
      Ω
          Ω
                 0
```

```
Reliable BCAST Clients: 1
Client: d4c9.3ce3.16ec --- SlotId: 1 WlanId: 0 ConvertedBCASTtx: 263
```

• Use the **debug capwap meast** command to get the information of WGB and its wired clients added to the BC2UC client list.

```
*Dec 19 21:09:29.795: CAPWAP MCAST: capwapAddEntryToL2MgidList:Added new client d4c9.3ce3.16ec to mgid 11 list of vlan 105, Total clients in this list: 1.
*Dec 19 21:10:56.491: CAPWAP MCAST: capwapAddEntryToL2MgidList:Added new client d4c9.3ce3.16ec to mgid 10 list of vlan 106 for wired client f076.1cdc.b22c, Total clients in this list: 1.
```

• Use **debug dot11 dot11radio** <0|1> **trace print xmt** to check the transmission of original and converted broadcast packet.

```
Converted Packet(4-address format):

*May 6 14:04:40.859: 613B6145 t a8.1b2s0 - 8803 000 48B89C 75B22C m01005E 16F0
361E08 q4 192

IP 10.100.106.255 < 10.100.106.56 f1-0-0 id 0 tt164 sum 50AA prot 1 len 84

ICMP ping code 0 chk F4D7, id 20765 seq 330

CF77 B25E 0000 0000 6F17 0100 0000 0000 1011 1213 1415 1617 1819 1A1B 1C1D

Original packet (3-address format):

*May 6 14:04:40.859: 613B6204 t 18 0 - 0802 000 mFFFFFF 75B22C 361E08 C020
192

IP 10.100.106.255 < 10.100.106.56 f1-0-0 id 0 tt164 sum 50AA prot 1 len 84

ICMP ping code 0 chk F4D7, id 20765 seq 330
```

- Troubleshooting on WGB:
 - Use the **show running-config** command to check the status of **workgroup unified-vlan-client** and **workgroup-bridge unified-vlan-client broadcast-tagging**.
 - Use the **debug dot11 forwarding** command to check whether the IOS WGB has recovered the VLAN information from converted broadcast packet.

```
*Sep 15 02:54:24.775: Unified WGB convert specific mcast+vlan pak to ffff.fffff.fffff:0080.483f.d5f6 on Virtual-Dot11Radio0 received, link 7, dest vlan id 0x402F <- 2F (Vlan id)
```

 Use the debug dot11 events command to check whether the IOS WGB has received the original broadcast packet and dropped.

```
*Feb 4 17:41:19.081: Unified WGB drop original none-tagged bcast pak from source 00e0.4c36.1e08, ethertype: 0x0800, linktype: 7
```

 Use the debug dot11 dot11radio <0|1> trace print rcv command to check converted packets and original packets.

```
Converted Packet:

*Nov 27 15:27:23.727: CB8823A0 r m6-2 24/128/128 71- 8803 02C 48B89C AD9A70 m01005E 06A0 392AC9 q4 192

4500 0054 0000 4000 4001 56C9 0A64 6719 0A64 67FF 0800 2E6A 1556 03BF B74B DE5D 0000 0000 5604 0600 0000 0000 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F 3031 3233 3435 3637 4860 6C3D

Original Packet:

*Nov 27 15:27:23.727: CB88246F r 18 21/128/128/128 74- 0802 000 mFFFFFF AD9A70 392AC9 4610 192

4500 0054 0000 4000 4001 56C9 0A64 6719 0A64 67FF 0800 2E6A 1556 03BF B74B DE5D 0000 0000 5604 0600 0000 0000 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F 3031 3233 3435 3637 0000 0000
```

Use Sniffer to capture packet over the air or on the wired side when the detailed packet information is needed. The following figure shows the original packet details.

Figure 6: Original Packet

```
2402 1.237499 10.100.106.35 10.100.106.255 ICMP 192 Echo (ping) request id=0x6d4
   2407 1.238061
                    10.100.106.35
                                     10.100.106.255 ICMP
                                                                      184 Echo (ping) request id=0x6d4:
   4489 2.238678
                    10.100.106.35
                                        10.100.106.255
                                                           ICMP
                                                                      192 Echo (ping) request id=0x6d4:
   4491 2.238767
                    10.100.106.35
                                        10.100.106.255
                                                           ICMP
                                                                      184 Echo (ping) request id=0x6d4
> Frame 2407: 184 bytes on wire (1472 bits), 184 bytes captured (1472 bits)
> AVS WLAN Capture header
> 802.11 radio information
∨ IEEE 802.11 Data, Flags: .....F.
    Type/Subtype: Data (0x0020)
  > Frame Control Field: 0x0802
    .000 0000 0000 0000 = Duration: 0 microseconds
    Receiver address: Broadcast (ff:ff:ff:ff:ff)
    Transmitter address: Cisco_75:b2:2d (b0:8b:cf:75:b2:2d)
    Destination address: Broadcast (ff:ff:ff:ff:ff:ff)
    Source address: RealtekS_36:1e:08 (00:e0:4c:36:1e:08)
    BSS Id: Cisco_75:b2:2d (b0:8b:cf:75:b2:2d)
    STA address: Broadcast (ff:ff:ff:ff:ff:ff)
    .... 0000 = Fragment number: 0
    1110 1001 1111 .... = Sequence number: 3743
> Logical-Link Control
> Internet Protocol Version 4, Src: 10.100.106.35, Dst: 10.100.106.255
> Internet Control Message Protocol
```

The following figure shows the converted packet details.

Figure 7: Converted Packet

```
10.100.106.255
   2402 1.237499
                     10.100.106.35
                                                              ICMP
                                                                       192 Echo (ping) request id=0x6d4
   2407 1.238061
                     10.100.106.35
                                          10.100.106.255
                                                              ICMP
                                                                       184 Echo (ping) request id=0x6d4
   4489 2.238678
                     10.100.106.35
                                         10.100.106.255
                                                              ICMP
                                                                       192 Echo (ping) request id=0x6d4
                  10.100.106.35
                                      10.100.106.255
   4491 2.238767
                                                              TCMP
                                                                       184 Echo (ping) request id=0x6d4
> Frame 2402: 192 bytes on wire (1536 bits), 192 bytes captured (1536 bits)
> AVS WLAN Capture header
> 802.11 radio information

▼ IEEE 802.11 QoS Data, Flags: .....FT

    Type/Subtype: QoS Data (0x0028)
  > Frame Control Field: 0x8803
    .000 0000 0011 0000 = Duration: 48 microseconds
    Receiver address: Cisco e3:16:ec (d4:c9:3c:e3:16:ec)
    Transmitter address: Cisco_75:b2:2d (b0:8b:cf:75:b2:2d)
    Destination address: IPv4mcast 80:00:6a (01:00:5e:80:00:6a)
    Source address: RealtekS_36:1e:08 (00:e0:4c:36:1e:08)
     .... 0000 = Fragment number: 0
    0111 0010 1011 .... = Sequence number: 1835
  > Qos Control: 0x0004
> Logical-Link Control
> Internet Protocol Version 4, Src: 10.100.106.35, Dst: 10.100.106.255
> Internet Control Message Protocol
```

Dual Radio Parallel Redundancy Protocol Enhancement on WGB

The Cisco Wireless LAN Controller (WLC) Release 8.5 provides the Dual Radio Parallel Redundancy Protocol (PRP) enhancement as the second phase of the PRP feature.

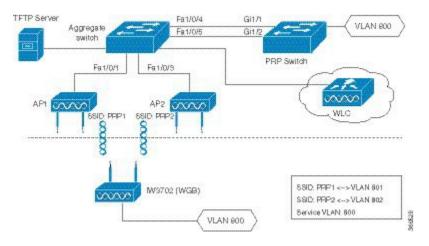
This feature enables dual radio (2.4G and 5G) workgroup bridge mode on a WGB simultaneously. The WGB is wirelessly connected to the access points, with redundant packet transmissions over 2.4 GHz and 5 GHz subsystem.

Supported platforms and access point mode:

- WLC and AP on the infrastructure side—FlexConnect AP mode (central authentication, local switching), the following IOS based platforms are supported: IW3702, 2700, 3700, and 1570 series.
- WGB on the client side—Only supported for IW3700 Series
- Roaming coordination—Only supported for IW3700 Series

Sample Network Configuration

Figure 8: Concurrent Wireless Transmission Via One WGB With Dual Radio and Paired With One PRP Switch, on page 13 shows a topology of concurrent wireless transmission via one WGB with dual radio and paired with one PRP switch.


The WGB (Cisco IW3702 Access Point) duplicates upstream packets and sends both packets simultaneously via 2.4 GHz and 5 GHz. The duplicated packets will pass to the access points, to ensure that at least one packet reaches the destination. On the infrastructure side, a PRP switch (for example, Cisco IE4000) is added to each aggregating endpoint. The PRP switch on the infrastructure side will remove the duplicating for upstream packets. The same redundancy for downstream packet is also implemented by the pair of PRP switch and WGB.

Note

The throughput of this solution depends on the network elements depicted in the diagram. Each element along the wired and wireless transmission path should validate its throughput to avoid being the throughput bottleneck.

Figure 8: Concurrent Wireless Transmission Via One WGB With Dual Radio and Paired With One PRP Switch

Configuration of Roaming Coordination on a Single WGB

As the client traffic will be duplicated to transmit in dual radio links of one WGB, radio link coordination is necessary to avoid the possibility to trigger roaming at the same time, which will cause the traffic to be broken in a short window time.

• Configure dot11 dual radio coordinator on one WGB.

WGB(config) # dot11 coordinator uplink both

• Configure dot11 coordination roaming waiting timer. The value of the timer is from 50–150 ms. The default is 100 ms.

WGB(config)# dot11 coordinator timeout roam-wait [value]

WLC Configurations

This section contains the configurations on WLC to enable PRP under WLAN and multiple vlan support.

Note

When you create WLAN, the BSSID of WLAN (mapping to 2.4G radio) and the BSSID of WLAN (mapping to 5G radio) must be different.

Note

From release 8.5, you can configure the PRP settings via both CLI and GUI.

Enabling PRP Under WLAN by CLI

• Use the following command to enable PRP under WLAN. The value of WLAN ID is between 1 and 512.

```
(WLC) > config wlan wgb prp enable <WLAN id>
```

• Use the following command to check the PRP status:

```
(WLC) > show wlan <WLAN id>
```

The output of this show command displays the PRP status as below:

```
Universal Ap Admin . Disabled Broadcast Tagging . Disabled PRP . Enabled
```

Enabling PRP Under WLAN by GUI

To enable PRP under WLAN in GUI, choose **WLAN** -> **Advanced**. In the **WGB PRP** field, select the checkbox in front of **Enable**.

Enabling Multiple Vlan Support by CLI

Use the following command to enable or disable the multiple vlan support:

```
(WLC-PRP)> config wgb vlan {enable|disable} enable Enable WGB Vlan Client Support disable Disable WGB Vlan Client Support
```

Enabling Multiple Vlan Support by GUI

To enable multiple vlan support in GUI, choose **Controller** -> **General**. In the **WGB Vlan Client** field, choose **Enable** from the drop-down list.

WGB Configurations

This section contains the commands on WGB to configure the PRP settings.

Enabling PRP Mode on WGB

The following commands enable the PRP submode on WGB.

```
iw3702(config) # dot11 wgb prp
iw3702(config-prp) # no shutdown
```


Note

PRP is disabled by default after the **dot11 wgb prp** command is executed. To enable the PRP feature, execute the **no shutdown** command.

Submode PRP Configuration Commands

- **bvi-vlanid**—Configure vlan id of the BVI interface.
- dummy-ip—Configure dummy ip for the radio interface.
- shutdown—Disable the PRP feature.
- exit—Exit from prp sub-mode.
- no—Negate a command or set its defaults.

Configuring Dummy IP Address for Radio Interface

Use the following command to configure the dummy ip address for the radio interface to associate to the access point. By default the IP address will be assigned as 1.1.X.Y and 1.1.X.(Y+1) to 2.4G and 5G, where X and Y are the last 2 bytes of the WGB's Ethernet MAC address.

```
iw3702(config-prp) # dummy-ip <IP addr>
```

Configuring Vlan for BVI Under PRP Mode

Use the following command to configure Vlan for BVI under PRP mode. If not configured, the BVI interface cannot get IP address via DHCP under PRP mode.

```
iw3702(config-prp)# bvi-vlanid <Vlan Id>
```


Note

The vlan configured by the **bvi-vlanid** command is reserved for BVI only. Do not use it for any wired clients.

Configuration Example of WGB

This section provides an example of the WGB configuration. .

```
hostname Vehicle
!
dot11 wgb prp
  no shutdown
 bvi-vlanid 900
dot11 ssid PRP1
   vlan 801
   authentication open
   no ids mfp client
dot11 ssid PRP2
  vlan 802
   authentication open
   no ids mfp client
interface Dot11Radio0
no ip address
 load-interval 30
 ssid PRP1
```

```
antenna gain 0
antenna a-antenna
packet retries 32 drop-packet
station-role workgroup-bridge
 rts retries 32
bridge-group 1
bridge-group 1 spanning-disabled
interface Dot11Radio0.800
encapsulation dot1Q 800
bridge-group 50
bridge-group 50 spanning-disabled
interface Dot11Radio0.801
encapsulation dot1Q 801
bridge-group 100
bridge-group 100 spanning-disabled
interface Dot11Radio1
no ip address
 load-interval 30
ssid PRP2
antenna gain 0
antenna a-antenna
peakdetect
packet retries 32 drop-packet
station-role workgroup-bridge
rts retries 32
bridge-group 1
bridge-group 1 spanning-disabled
interface Dot11Radio1.800
encapsulation dot1Q 800
bridge-group 50
bridge-group 50 spanning-disabled
interface Dot11Radio1.802
encapsulation dot1Q 802
bridge-group 200
bridge-group 200 spanning-disabled
\verb|interface GigabitEthernet0||
no ip address
load-interval 30
duplex auto
speed auto
bridge-group 1
bridge-group 1 spanning-disabled
interface GigabitEthernet0.800
encapsulation dot1Q 800
bridge-group 50
bridge-group 50 spanning-disabled
interface GigabitEthernet1
no ip address
shutdown
duplex auto
 speed auto
bridge-group 1
bridge-group 1 spanning-disabled
```

```
! interface BVI1 mac-address 0081.c408.c594 ip address dhcp ipv6 address dhcp ipv6 address autoconfig ipv6 enable ! bridge 1 route ip ! workgroup-bridge unified-vlan-client
```

Aggregated Switch Configuration

```
interface FastEthernet1/0/1
description ***AP1***
 switchport trunk encapsulation dot1q
 switchport trunk native vlan 201
switchport trunk allowed vlan 201,801,802
switchport mode trunk
end
interface FastEthernet1/0/3
description ***AP2***
 switchport trunk encapsulation dot1q
switchport trunk native vlan 201
switchport trunk allowed vlan 201,801,802
switchport mode trunk
end
interface FastEthernet1/0/4
description ***PRP-Track-SW***
switchport access vlan 801
switchport trunk encapsulation dot1q
switchport mode dot1q-tunnel
no cdp enable
interface FastEthernet1/0/5
description ***PRP-Track-SW***
switchport access vlan 802
switchport trunk encapsulation dot1q
 switchport mode dot1q-tunnel
no cdp enable
```

PRP Switch Configuration

```
interface PRP-channel1
  switchport mode trunk
interface GigabitEthernet1/1
  switchport mode trunk
  no ptp enable
  no cdp enable
  prp-channel-group 1
interface GigabitEthernet1/2
  switchport mode trunk
  no ptp enable
  no cdp enable
  no cdp enable
```

```
prp-channel-group 1
```

Verifying the Configuration

• Verify the packet replication and discarding details.

```
Vehicle# show dot11 wgb prp
available uplink count: 0
Index: 0 Status: DOWN Name: Dot11Radio0 Virtual-Dot11Radio0 AP: cc46.d616.ad84
Index: 1 Status: DOWN Name: Dot11Radio1 Virtual-Dot11Radio1 AP: cc46.d616.ad8a
====== Statistic counters ================
cnt_tx_difference: 4541
cnt_total_received_A_: 337 <= RADIO 0 DISCARDING</pre>
cnt_total_received_B_: 56      <= RADIO 1 DISCARDING</pre>
cnt rx difference: 281
cnt total errors A : 0
cnt total errors B : 0
                            <= DISCARDED PACKET COUNT
cnt_total_discard: 1
cnt discard table used items: 0
max duplicate delay : 0
```

• Display the roaming coordination status.

```
WGB# show coordinator status current coordinator role is: Master
```

• Display the roaming coordination statistics.

```
WGB# show dot11 coordinator statistics
Vehicle#show dot11 coordinator statistics
Dot11 Roaming Coordination CURRENT Statistics:
                Total Roaming Count: 1034
______
   Scheduled Roaming: 1034
                                 Forced Roaming: 0
RATESHIFT RSSI
                             MAXRETRY BEACON_LOST
            1034
Backoff Timeout Immediate
       1
                  1030
_____
Master Conflict: 4
                  Slave Conflict: 0
       Total Conflict Count: 4
Dot11 Roaming Coordination FULL Statistics:
                 Total Roaming Count: 1034
   Scheduled Roaming: 1034
                                Forced Roaming: 0
                             -----
                            MAXRETRY BEACON_LOST
RATESHIFT
         RSSI
            1034
Backoff Timeout Immediate 3 1 1030
_____
```

Debug Commands

Clear roaming coordination statistics.

```
clear dot11 coordinator {all|current} statistics
```

Clear PRP statistics.

```
clear dot11 wgb prp statistics
```

- Debug roaming coordination.
 - Use the following command to view the primary-subordinate role and communication related debug information:

```
debug coordinator {detail|error|event|packet|timers
```

Use the following command to view dot11 radio roaming coordination related debug information:

```
debug dot11 coordinator {detail|error|event|timers
```

Disable PRP debug messages on CLI.

```
no\ debug\ dot 11\ prp\ \{bvi|config|uplink|forward|event|trailer|bypass
```

Debug PRP configuration.

```
debug dot11 prp {bvi|config|uplink|forward|event|trailer|bypass
```

DLEP Client Support on WGB

Radio Aware Routing (RAR) is a mechanism where radios can interact with routing protocols (such as OSPFv3 or EIGRP, but only EIGRP is supported in this feature) to signal the appearance, disappearance, and link conditions of one-hop routing neighbors. The Dynamic Link Exchange Protocol (DLEP) is a radio aware routing (RAR) protocol, which addresses the challenges faced when merging IP routing and radio frequency (RF) communications.

The DLEP client support feature allows the workgroup bridge (WGB) to report radio link metrics to a router, for example, the Cisco Embedded Services Router (ESR). The WGB acts as the DLEP client, and the ESR acts as the DLEP server. The uplink selection is based on radio link quality metrics. For example, when two WGBs are deployed in a truck, there are redundancy radio links. The link with better radio quality while the truck is moving can be selected before the radio link completely goes down.

There are two methods of DLEP peer discovery, auto discovery and manual configuration. In this release, only the manual configuration method is supported.

Note

This feature applies to the IW3700 Series. Only DLEP version 7 is supported.

Configuring the Physical Interface

The DLEP session is established between ESR and WGB through wired Ethernet interface. Static IP address needs to be configured under BVI interface. Subinterface of Gigabit Ethernet is also supported. But the subinterface should be configured with the same VLAN as the wireless interface. Here is an example:

```
interface GigabitEthernet0.811
encapsulation dot1Q 811
ip address 8.1.1.50 255.255.255.0
ip dlep local-port 38682 server-addr 8.1.1.211 server-port 55556
```

Configuring DLEP Local TCP Port and Server Address

Use the following command to enable the WGB to work as a DLEP client and configure the DLEP local port and server address.

```
wgb(config-if)# ip dlep local-port x server-addr x.x.x.x server-port x
```

Once configured, the WGB will listen on the configured local port for incoming DLEP connections.

Configuring Optional DLEP Timers

Configuring Heartbeat Timer

Use the following command to set the interval for the DLEP client to wait before declaring a DLEP server peer failed.

```
wgb(config-if)# ip dlep set heartbeat-timer x
```

The value range of the heartbeat timer is from 1 to 60 seconds. The default value is 5 seconds. The new heartheat timer value will take effect in the next new dlep session.

Configuring Neighbor Update Interval

Use the following command to set the interval for DLEP client to send neighbor update event in millisecond.

```
wgb(config-if)# ip dlep set neighbor-update-interval x
```

The value range of the neighbor update interval is from 100 to 5000 milliseconds. If not specified, the default value is 4000 milliseconds. The new neighbor update timer will take effect in the next new DLEP session. The WGB will send neighbor update message which contains radio metrics to the DLEP server every x milliseconds. Neighbor update interval will impact ESR response speed when link state changes. It is

recommended to set a shorter neighbor-update-interval for high speed roaming. For example, you may set neighbor-update-interval to 500ms when WGB's moving speed is up to 80km/h.

Configuring DLEP Neighbors

The WGB uses the radio interface to detect neighbor and neighbor's metrics. Configure DLEP neighbor information under the radio interface.

Configuring Neighbor MAC Address

Use the following command to configure routing neighbor MAC address:

```
wgb(config-if)# dlep neighbor <mac address>
```

(Optional) Configuring RSSI Threshold and CDR Threshold

Use the following command to configure RSSI and CDR threshold:

```
wgb(config-if)# dlep neighbor <mac address> rssi-threshold x cdr-threshold x
```

Use the following command to configure RSSI threshold:

```
wqb(confiq-if)# dlep neighbor <mac address> rssi-threshold x
```

The value range of RSSI threshold is 1–100 dbm. The default value is 80 dbm. Once the RSSI value is above the configured RSSI threshold, the WGB will send neighbor update message including all the radio metrics to the DLEP server immediately.

Use the following command to configure CDR threshold:

```
wgb(config-if)# dlep neighbor <mac address> cdr-threshold x
```

The value range of CDR threshold is 7-6000 mbps. If not configured, no event will be triggered no matter what the current data rate is. Once configured, the neighbor update will be sent to the DLEP server when the current data rate is lower than the configured CDR threshold.

Note

For roaming scenarios, the neighbor update will be sent out immediately after the roaming is completed.

Note

There are two ways to trigger the metric update. One is the event trigger which is controlled by rssi-threshold or cdr-threshold. The other is the timer trigger which is controlled by the neighbor update interval.

Verifying DLEP Configuration

Displaying DLEP Configuration

The following command shows information about DLEP configurations, such as the server's IP address, port, heartbeat threshold, and peer-terminate-ack-timeout value.

```
WGB# show dlep config
local tcp port=38682
local ipv4=8.1.1.50
router tcp port=55556
router ipv4=8.1.1.211
Type Description: no type description
local ID=0
peer offer tiemout=5 seconds
peer heartbeat interval=5 seconds
peer heartbeat missed threshold=3
peer termination ack timeout=1000 milliseconds
peer termination missed ack threshold=3
neighbor up ack timeout=1000 milliseconds
neighbor up missed ack threshold=3
neighbor update interval timeout=4000 milliseconds
neighbor activity timer=10 seconds
neighbor down ack timeout=1000 milliseconds
neighbor down missed ack threshold=3
```

Displaying DLEP Peer Information

The following command provides DLEP peer (DLEP server for WGB) information.

```
WGB# show dlep peers
DLEP Local Client 3
Client ID=0
Router TD=0
 Peer Description=
Peer TCP port=55556
Peer IPv4=8.1.1.211
 router offer timeout count=0
peer heartbeat missed count=1
peer term ack missed count=0
peer term ack missed threshold=3
neighbor up ack timeout=1000 milliseconds
neighbor up missed ack threshold=3
neighbor update interval timeout=4000 milliseconds
neighbor activity timer=10 seconds
neighbor down ack timeout=1000 milliseconds
neighbor down missed ack threshold=3
Metrics:
RLQ TX=100 <0-100> RLQ RX=100 <0-100>
Resources TX=100 <0-100> Resources RX=100 <0-100>
Latency=0 milliseconds
CDR TX=100000000 bps CDR RX=100000000 bps
MDR TX=100000000 bps MDR RX=100000000 bps
```

Displaying DLEP Neighbors

The following command shows information of DLEP neighbors.

```
WGB# show dlep neighbors
DLEP Local Client 3
Client ID=0
Router ID=0
 Peer Description=
 Peer TCP port=55556
Peer IPv4=8.1.1.211 Neighbor Local ID=5004
Neighbor MAC= 00:50:56:8F:5F:FE
 activity timer=5 milliseconds
Metrics:
 RLQ TX=100 <0-100> RLQ RX=100 <0-100>
Resources TX=100 <0-100> Resources RX=100 <0-100>
Latency=0 milliseconds
 CDR TX=144000000 bps CDR RX=144000000 bps
MDR TX=217000000 bps MDR RX=217000000 bps
 Credits:
MRW CREDITS=0 credits
 RRW CREDITS=0 credits
```

Displaying DLEP Client Counters

The following command shows packets counters of DLEP client.

```
WGB# show dlep counters
 DLEP Client Counters
 Last Clear Time = 13:13:51 UTC Mon Sep 15 2014
 DLEP Server IP=8.1.1.111:55556
 Peer Counters:
RX Peer Discovery 0 TX Peer Offer 0
RX Peer Offer 0 TX Peer Discovery 0
RX Peer Init 0 TX Peer Init Ack 0
RX Peer Init Ack 0 TX Peer Init 0
RX Heartbeat 7449 TX Heartbeat 7278
RX Peer Terminate 0 TX Peer Terminate Ack 0
RX Peer Terminate Ack 0 TX Peer Terminate Ack 0
RX Peer Terminate Ack 0 TX Peer Terminate 0
RX Peer Update Request 0 TX Peer Update Response 0
Reighbor Counters:
RX Neighbor Up 0 TX Neighbor Up Ack
RX Neighbor Up Ack 0 TX Neighbor Up
RX Neighbor Down 0 TX Neighbor Down Ack
RX Neighbor Down Ack 0 TX Neighbor Down Ack
RX Neighbor Down Ack 0 TX Neighbor Down
RX Neighbor Link Char Request 0 TX Neighbor Link Char Response
RX Neighbor Link Char Response 0 TX Neighbor Link Char Request
  RX Peer Discovery
                                               0 TX Peer Offer
                                                                                                                                                    0
                                                                                                                                                     0
 Exception Counters:
   RX Invalid Message
                                               0
                                                       RX Unknown Message
   Neighbor Not Found
                                               0
 Timer Counters:
   Peer Heartbeat Timer
                                                                        7278
                                                                       0
   Peer Terminate Ack Timer
                                                                      0
   Neighbor Init Ack Timer
  Neighbor Update Ack Timer
                                                                      0
   Neighbor Metrics Interval Timer
   Neighbor Terminate Ack Timer 0
```

Debug Commands

Note

Contact your Cisco Support engineer for any troubleshooting support you may need.

The following command triggers the WGB to send peer terminate to the DLEP server to remove the specified peer:

```
wgb# clear dlep peer
```

The following command clears the DLEP client counters:

```
wgb# clear dlep counters
```

The following command displays the DLEP client process event information:

```
WGB# debug dlep client [detail]
```

The following command displays the DLEP neighbor transaction information:

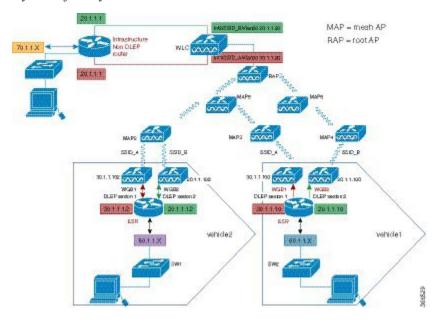
```
WGB# debug dlep neighbor {<mac-address>|all|detail|error|metric|state}
H.H.H DLEP client neighbor MAC addr
all debugging information for all DLEP neighbors
detail DLEP neighbor detail information
error DLEP neighbor error information
metrics DLEP neighbor metrics information
state DLEP neighbor state machine information
```

The following commands display the DLEP peer transaction information:

```
WGB# debug dlep peer {detail|error|state|packet {detail|dump|incoming|outgoing}} detail DLEP peer detail information error DLEP peer error information packet display DLEP peer packet information state DLEP peer state machine information

WGB# debug dlep peer packet {detail|dump|incoming|outgoing} detail display DLEP client packet details dump display DLEP peer packet as a hex dump incoming filter DLEP client incoming packets outgoing filter DLEP client outgoing packets
```

The following commands display the DLEP timer detail information:


```
WGB# debug dlep timer [detail
```

Configuration Example

This section contains a DLEP configuration example, including the configurations of WGB, WLC, and ESR.

In this example, the DLEP server is implemented by ESR. Two WGBs act as DLEP clients. deployed in the same vehicle to provide redundant radio links. Each mesh AP (MAP) is configured with two SSIDs. Each

WGB associates to a different SSID and establish a DLEP session with the ESR respectively. WGBs report radio link metrics to ESR through the DLEP sessions. Based on these radio link metrics, routing protocol of the ESR makes routing selection. The L2TPv3 tunnel is required to bridge the network behind ESR to be layer 2 adjacency across the IP networks.

WLC Configuration

Follow these steps to configure WLC:

Procedure

- **Step 1** Configure AP to FlexConnect mode.
- Step 2 Create two WLAN SSID for the redundant radio links.
- **Step 3** Configure CCKM.

WGB Configuration

For WGB fast secure roaming use case, it is recommended to configure CCKM and you need to configure CCKM on WLC first. You are suggested to enable roaming coordinator when using DLEP.

Follow these steps to configure WGB:

Procedure

Step 1 Configure DLEP neighbor under radio interface.

Example:

dlep neighbor 000c.29da.a804 rssi-threshold 72 cdr-threshold 120

where the MAC address is the interface MAC of ISR-G2.

Step 2 Configure DLEP local port and server address under BVI1 or GigabitEthernet0 subinterface.

Example:

```
ip dlep local-port 38682 server-addr 100.100.1.2 server-port 55556
```

where the server address is the interface IP address of the ESR.

Step 3 Configure CCKM.

Example:

```
dot11 ssid k901
   vlan 901
   authentication open eap EAP-FAST
   authentication network-eap EAP-FAST
   authentication key-management wpa version 2 cckm
   dot1x credentials FAST
   dot1x eap profile FAST
eap profile FAST
method fast
dot1x credentials FAST
username cisco
password 0 cisco
interface Dot11Radio1
no ip address
encryption mode ciphers aes-ccm
encryption vlan 901 mode ciphers aes-ccm
```

Step 4 Enable coordinator.

Example:

```
dot11 coordinator uplink single Dot11Radio1
interface GigabitEthernet1.10
  encapsulation dot1Q 10
  ip address 192.168.0.1 255.255.255.0
  ip coordinator peer-addr 192.168.0.2
!
workgroup-bridge service-vlan 10
```

What to do next

The following examples show the configurations of WGB1 and WGB2:

WGB1 Configuration Example

```
dot11 ssid k901
  vlan 901
  authentication open eap EAP-FAST
  authentication network-eap EAP-FAST
  authentication key-management wpa version 2 cckm
  dot1x credentials FAST
  dot1x eap profile FAST
```

```
dot11 coordinator uplink single Dot11Radio1
eap profile FAST
method fast
dot1x credentials FAST
username cisco
password 0 cisco
interface Dot11Radio0
no ip address
 shutdown
 encryption vlan 901 mode ciphers aes-ccm
ssid k901
packet retries 32 drop-packet
station-role root
 rts retries 32
infrastructure-client
interface Dot11Radio1
no ip address
 encryption mode ciphers aes-ccm
encryption vlan 901 mode ciphers aes-ccm
ssid k901
peakdetect
station-role workgroup-bridge
dlep neighbor 286f.7f75.0810 rssi-threshold 72 cdr-threshold 120
\verb|mobile| station scan 5220 5280|
mobile station period 1 threshold 76
infrastructure-client
interface Dot11Radio1.901
encapsulation dot1Q 901 native
bridge-group 1
bridge-group 1 spanning-disabled
interface GigabitEthernet0
no ip address
duplex auto
speed auto
interface GigabitEthernet0.901
encapsulation dot1Q 901 native
ip address 100.100.1.12 255.255.255.0
ip dlep set neighbor-update-interval 500
 ip dlep local-port 38682 server-addr 100.100.1.2 server-port 55556
bridge-group 1
no bridge-group 1 spanning-disabled
interface GigabitEthernet1
no ip address
duplex auto
speed auto
12-filter bridge-group-acl
bridge-group 1
no bridge-group 1 spanning-disabled
interface GigabitEthernet1.10
encapsulation dot1Q 10
 ip address 192.168.0.1 255.255.255.0
```

```
ip coordinator peer-addr 192.168.0.2
!
interface BVI1
mac-address 0081.c475.b73c
ip address 100.100.1.11 255.255.255.0
ipv6 address dhcp
ipv6 address autoconfig
ipv6 enable
!
workgroup-bridge unified-vlan-client
workgroup-bridge service-vlan 10
workgroup-bridge timeouts auth-response 300
workgroup-bridge timeouts assoc-response 300
```

WGB2 Configuration Example

```
dot11 ssid k902
   vlan 902
   authentication open eap EAP-Methods
   authentication network-eap EAP-Methods
   authentication key-management wpa version 2 cckm
   dot1x credentials FAST
   dot1x eap profile FAST
dot11 coordinator uplink single Dot11Radio1
power out-never
eap profile FAST
method fast
!
no ipv6 cef
dot1x credentials FAST
username cisco
password 0 cisco
interface Dot11Radio0
no ip address
shutdown
 encryption vlan 902 mode ciphers aes-ccm
 ssid k902
station-role root
rts retries 32
infrastructure-client
interface Dot11Radio1
no ip address
 encryption vlan 902 mode ciphers aes-ccm
 ssid k902
 antenna gain 0
 antenna a-antenna
 peakdetect
 ampdu transmit priority 6
 amsdu transmit priority 6
 packet retries 32 drop-packet
 station-role workgroup-bridge
 dlep neighbor 286f.7f75.0810 rssi-threshold 72 cdr-threshold 120
```

```
mobile station scan 5220 5280
mobile station period 1 threshold 76
infrastructure-client
interface Dot11Radio1.902
 encapsulation dot1Q 902 native
bridge-group 1
bridge-group 1 spanning-disabled
interface GigabitEthernet0
no ip address
 duplex auto
speed auto
interface GigabitEthernet0.902
encapsulation dot1Q 902 native
 ip address 100.100.2.12 255.255.255.0
 ip dlep set neighbor-update-interval 500
 ip dlep local-port 38682 server-addr 100.100.2.2 server-port 55555
bridge-group 1
no bridge-group 1 spanning-disabled
interface GigabitEthernet1
no ip address
duplex auto
 speed auto
12-filter bridge-group-acl
bridge-group 1
no bridge-group 1 spanning-disabled
interface GigabitEthernet1.10
encapsulation dot1Q 10
 ip address 192.168.0.2 255.255.255.0
 ip coordinator peer-addr 192.168.0.1
interface BVI1
mac-address 002a.1001.3eb0
ip address 100.100.2.11 255.255.255.0
 ipv6 address dhcp
ipv6 address autoconfig
workgroup-bridge unified-vlan-client
workgroup-bridge service-vlan 10
workgroup-bridge timeouts auth-response 300
workgroup-bridge timeouts assoc-response 300
```

ESR Configuration

Follow these steps to configure ESR.

Note

For more information of configuring DLEP on ESR, See the following chapter of the *Software Configuration Guide for the Cisco 5900 Embedded Services Routers*: https://www.cisco.com/c/en/us/td/docs/solutions/GGSG-Engineering/15-4-3M/config-guide/Configuration-Guide/DLEP.html

Procedure

Step 1 Configure DLEP under Ethernet interfaces.

Example:

```
interface Ethernet0/1
  description DLEP radio connection
  ip address 100.100.1.2 255.255.255.0
  ip dlep vtemplate 1 version v1.7 client ip 100.100.1.12 port 38682
  duplex auto
  speed auto
interface Ethernet0/2
  description DLEP radio connection
  ip address 100.100.2.2 255.255.255.0
  ip dlep vtemplate 2 version v1.7 client ip 100.100.2.12 port 38682
  duplex auto
  speed auto
```

Step 2 Configure the virtual template.

Example:

```
interface Virtual-Template 1
  ip unnumbered Ethernet0/1
  ipv6 enable
interface Virtual-Template 2
  ip unnumbered Ethernet0/2
```

Step 3 Configure the VMI interface.

Example:

```
interface vmi1
  ip unnumbered Ethernet0/1
  physical-interface Ethernet0/1
interface vmi2
  ip unnumbered Ethernet0/2
  physical-interface Ethernet0/2
```

Step 4 Configure EIGRP with static neighbor.

The link metrics of VMI interface map to the basic EIGRP interface parameters according to the following mapping table:

VMI	EIGRP
Current data rate	Bandwidth
Relative link quality resources	Reliability
Latency	Delay
Load	Load

For more information about this mapping, see Enhanced Interior Gateway Routing Protocol (EIGRP) Wide Metrics White Paper.

For the implementation of this feature, relative link quality (RLQ) is the main factor to be considered for link quality. So the default EIGRP metric weights should be updated using the **metric weights** command.

Note

When DLEP works between WGB and ESR, WGB reports CDR and RLQ. Default K values of EIGRP are: K1=K3=1, K2=K4=K5=0. Thus, by default, only CDR will impact ESR route selection. When calculating CDR, WGB will take negotiated data rate, RF status, retry counters, roaming event, and so on into consideration. For WGB low speed moving scenarios, CDR can guarantee the better link to be selected. But for WGB high speed moving scenario, or other cases where RF signal changes rapidly, the delay introduced by CDR calculation may cause large data interruption. To make ESR respond more quickly to link state change, you may change the K values of EIGRP case by case, for example, setting K5=<1-255>, to make RLQ impact more on route selection.

Example:

```
router eigrp 100
metric weights 0 1 0 1 0 1
traffic-share min across-interfaces
network 2.2.2.2 0.0.0.0
network 100.100.1.0 0.0.0.255
network 100.100.2.0 0.0.0.255
neighbor 100.100.1.1 vmi1
neighbor 100.100.2.1 vmi2
eigrp router-id 2.2.2.2
```

Step 5 (Optional) Configure L2TPv3 tunnel, which is required by this example, but optional for basic DLEP configurations.

Example:

```
pseudowire-class R1R2
encapsulation 12tpv3
protocol 12tpv3 12tp-defaults
ip local interface Loopback1
```

What to do next

ESR Configuration Example

```
hostname ESR-Vehicle
!
boot-start-marker
boot-end-marker
!
!
enable secret 5 $1$DecM$eQ2Pbh2rdVafrS9UngqnA0
enable password cisco123!
!
no aaa new-model
clock timezone CST 8 0
mmi polling-interval 60
no mmi auto-configure
```

```
no mmi pvc
mmi snmp-timeout 180
call-home
 ! If contact email address in call-home is configured as sch-smart-licensing@cisco.com
 ! the email address configured in Cisco Smart License Portal will be used as contact email
 address to send SCH notifications.
 contact-email-addr sch-smart-licensing@cisco.com
profile "CiscoTAC-1"
  destination transport-method http
 no destination transport-method email
ip multicast-routing
no ip domain lookup
ip host ESR-Infra 209.165.200.10
ip cef
no ipv6 cef
12tp-class 12tp-defaults
retransmit initial retries 30
cookie size 8
multilink bundle-name authenticated
no virtual-template subinterface
crypto pki trustpoint SLA-TrustPoint
enrollment pkcs12
 revocation-check crl
crypto pki certificate chain SLA-TrustPoint
 certificate ca 01
  30820321 30820209 A0030201 02020101 300D0609 2A864886 F70D0101 0B050030
  32310E30 0C060355 040A1305 43697363 6F312030 1E060355 04031317 43697363
  6F204C69 63656E73 696E6720 526F6F74 20434130 1E170D31 33303533 30313934
  3834375A 170D3338 30353330 31393438 34375A30 32310E30 0C060355 040A1305
  43697363 6F312030 1E060355 04031317 43697363 6F204C69 63656E73 696E6720
  526F6F74 20434130 82012230 0D06092A 864886F7 0D010101 05000382 010F0030
  82010A02 82010100 A6BCBD96 131E05F7 145EA72C 2CD686E6 17222EA1 F1EFF64D
  CBB4C798 212AA147 C655D8D7 9471380D 8711441E 1AAF071A 9CAE6388 8A38E520
  1C394D78 462EF239 C659F715 B98C0A59 5BBB5CBD 0CFEBEA3 700A8BF7 D8F256EE
  4AA4E80D DB6FD1C9 60B1FD18 FFC69C96 6FA68957 A2617DE7 104FDC5F EA2956AC
  7390A3EB 2B5436AD C847A2C5 DAB553EB 69A9A535 58E9F3E3 C0BD23CF 58BD7188
  68E69491 20F320E7 948E71D7 AE3BCC84 F10684C7 4BC8E00F 539BA42B 42C68BB7
  C7479096 B4CB2D62 EA2F505D C7B062A4 6811D95B E8250FC4 5D5D5FB8 8F27D191
  C55F0D76 61F9A4CD 3D992327 A8BB03BD 4E6D7069 7CBADF8B DF5F4368 95135E44
  DFC7C6CF 04DD7FD1 02030100 01A34230 40300E06 03551D0F 0101FF04 04030201
  06300F06 03551D13 0101FF04 05300301 01FF301D 0603551D 0E041604 1449DC85
  4B3D31E5 1B3E6A17 606AF333 3D3B4C73 E8300D06 092A8648 86F70D01 010B0500
  03820101 00507F24 D3932A66 86025D9F E838AE5C 6D4DF6B0 49631C78 240DA905
  604EDCDE FF4FED2B 77FC460E CD636FDB DD44681E 3A5673AB 9093D3B1 6C9E3D8B
  D98987BF E40CBD9E 1AECA0C2 2189BB5C 8FA85686 CD98B646 5575B146 8DFC66A8
  467A3DF4 4D565700 6ADF0F0D CF835015 3C04FF7C 21E878AC 11BA9CD2 55A9232C
  7CA7B7E6 C1AF74F6 152E99B7 B1FCF9BB E973DE7F 5BDDEB86 C71E3B49 1765308B
  5FB0DA06 B92AFE7F 494E8A9E 07B85737 F3A58BE1 1A48A229 C37C1E69 39F08678
  80DDCD16 D6BACECA EEBC7CF9 8428787B 35202CDC 60E4616A B623CDBD 230E3AFB
  418616A9 4093E049 4D10AB75 27E86F73 932E35B5 8862FDAE 0275156F 719BB2F0
  D697DF7F 28
        quit
license udi pid CISCO5921-K9 sn 9W30339RC8G
license platform throughput level c5921-x86-level5
redundancy
```

```
pseudowire-class R1R2
 encapsulation 12tpv3
protocol 12tpv3 12tp-defaults
ip local interface Loopback1
interface Loopback1
ip address 2.2.2.2 255.255.255.255
interface Ethernet0/0
no ip address
shutdown
duplex auto
speed auto
bfd interval 50 min rx 50 multiplier 3
interface Ethernet0/1
description DLEP radio connection
 ip address 100.100.1.2 255.255.255.0
ip dlep vtemplate 1 version v1.7 client ip 100.100.1.12 port 38682
 duplex auto
speed auto
interface Ethernet0/2
description DLEP radio connection
ip address 100.100.2.2 255.255.255.0
ip dlep vtemplate 2 version v1.7 client ip 100.100.2.12 port 38682
duplex auto
speed auto
interface Ethernet0/3
ip address 100.100.3.2 255.255.255.0
shutdown
duplex auto
speed auto
no keepalive
interface Ethernet1/0
no ip address
duplex auto
speed auto
xconnect 209.165.200.10 123 encapsulation 12tpv3 pw-class R1R2
interface Ethernet1/1
ip address 10.124.22.237 255.255.255.0
interface Ethernet1/2
no ip address
shutdown
interface Ethernet1/3
no ip address
shutdown
interface Virtual-Template1
ip unnumbered Ethernet0/1
 ipv6 enable
interface Virtual-Template2
ip unnumbered Ethernet0/2
interface vmi1
ip unnumbered Ethernet0/1
ip dampening-change eigrp 100 5
ipv6 address FE80::901 link-local
```

```
physical-interface Ethernet0/1
interface vmi2
ip unnumbered Ethernet0/2
ip dampening-change eigrp 100 5
ip hello-interval eigrp 100 60
ip hold-time eigrp 100 180
physical-interface Ethernet0/2
router eigrp 100
metric weights 0 1 0 1 0 1
traffic-share min across-interfaces
network 2.2.2.2 0.0.0.0
network 100.100.1.0 0.0.0.255
network 100.100.2.0 0.0.0.255
neighbor 100.100.1.1 vmi1
neighbor 100.100.2.1 vmi2
eigrp router-id 2.2.2.2
ip forward-protocol nd
1
no ip http server
no ip http secure-server
ip route 10.0.0.0 255.0.0.0 Ethernet1/1
dialer-list 1 protocol ip permit
ipv6 ioam timestamp
access-list 1 permit 2.2.2.2
control-plane
line con 0
 exec-timeout 0 0
logging synchronous
no domain-lookup
line aux 0
line vty 0 4
password cisco
login
transport input all
ntp mindistance 0
end
```

ISR-G2 Configuration

The ISR-G2 in this example can be replaced by an ESR with no need to configure DLEP.

Use these commands to configure L2TPv3 on ISR-G2. It is required by this example, but optional for basic DLEP configuration.

```
pseudowire-class R2R1
encapsulation 12tpv3
protocol 12tpv3 12tp-defaults
ip local interface Loopback1
```

ISR-G2 Configuration Example

```
hostname ISR-G2
boot-start-marker
boot-end-marker
no aaa new-model
bsd-client server url https://cloudsso.cisco.com/as/token.oauth2
ip dhcp excluded-address 100.100.0.1 100.100.0.10
ip dhcp excluded-address 100.100.1.1 100.100.1.10
ip dhcp excluded-address 100.100.2.1 100.100.2.10
ip dhcp pool vlan900
network 100.100.0.0 255.255.255.0
 domain-name cisco.com
 default-router 100.100.0.1
 lease 0 0 30
ip dhcp pool vlan901
network 100.100.1.0 255.255.255.0
 domain-name cisco.com
 default-router 100.100.1.1
 lease 0 0 30
ip dhcp pool vlan902
network 100.100.2.0 255.255.255.0
 domain-name cisco.com
 default-router 100.100.2.1
 lease 0 0 30
no ip domain lookup
ip cef
12tp-class 12tp-defaults
retransmit initial retries 30
 cookie size 8
ipv6 source-route
ipv6 dhcp pool vlan900-v6
 address prefix 2016:1:0:900::/112 lifetime 120 90
 dns-server 2016:1:0:900::3
 domain-name cisco.com
ipv6 multicast-routing
no ipv6 cef
multilink bundle-name authenticated
cts logging verbose
voice-card 0
license udi pid CISCO2911/K9 sn FGL205010MR
license accept end user agreement
license boot suite FoundationSuiteK9
license boot suite AdvUCSuiteK9
username cisco privilege 15 secret 5 $1$MxQb$wNWP92nY5L3eFxnGHKs.60
redundancy
```

```
pseudowire-class R2R1
encapsulation 12tpv3
protocol 12tpv3 12tp-defaults
ip local interface Loopback1
interface Loopback1
ip address 10.10.10.1 255.255.255.255
interface Embedded-Service-Engine0/0
no ip address
shutdown
interface GigabitEthernet0/0
no ip address
duplex auto
speed auto
interface GigabitEthernet0/0.900
encapsulation dot1Q 900
ip address 100.100.0.1 255.255.255.0
ip hello-interval eigrp 100 1
ip hold-time eigrp 100 1
 ipv6 address 2016:1:0:900::1/64
ipv6 enable
ipv6 nd managed-config-flag
ipv6 nd ra interval 30
ipv6 dhcp server vlan900-v6
interface GigabitEthernet0/0.901
encapsulation dot1Q 901
ip address 100.100.1.1 255.255.255.0
ipv6 enable
interface GigabitEthernet0/0.902
encapsulation dot1Q 902
ip address 100.100.2.1 255.255.255.0
ipv6 enable
interface GigabitEthernet0/1
no ip address
duplex auto
xconnect 2.2.2.2 123 encapsulation 12tpv3 pw-class R2R1
interface GigabitEthernet0/2
no ip address
shutdown
duplex auto
speed auto
router eigrp 100
metric weights 0 1 0 1 0 1
traffic-share min across-interfaces
network 10.10.10.1 0.0.0.0
network 100.100.0.0 0.0.0.255
network 100.100.1.0 0.0.0.255
network 100.100.2.0 0.0.0.255
neighbor 100.100.2.2 GigabitEthernet0/0.902
neighbor 100.100.1.2 GigabitEthernet0/0.901
eigrp router-id 10.10.10.1
ip forward-protocol nd
no ip http server
```

```
no ip http secure-server
access-list 1 permit 10.10.10.1
control-plane
mgcp behavior rsip-range tgcp-only
mgcp behavior comedia-role none
mgcp behavior comedia-check-media-src disable
mgcp behavior comedia-sdp-force disable
mgcp profile default
gatekeeper
shutdown
line con 0
exec-timeout 0 0
line aux 0
line 2
no activation-character
no exec
 transport preferred none
transport output pad telnet rlogin lapb-ta mop udptn v120 ssh
stopbits 1
line vty 0 4
login
 transport input none
scheduler allocate 20000 1000
end
```

Viewing the Status of Workgroup Bridges (GUI)

Procedure

Step 1 Choose **Monitor** > **Clients** to open the Clients page.

The WGB text box on the right side of the page indicates whether any of the clients on your network are workgroup bridges.

Step 2 Click the MAC address of the desired client. The Clients > Detail page appears.

The Client Type text box under Client Properties shows "WGB" if this client is a workgroup bridge, and the Number of Wired Client(s) text box shows the number of wired clients that are connected to this WGB.

- **Step 3** See the details of any wired clients that are connected to a particular WGB as follows:
 - a) Click **Back** on the Clients > Detail page to return to the Clients page.
 - b) Hover your cursor over the blue drop-down arrow for the desired WGB and choose **Show Wired Clients**. The WGB Wired Clients page appears.

Note If you want to disable or remove a particular client, hover your cursor over the blue drop-down arrow for the desired client and choose **Remove** or **Disable**, respectively.

c) Click the MAC address of the desired client to see more details for this particular client. The Clients > Detail page appears.

The Client Type text box under Client Properties shows "WGB Client," and the rest of the text boxes on this page provide additional information for this client.

Viewing the Status of Workgroup Bridges (CLI)

Procedure

Step 1 See any WGBs on your network by entering this command:

show wgb summary

Step 2 See the details of any wired clients that are connected to a particular WGB by entering this command:

show wgb detail wgb_mac_address

Debugging WGB Issues (CLI)

Before you begin

- Enable debugging for IAPP messages, errors, and packets by entering these commands:
 - debug iapp all enable—Enables debugging for IAPP messages.
 - debug iapp error enable—Enables debugging for IAPP error events.
 - debug iapp packet enable—Enables debugging for IAPP packets.
- Debug an roaming issue by entering this command:

debug mobility handoff enable

- Debug an IP assignment issue when DHCP is used by entering these commands:
 - debug dhcp message enable
 - debug dhcp packet enable
- Debug an IP assignment issue when static IP is used by entering these commands:
 - · debug dot11 mobile enable
 - · debug dot11 state enable

Non-Cisco Workgroup Bridges

When a Cisco workgroup bridge (WGB) is used, the WGB informs the access points of all the clients that it is associated with. The controller is aware of the clients associated with the access point. When non-Cisco WGBs are used, the controller has no information about the IP address of the clients on the wired segment behind the WGB. Without this information, the controller drops the following types of messages:

- ARP REQ from the distribution system for the WGB client
- ARP RPLY from the WGB client
- DHCP REQ from the WGB client
- DHCP RPLY for the WGB client

The following are some guidelines for non-Cisco workgroup bridges:

• The controller can accommodate non-Cisco WGBs so that the controller can forward ARP, DHCP, and data traffic to and from the wired clients behind workgroup bridges by enabling the passive client feature. To configure your controller to work with non-Cisco WGBs, you must enable the passive client feature so that all traffic from the wired clients is routed through the WGB to the access point. All traffic from the wired clients is routed through the work group bridge to the access point.

Note

For FlexConnect APs in local switching, non-Cisco workgroup-bridge clients in bridged mode are supported using the **config flexconnect group** *group-name* **dhcp overridden-interface enable** command.

- When a WGB wired client leaves a multicast group, the downstream multicast traffic to other WGB wired clients is interrupted briefly.
- If you have clients that use PC virtualization software such as VMware, you must enable this feature.

Note

We have tested multiple third-party devices for compatibility but cannot ensure that all non-Cisco devices work. Support for any interaction or configuration details on the third-party device should be discussed with the device manufacturer.

- You must enable the passive client functionality for all non-Cisco workgroup bridges.
- You might need to use the following commands to configure DHCP on clients:
 - Disable DHCP proxy by using the **config dhcp proxy disable** command.
 - Enable DHCP boot broadcast by using the config dhcp proxy disable bootp-broadcast enable command.

This section contains the following subsection:

Restrictions for Non-Cisco Workgroup Bridges

- Only Layer 2 roaming is supported for WGB devices.
- Layer 3 security (web authentication) is not support for WGB clients.
- Visibility of wired hosts behind a WGB on a controller is not supported because the non-Cisco WGB device performs MAC hiding. Cisco WGB supports IAPP.
- ARP poisoning detection does not work on a WLAN when the flag is enabled.
- VLAN select is not supported for WGB clients.
- Some third-party WGBs need to operate in non-DHCP relay mode. If problems occur with the DHCP assignment on devices behind the non-Cisco WGB, use the config dhcp proxy disable and config dhcp proxy disable bootp-broadcast disable commands.

The default state is DHCP proxy enabled. The best combination depends on the third-party characteristics and configuration.