
Cisco Wireless Phone 800 Series Developer's Guide
Last Modified: 2023-06-07

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15
of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of
the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio
frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference
will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be determined by turning the equipment off and on, users are
encouraged to try to correct the interference by using one or more of the following measures:

• Reorient or relocate the receiving antenna.

• Increase the separation between the equipment and receiver.

• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

• Consult the dealer or an experienced radio/TV technician for help.

Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on
age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that
is hardcoded in the user interfaces of the product software, language used based on standards documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2023 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

API Specification 1C H A P T E R 1

About This Specification 1

The Cisco Library 2

Cisco Libraries in Android Studio 2

Barcode API 2

Supported Symbologies 2

Barcode Data Flow 3

Barcode API 4

Barcode API Guidelines 6

Custom Intents 8

Use Cases 9

Button API 9

Buttons App User Interface 9

Cisco Intents for Buttons App 11

Button API Guidelines 12

Buttons Troubleshooting 13

Miscellaneous 13

Initiating a Call Using Cisco SIP Dialer 14

Google Play Services 14

Web Development 15C H A P T E R 2

Web API 15

Cisco Web API App 15

Interaction with other Android Applications 16

Interaction with Phone Calls 16

Other Browsers That May Be Installed on the Phone 16

Cisco Wireless Phone 800 Series Developer's Guide
iii

Web Development Overview 16

Using XHTML 17

Your Application and Cisco Wireless Phone 17

Cisco App URLs 18

Cisco Alertview 19

Use Cisco Alertview 20

App URLs Applications 20

Handset Configuration 21

Overview of the Cisco Wireless Phone Web API 21

Push URL 22

Push Data 23

Internal URIs 23

Phone State Polling 23

Event Notification 24

Telephony Integration 25

Telephone Integration URIs 25

Use Push Requests 27

HTTP <URL> Push 27

Data Push of Complex URLs 31

HTML <Data> Push 31

Use Event Notifications 32

Viewing a Personal Alarm Event 33

Viewing an Incoming Call Event 35

Viewing an Outgoing Call Event 36

Viewing a Call State Change Event 38

Viewing a Line Registration Event 41

Viewing a Line Unregistration Event 42

Viewing a Login/Logout Event 43

Phone State Polling 44

Receiving Call Line Information 45

Receiving Device Information 47

Receiving Network Status 48

Write Your Web Application 49

Supported Standards 49

Cisco Wireless Phone 800 Series Developer's Guide
iv

Contents

HTTP Support 50

Use JavaScript DOM Extensions 50

PolySoftKey 50

PolyUri custom DOM extension 52

Configure the Parameters Required by the Cisco Wireless Phone Web API 52

Web API Settings 52

Web Application Shortcuts Settings 52

State Polling Settings 53

Push Settings 53

Event Notification Settings 54

Troubleshooting and Best Practices 55

Best Practices during Web Application Development 56

Notes on API Security 57

Testing 57

Controlled Test Environment 57

Test Hardware 58

Test Software 58

Setup Overview 58

PC Setup 59

Wireless Phone Setup 59

Conduct the Test 60

Working System Test 60

Appendix 61A P P E N D I X A

Appendix A: Additional information 61

Cisco Wireless Phone Web API and Cisco SIP Application Dependencies 61

Visual Design Specifications 61

Determining the Phone Model 62

Web API Syntax Changes 62

Barcode Changes 63

Interrupt Criteria 63

User Agent Change 64

Control of Soft Keys 64

Appendix C: Products Mentioned in this Document 65

Cisco Wireless Phone 800 Series Developer's Guide
v

Contents

Appendix D: Terms 66

Cisco Wireless Phone 800 Series Developer's Guide
vi

Contents

C H A P T E R 1
API Specification

• About This Specification, on page 1
• Barcode API, on page 2
• Button API, on page 9
• Miscellaneous, on page 13

About This Specification
This guide specifies CiscoWireless Phone Application Programming Interfaces (APIs) which expose wireless
phone platform capabilities not available through standard Android Open Source Project (AOSP) application
APIs, such as access to scanned barcode data and so on.

This guide is only for reference on the capabilities of PhoneWebAccess APIs. See https://developer.cisco.com
for more information on Software Development Kit (SDK) such as scripts and sample applications for your
reference before developing the web application.

Note

The specification is for native Android application (app) developers and assumes Android application
programming competency.

As more API platform capabilities become available or as existing APIs are revised, the API version and the
guide will be updated.

All Cisco Wireless Phone models are covered in these guides:

• Cisco Wireless Phone 840/840S

• Cisco Wireless Phone 860/860S

Both Cisco Wireless Phone 860 Series and 840 Series running Firmware Release 1.1 are compatible with
SDK 2.4.

Note

Cisco Wireless Phone 800 Series Developer's Guide
1

https://developer.cisco.com

The Cisco Library
To use Cisco-specific APIs in your Android project, you must include the Cisco libraries in your project:
com.spectralink.sdk.jar.

As the Cisco API changes over time, such as adding new capabilities, we will release new versions of its
library. A developer should ensure the com.spectralink.sdk.jar file that is included in an Android project
corresponds to the Cisco API version the developer intends to use (for example 2.4).

Cisco Libraries in Android Studio
The following steps describe one method for using the API in a project for Android Studio. This process is
not unique to our API, but depending on your project’s complexity, few more steps are required. Refer to the
internet for additional information. There are likely several ways to do this so these are guidelines and not
hard-and-fast rules.

Trying to use Cisco APIs without inclusion of the Cisco libraries cause compiler, linker, or run-time errors.Note

1. Add the com.spectralink.sdk.jar file to the folder app/libs within your app’s project.

2. Open the application build.gradle (Module: app) and under dependencies, add: implementation
files('libs/com.spectralink.sdk.jar').

3. Sync project and use.

Barcode API
The barcode API allows Android applications (activities and services) to receive scanned barcode data on
Cisco Wireless Phone models with an integrated 1D/2D barcode reader (9x53). Applications can also enable
and disable the barcode reader to prevent an accidental barcode key press from powering-on the illuminating
LED in the barcode module.

• Allow multiple apps or services to receive barcode data.

• Introduce API to disable & enable the barcode scanner.

• Introduce API to determine if barcode scanner is present on device.

Usually, EMM configures barcode scanner and symbologies. Device can also be to configure them.

Supported Symbologies
The following symbologies are supported:

Interleaved 2 of 5CodabarAztec

ISBT-128Code 11CCA EAN-128

ISBT-128 ConCode 128CCA EAN-13

Cisco Wireless Phone 800 Series Developer's Guide
2

API Specification
The Cisco Library

Macro Micro PDFCode 32CCA EAN-8

Macro PDFCode 39 Full ASCIICCA GS1 DataBar

Macro QRCode 39 TriopticExpanded

Matrix 2 of 5Code 93CCA GS1 DataBar Limited

Micro PDFDataMatrixCCA GS1 DataBar-14

Micro QRDiscrete (Standard) 2 of 5CCA UPC-A

MSIEAN-128CCA UPC-E

PDF-417EAN-13CCB EAN-128

QR CodeEAN-13 + 2 SupplementalCCB EAN-13

UPC-AEAN-13 + 5 supplementalCCB EAN-8

UPC-A + 2 SupplementalEAN-8CCB GS1 DataBar

UPC-A + 5 supplementalEAN-8 + 2 SupplementalExpanded

UPC-E0EAN-8 + 5 supplementalCCB GS1 DataBar Limited

UPC-E0 + 2 SupplementalGS1 DataBar ExpandedCCB GS1 DataBar-14

UPC-E0 + 5 supplementalGS1 DataBar LimitedCCB UPC-A

GS1 DataBar-14CCB UPC-E

Han XinCCC EAN-128

The following symbologies are supported:

MaxiCode2D:1D:

MaxiCode Mode 0Australian PostCIP 128

Irregular PDFBritish Post OfficeUPC-E1

Planet PostalCanada PostUPC-D

PostnetCodablock AISMN

QR Code Model 1Codablock FISSN

Sweden PostCode 16k

TLC 39Dutch Post

Infomail

Japan Post

Barcode Data Flow
The flow diagram shows how scanned data will be processed by the Cisco barcode service.

Cisco Wireless Phone 800 Series Developer's Guide
3

API Specification
Barcode Data Flow

Barcode API
com.spectralink.barcode.lib

Cisco Wireless Phone 800 Series Developer's Guide
4

API Specification
Barcode API

Class BarcodeManager

java.lang.Object

com.spectralink.barcode.lib.BarcodeManager

public class BarcodeManager

extends java.lang.Object

Table 1: Field summary

DescriptionField

static java.lang.String

This string can be used as the intent filter to receive
scanned barcode data.

static java.lang.String

SCAN_DATA_EXTRA

This is the key used to retrieve the barcode data from
broadcasted SCAN_INTENTs.

static java.lang.String

SCAN_DATA_SYMBOLOGY

This is the key used to retrieve the barcode symbology
from broadcasted SCAN_INTENTs.

static java.lang.String

SCAN_STATE_EXTRA

This is the key used to retrieve the barcode state from
broadcasted STATE_INTENTs.

static java.lang.String

STATE_BC_DISABLED

This string is passed as extra data with the barcode
STATE_INTENTwhen barcode scanning is disabled.

static java.lang.String

STATE_BC_ENABLED

This string is passed as extra data with the barcode
STATE_INTENT when barcode scanning is enabled.

static java.lang.String

STATE_INTENT

This string can be used as the intent filter to receive
scanner state changes.

static java.lang.String

STATE_KEYBOARD_DISABLED

This string is passed as extra data with the barcode
STATE_INTENT when barcode keyboard input is
disabled.

static java.lang.String

STATE_KEYBOARD_ENABLED

This string is passed as extra data with the barcode
STATE_INTENT when barcode keyboard input is
enabled.

static java.lang.String

Cisco Wireless Phone 800 Series Developer's Guide
5

API Specification
Barcode API

Table 2: Method summary

DescriptionMethod

disableBarcodeKeyboard(android.content.Context

ctx)

Disables automatic keyboard input from the barcode
manager.

void

disableBarcodeReader(android.content.Context

ctx)

Disables the use of the barcode scanner.

void

doDecode()

Triggers a barcode scan. Note: this call only works
on Cisco Wireless Phone R1.4 or greater.

void

enableBarcodeKeyboard(android.content.Context

ctx)

Enables automatic keyboard input from the barcode
manager.

void

enableBarcodeReader(android.content.Context

ctx)

Enables the use of the barcode scanner.

void

getInstance()

Gets an instance of the Barcode manager.

Static Barcode Manager

getIsBarcodeEnabled()

Returns true if the barcode reader is enabled and false
otherwise.

boolean

getIsBarcodeKeyboardOn()

Returns true if the barcode keyboard input feature is
enabled and false otherwise.

boolean

hasBarcodeReader()

Returns true if the device has a barcode reader and
false otherwise.

boolean

Barcode API Guidelines
See the Barcode API example app included in this SDK for more details. Android projects using the barcode
capability must include the com.spectralink.barcode.lib library (contained within
com.spectralink.sdk.jar). The library can also be done adding the following to the manifest.xml file.
<uses-library android:name="com.spectralink.barcode.lib" />

Cisco Wireless Phone 800 Series Developer's Guide
6

API Specification
Barcode API Guidelines

On CiscoWireless Phones with barcode readers (for example 840s), a Cisco barcode system service is started
during boot. The service is responsible for generating intents with barcode reader state and barcode data. If
the above uses-library declaration has android:required="false" set, the developer needs to check for this to
be a Cisco device before using any barcode API.

Determining if a barcode scanner is present

Applications can determine if a barcode scanner is present, either by checking device model numbers (i.e.
using Android.os.Build MODEL field) which may be challenging to keep in sync with new Cisco or OEM
product offerings, or by using the BarcodeManager hasBarcodeReader method, where the latter is the preferred
approach.

The BarcodeManager instance shall exist even on devices without a barcode scanner.Note

barcodeManager = BarcodeManager.getInstance();
if(barcodeManager.hasBarcodeReader()){
// do something useful with reader
} else{
// no barcode reader on this phone.
}

Enabling / disabling the barcode scanner

To prevent a user accidentally illuminating the scanner’s LED when pointed at someone, an app can control
the scanner function using the disableBarcodeReader and enableBarcodeReader methods. The current scanner
state can be identified via the BarcodeManager.STATE_INTENT and checking the extra data for
STATE_BC_DISABLED or STATE_BC_ENABLED.
disableButton.setOnClickListener(new OnClickListener(){
@Override
public void onClick(View v) {
barcodeManager.disableBarcodeReader(v.getContext());
}
});
enableButton.setOnClickListener(new OnClickListener(){
@Override
public void onClick(View v) {
barcodeManager.enableBarcodeReader(v.getContext());
}
});

Receiving scanned barcode data

To receive barcode data, an application can register a broadcast receiver for the
BarcodeManager.DATA_INTENT. The actual data is available in the extended data of the intent by using
the String key BarcodeManager.SCAN_DATA_EXTRA. You can also get symbology by using the string
key BarcodeManager.SCAN_DATA_SYMBOLOGY.
public class BarcodeReceiver extends BroadcastReceiver {
String mReceiverName = "";
BarcodeReceiver(String receiverName){
mReceiverName = receiverName;
}
@Override
public void onReceive(Context context, Intent intent) {
String rcvData = intent.getStringExtra(BarcodeManager.SCAN_DATA_EXTRA);
String rcvSymbology =

Cisco Wireless Phone 800 Series Developer's Guide
7

API Specification
Barcode API Guidelines

intent.getStringExtra(BarcodeManager.SCAN_DATA_SYMBOLOGY);
Logging.myLog(mReceiverName + " Received: " + rcvData, context);
Logging.myLog(mReceiverName + " Received Symbology: " + rcvSymbology,
context);
}
public class TestActivity extends Activity{
public void onCreate(Bundle savedInstanceState) {
<snip>
// Register activity barcode receiver.
bcReceiver = new BarcodeReceiver("BC Activity");
IntentFilter filter = new IntentFilter(BarcodeManager.DATA_INTENT);
registerReceiver(bcReceiver, filter);
<snip>
}
}

Enabling / disabling text input field data insertion

By default, Cisco Wireless Phone will input scanned data into a text input field if in focus. This is useful if
the application does not actively interface with the barcode API to receive the data directly. However, some
apps may not want this behavior, so the behavior can be disabled by an app using the disableBarcodeKeyboard
and enableBarcodeKeyboard methods. The current keyboard input state can be identified via the
BarcodeManager.STATE_INTENT and checking the extra data for STATE_KEYBOARD_DISABLED or
STATE_KEYBOARD_DISABLED. If an application is using our API it is suggested to disable this keyboard
capability.
testBarcode.disableBarcodeKeyboard(v.getContext());

Example code

Please see the example code package for the Barcode API.

Custom Intents
Cisco Wireless Phone 840S or 860S supports Custom Intents.

The example application in this SDK zip file demonstrates the usage of the custom Intents. The manifest.xml
file has Intent Filters with Intent Action and Intent Categories.

The partner will need to provide the three settings to the SAM or EMM administrator.

• Intent Delivery Method

• Intent Action

• Intent Category

Those three settings collectively will enable the Barcode Service to send an Intent to the partner application
using one of the following delivery methods after a scan is completed.

• Start Activity

• Start Service

• Start Foreground Service

• Send Broadcast

The custom intent will contain the data shown in the table below as String Extras.

Cisco Wireless Phone 800 Series Developer's Guide
8

API Specification
Custom Intents

String Extras can be obtained from the extras bundle shown below by calling “intent.getExtras()”

NotesValue (examples)Key

Barcode value after string
Manipulation

GS18061200285com.spectralink.Scanflex.data_string

Unix time of Scan1586158888809com.spectralink.Scanflex.data_dispatch_time

Type of Symbology ScannedCode 128com.spectralink.Scanflex.label_type

Use Cases
1. Start Activity use case

The partner app wants to move from the MainActivity to a different activity on a successfully completed
scan and send data to the new activity.

2. Send Broadcast use case

The partner application wants to send a broadcast to a broadcastReceiver that it has already implemented,
either within the same application or a different application developed by the same partner.

Button API

Buttons App User Interface
Cisco Wireless Phones contain multiple buttons not normally found on a consumer phone (Left, Right, Top,
and Fingerprint (Cisco Wireless Phone 860 or 860S only), along with expected buttons (Power, Volume up
and Volume down). Volume up and down buttons are available to apps via standard Android APIs, e.g. using
class KeyEvent and keycode KeyEvent.KEYCODE_VOLUME_DOWN.

All buttons are configurable in the Buttons app except for the power button. If an app listens for a android
intent via a button press, that android intent must be mapped to that respective physical button in the Buttons
App. For example, remapping the left button from ‘barcode’ to ‘custom 1’ will now send the custom 1 intent
when the left button is pressed.

The Buttons app provides a way for the user to change the way a button functions. The function follows the
change. No matter which button is selected for a function, the function intent will be delivered when the new
button is pressed.

The Buttons app allows you to change which programmable button does what assignable action:

Cisco Wireless Phone 800 Series Developer's Guide
9

API Specification
Use Cases

Default actionButton

No actionLEFT button

PTTRIGHT button

AlarmTop button

Fingerprint*Fingerprint*

Volume upVolume up

Volume downVolume down

Scanner**

Run application

Home key

Back key

Open URL

Menu key

Custom 1

Custom 2

Custom 3

Custom 4

Cisco Wireless Phone 800 Series Developer's Guide
10

API Specification
Buttons App User Interface

* Cisco Wireless Phone 860 or 860S only (on the back of the phone)

** Cisco Wireless Phone 840S or 860S only

The user simply selects the button to remap and then selects the new desired function. Not all actions are
available on all buttons. Custom buttons are programmed by the system administrator.

Default

Options

Cisco Intents for Buttons App
A custom app can use the physical buttons on CiscoWireless Phone for its own purposes. There are two steps
to get the appropriate functionality:

1. The custom app must register a broadcast receiver to listen for a Cisco intent.

2. The respective Cisco intent must be mapped to that button using the Button app.

The following intents can be defined in a custom application and then registered to a receiver within that
application:

Cisco Wireless Phone 800 Series Developer's Guide
11

API Specification
Cisco Intents for Buttons App

Cisco Wireless Phones use the “Apollo” code word for intents used by all models of Cisco Wireless Phones.Note

Table 3: Broadcast Action Intent strings

DescriptionString

Intent action string for PTT“com.apollo.intent.action.PTT_BUTTON”

Intent action string for Panic“com.apollo.intent.action.PANIC_BUTTON”

Intent action string for Barcode“com.apollo.intent.action.BARCODE_BUTTON”

Intent action string for Fingerprint“com.apollo.intent.action.FINGERPRINT_BUTTON”

Intent action string for Custom 1“com.spectralink.intent.action.CUSTOM1_BUTTON”

Intent action string for Custom 2“com.spectralink.intent.action.CUSTOM2_BUTTON”

Intent action string for Custom 3“com.spectralink.intent.action.CUSTOM3_BUTTON”

Intent action string for Custom 4“com.spectralink.intent.action.CUSTOM4_BUTTON”

For each intent, the EXTRA_TEXT string provides information on the button action as follows:

Table 4: EXTRA_TEXT String

DescriptionString

When key is initially pressed“keypress”

When key is released“keyrelease”

Indicates key was pressed for short duration“shortpress”

Indicates keywas pressed for a duration exceeding the Android longpress
threshold

“longpress”

Button API Guidelines
Please see the Button API example app included in this SDK for more details. The following provides a simple
code snippet to detect a PTT long press.
public static final String PTT_BUTTON =
“com.apollo.intent.action.PTT_BUTTON”;
public static final String LONGPRESS = “longpress”;
public class ButtonActionReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
if(intent.getAction().equals(PTT_BUTTON)) {
Bundle b = intent.getExtras();
if(b.get(Intent.EXTRA_TEXT).equals(LONGPRESS)){
//do something cool with long key press
}
}

Cisco Wireless Phone 800 Series Developer's Guide
12

API Specification
Button API Guidelines

}
}

The generated intents do have dependencies based on Cisco Wireless Phone’s awake or asleep state, i.e.
whether the screen is on or off. The following provides an explanation of the behaviors. However, application
developers should become familiar with the button intent behaviors before trying to integrate them into their
app:

Phone Awake, Screen On (All buttons):

1. Button pressed -> button’s respective intent generated with EXTRA_TEXT=keypress.

2. If button is held longer than Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=longpress.

3. If button is released before Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=shortpress.

4. Button released -> button’s respective intent generated with EXTRA_TEXT=keyrelease.

Phone Asleep, Screen Off (button set to Scanner or Custom):

1. Button pressed -> No intent generated

2. Button released -> No intent generated

Phone Asleep, Screen Off (button set to Alarm or PTT):

1. Button pressed -> Phone wakes, NO keypress intent generated

2. If button is held longer than Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=longpress.

3. If button is released before Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=shortpress.

4. Button released -> button’s respective intent generated with EXTRA_TEXT=keyrelease.

As shown above, buttons can behave differently, and behavior differs depending on phone state.

Buttons Troubleshooting
Adding Logcat messages will be helpful for identifying when and what Intents are received.

Miscellaneous
The following section provides additional useful programming information for Cisco Wireless Phone. These
may not use Cisco proprietary APIs but offer useful Standard Android based hints.

Cisco Wireless Phone 800 Series Developer's Guide
13

API Specification
Buttons Troubleshooting

Initiating a Call Using Cisco SIP Dialer
Apps may want to use the integrated Cisco SIP dialer app to initiate phone calls.. Calling can be done using
the standard Android Intents, ACTION_CALL and ACTION_DIAL. See Android documentation for full
details on semantics. However in general terms, ACTION_CALL initiates a call, but requires Manifest
permissions, whereas ACTION_DIAL does not actually start the call nor does it require Manifest permission.

An example of using the intent is:
Intent callIntent = new Intent(Intent.ACTION_CALL);
callIntent.setData(Uri.parse("tel:7203754157"));
startActivity(callIntent);

There are many examples on the Internet, one good reference is:http://www.mkyong.com/android/
how-to-make-a-phone-call-in-android/

Google Play Services
Cisco Wireless Phone is a Google certified device and accordingly the software now includes and supports
GoogleMobile Services. Google Play, Google Play Services, and associated APIs are available to applications
as applicable.

Cisco Wireless Phone 800 Series Developer's Guide
14

API Specification
Initiating a Call Using Cisco SIP Dialer

http://www.mkyong.com/android/how-to-make-a-phone-call-in-android/
http://www.mkyong.com/android/how-to-make-a-phone-call-in-android/

C H A P T E R 2
Web Development

• Web API, on page 15
• Your Application and Cisco Wireless Phone, on page 17
• Overview of the Cisco Wireless Phone Web API, on page 21
• Telephony Integration, on page 25
• Write Your Web Application, on page 49
• Configure the Parameters Required by the Cisco Wireless Phone Web API, on page 52
• Troubleshooting and Best Practices, on page 55
• Testing, on page 57

Web API

Cisco Web API App
The Cisco Wireless Phone ships with the Cisco Web API app to support Web developers. The Cisco Web
API app contains the JavaScript extensions necessary to support developer requirements, as detailed in this
document. It allows developers to interface with external services and provide links to frequently used websites
in addition to providing a way to configure the wireless phones to integrate with an XML application. The
Web API provides:

• A widget to display a set of customer-defined URLs for applications and a special browser (WebView),

• A custom notification management tool, AlertView, that gives applications the ability to push data or a
URL to the phone and have it displayed in the AlertView notification window.

• Provides the capability for applications to receive notifications of events or poll for status.

The Alertview notification window and the APP URLs widget ensure extended app availability for the Web
API app.

By providing two separate activities for both pushed content and content the user has requested, content is
separated, and the user does not lose the content that they asked for if pushed HTML content is sent to them:

• Pushed content is delivered to the user as a standard Android notification, which is displayed in the
notification drawer. It is not assumed that all pushed content is more important than the current user
activity. Therefore, only Critical priority pushed content will take over the user’s foreground activity

Cisco Wireless Phone 800 Series Developer's Guide
15

and open the Alertview. Lower priority content is queued up and shown when the user selects the
notification.

• User-initiated links in the App URLs launch when the user opens the widget box containing the App
URLs. Once tapped, the shortcuts open applications within a browser.

Interaction with other Android Applications
Because pushed content is sent to the Android notification manager the user can choose to handle it when
they choose, except in the case of Critical priority content, which will notify the user audibly and will become
the foreground activity. Thus, there is no adverse interaction with other running Android applications.

Interaction with Phone Calls
If the user is in a phone call they will not be interrupted by any pushed content except for critical priority
content, which will notify them audibly and will take over the foreground activity. For information about
limitations to the web API when a third-party VoIP application is used instead of the Cisco SIP application,
see Appendix A: Additional information

Other Browsers That May Be Installed on the Phone
Remember that the end user may have many other apps, including browsers, on their phone. These browsers
will not contain the extensions that are present in the Cisco Web API app.

Web Development Overview
Web applications running on Cisco Wireless Phones can be as simple as a list of contacts or as complex as a
nurse call system. Cisco Wireless Phones support App URLs, where users can interact with Web pages as
they would on a computer.

Development of a web application for the Cisco Wireless Phone generally follows these steps:

1. Planning. Defining the requirements of the application according to the facility’s needs.

2. Familiarization of the capabilities of the Cisco Wireless Phone.

3. Familiarization of the infrastructure requirements of the Cisco Wireless Phones – example: call control
(telephony server), wireless LAN, etc. You will need to learn about the components of the entire system
to implement your application. This knowledge is obtained through study of the Cisco Wireless Phone
Deployment Guide and VIEW Program AP Guides.

4. Application development and configuration requirements development. From your research on the
requirements of the infrastructure, you will develop both the application itself and configure the parameters
that the wireless phones need to use in order to integrate with the application. The settings will become
central to testing your application and ultimately will be deployed along with the application in test and
customer environments.

5. The first phase of Application testing and debugging uses the Cisco Wireless Phone hardware, running
your customized settings, and other components to mimic a telephony deployment: a simple wireless
LAN environment and call server.

6. The second phase of application testing uses Cisco Wireless Phones are deployed in a customer
representative wireless LAN test environment. This test setup is detailed in this guide. During this test,

Cisco Wireless Phone 800 Series Developer's Guide
16

Web Development
Interaction with other Android Applications

applications can be tested for capacity as well as robustness for phones moving on and off the wireless
LAN (due to power cycles and out of range movement).

7. The third phase of application testing is done during deployment in a working environment.

8. Launch.

Using XHTML
XHTML, or eXtensible HyperText Markup Language, is a family of XML markup languages that mirror or
extend versions of the widely-used Hypertext Markup Language (HTML), the language in which web pages
are written. XHTML is HTML 4.01 redesigned as XML.

You should ideally have experience working with HTML and XHTML programming or access to someone
who has such experience to benefit from the information and discussion provided in this guide.

For more information, refer to the following online documents:

• W3C® HTML 4.0.1 Specification

• W3C HTML 5 Specification

• W3C XHTML 1.0 The Extensible HyperText Markup Language (Second Edition)

• W3C XHTML Basic 1.1 - Second Edition

• W3C XHTML 1.1 - Module-based XHTML - Second Edition

• W3C XHTML Tables Module – XHTML 2.0

You can use whichever development languages or servers you choose, including JavaScript, PHP, Python®,
Django®, Tomcat™ or Apache™. Use whichever tools you are most comfortable using, or those that are most
supported by your IT department.

Note

Your Application and Cisco Wireless Phone
Cisco Wireless Phone is a powerful multi-touch phone that enables many types of applications, including
native Android applications and Web-based applications.

Applications that are standard web applications or pages can be accessed using any web browser in the same
manner as a user would on a wireless phone.

A web application that utilizes any of the features of the Cisco Wireless Phone Web API will use the Cisco
App URLs instead of a common browser.

Alerts sent to the phone from a web application server will show up to the user in the Cisco Alertview in
addition to creating an Android notification in the notification bar.

Cisco Wireless Phone 800 Series Developer's Guide
17

Web Development
Using XHTML

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiUw_DV8Mz8AhXm-DgGHWitAlkQFnoECBcQAQ&url=https%3A%2F%2Fwww.w3.org%2FTR%2Fhtml401%2F&usg=AOvVaw264cQw8cmKEkk78sWlDqS1
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjwh5zv8Mz8AhXF7zgGHTXjDiEQFnoECBEQAQ&url=https%3A%2F%2Fwww.w3.org%2FTR%2F2011%2FWD-html5-20110405%2F&usg=AOvVaw0r4qp0rm7EZVYu8cQieSeU
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwip_tiC8cz8AhV94DgGHYl4CUIQFnoECAsQAQ&url=https%3A%2F%2Fwww.w3.org%2FTR%2Fxhtml1%2F&usg=AOvVaw1GHLhSZqPK56lpekUHaKhp
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjq4vOd8cz8AhXv9DgGHVQbD0YQFnoECAsQAQ&url=https%3A%2F%2Fwww.w3.org%2FTR%2Fxhtml-basic%2F&usg=AOvVaw2zQ9bCiT414yo6WLco_jg7
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj14PCu8cz8AhXkzDgGHQoOBfcQFnoECA4QAQ&url=https%3A%2F%2Fwww.w3.org%2FTR%2Fxhtml11%2F&usg=AOvVaw1qQJ3Lu2J1V-BEFLn1WpyL
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjZi-7X8cz8AhWF6jgGHRhuDSUQFnoECBcQAQ&url=https%3A%2F%2Fwww.w3.org%2FTR%2F2003%2FWD-xhtml2-20030506%2Fxhtml2.html&usg=AOvVaw30jMzXh9Au-L5CFkfKLD0h

Cisco App URLs
The CiscoAppURLs are web application shortcuts that open in a pared-down browser with enhanced Javascript
capabilities designed specifically for onboard applications.

A user accesses the App URLs by using programmed shortcuts that open the application. The web application
shortcut widget box supports up to 10 icons for App URLs.

Long press the home screen to open the Widgets option. Scroll down to display the Web API widget option.
Long press and drag the widget box to a home screen.

Install the Apps URLs widget box. The App URLs shortcuts display together in a widget box.

The App URLs supports true Cisco Wireless Phone applications with the following features:

• HTML 5 – without video support

• CSS 3.0 – allowing only a single transition at a time.

• SVG 1.1 (partial support)

• JavaScript / The Web API app is used by developers to interface with external services and provide links
to frequently used websites.

• Web API allows you to configure the wireless phones to integrate with an XML application.DOM access

• XMLHttpRequest

• HTTP 1.1

• AJAX

Cisco Wireless Phone 800 Series Developer's Guide
18

Web Development
Cisco App URLs

Cisco Alertview
The Cisco Alertview allows the user to see the top pushed Data or URL page (called an alert) in the queue
that was sent to their Cisco Wireless Phone. It also sends notifications to the Android notification manager
to alert the user of the number, and highest priority, of un-dismissed alerts.

It contains the following elements:

• Title bar showing the HTML <Title> * A button to dismiss the alert from the queue * A progress bar
showing the web page loading progress

• Optionally shown softkeys (Btn1-4). See PolySoftKey.

Alertview example

Alertview that plays a sound. Force sound link opens a player

Cisco Wireless Phone 800 Series Developer's Guide
19

Web Development
Cisco Alertview

Use Cisco Alertview
When a new push (Data or URL) is received by the phone, the Cisco Alertview does the following:

• Stores the push in the queue according to priority: Highest priority first and then ordered by received
time - most recent first. See Use Push Requests.

Alertview notification example of multiple alerts

Once in the Alertview, a user can interact with your web application in the same manner as if they initiated
the connection from a App URL shortcut. In fact, the User Agent of the App URLs and Alertview are identical.

App URLs Applications
The user can launch web applications in the Cisco App URLs widget box. When the user selects a web
application by tapping its widget icon, the Cisco browser displays and the title bar shows a progress indicator
as the page loads.

Cisco Wireless Phone 800 Series Developer's Guide
20

Web Development
Use Cisco Alertview

Handset behavior during App URLs functions

While the user is in a Cisco App URL page in the browser, if there is an event in the phone application that
requires the user's attention (such as an incoming phone call), the incoming phone call activity displays
automatically in the foreground and the Cisco App URL is placed on the recent activity list, just like on a
consumer wireless phone. The user can return to the Cisco App URL by selecting it off the recent activity
list, or by pressing the Back key.

App URL display and other activities are not always interrupted. Not all events require the user’s attention
to the display, for example, Push-to-talk audio traffic plays out the rear speaker without interrupting the current
activity’s display.

Note

Handset Configuration
The wireless phones are configured to reach and interact with the web application through their Web API
configuration, which must be set accordingly. Configuration will include:

• The wireless phones must be configured to find the web application. At a minimum you will need to
configure a URL location for the application itself and a label to display on the web app shortcut widget,
which the user uses to initiate the application.

• The wireless phone must be configured to send required event notifications to the application server,
minimally to notify the application of its IP address when it comes onto the wireless network.

• When applicable, the wireless phone must be configured to receive incoming pushes for the application
to send alerts to the wireless phone.

• Other parameters can be required if your application requires telephony features such as personal alarms
or emergency dial. The Cisco Wireless Phone Administration Guide will provide you will full details
about Cisco application deployment.

Configuration information

You will need to set up your test phones with the parameters your web application requires to test your
Application. While you can use a full-blown Enterprise Mobility Management (EMM) server to configure
the Web API settings in your test phones, we recommend that you simply use the manual method for a small
number of phones.

Overview of the Cisco Wireless Phone Web API
The Cisco Wireless Phone Web API includes a powerful set of web-based application tools, that are designed
to integrate easily into almost any enterprise-grade application environment. There are several key functional
API tools which will be fundamental elements of your application interface. The most valuable and necessary
mechanisms are outlined in the sections that follow.

At a high level, the Cisco Wireless Phone Web API uses the standard HTTP post mechanism to both send
status from the phone and to allow external servers to send alert messages to the phone. The messages use
XML as their syntax. The Web API also includes JavaScript callable DOM extensions inside the Cisco App
URLs and Cisco Alertview. These extensions allow a web application to access capabilities not typically

Cisco Wireless Phone 800 Series Developer's Guide
21

Web Development
Handset Configuration

available within a web browser sandbox. These capabilities include playing audio files and initiating telephone
calls.

The network flow diagrams provided in the following sections, represent only one example of how an
applications delivery platform might be architected. For example, in some instances, the web server and
application server could be the same. Several of the functional blocks are indicated separately for clarity.

The API is case sensitive, ensure you follow case guidelines exactly as any change may adversely affect the
results.

Note

See Telephony Integration for an in-depth explanation of each Web API function.

Push URL
The Push URL mechanism is typically used to create an application-generated message, alarm or alert on the
phone, to be displayed through the Cisco Alertview browser. This action, results in the Alertview receiving
a URL address downloaded from the application web server.

The Push URL function supports the following two types of content URLs:

• XHTML content URL: The content will be displayed on Alertview. If it is not already open, it opens
and displays the pushed message on Alertview.

• URI actions content URL: The URI actions specified in the file are executed on the wireless phone.

Figure 1: The REST API Push URL Message Flow

Cisco Wireless Phone 800 Series Developer's Guide
22

Web Development
Push URL

Push Data
Instead of pushing a URL using the Push URL mechanism, you can push a small amount of HTML data
directly from the application to the Cisco Alertview on the target wireless phone(s).

This feature does not allow for URI actions in the message, but URI actions can be defined as anchors within
the Push Data mechanism. This tool is useful for broadcast messages especially to a large group of users, as
the impact of a large number of browsers, i.e. Alertviews, requesting a URL from a web server simultaneously
is avoided (as a Push URL would require).

The general message flow is summarized as follows:

Figure 2: The REST API Push Data Message Flow

Internal URIs
Internal URIs are execution events that can be used for executing predefined actions in a specific scenario. It
is similar to the manual execution of key presses. The wireless phone executes Internal URIs in the order they
are received. The URIs must be defined in sequence and separated by a “;” (semicolon) character or newline
character and the file should be served with content type application/x-com-Cisco-webx. This file can be sent
to wireless phone using a URL push message.

Phone State Polling
Phone state polling enables you to fetch the following wireless phone configuration and call state information:

• Call Processing State

• Device Information

• Network Configuration

Cisco Wireless Phone 800 Series Developer's Guide
23

Web Development
Push Data

When the device receives any of these polling requests, it prepares the information in an XML format, and
sends it to the configured polling URL or to the device that requested the Poll, depending on the state of the
State Polling Response Method.

Figure 3: The REST API Polling Message Flow

Event Notification
The wireless phone-initiated event notification is based on a state change in the wireless phone or a network
connection event. This mechanism is used to integrate endpoint events into host application intelligence.When
an Event Notification is triggered it prepares the information in XML format and sends it to the configured
event notification URL.

Cisco Wireless Phone 800 Series Developer's Guide
24

Web Development
Event Notification

Figure 4: The REST API Post notification event

Telephony Integration
To fully utilize the power of the Cisco Wireless Phone Web API on a Cisco Wireless Phone, you will need
to understand what the telephony functions are and how to write a program that utilizes them. Additionally,
you will need to understand how to configure the wireless phone settings to work with your application. This
chapter covers the telephony functions that you can use and how the Push requests, Event notifications and
Phone state polling functions operate. Configuration to enable these features is covered in the next chapter.

Telephony integration is designed for the Cisco Wireless Phone application. All integration features detailed
here are only for use with the Cisco Wireless Phone app in a Wi-Fi environment.

Note

Examples have wrapped lines. Be aware that the lines of code shown in this document are formatted to fit the
page and may appear wrapped. If you cut and paste these lines, they may inadvertently contain line breaks.
Check for valid code before executing.

Note

Telephone Integration URIs
Internal Uniform Resource Identifiers (URIs) provide the interface to execute predefined actions on the phone.
These actions give you as a developer action to some internal functions that normally would take manual user
action to perform.

Cisco Wireless Phone 800 Series Developer's Guide
25

Web Development
Telephony Integration

There are two (2) ways to execute an internal URI action, as follows:

• The internal URIs can be sent as Data Push where content type must be: application/x-com-Cisco-webx

• If an XHTML file will include internal URI, they must be defined in (and executed from) anchor tags,
in the href attribute (for example, Menu). When the user selects the anchor, the
action is processed and executed (in this case, dial phone number 1234).

Internal URI actions contained in a file with content type “application/x-com-Ciscowebx” can be executed
only through a URL push.

Note

Use the following format when configuring the internal URIs:

ActionType:Action

where:

• ActionType is the type of action to execute (Tel, or Play)

• Action is the name/content of the action to be executed.

The supported internal URIs are described in the table shown next.

Table 5: Supported Internal URIs

ActionAction Type

Tel:[numbertodial]Tel2, 3

The Tel URI initiates a new call to the specified
number. Any digit map rules are followed.

Play:<audiofile_path>Play4

Download and play the audio file.

The <audiofile_path> is the relative path on the
application server, relative to the Server Root URL.

The LineIndex value is case insensitive.

If there are already 4 calls in progress the tel: URI request is ignored.

An error is logged in a log file if the file is too large to play.

Keep in mind that the following important notes regarding internal URIs:

Registration 2 is commonly used for in-house call systems that use registration 2 to call an extension for alerts
and other messages. For example, use tel:Reg2:2002 to place a call on registration 2 to extension 2002.

Note

Cisco Wireless Phone 800 Series Developer's Guide
26

Web Development
Telephone Integration URIs

A two-second pause is indicated by the “,” (comma). A one-second pause is indicated by a p character. The
dual-tone multi-frequency (DTMF) is sent after the placed call is connected when specified after postd= as
shown in the example below.

Note

Example: Place a call to *50, and then wait two seconds before entering 44:
<html>
<head>
</head>
<body>
Push to Dial
</body>
</html>

Ensure you specify the file format extension of any audio files, e.g. alertsoundA.wav. The preferred supported
file format is WAVE, G711 mu law or A law, 8KHz sampling rate, 8 bits per sample, monaural (aka mono).
Audio software such as Audacity® can be used to create sound files of the correct format.

Note

Use Push Requests
A push request is defined as an XML formatted request that you send to a phone to tell it to process the XML
content. The phone may render the data, fetch a URL, or perform an action, depending on the content of the
XML.

See Push Settings for a list of parameters you can use to enable push requests in the wireless phone.

Cisco Wireless Phone will convert PUSH request URLs to lower-case, so in effect the device will attempt to
retrieve web pages and files using lower case.

Note

If a phone is in call and is sent a tel: push request that is with priority: high, normal or important), the phone
accepts the push but does nothing. Only If the priority is critical will the call be placed immediately.

Note

HTTP <URL> Push
The HTTP URL push enables an application to push a URL to a phone for the App URLs to open, such as an
HTML Web page for display. The value sent within the push request is ‘relative’ because it is relative to the
URL configured by the Server root URL parameter (the pushed URL is appended to this ‘root’ URL, and this
is what the App URLs will attempt to open). This feature is asynchronous, because once the push request is
received by the wireless phone, it returns a 2xx or 4xx response immediately without waiting. There will be
no success/failure feedback for the push handling itself. The pushing application will not know if the App
URLs was able to open the pushed URL or not. The server that sends the requested page will know because
it will see the page requests from the App URLs.

Use the following format when configuring the HTTP URL Push:

Cisco Wireless Phone 800 Series Developer's Guide
27

Web Development
Use Push Requests

<URL priority=’X’ volume=’Y’ >URI path</URL>

The URL push requests support the attributes listed in the table shown next.

Table 6: URL Push Request Attributes

Permitted ValuesAttribute

Critical, Important, High, Normalpriority1

Sets the priority of the push, which determines how and when the URL is requested. For more information,
refer to the next table. Priority must be all lower case: priority. The value must have single quotes (‘).

StringURI path2

Any relative URI (or relative URI path) on the configured application server.

0 to 100volume

Sets an override volume for any custom alert tone embedded in the page. (See PolyUri customDOMextension
for more information on custom embedded alert tones.) Volume must be all lower case: volume. The value
must have single quotes (‘).

2 Multiple URIs in a single push request are not supported.

1 If attribute is absent, Normal is used.

The order of the priority and volume setting must adhere to the order shown in the example with priority first,
followed by volume. Also note that the volume value must have single quotes and the priority value must
have single quotes.

Note

The <URL> tag must be defined under a <SpectralinkIPPhone> root tag. For example:
<SpectralinkIPPhone>
<URL priority=’Normal’ volume=’100’ >/examples/media.xhtml</URL>
</SpectralinkIPPhone>

Note

The following table describes the results of using a specific priority when the phone is in different states.

Cisco Wireless Phone 800 Series Developer's Guide
28

Web Development
HTTP <URL> Push

Table 7: How Priority Affects URL and HTML Push Requests

DescriptionPriorityPhone State

The phonewill display push request
immediately: Notification sound
will play, Notification in
NotificationArea will show, Screen
wakes up, Cisco Alertview activity
starts in the foreground displaying
the push.

CriticalLocked/Unlocked with screen off

The phone plays the notification
tone and Notification in the
Notification Area will show,
however the screen does not
wakeup.

High

The phone plays the notification
tone and Notification in the
Notification Area will show,
however the screen does not
wakeup.

Important

The phone plays the notification
tone and Notification in the
Notification Area will show,
however the screen does not
wakeup.

Normal

The phonewill display push request
immediately: Notification sound
will play, Notification in
Notification Area will show, Cisco
Alertview activity comes to the
foreground displaying the Push

CriticalUnlocked with screen on, not in
phone call

The phone plays the notification
tone and Notification in the
Notification Area will show.

High

The phone plays the notification
tone and Notification in the
Notification Area will show.

Important

The phone plays the notification
tone and Notification in the
Notification Area will show.

Normal

Cisco Wireless Phone 800 Series Developer's Guide
29

Web Development
HTTP <URL> Push

DescriptionPriorityPhone State

The phonewill display push request
immediately: Notification sound
will play mixed in with the phone
audio, Notification in Notification
Area will show, Cisco Alertview
activity starts in the foreground
displaying the push.

CriticalUnlocked in phone call

The phone does not play the
notification tone and Notification
in the Notification Area will show.

High

The phone does not play the
notification tone and Notification
in the Notification Area will show.

Important

The phone does not play the
notification tone and Notification
in the Notification Area will show.

Normal

See Push Settings for the settings that are required for the wireless phone to receive a push request. If these
are not configured any push message sent to the wireless phone will be discarded.

Note

Keep in mind the following important notes regarding HTTP URL push:

• The URL that the phone ultimately ends up fetching is a concatenation of the Server root URL and the
URL sent in the Push URL message.

Server root URL can be defined to be Null. See Push Settings for complete information.

• Push requests are displayed as ‘first-in-first-out’ except for noted in the table above.

• All HTTP requests are challenged through HTTP Digest Authentication.

• If the phone cannot fetch the content from the pushed URI, the request is ignored.

Note

For example, if Server root URL is configured in a phone to be http://1.2.3.4/apps then to push the display of
a XHTML page media.xhtml, you would send the following XHTML.
<SpectralinkIPPhone>
<URL priority='Normal'>/examples/media.xhtml</URL>
</SpectralinkIPPhone>

where media.xhtml is hosted by a web server at http://1.2.3.4/apps/examples/media.xhtml.

Cisco Wireless Phone 800 Series Developer's Guide
30

Web Development
HTTP <URL> Push

Data Push of Complex URLs
If a URL is pushed to the phone that contains an ampersand (&), the wireless phone truncates the URL at the
ampersand. Two workaround options are:

• Do a data push which instantly re-directs to the desired URL
<SpectralinkIPPhone>
<Data priority='%s'><html><head><title>redirecting...
</title></head>
<body onload="window.location='http://12.34.56.78/
NOTIFY.HTML?DEVID=2105010250&EVENTID=%7BA71C2393-8276-4484-A0E5-
5666DA06A5C1%7D'">redirecting...
</body>
</Data>
</SpectralinkIPPhone>

• Add a hidden form with which to send the data: Applies to most cases (where you are not accessing the
GET variables directly w/ JavaScript).
<form name="form" action="someServerPage" method="POST">
<input type="hidden" name="DEVID" value="2105010250" />
<input type="hidden" name="EVENTID" value="%7BA71C2393-8276-4484-A0E5-
5666DA06A5C1%7D" />
</form>
notify device

Some additional logic would be required on the server to send the correct information (accessible via the
POST header of the HTTP request) back with NOTIFY.HTML but it would vary with language / framework
/ use case.

As a bonus, POSTed requests are considered more secure than GET style requests which include variables
visible in the URL.

HTML <Data> Push
The data push enables you to send XHTML page content directly to a phone, without the overhead of the
phone having to request the XHTML.

Use the following format when sending the HTML Data Push:

<Data priority='X' volume=Y >Y</Data>

The HTML push requests support the attributes listed in the following table.

Table 8: HTML Push Requests

Permitted ValuesAttribute

Critical, Important, High, Normalpriority1

Sets the priority of the push (X in the above example), which determines how and when the URL is requested.
Priority must be all lower case: priority. The value must have single quotes (‘).

Text in HTML formattext

Any text (Y in the above example).

0 to 100volume

Cisco Wireless Phone 800 Series Developer's Guide
31

Web Development
Data Push of Complex URLs

Permitted ValuesAttribute

Sets an override volume for any custom alert tone embedded in the page. (See PolyUri for more information
on custom embedded alert tones.) Volumemust be all lower case: volume. The value must have single quotes
(‘).

1 If attribute is absent, Normal is used.

The order of the priority and volume setting must adhere to the order shown in the example with priority first,
followed by volume. Also note that the volume value must have quotes and the priority value must have single
quotes.

Note

Tags must be defined under a <SpectralinkIPPhone> root tag:

• Data must have a capital D: Data

• Volume must be all lower case: volume

• Priority must be all lower case: priority

Note

Push URL and Push Data requests follow the same priority described in HTTP <URL> Push Table: How
Priority Affects URL and HTML Push Requests.

Note

When performing a data push, any referenced CSS files must be an absolute path. Therefore, with a data push,
the serverRoot URL is not included in the CSS file path.

Note

Example: To push the display of an important message:
<SpectralinkIPPhone>
<Data priority='Important' volume=’100’> <h1> Fire Drill at 2pm </h1>
Please exit and congregate at your appropriate location outside </Data>
</SpectralinkIPPhone>

See Push Settings for the settings that are required for the wireless phone to receive a push request. If these
are not configured you can push a message to the wireless phone but it will be discarded.

Note

Use Event Notifications
Event Notifications allow application programs insight into what wireless phones are doing, their status and
their network information. Using a combination of them will allow an application to detect the power up of
phones and the state of the phones.

Cisco Wireless Phone 800 Series Developer's Guide
32

Web Development
Use Event Notifications

For example, using a combination of events and phone state polls can allow an application to detect that a
phone has registered with the call server (Line Registration Event) and then get the phone’s extension number,
model # and firmware version (Device Info phone state poll).

The phone can be configured to send information to a specific URI if one of the following Event Notifications
occurs:

• Personal Alarm Event

• Incoming Call Event

• Outgoing Call Event

• Offhook Event

• Onhook Event

• Call State Change Event

• Line Registration Event

• Line Unregistration Event

These events are XML data posted to a Web server by the phone.

If you have configured a second registration for use by your application, you may use the <LineNumber>
parameter to return information to differentiate the line.

Note

The header tag in the XML that identifies a Cisco Wireless Phone event notification <SpectralinkIPPhone>
is not present in the event notification responses.

Note

Viewing a Personal Alarm Event
The Alarm Event can be used by a security application to record, track or otherwise manage an alarm event
that has been triggered by the SAFE application. Alarm events occur when Running, Tilt, and No movement
alarms are triggered and when Panic button (duress) calls are made.

Use the following format when viewing the alarm event:
<SafeEvent>
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress> </MACAddress>
<BSSID> </BSSID>
<StillAlarm> </StillAlarm>
<TiltAlarm> </TiltAlarm>
<RunningAlarm> </RunningAlarm>
<DuressAlarm> </DuressAlarm>
<LineNumber> </LineNumber>
<TimeStamp> </TimeStamp>
<Latitude> </Latitude>
<Longitude> </Longitude>
</SafeEvent>

Cisco Wireless Phone 800 Series Developer's Guide
33

Web Development
Viewing a Personal Alarm Event

Table 9: Alarm Notification Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

In a Wi-Fi environment, the phone will not “know” its cellular IP address until it needs to use
LTE. Therefore, disable Wi-Fi to allow the phone to find the LTE network. The Cellular IP
address will become available at that point and continue to be used when needed.

Note

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

MAC AddressBSSID

The MAC address of the AP the phone is currently using.

0 = no alarm, 1 = alarmStill Alarm

The current state of this alarm detector.

0 = no alarm, 1 = alarmTilt Alarm

The current state of this alarm detector.

0 = no alarm, 1 = alarmRunning Alarm

The current state of this alarm detector.

0 = no alarm, 1 = alarmDuress Alarm

The current state of this alarm detector.

0 or 1LineNumber

Returns 1 if an emergency call number is configured and 0 if no emergency call number is configured.

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

Current coordinates obtained from GPS

Na for Wi-Fi (no GPS)

Latitude

Cisco Wireless Phone 800 Series Developer's Guide
34

Web Development
Viewing a Personal Alarm Event

Permitted ValuesAttribute

LTE only (96-Series only)
example <Latitude>40.02565302689416</Latitude>

Current coordinates obtained from GPS

Na for Wi-Fi (no GPS)

Longitude

LTE only (96-Series only)
example: <Longitude>-105.22406386251863</Longitude>

Viewing an Incoming Call Event
The Incoming Call Event can be used by an application to send metadata about the call to the phone in real
time, or to allow the application to detect that the user of the phone is busy.

Use the following XML format when viewing the incoming call event:
<IncomingCallEvent>
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress> </MACAddress>
<CallingPartyName> </CallingPartyName>
<CallingPartyNumber> </CallingPartyNumber>
<CalledPartyName> </CalledPartyName>
<CalledPartyNumber> </CalledPartyNumber>
<LineNumber> </LineNumber>
<TimeStamp> </TimeStamp>
</IncomingCallEvent>

The incoming call event contains the attributes listed in the following table.

Table 10: Incoming Call Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

nameCallingPartyName

Cisco Wireless Phone 800 Series Developer's Guide
35

Web Development
Viewing an Incoming Call Event

Permitted ValuesAttribute

The name displayed in phone's ‘From’ label in screen. If the line is registered and the call is initiated from
that line, then the registered line display name of the calling party is shown. If the line is not registered and
the call is initiated from that line, then IP address of the calling party is shown. For example:
sip:172.24.128.160

numberCallingPartyNumber

The number displayed on the phone. If the line is registered and the call is initiated from that line, the
registered line number of the calling party is shown. If the line is not registered and the call is initiated using
IP address from that line, the IP address of the calling party is shown.

nameCalledPartyName

The name displayed in phone's To label on screen. If the call is received by a registered line, the registered
line display name of the called party is shown. If the call is received on a non registered line, the IP address
of the called party is shown.

numberCalledPartyNumber

The number displayed on the phone. If the call is received by a registered line, the registered line number
of the called party is shown. If the call is received on a nonregistered line, the IP address of the called party
is shown.

1 or 2LineNumber

Returns 1 for SIP registration 1 and 2 for SIP registration 2.

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

When the event notification URI is set and the incoming call event is enabled to gather information, the
following example shows the transmitted data for a call between one registered and one unregistered line:
<IncomingCallEvent>
<PhoneIP>172.24.132.135</PhoneIP>
<MACAddress>0004f214b89e</MACAddress>
<CallingPartyName>20701</CallingPartyName>
<CallingPartyNumber>20701@172.18.186.94</CallingPartyNumber>
<CalledPartyName>20300</CalledPartyName>
<CalledPartyNumber>20300</CalledPartyNumber>
<TimeStamp>2008-07-11T13:19:53-08:00</TimeStamp>
</IncomingCallEvent>

Viewing an Outgoing Call Event
The Outgoing Call Event can be used by an application to detect that the user of the phone is busy in a call.

Use the following XML format when viewing the outgoing call event:
<OutgoingCallEvent>
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress> </MACAddress>

Cisco Wireless Phone 800 Series Developer's Guide
36

Web Development
Viewing an Outgoing Call Event

<CallingPartyName> </CallingPartyName>
<CallingPartyNumber> </CallingPartyNumber>
<CalledPartyName> </CalledPartyName>
<CalledPartyNumber> </CalledPartyNumber>
<LineNumber> </LineNumber>
<TimeStamp> </TimeStamp>
</OutgoingCallEvent>

The outgoing call event contains the attributes listed in the following table.

Table 11: Outgoing Call Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

nameCallingPartyName

The name displayed in phone's From label in screen. If the line is registered and the call is initiated from
that line, then the registered line display name of the calling party is shown. If the line is not registered and
the call is initiated from that line, then IP address of the calling party is shown. For example:
sip:172.24.128.160

numberCallingPartyNumber

The number displayed on the phone. If the line is registered and the call is initiated from that line, the
registered line number of the calling party is shown. If the line is not registered and the call is initiated using
IP address from that line, the IP address of the calling party is shown.

nameCalledPartyName

The name displayed in phone's To label in screen. If the call is received by a registered line, the registered
line display name of the called party is shown. If the call is received on a nonregistered line, the IP address
of the called party is shown.

numberCalledPartyNumber

The number displayed on the phone. If the call is received by a registered line, the registered line number
of the called party is shown. If the call is received on a nonregistered line, the IP address of the called party
is shown.

1 or 2LineNumber

Returns 1 for SIP registration 1 and 2 for SIP registration 2.

Cisco Wireless Phone 800 Series Developer's Guide
37

Web Development
Viewing an Outgoing Call Event

Permitted ValuesAttribute

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

When the event notification URI is set and the incoming call event is enabled to gather information, the
following example shows the transmitted data for a call between one registered and one unregistered line:
<IncomingCallEvent>
<PhoneIP>172.24.132.135</PhoneIP>
<MACAddress>0004f214b89e</MACAddress>
<CallingPartyName>20701</CallingPartyName>
<CallingPartyNumber>20701@172.18.186.94</CallingPartyNumber>
<CalledPartyName>20300</CalledPartyName>
<CalledPartyNumber>20300</CalledPartyNumber>
<TimeStamp>2008-07-11T13:19:53-08:00</TimeStamp>
</IncomingCallEvent>

Viewing a Call State Change Event
The Call State Change event notifies the application of the different call states that can exist on the phone.

Use the following format when viewing the call state change event:
<CallStateChangeEvent CallReference=" " CallState=" ">
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress> </MACAddress>
<LineNumber> </LineNumber>
<TimeStamp> </TimeStamp>
<CallLineInfo>
<LineKeyNum> </LineKeyNum>
<LineDirNum> </LineDirNum>
<LineState> </LineState>
<CallInfo>
<CallState> </CallState>
<CallType> </CallType>
<UIAppearanceIndex> </UIAppearanceIndex>
<CalledPartyName> </CalledPartyName>
<CalledPartyDirNum> </CalledPartyDirNum>
<CallingPartyName> </CallingPartyName>
<CallingPartyDirNum> </CallingPartyDirNum>
<CallReference> </CallReference>
<CallDuration> </CallDuration>
</CallInfo>
</CallLineInfo>
</CallStateChangeEvent>

The call state change event contains the attributes listed in the following table.

Table 12: Call State Change Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

Cisco Wireless Phone 800 Series Developer's Guide
38

Web Development
Viewing a Call State Change Event

Permitted ValuesAttribute

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

1 or 2LineNumber

Returns 1 for SIP registration 1 and 2 for SIP registration 2.

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2008-07-11T13:19:53-08:00

numberCallReference

A unique identifier for a call.

1, 2 or 4LineKeyNum

Used in polling to determine which registration is responding or if IP dialing has been used. Returns 1 for
SIP registration 1 and 2 for SIP registration 2. Returns 4 for IP dialing.

phone numberLineDirNum

Phone number associated with line. For example:
1234

OK,

[any value that is not “OK” indicates a registration
error that will be specific to the PBX.]

LineState

The line state.

Outgoing call states: Setup, RingBack

Incoming call states: Offering

Outgoing/Incoming call states:

Connected, Disconnected

CallConference, CallHold, CallHeld,

CallConfHold, CallConfHeld

CallState

The call state.

Incoming, OutgoingCallType

Cisco Wireless Phone 800 Series Developer's Guide
39

Web Development
Viewing a Call State Change Event

Permitted ValuesAttribute

The call type.

stringUIAppearanceIndex

The call appearance index. This number simply shows the order of the call appearance on the display.

nameCalledPartyName

If the line is registered, the value is the registered line display name.

If the line is not registered, the value is the IP address of the called party.

numberCalledPartyDirNum

If the line is registered, the value is the registered line number.

If the line is not registered, the value is the IP address of the called party.

nameCallingPartyName

If the line is registered, the value is the registered line display name.

If the line is not registered, the value is the IP address of the calling party.

numberCallingPartyDirNum

If the line is registered, the value is the registered line number.

If the line is not registered, the value is the IP address of the calling party.

number, secondsCallDuration

The duration of the call.

Call State Change example of offering state for line 2
<CallStateChangeEvent CallReference="2" CallState="Offering">
<PhoneIP>172.29.101.24</PhoneIP>
<MACAddress>00907a13b900</MACAddress>
<LineNumber>2</LineNumber>
<TimeStamp>2015-07-14T14:37:33-0600</TimeStamp>
<CallLineInfo>
<LineKeyNum>2</LineKeyNum>
<LineDirNum>4547</LineDirNum>
<LineState>OK</LineState>
<CallInfo>
<CallState>Offering</CallState>
<CallType>Incoming</CallType>
<UIAppearanceIndex>2</UIAppearanceIndex>
<CalledPartyName>4547</CalledPartyName>
<CalledPartyDirNum>4547</CalledPartyDirNum>
<CallingPartyName>LizAvayaSIP3</CallingPartyName>
<CallingPartyDirNum>4520</CallingPartyDirNum>
<CallReference>2</CallReference>
<CallDuration>0</CallDuration>
</CallInfo>
</CallLineInfo>
</CallStateChangeEvent >

Cisco Wireless Phone 800 Series Developer's Guide
40

Web Development
Viewing a Call State Change Event

Viewing a Line Registration Event
The Line Registration Event fires whenever a phone registers one of its lines to a call server. This can be used
for a number of purposes but is a useful event flagging the fact that the phone is up and running on the network.
Note that this event is only sent at the first registration and not when the phone refreshes an existing registration.

Use the following XML format when viewing the outgoing call event:
<LineRegistrationEvent>
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress </MACAddress>
<LineNumber> </LineNumber>
<TimeStamp> </TimeStamp>
</LineRegistrationEvent>

The line registration event contains the attributes listed in the following table.

Table 13: Line Registration Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

1 or 2LineNumber

Returns 1 for SIP registration 1 and 2 for SIP registration 2.

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

Example of line registration event: LineNumber 1
<LineRegistrationEvent>
<PhoneIP>172.29.101.24</PhoneIP>
<MACAddress>00907a13b900</MACAddress>
<LineNumber>1</LineNumber>
<TimeStamp>2015-07-14T13:16:28-0600</TimeStamp>
</LineRegistrationEvent>

Example of line registration event: LineNumber 2
<LineRegistrationEvent>
<PhoneIP>172.29.101.24</PhoneIP>
<MACAddress>00907a13b900</MACAddress>

Cisco Wireless Phone 800 Series Developer's Guide
41

Web Development
Viewing a Line Registration Event

<LineNumber>2</LineNumber>
<TimeStamp>2015-07-14T13:16:30-0600</TimeStamp>
</LineRegistrationEvent

Viewing a Line Unregistration Event
The line unregistration event can be useful for determining when a phone is powered off or otherwise no
longer available on the network. However, the event only fires if the phone is gracefully shutdown or restarted.
However, if the phone experiences a power loss (e.g. battery pack removal), the event will not be fired, so it
cannot be relied on.

Use the following format when viewing the line unregistration event:
<LineUnregistrationEvent>
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress> </MACAddress>
<LineNumber> </LineNumber>
<TimeStamp> </TimeStamp>
</LineUnregistrationEvent>

The line unregistration event contains the attributes listed in the following table.

Table 14: Line Unregistration Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

1 or 2LineNumber

Returns 1 for SIP registration 1 and 2 for SIP registration 2.

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

Example of line unregistration event: LineNumber 1
<LineUnregistrationEvent>
<PhoneIP>172.29.101.24</PhoneIP>
<MACAddress>00907a13b900</MACAddress>
<LineNumber>1</LineNumber>
<TimeStamp>2015-07-14T13:15:11-0600</TimeStamp>
</LineUnregistrationEvent>

Cisco Wireless Phone 800 Series Developer's Guide
42

Web Development
Viewing a Line Unregistration Event

Example of line unregistration event: LineNumber 2
<LineUnregistrationEvent>
<PhoneIP>172.29.101.24</PhoneIP>
<MACAddress>00907a13b900</MACAddress>
<LineNumber>2</LineNumber>
<TimeStamp>2015-07-14T13:15:38-0600</TimeStamp>
</LineUnregistrationEvent>

Viewing a Login/Logout Event
The Login/Logout Event can be used by the Biz Phone app when SIP is enabled and there are multiple users
using the same phone and each has a different extension at the same SIP server address. To use the phone,
each user must login by entering unique credentials in a popup window. This is the Login event. A Logout
option is provided in the app menu. Tap Logout to end the session and the Logout event is captured.

Use the following format when viewing the Login/Logout event:
<UserLogInOutEvent
<PhoneIP> </PhoneIP>
<CellularIP> </CellularIP>
<MACAddress> </MACAddress>
<CallLineInfo>
<LineKeyNum> </LineKeyNum>
<LineDirNum> </LineDirNum>
</CallLineInfo>
<UserLoggedIn />
<TimeStamp> </TimeStamp>
</ UserLogInOutEvent

The Login/Logout event contains the attributes listed in the following table.

Table 15: Login/Logout Event Attributes

Permitted ValuesAttribute

IP addressPhone IP

IP address of the phone. For example
172.24.128.160

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

MAC AddressMACAddress

MAC address of the phone. For example:
00907a0e0f37

1 or 2LineNumber

Used in polling to determine which registration is responding or if IP dialing has been used. Returns 1 for
SIP registration 1 and 2 for SIP registration 2. Returns 4 for IP dialing.

1, 2 or 4LineDirNum

Cisco Wireless Phone 800 Series Developer's Guide
43

Web Development
Viewing a Login/Logout Event

Permitted ValuesAttribute

The phone number associated with line. For example:
1234

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

Example of LogInOut event:
<UserLogInOutEvent>
<PhoneIP>172.29.101.148</PhoneIP>
<CellularIP> </CellularIP>
<MACAddress>00907AA7DDAF</MACAddress>
<CallLineInfo>
<LineKeyNum>1</LineKeyNum>
<LineDirNum>5007</LineDirNum>
</CallLineInfo>
<UserLoggedIn />
<TimeStamp>2018-09-04T09:21:53-0600</TimeStamp>
</UserLogInOutEvent>

<UserLogInOutEvent>
<PhoneIP>172.29.101.148</PhoneIP>
<CellularIP> </CellularIP>
<MACAddress>00907AA7DDAF</MACAddress>
<CallLineInfo>
<LineKeyNum>1</LineKeyNum>
<LineDirNum>5007</LineDirNum>
</CallLineInfo>
<UserLoggedOut />
<TimeStamp>2018-09-04T09:11:52-0600</TimeStamp>
</UserLogInOutEvent>

Phone State Polling
The phone can be configured to send the current state information to a specific URI or to the requestor upon
receipt of an HTTP Phone State Poll request.

The following types of information can be sent:

• Receiving Call Line Information The line registration and call state will be sent upon receipt of an
HTTP request to the call state handler (http://<Phone_IP>/polling/callstateHandler).

• Receiving Device InformationDevice specific information will be sent upon receipt of an HTTP request
to the device handler (http://<Phone_IP>/polling/deviceHandler).

• Receiving Network Configuration Network specific information will be sent upon receipt of an HTTP
request to the network handler (http://<Phone_IP>/polling/networkHandler).

Two HTTP transactions occur:

• The application sends an HTTP request to a particular handler in the phone.

• The Phone posts the state in XML format to a preconfigured Web server or to the sender of the request.

Cisco Wireless Phone 800 Series Developer's Guide
44

Web Development
Phone State Polling

See Phone State Polling for a list of parameters you can use to enable state polling
in the wireless phone.

Note

Phone state polling is used to determine if a given wireless phone is currently online. For example, you could
send a phone state poll and wait for a response (5 sec). You can also determine of the wireless phone is in a
call, or what code revision it has loaded.

Receiving Call Line Information
The Receiving Call Line Information can be useful for providing additional information about the caller such
as that available through a contact management system.

The Call Line Information message is returned in the following format:
<CallLineInfo>
<LineKeyNum> </LineKeyNum>
<LineDirNum> </LineDirNum>
<LineState>OK</LineState>
<CallInfo>
<CallState> </CallState>
<CallType> </CallType>
<UIAppearanceIndex> </UIAppearanceIndex>
<CalledPartyName> </CalledPartyName>
<CalledPartyDirNum> </CalledPartyDirNum>
</ <CallingPartyName> </CallingPartyName>
<CallingPartyDirNum> </CallingPartyDirNum>
<CallReference> </CallReference>
<CallDuration> </CallDuration>
</CallInfo>
</CallLineInfo>

The <CallInfo> block is included if and only if <LineState> is OK. Otherwise it is not included. [For Line
State, any value that is not “OK” indicates a registration error that will be specific to the PBX.]

Note

The call line information message contains the attributes listed in the following table.

Table 16: Call Line Information Message Attributes

Permitted ValuesAttribute

1, 2 or 4LineKeyNum

Used in polling to determine which registration is responding or if IP dialing has been used.

Returns 1 for SIP registration 1 and 2 for SIP registration 2. Returns 4 for IP dialing.

phone numberLineDirNum

The phone number associated with line. For example:
1234

Cisco Wireless Phone 800 Series Developer's Guide
45

Web Development
Receiving Call Line Information

Permitted ValuesAttribute

OK [any value that is not “OK” indicates a
registration error that will be specific to the PBX.]

LineState

The line state.

Outgoing call states: Setup, Ringback

Incoming call states: Offering

Outgoing/incoming call states: Connected,

Disconnected

CallConference, CallHold, CallHeld,
CallConfHold,

CallConfHeld

CallState

The call state.

Incoming, OutgoingCallType

The call type.

stringUIAppearanceIndex

The call appearance index. This number simply shows the order of the call appearance on the display.

nameCallingPartyName

If the line is registered, the value is the registered line display name. If the line is not registered, the value
is the IP address of the calling party.

numberCallingPartyDirNum

If the line is registered, the value is the registered line number. If the line is not registered, the value is the
IP address of the calling party.

nameCalledPartyName

If the line is registered, the value is the registered line display name. For example 45343. If the line is not
registered, the value is the IP address of the called party. For example:
10.243.1.32

numberCalledPartyDirNum

If the line is registered, the value is the registered line number. For example:
45344

If the line is not registered, the value is the IP address of the called party. For example:
10.243.1.32

numberCallReference

An internal identifier for the call.

Cisco Wireless Phone 800 Series Developer's Guide
46

Web Development
Receiving Call Line Information

Permitted ValuesAttribute

number, secondsCallDuration

The duration of the call in seconds.

Receiving Device Information
Applications can use the Device Information to do things like device firmware tracking/management as well
as asset tracking.

The Device Information message is returned in the following format:
<DeviceInformation>
<MACAddress> </MACAddress>
<PhoneDN> </PhoneDN>
<AppLoadID> </AppLoadID>
<BootROMID> </BootROMID>
<ModelNumber> </ModelNumber>
<TimeStamp> </TimeStamp>
</DeviceInformation>

The device information message contains the attributes listed in the following table.

Table 17: Device Information Message Attributes

Permitted ValuesAttribute

MAC AddressMACAddress

The MAC address of the phone. For example,
00907a0e0f37

stringPhoneDN

A list of all registered lines, including expansion modules, and their directory numbers delimited by commas.
For example:
Line1:6744,Line2:4534,Line3:4534

stringAppLoadID

The Android version ID on the phone. For example
8.1.0.1.5.0.2386

stringBootROM

The BootROM on the phone.
e.g, L9Q15000TA00

stringModelNumber

Cisco Wireless Phone 800 Series Developer's Guide
47

Web Development
Receiving Device Information

Permitted ValuesAttribute

The phone’s model number.

Cisco Wireless Phone 860 == Wi-Fi no scanner

Cisco Wireless Phone 860S == Wi-Fi + scanner

Cisco Wireless Phone 840 Wi-Fi no scanner

Cisco Wireless Phone 840S Wi-Fi + scanner

timeTimeStamp

The date and time that the event occurred on the phone. For example:
2013-05-11T13:19:53-08:00

Receiving Network Status
The Network Configuration message returns the specific network information about the phone.

The Network Configuration message is returned in the following format:
<NetworkConfiguration>
<DHCPServer> </DHCPServer>
<MACAddress> </MACAddress>
<DNSSuffix> </DNSSuffix>
<IPAddress> </IPAddress>
<CellularIP> </CellularIP> [96-Series only]
<SubnetMask> </SubnetMask>
<ProvServer> </ProvServer>
<DefaultRouter> </DefaultRouter>
<DNSServer1> </DNSServer1>
<DNSServer2> </DNSServer2>
<DHCPEnabled> </DHCPEnabled>
</NetworkConfiguration>

The network configuration status message contains the attributes listed in the following table.

Table 18: Network Configuration Message Attributes

Permitted ValuesAttribute

IP addressDHCPServer

The DHCP server IP address. For example,
192.168.1.1

MAC AddressMACAddress

The MAC address of the phone. For example,
00907a0e0f37

host nameDNSSuffix

The DNS domain suffix. For example
Cisco.com

Cisco Wireless Phone 800 Series Developer's Guide
48

Web Development
Receiving Network Status

Permitted ValuesAttribute

IP addressIPAddress

The IP address of the phone. For example
192.168.1.5

IP addressCellular IP (96-Series only)

Cellular IP address of the LTE phone if a working SIM card is installed.

IP addressSubnetMask

The subnet mask: For example
255.255.255.0

IP addressProvServer

The IP address of the CMS server or a host name, if defined. For example
192.168.1.10

IP addressDefaultRouter

The IP address of the default router (or IP gateway). For example
192.168.1.1

IP addressDNSServer1

The configured IP address of DNS Server 1. For example
192.168.1.250

IP addressDNSServer2

The configured IP address of DNS Server 2. For example
192.168.1.250

Yes, NoDHCPEnabled

If DHCP is enabled, set to
Yes

Write Your Web Application

Supported Standards
The Cisco App URLs supports true Cisco Wireless Phone applications—nearly indistinguishable from a
desktop application, provides immediate feedback and updates information without a deliberate refresh—with
the following features:

• HTML 5 – no video

Cisco Wireless Phone 800 Series Developer's Guide
49

Web Development
Write Your Web Application

• CSS 3.0 – only one active transition / animation at a time.

• SVG 1.1

• JavaScript. Supports ECMA-262 with extensions.

• XMLHttpRequest

• HTTP 1.1

• AJAX

HTTP Support
The App URLs is a fully compliant HTTP/1.1 user agent as described in RFC 2616. For more information,
see http://www.ietf.org/rfc/rfc2616.txt?number=2616.

The App URLs supports:

• Cookies Cookies are stored in the flash file system; they are preserved when the phone reboots or is
reconfigured.

• Refresh headers

• HTTP proxies

• HTTP proxy authentication The phone’s login credentials or the user’s name and password can be
used to authenticate the user with the server.

• HTTPS by HTTP over TLS The App URLs will support the TLS protocol v1 only. It is not backward
compatible with SSL v2 or SSL v3.

• Custom CA certificates

For more information on CA certificates, see TBD.Note

Use JavaScript DOM Extensions
The Cisco App URLs and Cisco Alertview provide access to phone-specific Document Object Model (DOM)
JavaScript extensions. The DOM is created by the App URLs after parsing an XHTML file. JavaScript’s
primary role in the App URLs is to modify properties of the DOM. The DOM is a collection of every object
defined in the XHTML, for example, every button, every label, and every image. A web application can use
JavaScript to modify DOM properties just like any other XHTML object.

PolySoftKey
The PolySoftKey DOM object provides control over the soft keys in the App URLs. You can use it to hide
or show the default or custom defined soft keys and to respond to soft key presses performed by the user.

The JavaScript PolySoftKey.* custom DOM extensions are as follows:

• PolySoftKey.connect(“{function}”) Connects the JavaScript function supplied to the callback that is
made when a custom soft key was pressed (refer to the example below)

Cisco Wireless Phone 800 Series Developer's Guide
50

Web Development
HTTP Support

http://www.ietf.org/rfc/rfc2616.txt?number=2616

• PolySoftKey.setSoftkeyLabel(int, “string”) Used to set the label of a given custom soft key (0 to 3)

• PolySoftKey.hideToolBar() Allows the application to hide the soft key toolbar

• PolySoftKey.showToolBar() Brings back the soft key toolbar

• PolySoftKey.resetAllDefaults() Clears all custom defined key labels

• PolySoftKey.resetDefaultKey(int) Clears custom key label (0 to 3)

The PolySoftKey custom DOM extension example is shown next.

Example: PolySoftKey DOM Extension
PolySoftKey.connect(“skCallBack”);
PolySoftKey.setSoftkeyLabel(0, "one");
PolySoftKey.setSoftkeyLabel(1, "Two");
PolySoftKey.setSoftkeyLabel(2, "Three");
PolySoftKey.setSoftkeyLabel(3, "Four");
function skCallBack(key, skEvent){
if (skEvent.indexOf("pressed") != -1){ // ignore the “released” event
switch(key){
case 0:
document.getElementById("eventStuff").innerHTML = "SK 1 was
pressed";
break;
case 1:
document.getElementById("eventStuff").innerHTML = "SK 2 was
pressed";
break;
case 2:
document.getElementById("eventStuff").innerHTML = "SK 3 was
pressed";
break;
case 3:
document.getElementById("eventStuff").innerHTML = "SK 4 was
pressed";
break;
}
document.getElementById("eventValue").innerHTML = skEvent;
} // if
}
// hide the tool bar
function hideSKs(){
PolySoftKey.hideToolBar();
}
// show the tool bar
function showSKs(){
PolySoftKey.showToolBar();
}

A user pressing a softkey will generate two key events, pressed and released. And accordingly a connected
Javascript softkey callback function will be called twice. Often the keypress only needs to be handled once,
so one approach is to act off just the “pressed” or “released” string, example:
if(skEvent.indexOf(“pressed”) != -1)
{
Document.getElementById(“demo”).innerHTML=”Key pressed”;
}

Note

Cisco Wireless Phone 800 Series Developer's Guide
51

Web Development
PolySoftKey

PolyUri custom DOM extension
The PolyUri custom DOM extension gives you a few general controls/notifications such as notification when
the App URLs is hidden or shown, as opposed to other applications on the phone. It also allows you to push
a URI (see Push URL) back to the phone—in a sort of loopback fashion—from a loaded Web page. This
allows a push to play a custom embedded alert Wave file.

The JavaScript PolyUri.* custom DOM extensions are as follows:

• PolyUri.pushUri(string) Enables you to push any Cisco internal URI. For example, Play:: and Tel::)

The PolyUri custom DOM extension example is shown next.

Example: PolyUri DOM Extension
function onPageLoad(){
// Pushes a play request whenever the page is loaded
PolyUri.pushUri("play:http://123.45.67.890:8080/sounds/dingling.wav");
}

Configure the Parameters Required by the Cisco Wireless Phone
Web API

Handsets depend on certain settings for site-specific information. These settings are documented in the Cisco
Wireless Phone User Guide and can be configured on the wireless phone’s admin menu or through an EMM.

The parameters that are described in this chapter include those for:

• Web applications.

• Push requests.

• Event notifications.

• Phone state polling.

Web API Settings
Web API settings enable the wireless phone to display the label or name of your application in the web
application shortcut widget point to the URL where the application resides.

There is a top-level Enable/Disable setting for the Web API. It must be enabled for the Web API features to
function.

Web Application Shortcuts Settings
The phone can be configured to show up to 10 web application shortcuts in the web application shortcut
widget. The settings are configured in pairs with a Shortcut title and Shortcut URL for each shortcut desired.

Cisco Wireless Phone 800 Series Developer's Guide
52

Web Development
PolyUri custom DOM extension

Table 19: Web Application Shortcut Settings

DefaultPermitted ValuesParameter

nullStringShortcut title

The descriptive text that displays
in the Applications menu

nullURL StringShortcut URL

The URL of an application

The label and URL of up to 10 applications.

State Polling Settings
The State Polling parameters are used to control state polling responses from the phone when it receives a
poll request.

Table 20: Phone State Polling Settings

DefaultPermitted ValuesParameter

nullStringAuthentication username

Enter the user name that the phone requires to authenticate phone state polling. This must be non-null for
state polling to be functional.

nullStringAuthentication password

Enter the password that the phone requires to authenticate phone state polling. This must be non-null for
state polling to be functional.

RequesterRequester, URLresponse method

The method of sending requested polled data. If URL, the requested polled data is sent to a configured URL.
If Requester, the data is sent in the HTTP response.

nullURLURL

The URL to which the phone sends call processing state/device/network information, if the state polling
response method is set to URL. The protocol used can be either HTTP or HTTPS.

Push Settings
The push request parameters are used to control the behavior, security and allowed priorities of pushes to the
phone.

Both the push username and push password must be non-null for Data and URL Push to be enabled.Note

Cisco Wireless Phone 800 Series Developer's Guide
53

Web Development
State Polling Settings

Table 21: Push Settings

DefaultPermitted ValuesParameter

nullStringPush authentication username

The username required to cause the phone to accept an incoming push Data/URL. Used with the username
to respond to the MD5 HTTP Digest Challenge from the wireless phone. Both the push authentication
username and push authentication password must be non-null for Data and URL Push to be enabled.

nullStringPush authentication password

The username required to cause the phone to accept an incoming push Data/URL. Used with the username
to respond to the MD5 HTTP Digest Challenge from the wireless phone. Both the push authentication
username and push authentication password must be non-null for Data and URL Push to be enabled.

AllAll, Critical, High, Important,
Normal, None

Push message priority

Configures the allowed incoming priority push data/URL commands.

(None) Discard all push messages

(Normal) Allows only normal push messages

(Important) Allows only important push messages

(High) Allows only high priority push messages

(Critical) Allows only critical push messages

(All) Allows all priority push messages

nullURLServer root URL

The URL of the application server you enter here is combined with the pushed URL and sent to the phone’s
App URLs. For example, if the application server root URL is http://172.24.128.85:8080/sampleapps and
the pushed URL is /examples/sample.html, the URL that is sent to the App URLs is
http://172.24.128.85:8080/sampleapps/examples/sample.html. Can be either HTTP or HTTPS.

OffOn/OffEnable notification ringtone

If off, there is no sound when an alert is received, except for a possible custom embedded tone. If on, the
phone’s selected default notification sound is played.

Event Notification Settings
Event notification settings are used to control what phone events are sent to what URL. An unlimited number
of URLs can be configured to receive any combination of events, and a user readable name can be defined
for the Event URL definition.

Table 22: Event Notification Settings

DefaultPermitted ValuesParameter

nullStringName

Cisco Wireless Phone 800 Series Developer's Guide
54

Web Development
Event Notification Settings

DefaultPermitted ValuesParameter

A human readable name for the Event URL definition.

nullURL stringEvent URL

The URL where the event notification post will be sent. Example:

http://www.myserver.com/phone_event_handler.php

NoneNone

All

State Change (phone)

Incoming (phone call)

Registration (SIP Line)

UnRegistration (SIP Line)

Off Hook (phone)

On Hook (phone)

Outgoing (phone call)

Login/out

CallState Connected

CallState Disconnected

Events to receive

Select which combination of events should be sent to the Event URL. None and All are exclusive, of course,
but any combination of the other settings is allowed.

Troubleshooting and Best Practices
The best App URLs for testing your app is the Cisco Wireless Phone’s built-in Cisco App URLs. You next
best option is either the Chrome™ browser or Safari®. They can be used to test rendering issues on the computer
before testing them on the phone’s Cisco App URLs or Cisco Alertview.

When debugging web pages, the Inspect Element in Chrome is very helpful in finding coding issues on a PC
browser. Also, Firebug is a useful Firefox® add-on that can be used to debug Web pages.

A useful debugging process is as follows:

1. Use Firebug (in Firefox) or ‘Inspect’ (in Chrome) to check for JavaScript errors.

2. User Firebug (in Firefox) or ‘Inspect’ (in Chrome) to check that all asynchronous requests are working
properly.

3. Determine if there are server errors; if there are, use the generated error messages / Server logs to figure
out the error.

Repeat this process until there are no errors.

Cisco Wireless Phone 800 Series Developer's Guide
55

Web Development
Troubleshooting and Best Practices

http://www.myserver.com/phone_event_handler.php

Table 23: Troubleshooting App URLs Application Errors

Pushed message is not getting displayed in Cisco Alertview

Push message will be displayed in Cisco Alertview based on the priority of the message. See HTTP <URL>
Push. Another cause is if a URL is pushed to the phone that contains an ampersand (&), the phone truncates
the URL at the ampersand. Format the URL differently or use AJAX to load additional information after
the page is loaded.

Server Not Found

Usually occurs on the phone after a URL Push when the Server Root URL setting is set incorrectly and the
phone cannot resolve the concatenated URL to a valid page.

Partial page is rendered on a Data Push after a long delay

If a Data Push is sent with URLs for additional page elements embedded in it that are not valid, the phone
will first show a blank page with a very slow moving (or even stopped) progress bar and will eventually
render only the elements it was able to retrieve. Check that the URLs for any additional page elements are
correct and reachable by the phone (firewalls, VLANs, for example, can present barriers).

Best Practices during Web Application Development
As with any software development project, there are a range of approaches you can follow. If you are new to
developing Cisco Web applications, it may help to know a few tips to use and pitfalls to avoid before you
begin. Use the following lists for guidance to the best practices to use when developing applications to run
on the Cisco App URLs and Alertview.

The following points apply when developing applications for the Cisco App URLs and Alertview:

• Using the HTTP User Agent The application can use the HTTP user agent header information to
determine a variety of details about the phone – such as themodel – and deliver content tailored specifically
for the phone’s and screen size and other capabilities. Applications running on phones that support the
App URLs can also use JavaScript to detect the screen and/or window size.

• Supported Image Formats Cisco Wireless Phone supports GIF, PNG, JPG, and BMP image formats.
Where image size is a concern, compressed JPG images are better for large images. For smaller images,
the BMP image format provides better quality but lacks the compression benefit.

• Pushing Sensitive Data Avoid pushing security sensitive data direct to the phone. A URL push can be
used to push a request to the phone to get the information from a HTTPS site, so the data will be encrypted.
The URL push itself should not leak sensitive information.

• Using HTTPS for Event Notifications You may want to use HTTPS for event notifications and state
polling because they contain sensitive information such as the phone MAC address, caller name and
phone number.

• Implement a User Confirmation When including push notifications, be sure to implement a user
confirmation response. Adding a confirmation response will ensure the user actually viewed the
notification.

• Using Tel URI Your application should use TelUri API to make phone calls.

• Remove white space in code If concerned about Data Push content length (must be <2kb) you may
process HTML, JavaScript, and CSS files to remove whitespace and shrink before delivery.

Cisco Wireless Phone 800 Series Developer's Guide
56

Web Development
Best Practices during Web Application Development

• Use lower case for PUSH requestsCiscoWireless Phone will convert PUSH request URLs to lower-case,
so in effect the device will attempt to retrieve web-pages and files using lower-case.

Notes on API Security
With respect to the security of the REST API, the following should be noted:

• Authenticating remote control and monitoring The execution of each HTTP PUSH request requires
MD5 digest authentication which can be further secured inside HTTPS. All pushed URLs are relative
URLs with the root specified in the wireless phone’s configuration.

• Achieving confidentiality of executed content The phone’s HTTP client supports Transport Layer
Security (TLS), so any data retrieved from the URL can be protected. Make sure of the confidentiality
of all traffic past the initial push request by specifying a root URL that uses https.

• Event reporting The confidentiality of all events reported by the phone can be also be protected by TLS
in the same way that push content is. Simply specify an HTTPS URL for the destination for Event
Notifications.

• Data pushWhen data push is enabled, content can be sent directly to the phone by the application server.
The request will still be authenticated through HTTP digest, but all content will be in clear text on the
wired network (wireless security will encrypt the traffic through the air). Cisco recommends that you
only use unencrypted data push for broadcast type alerts that do not pose any confidentiality risks.

Testing
We recommend two levels of application testing, each with progressively more stringent requirements:

1. Using a controlled test environment with an CiscoWireless Phone, web application server, and telephony
server.

2. Using a fully functional system.

Controlled Test Environment
A controlled test environment uses a Cisco Wireless Phone working in a wireless LAN with a PC that is
configured to function as a telephony server as well as, perhaps, providing all other server functions. At least
one Cisco VIEW Certified AP is required. This setup will give you adequate verification of the workability
of your application before it is deployed in a working facility.

Cisco Wireless Phone 800 Series Developer's Guide
57

Web Development
Notes on API Security

Figure 5: Controlled Test Environment

Test Hardware
Hardware to be purchased from Cisco:

• Two Cisco Wireless Phones.

• Battery Packs, chargers, and power supplies for each wireless phone.

Hardware provided by participant:

• One 100/1000Mbit Switch.

• VIEW Certified wireless LAN infrastructure AP (we recommend Cisco 1142 in Autonomous mode).

• PC to run DHCP server, and Syslog server.

• PC running a virtual SIP PBX (usually the same PC).

• PC to run web application server (usually the same PC).

Test Software
Required software provided by participant

DescriptionSoftware

DHCP server.DHCP server

Useful for debugging.Packet analyzer software

Virtual SIP PBX software can be downloaded from
various sites at no charge.

Virtual SIP PBX

Setup Overview
Tests require the following setup, unless otherwise indicated.

Cisco Wireless Phone 800 Series Developer's Guide
58

Web Development
Test Hardware

1. Connect the network switch to the following (only one PC is needed):

• One wired LAN data PC

• One PC running virtual SIP PBX software

• One AP (the second AP will be added only when indicated in this plan)

• One wired LAN packet analyzer PC “spanning” port specific to the wired device of interest.

2. Associate the wireless data PC to the AP.

3. Register all of the Cisco wireless phones to the virtual SIP PBX.

PC Setup
The PC will serve several functions and each function must be configured:

• Wired data: configure the PC as a

• DHCP server

• Syslog server

• Virtual telephony call server (virtual SIP PBX)

• Wired and wireless packet analyzer using Wireshark or similar software

Wired data PC

The data PC will be used as the DHCP server, and Syslog Server. Attach the wired data PC to the network
switch. Load all applicable server software.

DHCP server and Syslog Server setup

These are the usual functions. Instructions to set up these functions are not described in Cisco documents.

Wired/Wireless packet analyzer setup

Attach Ethernet cable to the spanned monitor port on the switch or use a hub. Install Wireshark or similar
packet analyzer with wired and wireless 802.11a/b/g/n capabilities.

Wireless Phone Setup
Handsets must be configured to associate with the wireless LAN and find the CMS from which they will
download the code and s.

Full information is available in online references: Cisco Wireless Phone Administration Guide.

Required settings

• Wi-Fi

• Add the Wi-Fi network settings to match how you setup your View Certified AP

• Logging

• Configure Syslog to point to your SYSLOG server

Cisco Wireless Phone 800 Series Developer's Guide
59

Web Development
PC Setup

• SIP Phone

• Configure your SIP server, SIP server port, Extension number, Username, Password, Audio DSCP
value (0x2e) and Call Control DSCP value (0x28)

• Web API

• Enable the API

• Configure Phone state polling (see State Polling Settings).

• Configure Push settings (see Push Settings).

• Configure Event Notifications (see Event Notification Settings).

• Configure Web application shortcuts to point to your app so the user can launch it (see Web
Application Shortcuts Settings).

Conduct the Test
Once the hardware is set up and the files are downloaded and configured, you will be able to make calls and
run the application.

Working System Test
A working system test is done in close coordination with an existing installation. The phone administrator
needs the web API settings that you have customized for your application. Also, the application itself and any
application server must be configured.

Cisco Wireless Phone 800 Series Developer's Guide
60

Web Development
Conduct the Test

A P P E N D I X A
Appendix

• Appendix A: Additional information, on page 61
• Appendix C: Products Mentioned in this Document, on page 65
• Appendix D: Terms, on page 66

Appendix A: Additional information

Cisco Wireless Phone Web API and Cisco SIP Application Dependencies
The Cisco Wireless Phone Web API can send state and event information that is related to the Cisco SIP
telephony Application, including:

• Call State.

• Call State Change.

• Incoming Call.

• Outgoing Call.

• On Hook.

• Off Hook.

• Line Registration Complete.

• Line Unregistration Complete.

• Phone Extension Number (DN).

Visual Design Specifications
You will likely want to make changes in your web pages due to the following:

• Different aspect rations for the different models

• All Cisco Wireless Phone models have full touchscreens Thus your application flow may be better
architected using on-page links and HTML buttons instead of pulling forward the Softkey button paradigm
from the 84-Series phones.

Cisco Wireless Phone 800 Series Developer's Guide
61

• Screen area in pixels:

• Cisco Wireless Phone 860 Series wireless phone is 1776x1080

• Cisco Wireless Phone 840 Series wireless phone is 728x480

Determining the Phone Model
There are a few methods that you can use to determine the phone model:

Event Notifications

If you receive any kind of Event Notification from a Cisco Wireless Phone you can look at the outermost tag
in the XML and determine if it is using the Cisco Wireless Phone Web API.

Polling the Phone

You can differentiate phone models by the header. Cisco Wireless Phones start with <SpectralinkIPPhone>
tags.

After you receive any kind of Event Notification from a Cisco Wireless Phone, you can poll the phone for its
device information that will include the Model Number of the phone. The Device Phone State Poll returns
the phone model number in the <ModelNumber> field. (See Receiving Device Information for more details.)

User Agent

You can use the User Agent to detect which type of phone your application is talking to. Use the following
values for Cisco models.

Cisco Wireless Phone

• Cisco Wireless Phone 860 == Wi-Fi no barcode

• Cisco Wireless Phone 860S == Wi-Fi + barcode

• Cisco Wireless Phone 840 == Wi-Fi no barcode

• Cisco Wireless Phone 840S == Wi-Fi + barcode

The Cisco Wireless Phone browser reports something similar to the following:
Mozilla/5.0 (Linux; Android 8.1.0; Cisco Wireless Phone 860 Build/OPM1.171019.026;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/67.0.3396.87
Mobile Safari/537.36

Web API Syntax Changes
The Cisco Wireless Phone browser reports something similar to the following:
Mozilla/5.0 (Linux; Android 8.1.0; Cisco Wireless Phone 860 Build/OPM1.171019.026;
wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/67.0.3396.87
Mobile Safari/537.36

• Use quotes for both the priority and the volume value. For example, <URL priority=’Normal’
volume=’100’>/

Cisco Wireless Phone 800 Series Developer's Guide
62

Appendix
Determining the Phone Model

Barcode Changes
The barcode interface is no longer developed as part of the Web API. See the API Spec for Cisco Wireless
Phone for exact information.

Interrupt Criteria
On both wireless phones, ring and media volume are set by the user and these preferences become the default
for that phone. While the phone is in DNDmode, ring and media volume are affected by alerts. Neither model
differentiates in the type of alert (critical, low, and so on). All types of alerts interrupt the same.

In CiscoWireless Phone, DND has three rather self-explanatory modes: Total silence, Alarms only and Priority
only. The modes for each model are altered by an alert in different ways as shown in the following table.

Cisco Wireless PhonePIVOTModelMode

• Phone remains in
Total silence.

• Only visual alert.

• No sound for alert
and media file.

• Phone remains in
Total silence.

NaAfter Push XML

After Push closed

Total silence

Na• Reverts to default.

• Visual alert.

• Sound for alert and
media file.

• Remains at default.

After Push XML

After Push closed

None

• Reverts to default.

• Visual alert.

• Sound for alert and
media file.

• Remains at default.

NaAfter Push XML

After Push closed

Alarms only

• Reverts to default.

• Visual alert.

• Sound for alert and
media file.

• Remains at default.

• No mode change.

• Visual alert.

• Sound for alert and
media file.

• Phone remains in
Priority only.

After Push XML

After Push closed

Priority/ Priority only

Cisco Wireless Phone 800 Series Developer's Guide
63

Appendix
Barcode Changes

User Agent Change
The user agent uses the model number of the phone. This number is different for each model family. See
Determining the Phone Model

Control of Soft Keys
This section provides JavaScript examples that work in conjunction with the Cisco App URLs and Cisco
Alertview on Cisco Wireless Phones. These buttons and code were used in the 84-series. Your application
flow may be better architected using on-page links and HTML buttons instead of pulling forward the Softkey
button paradigm from the 84-series phones.

Examples below as shown in Cisco Wireless Phone.

Figure 6: The Apps URLs widget box

Figure 7: Softkey buttons in the browser view

The following example shows how to control soft keys to allow backwards compatibility with Cisco 84-series
handsets.

Example: Soft Key Control Example for Cisco 84-Series Handsets
html>
<head>
<Title>Softkey JavaScript Test</Title>
<script type="text/javascript">
// PolySoftKey is the exported DOM object
// Registers a JavaScript function to be executed when a custom
softkey event occurs
PolySoftKey.connect(“skCallBack”);
PolySoftKey.setSoftkeyLabel(0, "One");
PolySoftKey.setSoftkeyLabel(1, "Two");
PolySoftKey.setSoftkeyLabel(2, "Three");
PolySoftKey.setSoftkeyLabel(3, "Four");
function skCallBack(key, skEvent){

Cisco Wireless Phone 800 Series Developer's Guide
64

Appendix
User Agent Change

switch(key){
case 0:
document.getElementById("eventStuff").innerHTML = "SK 1 was
pressed";
break;
case 1:
document.getElementById("eventStuff").innerHTML = "SK 2 was
pressed";
break;
case 2:
document.getElementById("eventStuff").innerHTML = "SK 3 was
pressed";
break;
case 3:
document.getElementById("eventStuff").innerHTML = "SK 4 was
pressed";
break;
}
document.getElementById("eventValue").innerHTML = skEvent;
}
// hide the tool bar
function hideSKs(){
PolySoftKey.hideToolBar();
}
// show the tool bar
function showSKs(){
PolySoftKey.showToolBar();
}
</script>
</head>
<body onload="onInit()">
<div id="showButton">
<input type='button' onclick='showSKs()' value='Show Softkeys'/>
</div>
<div id="hideButton">
<input type='button' onclick='hideSKs()' value='Hide Softkeys'/>
</div>
<div id="eventText">
<p>Last Click: <b id='eventStuff'>0 </p>
<p>Event Value: <b id='eventValue'>0 </p>
</div>
</body>
</html>

Appendix C: Products Mentioned in this Document
Android is a registered trademark owned by Google, Inc.

Apache and Tomcat are trademarks of the Apache Software Foundation.

Balsamiq is a registered trademark of Balsamiq Studios, LLC.

Chrome browser is a trademark owned by Google, Inc.

Django is a registered trademark of the Django Software Foundation.

Eclipse is a trademark of Eclipse Foundation, Inc.

Firefox is a registered trademark of the Mozilla Foundation.

Fonality and trixbox are registered trademarks of NetFortris, Inc.

Cisco Wireless Phone 800 Series Developer's Guide
65

Appendix
Appendix C: Products Mentioned in this Document

JavaScript is a registered trademark owned by Oracle Corporation.

PowerPoint, Visual Studio and Visio are registered trademarks of Microsoft Corporation.

Python is a registered trademark of Python Software Foundation.

Safari is a registered trademark owned by Apple Inc.

W3C, World Wide Web Consortium is a registered trademark of the Massachusetts Institute of Technology,
European Research Consortium for Informatics and Mathematics, or Keio UniWebex phone on behalf of the
World Wide Web Consortium.

Appendix D: Terms
1.0 XML API

Cisco Wireless Phone Web API

Activities

activity

Alerts

Android Notification

Android Notification message

Android Widget

custom embedded tone

Document Object Model (DOM)

Event notifications

HTTP Digest Challenge

Internal Uniform Resource Identifiers (URIs)

JavaScript

Notification bar

Phone state polling

post dialing (postd)

Push requests

Server root URL

Cisco Alertview

Cisco Configuration Management Server

Cisco App URLs

Status Bar

web application shortcut widget

App URLs

Cisco Wireless Phone 800 Series Developer's Guide
66

Appendix
Appendix D: Terms

XHTML

Cisco Wireless Phone 800 Series Developer's Guide
67

Appendix
Appendix

Cisco Wireless Phone 800 Series Developer's Guide
68

Appendix
Appendix

	Cisco Wireless Phone 800 Series Developer's Guide
	Contents
	API Specification
	About This Specification
	The Cisco Library
	Cisco Libraries in Android Studio

	Barcode API
	Supported Symbologies
	Barcode Data Flow

	Barcode API
	Barcode API Guidelines

	Custom Intents
	Use Cases

	Button API
	Buttons App User Interface
	Cisco Intents for Buttons App
	Button API Guidelines

	Buttons Troubleshooting

	Miscellaneous
	Initiating a Call Using Cisco SIP Dialer
	Google Play Services

	Web Development
	Web API
	Cisco Web API App
	Interaction with other Android Applications
	Interaction with Phone Calls
	Other Browsers That May Be Installed on the Phone

	Web Development Overview
	Using XHTML

	Your Application and Cisco Wireless Phone
	Cisco App URLs
	Cisco Alertview
	Use Cisco Alertview
	App URLs Applications
	Handset Configuration

	Overview of the Cisco Wireless Phone Web API
	Push URL
	Push Data
	Internal URIs
	Phone State Polling
	Event Notification

	Telephony Integration
	Telephone Integration URIs
	Use Push Requests
	HTTP <URL> Push
	Data Push of Complex URLs
	HTML <Data> Push

	Use Event Notifications
	Viewing a Personal Alarm Event
	Viewing an Incoming Call Event
	Viewing an Outgoing Call Event
	Viewing a Call State Change Event
	Viewing a Line Registration Event
	Viewing a Line Unregistration Event
	Viewing a Login/Logout Event

	Phone State Polling
	Receiving Call Line Information
	Receiving Device Information
	Receiving Network Status

	Write Your Web Application
	Supported Standards
	HTTP Support
	Use JavaScript DOM Extensions
	PolySoftKey
	PolyUri custom DOM extension

	Configure the Parameters Required by the Cisco Wireless Phone Web API
	Web API Settings
	Web Application Shortcuts Settings
	State Polling Settings
	Push Settings
	Event Notification Settings

	Troubleshooting and Best Practices
	Best Practices during Web Application Development
	Notes on API Security

	Testing
	Controlled Test Environment
	Test Hardware
	Test Software
	Setup Overview
	PC Setup
	Wireless Phone Setup
	Conduct the Test

	Working System Test

	Appendix
	Appendix A: Additional information
	Cisco Wireless Phone Web API and Cisco SIP Application Dependencies
	Visual Design Specifications
	Determining the Phone Model
	Web API Syntax Changes
	Barcode Changes
	Interrupt Criteria
	User Agent Change
	Control of Soft Keys

	Appendix C: Products Mentioned in this Document
	Appendix D: Terms

