

Design and Deployment Guide

Cisco Public

© 2024 Cisco Systems, Inc., and/or its affiliates. All rights reserved. Page 1 of 170

FlexPod for Accelerated RAG Pipeline

with NVIDIA NIM and Cisco Webex

 Design and Deployment Guide

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 2 of 170

-

Published: October 2024

In partnership with:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 3 of 170

-

About the Cisco Validated Design Program

The Cisco Validated Design (CVD) program consists of systems and solutions designed, tested, and documented

to facilitate faster, more reliable, and more predictable customer deployments. For more information, go to:

http://www.cisco.com/go/designzone.

http://www.cisco.com/go/designzone

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 4 of 170

-

Executive Summary

The FlexPod Datacenter solution offers a validated design for implementing Cisco and NetApp technologies to

create shared private and public cloud infrastructures. Through their partnership, Cisco and NetApp have devel-

oped a range of FlexPod solutions that support strategic data center platforms. The success of the FlexPod so-

lution is attributed to its capacity to adapt and integrate technological and product advancements in management,

computing, storage, and networking.

This document is the Cisco Validated Design and Deployment Guide for FlexPod for Accelerated RAG Pipeline

with NVIDIA Inference Microservices (NIM) and Cisco Webex on the latest FlexPod Datacenter design with Cisco

UCS X-Series based compute nodes, Cisco Intersight, NVIDIA GPUs, Red Hat OpenShift Container Platform (OCP)

4.16, Cisco Nexus switches, and NetApp ONTAP storage.

Generative Artificial Intelligence (Generative AI) is revolutionizing industries by driving innovations across various

use cases. However, integrating generative AI into enterprise environments presents unique challenges. Estab-

lishing the right infrastructure with adequate computational resources is essential.

Retrieval Augmented Generation (RAG) is a cutting-edge technique in natural language processing (NLP) that is

used to optimize the output of LLMs (Large Language Models) with dynamic domain specific data fetched from

external sources. RAG is an end-to-end architecture that combines information retrieval component with re-

sponse generator. Retrieval component fetches relevant document snippet in real time from corpus of knowledge.

knowledge. Generators take the input query along with retrieval chunks and generate natural response for the

users. This hybrid approach enhances the effectiveness of AI applications by minimizing inaccuracies and

boosting the relevance and faithfulness of the generated content.

This solution implements a RAG pipeline using NVIDA NIM microservices deployed on the infrastructure. The RAG

RAG pipeline is integrated with Cisco Webex Chat bot to run inferencing.

This document provides design and deployment guidance for running Retrieval Augmented Generation pipeline

using NVIDIA NIM microservices deployed on FlexPod Datacenter and Cisco Webex Chat bot for inferencing.

For information about the FlexPod design and deployment details, including the configuration of various elements

of the design and associated best practices, refer to Cisco Validated Designs for FlexPod, here:

https://www.cisco.com/c/en/us/solutions/design-zone/data-center-design-guides/flexpod-design-guides.html

.

https://www.cisco.com/c/en/us/solutions/design-zone/data-center-design-guides/flexpod-design-guides.html
https://www.cisco.com/c/en/us/solutions/design-zone/data-center-design-guides/flexpod-design-guides.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 5 of 170

-

Solution Overview

This chapter contains the following:

● Introduction

● Audience

● Purpose of this Document

● What’s New in this Release?

● Solution Summary

Introduction

The FlexPod Datacenter for Accelerated RAG Pipeline with NVIDIA NIM and Cisco Webex configuration represents

a cohesive and flexible infrastructure solution that combines computing hardware, networking, storage, and

software resources into a single, integrated architecture. Designed as a collaborative effort between Cisco,

NetApp, NVIDIA, and Red Hat, this converged infrastructure platform is designed to deliver high levels of effi-

ciency, scalability, and performance, suitable for Generative AI workloads. By standardizing on a validated design,

organizations can accelerate deployment, reduce operational complexities, and confidently scale their IT opera-

tions to meet evolving business demands. This FlexPod architecture leverages Cisco's Unified Computing System

(UCS) servers, Cisco Nexus networking, and NetApp's innovative storage systems combined with Red Hat’s

container management platform and NVIDIA GPUs and AI software, providing a robust foundation for both virtu-

alized and non-virtualized environments.

Retrieval Augmented Generation, or RAG, is the process of augmenting large language models with domain

specific information. During RAG, the pipeline applies the knowledge and patterns that the model acquired during

its training phase and couples that with user-supplied data sources to provide more informed responses to user

queries.

The solution demonstrates how enterprises can design and implement a technology stack leveraging Generative

Pre-trained Transformer (GPT), enabling them to privately run and manage their preferred AI large language

models (LLMs) and related applications. It emphasizes Retrieval Augmented Generation as the key use case. The

hardware and software components are seamlessly integrated, allowing customers to deploy the solution swiftly

and cost-effectively, while mitigating many of the risks involved in independently researching, designing, building,

and deploying similar systems on their own.

Audience

The intended audience of this document includes IT decision makers such as CTOs and CIOs, IT architects, sales

engineers, field consultants, professional services, IT managers, partner engineers, and customers. It is designed

for those interested in the design, deployment, and life cycle management of generative AI systems and appli-

cations, as well as those looking to leverage an infrastructure that enhances IT efficiency and fosters innovation.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 6 of 170

-

Purpose of this Document

This document provides design and deployment guidance for running Retrieval Augmented Generation pipeline

using NVIDIA NIM microservices deployed on FlexPod Datacenter and Cisco Webex Chat bot for inferencing.

What’s New in this Release?

The following design elements are built on the CVD: FlexPod Datacenter with Red Hat OCP Bare Metal Manual

Configuration with Cisco UCS X-Series Direct Deployment Guide to implement an end-to-end Retrieval Aug-

mented Generation pipeline with NVIDIA NIM and Cisco Webex:

● Installation and configuration of RAG pipeline components on FlexPod Datacenter

◦ NVIDIA GPUs

◦ NVIDIA AI Enterprise (NVAIE)

◦ NVIDIA NIM microservices

● Integrating RAG pipeline with Cisco Webex Chat bot

● RAG Evaluation

● NIM for LLM Benchmarking

● Milvus Benchmarking

Solution Summary

Figure 1 illustrates the solution summary.

 Solution Overview Figure 1.

The FlexPod Datacenter solution as a platform for Retrieval Augmented Generation offers the following key ben-

efits:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_rh_ocp_bm_xseries.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_rh_ocp_bm_xseries.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 7 of 170

-

● The ability to implement a Retrieval Augmented Generation pipeline quickly and easily on a powerful

platform with high-speed persistent storage

● Evaluation of performance of platform components

● Simplified cloud-based management of solution components using policy-driven modular design

● Cooperative support model and Cisco Solution Support

● Easy to deploy, consume, and manage architecture, which saves time and resources required to research,

procure, and integrate off-the-shelf components

● Support for component monitoring, solution automation and orchestration, and workload optimization

● Cisco Webex Chat bot integration with the RAG pipeline

Like all other FlexPod solution designs, FlexPod for Accelerated RAG Pipeline with NVIDIA NIM and Cisco Webex

is configurable according to demand and usage. You can purchase exactly the infrastructure you need for your

current application requirements and then scale-up/scale-out to meet future needs.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 8 of 170

-

Technology Overview

This chapter contains the following:

● Retrieval Augmented Generation

● NVIDIA AI Enterprise

● NVIDIA Inference Microservices

● NVIDIA NIM for Large Language Models

● NVIDIA NIM for Text Embedding

Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) is an enterprise application of Generative AI. RAG represents a category of

large language model (LLM) applications that enhance the LLM's context by incorporating external data. It over-

comes the limitation of knowledge cutoff date (events occurring after the model’s training). LLMs lack access to

an organization's internal data or services. This absence of up-to-date and domain-specific or organiza-

tion-specific information prevents their effective use in enterprise applications.

RAG Pipeline

Figure 2 illustrates the RAG Pipeline overview.

 RAG Pipeline overview Figure 2.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 9 of 170

-

In this pipeline, when you enter a prompt/query, document chunks relevant to the prompt are searched and

fetched to the system. The retrieved relevant information is augmented to the prompt as context. LLM is asked to

generate a response to the prompt in the context and the user receives the response.

RAG Architecture

RAG is an end-to-end architecture that combines information retrieval component with a response generator.

 RAG Architecture Figure 3.

RAG can be broken into two process flows; document ingestion and inferencing.

Figure 4 illustrates the document ingestion pipeline.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 10 of 170

-

 Document Ingestion Pipeline overview Figure 4.

Figure 5 illustrates the inferencing pipeline.

 Inferencing Pipeline overview Figure 5.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 11 of 170

-

The process for the inference serving pipeline is as follows:

1. A prompt is passed to the LLM orchestrator.

2. The orchestrator sends a search query to the retriever.

3. The retriever fetches relevant information from the Vector Database.

4. The retriever returns the retrieved information to the orchestrator.

5. The orchestrator augments the original prompt with the context and sends it to the LLM.

6. The LLM responds with generated text/ response and presents it to the user.

NVIDIA AI Enterprise

The NVIDIA AI Enterprise (NVAIE) platform was deployed on Red Hat OpenShift as the foundation for the RAG

pipeline. NVIDIA AI Enterprise simplifies the development and deployment of generative AI workloads, including

Retrieval Augmented Generation, at scale.

 NVIDIA AI Enterprise with FlexPod Datacenter Figure 6.

NVIDIA Inference Microservices

NVIDIA Inference Microservice (NIM), a component of NVIDIA AI Enterprise, offers an efficient route for creating

AI-driven enterprise applications and deploying AI models in production environments. NIM consists of micro-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 12 of 170

-

services that accelerate and simplify the deployment of generative AI models via automation using prebuilt con-

tainers, Helm charts, optimized models, and industry-standard APIs.

NIM simplifies the process for IT and DevOps teams to self-host large language models (LLMs) within their own

managed environments. It provides developers with industry-standard APIs, enabling them to create applications

such as copilots, chatbots, and AI assistants that can revolutionize their business operations. Content Generation,

Sentiment Analysis, and Language Translation services are just a few additional examples of applications that can

be rapidly deployed to meet various use cases. NIM ensures the quickest path to inference with unmatched

performance.

 NVIDIA NIM for optimized AI inference Figure 7.

NIMs are distributed as container images tailored to specific models or model families. Each NIM is encapsulated

in its own container and includes an optimized model. These containers come with a runtime compatible with any

NVIDIA GPU that has adequate GPU memory, with certain model/GPU combinations being optimized for better

performance. One or more GPUs can be passed through to containers via the NVIDIA Container Toolkit to provide

the horsepower needed for any workload. NIM automatically retrieves the model from NGC (NVIDIA GPU Cloud),

utilizing a local filesystem cache if available. Since all NIMs are constructed from a common base, once a NIM has

been downloaded, acquiring additional NIMs becomes significantly faster. The NIM catalog currently offers nearly

150 models and agent blueprints.

Utilizing domain specific models, NIM caters to the demand for specialized solutions and enhanced performance

through a range of pivotal features. It incorporates NVIDIA CUDA (Compute Unified Device Architecture) libraries

and customized code designed for distinct fields like language, speech, video processing, healthcare, retail, and

others. This method ensures that applications are precise and pertinent to their particular use cases. Think of it like

a custom toolkit for each profession; just as a carpenter has specialized tools for woodworking, NIM provides

tailored resources to meet the unique needs of various domains.

NIM is designed with a production-ready base container that offers a robust foundation for enterprise AI appli-

cations. It includes feature branches, thorough validation processes, enterprise support with service-level

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 13 of 170

-

agreements (SLAs), and frequent security vulnerability updates. This optimized framework makes NIM an essential

tool for deploying efficient, scalable, and tailored AI applications in production environments. Think of NIM as the

bedrock of a skyscraper; just as a solid foundation is crucial for supporting the entire structure, NIM provides the

necessary stability and resources for building scalable and reliable portable enterprise AI solutions.

NVIDIA NIM for Large Language Models

NVIDIA NIM for Large Language Models (LLMs) (NVIDIA NIM for LLMs) brings the power of state-of-the-art large

language models (LLMs) to enterprise applications, providing unmatched natural language processing (NLP) and

understanding capabilities.

Whether developing chatbots, content analyzers, or any application that needs to understand and generate human

language — NVIDIA NIM for LLMs is the fastest path to inference. Built on the NVIDIA software platform, NVIDIA

NIM brings state of the art GPU accelerated large language model serving.

High Performance Features

NVIDIA NIM for LLMs abstracts away model inference internals such as execution engine and runtime operations.

NVIDIA NIM for LLMs provides the most performant option available whether it be with TensorRT, vLLM or LLM

others.

● Scalable Deployment: NVIDIA NIM for LLMs is performant and can easily and seamlessly scale from a few

users to millions.

● Advanced Language Models: Built on cutting-edge LLM architectures, NVIDIA NIM for LLMs provides

optimized and pre-generated engines for a variety of popular models. NVIDIA NIM for LLMs includes

tooling to help create GPU optimized models.

● Flexible Integration: Easily incorporate the microservice into existing workflows and applications. NVIDIA

NIM for LLMs provides an OpenAI API compatible programming model and custom NVIDIA extensions for

additional functionality.

● Enterprise-Grade Security: Data privacy is paramount. NVIDIA NIM for LLMs emphasizes security by using

safetensors, constantly monitoring and patching CVEs in our stack and conducting internal penetration

tests.

Applications

The potential applications of NVIDIA NIM for LLMs are vast, spanning across various industries and use cases:

● Chatbots & Virtual Assistants: Empower bots with human-like language understanding and responsive-

ness.

● Content Generation & Summarization: Generate high-quality content or distill lengthy articles into concise

summaries with ease.

● Sentiment Analysis: Understand user sentiments in real-time, driving better business decisions.

● Language Translation: Break language barriers with efficient and accurate translation services.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 14 of 170

-

Architecture

NVIDIA NIM for LLMs is one of what will become many NIMs. Each NIM is its own Docker container with a model,

such as meta/llama3-8b-instruct. These containers include the runtime capable of running the model on any

NVIDIA GPU. The NIM automatically downloads the model from NGC, leveraging a local filesystem cache if

available. Each NIM is built from a common base, so once a NIM has been downloaded, downloading additional

NIMs is extremely fast.

 NIM Architecture Figure 8.

When a NIM is first deployed, NIM inspects the local hardware configuration, and the available optimized model in

the model registry, and then automatically chooses the best version of the model for the available hardware. For a

subset of NVIDIA GPUs, see: Support Matrix, NIM downloads the optimized TRT (TensorRT) engine and runs an

inference using the TRT-LLM library. For all other NVIDIA GPUs, NIM downloads a non-optimized model and runs

it using the vLLM library.

NIMs are distributed as NGC container images through the NVIDIA NGC Catalog. A security scan report is available

for each container within the NGC catalog, which provides a security rating of that image, breakdown of CVE

severity by package, and links to detailed information on CVEs.

Deployment Lifecycle

Figure 9 illustrates the deployment lifecycle.

https://docs.nvidia.com/nim/large-language-models/24.05.rc15/support-matrix.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 15 of 170

-

 Deployment Lifecycle Figure 9.

NVIDIA NIM for Text Embedding

NeMo Text Retriever NIM APIs facilitate access to optimized embedding models — essential components for RAG

applications that deliver precise and faithful answers. By using NVIDIA software (including CUDA, TensorRT, and

Triton Inference Server), the Text Retriever NIM provides the tools needed by developers to create ready-to-use,

GPU-accelerated applications. NeMo Retriever Text Embedding NIM enhances the performance of text-based

question-answering retrieval by generating optimized embeddings. For this RAG CVD, the Snowflake Arc-

tic-Embed-L embedding model was harnessed to encode domain-specific content which was then stored in a

vector database. The NIM combines that data with an embedded version of the user’s query to deliver a relevant

response.

Figure 10 shows how the Text Retriever NIM APIs can help a question-answering RAG application find the most

relevant data in an enterprise setting.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 16 of 170

-

 Text Retriever NIM APIs for RAG Application Figure 10.

Enterprise-Ready Features

Text Embedding NIM comes with enterprise-ready features, such as a high-performance inference server, flexible

integration, and enterprise-grade security.

● High Performance: Text Embedding NIM is optimized for high-performance deep learning inference with

NVIDIA TensorRT and NVIDIA Triton Inference Server.

● Scalable Deployment: Text Embedding NIM seamlessly scales from a few users to millions.

● Flexible Integration: Text Embedding NIM can be easily incorporated into existing data pipelines and ap-

plications. Developers are provided with an OpenAI-compatible API in addition to custom NVIDIA exten-

sions.

● Enterprise-Grade Security: Text Embedding NIM comes with security features such as the use of safe-

tensors, continuous patching of CVEs, and constant monitoring with our internal penetration tests.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 17 of 170

-

Solution Design

This chapter contains the following:

● Design Requirements

● FlexPod Topology

● FlexPod Datacenter with Red Hat OCP on Bare Metal

● Software Revisions

● RAG Design Summary

Design Requirements

This solution meets the following general design requirements:

● Resilient design across all layers of the infrastructure with no single point of failure

● Scalable and flexible design to add compute capacity, storage, or network bandwidth as needed sup-

ported by various models of each component

● Modular design that can be replicated to expand and grow as the needs of the business grow

● Simplified design with ability to integrate and automate with external automation tools

● Cloud-enabled design which can be configured, managed, and orchestrated from the cloud using GUI or

APIs

● Repeatable design for accelerating the provisioning of end-to-end Retrieval Augmented Generation

pipeline

● Provide a testing methodology to evaluate the performance of the solution

● Provide an example implementation of Cisco Webex Chat Bot integration with RAG

FlexPod Topology

The FlexPod Datacenter for Accelerated RAG Pipeline with NVIDIA NIM and Cisco Webex is built using the fol-

lowing reference hardware components:

● 2 Cisco Nexus 93600CD-GX Switches in Cisco NX-OS mode provide the switching fabric. Other Cisco

Nexus Switches are also supported.

● 2 Cisco UCS S9108 Fabric Interconnects (FIs) in the chassis provide the chassis connectivity. At least 2

100 Gigabit Ethernet ports from each FI, configured as a Port-Channel, are connected to each Cisco

Nexus 93600CD-GX switch. 25 Gigabit Ethernet connectivity is also supported as well as other versions of

the Cisco UCS FI that would be used with Intelligent Fabric Modules (IFMs) in the chassis.

● 1 Cisco UCS X9508 Chassis contains 6 Cisco UCS X210C M7 servers and 2 Cisco UCS X440p PCIe

Nodes each with 2 NVIDIA L40S GPUs. Other configurations of servers with and without GPUs are also

supported.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 18 of 170

-

● 1 NetApp AFF C800 HA pair connects to the Cisco Nexus 93600CD-GX Switches using two 100 GE ports

from each controller configured as a Port-Channel. 25 Gigabit Ethernet connectivity is also supported as

well as other NetApp AFF, ASA, and FAS storage controllers.

Figure 11 shows various hardware components and the network connections for the FlexPod Datacenter for

Accelerated RAG Pipeline with NVIDIA NIM design.

 FlexPod Datacenter Physical Topology Figure 11.

The software components of this solution consist of:

● Cisco Intersight SaaS platform to deploy, maintain, and support the FlexPod components

● Cisco Intersight Assist Virtual Appliance to connect NetApp ONTAP and Cisco Nexus switches to Cisco

Intersight

● NetApp Active IQ Unified Manager to monitor and manage the storage and for NetApp ONTAP integration

with Cisco Intersight

● Red Hat OCP to manage a Kubernetes containerized environment

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 19 of 170

-

FlexPod Datacenter with Red Hat OCP on Bare Metal

Red Hat OCP on Bare Metal Server Configuration

A simple Red Hat OCP cluster consists of at least five servers – 3 Master or Control Plane Nodes and 2 or more

Worker Nodes where applications and VMs are run. In this lab validation 3 Worker Nodes were utilized. Based on

OCP published requirements, the three Master Nodes were configured with 64GB RAM, and the three Worker

Nodes were configured with 768GB RAM to handle containerized applications and VMs. Each Node was booted

from M.2. Both a single M.2 module and 2 M.2 modules with RAID1 are supported. Also, the servers paired with

X440p PCIe Nodes were configured as Workers. From a networking perspective, both the Masters and the

Workers were configured with a single vNIC with Cisco UCS Fabric Failover in the Bare Metal or Management

VLAN. The workers were configured with extra NICs (vNICs) to allow storage attachment to the Workers. Each

worker had two additional vNICs with the iSCSI A and B VLANs configured as native to allow iSCSI persistent

storage attachment and future iSCSI boot. These vNICs also had the NVMe-TCP A and B allowed VLANs assigned,

allowing tagged VLAN interfaces for NVMe-TCP to be defined on the Workers. Finally, each worker had one ad-

ditional vNIC with the OCP NFS VLAN configured as native to provide NFS persistent storage.

VLAN Configuration

Table 1 lists VLANs configured for setting up the FlexPod environment along with their usage.

Table 1. VLAN Usage

Note: *

VLAN

config

fig-

ured in

FlexPo

d

Base.

Table

2 lists

the

VMs

or

bare

metal

serv-

ers

nec-

essary

for

de-

ployment as outlined in this document.

VLAN ID Name Usage IP Subnets

2* Native-VLAN Use VLAN 2 as native VLAN instead of default VLAN

(1)

1020

*

OOB-MGMT-VLAN Out-of-band management VLAN to connect

management ports for various devices

10.102.0.0/24

GW: 10.102.0.254

1022 OCP-BareMetal-MGMT Routable OCP Bare Metal VLAN used for OCP cluster

and node management

10.102.2.0/24

GW: 10.102.2.254

3012 OCP-iSCSI-A Used for OCP iSCSI Persistent Storage 192.168.12.0/24

3022 OCP-iSCSI-B Used for OCP iSCSI Persistent Storage 192.168.22.0/24

3032 OCP-NVMe-TCP-A Used for OCP NVMe-TCP Persistent Storage 192.168.32.0/24

3042 OCP-NVMe-TCP-B Used for OCP NVMe-TCP Persistent Storage 192.168.42.0/24

3052 OCP-NFS Used for OCP NFS RWX Persistent Storage 192.168.52.0/24

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_base_imm_manual_deploy.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_base_imm_manual_deploy.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_base_imm_manual_deploy.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 20 of 170

-

Table 2. Virtual Machines

Virtual Machine

Description

VLAN IP Address Comments

OCP AD1 1022 10.102.2.249 Hosted on pre-existing management infrastructure within the FlexPod

OCP AD2 1022 10.102.2.250 Hosted on pre-existing management infrastructure within the FlexPod

OCP Installer 1022 10.102.2.10 Hosted on pre-existing management infrastructure within the FlexPod

NetApp Active IQ Unified

Manager

1021 10.102.1.97 Hosted on pre-existing management infrastructure within the FlexPod

Cisco Intersight Assist

Virtual Appliance

1021 10.102.1.96 Hosted on pre-existing management infrastructure within the FlexPod

Software Revisions

Table 3 lists the software revisions for various components of the solution.

Table 3. Software Revisions

Layer Device Image Bundle Comments

Compute Cisco UCS Fabric Interconnect S9108 4.3(4.240078)

Cisco UCS X210C M7 5.2(2.240053)

Network Cisco Nexus 93600CD-GX NX-OS 10.3(4a)M

Storage NetApp AFF C800 ONTAP 9.14.1 Latest patch release

Software Red Hat OCP 4.16

NetApp Astra Trident 24.06.1

NetApp DataOps Toolkit 2.5.0

Cisco Intersight Assist Appliance 1.0.9-675 1.0.9-538 initially installed and then

automatically upgraded

NetApp Active IQ Unified Manager 9.14

NVIDIA L40S GPU Driver 550.90.07

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 21 of 170

-

FlexPod Cabling

The information in this section is provided as a reference for cabling the physical equipment in a FlexPod envi-

ronment. To simplify cabling requirements, a cabling diagram was used.

The cabling diagram in this section contains the details for the prescribed and supported configuration of the

NetApp AFF C800 running NetApp ONTAP 9.14.1.

Note: For any modifications of this prescribed architecture, consult the NetApp Interoperability Matrix Tool (IMT).

Note: This document assumes that out-of-band management ports are plugged into an existing management

infrastructure at the deployment site. These interfaces will be used in various configuration steps.

Note: Be sure to use the cabling directions in this section as a guide.

The NetApp storage controller and disk shelves should be connected according to best practices for the specific

storage controller and disk shelves. For disk shelf cabling, refer to NetApp Support.

Figure 12 details the cable connections used in the validation lab for the FlexPod topology based on the Cisco

UCS S9108 Fabric Interconnect directly in the chassis. Two 100Gb links connect each Cisco UCS Fabric Inter-

connect to the Cisco Nexus Switches and each NetApp AFF controller to the Cisco Nexus Switches. Additional

1Gb management connections will be needed for one or more out-of-band network switches that sit apart from

the FlexPod infrastructure. Each Cisco UCS Fabric Interconnect and Cisco Nexus switch is connected to the

out-of-band network switches, and each AFF controller has a connection to the out-of-band network switches.

Layer 3 network connectivity is required between the Out-of-Band (OOB) and In-Band (IB) Management Subnets.

 FlexPod Cabling with Cisco UCS S9108 X-Series Direct Fabric Interconnects Figure 12.

NetApp AFF C800

Controller - 1
NetApp AFF C800

Controller - 2

UCS S9108

Fabric Interconnect - A
UCS S9108

Fabric Interconnect - B

Nexus 93600CD-GX Switch - A Nexus 93600CD-GX Switch - B

e5a e5b e5a e5b

e0a

ifgrp a0a ifgrp a0a

E1/7

E1/9 E1/10

E1/25

E1/8 E1/7 E1/8

E1/9 E1/10

E1/26

E1/25

E1/26

E1/1 E1/2E1/1 E1/2

FI Uplink

Ports
FI Uplink

Ports

Po10

Po17 Po117

Po19Po110 Po110Po19

Po11 Po12 Po11 Po12

Peer Link

e0d

e0a

e0d

100 GbE

Port Channel

vPC

https://imt.netapp.com/matrix
https://support.netapp.com/

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 22 of 170

-

RAG Design Summary

Retrieval Augmented Generation (RAG) is designed to empower LLM solutions with real-time data access, pre-

serving data privacy and mitigating LLM hallucinations. A typical RAG pipeline consists of several phases. The

process of document ingestion occurs offline, and when an online query comes in, the retrieval of relevant

documents and the generation of a response occurs. By using RAG, you can provide up-to-date and proprietary

information with ease to LLMs and build a system that increases user trust, improves user experiences, and re-

duces hallucinations. NVIDIA RAG Enterprise designed with NVIDIA NeMo is an end-to-end platform for devel-

oping custom generative AI, anywhere. Deliver enterprise-ready models with precise data curation, cutting-edge

customization, RAG, and accelerated performance.

The FlexPod architecture is designed as described in this CVD: FlexPod Datacenter with Red Hat OCP Bare Metal

Manual Configuration with Cisco UCS X-Series Direct Deployment Guide. NVIDIA AI Enterprise and NVIDIA NIM

microservices were installed to build a powerful platform for running Retrieval Augmented Generation. This lay-

ered approach, depicted below, was configured with best practices and security in mind, resulting in a

high-performance, secure platform for Retrieval Augmented Generation. This platform can be extended for further

AI applications such as Training, Fine Tuning, and other Inferencing use cases, provided that the platform is sized

for the application.

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_rh_ocp_bm_xseries.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_rh_ocp_bm_xseries.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 23 of 170

-

 RAG Components Figure 13.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 24 of 170

-

Network Switch Configuration

This chapter contains the following:

● Physical Connectivity

● Cisco Nexus Switch Manual Configuration

● NetApp ONTAP Storage Configuration

This chapter provides a detailed procedure for configuring the Cisco Nexus 93600CD-GX switches for use in a

FlexPod environment.

Note: The following procedures describe how to configure the Cisco Nexus switches for use in the OCP Bare

Metal FlexPod environment. This procedure assumes the use of Cisco Nexus 9000 10.3(4a)M and includes the

setup of NTP distribution on the bare metal VLAN. The interface-vlan feature and NTP commands are used in the

setup. This procedure adds the tenant VLANs to the appropriate port-channels.

Physical Connectivity

Follow the physical connectivity guidelines for FlexPod as explained in section FlexPod Cabling.

Cisco Nexus Switch Manual Configuration

Procedure 1. Create Tenant VLANs on Cisco Nexus A and Cisco Nexus B

Step 1. Log into both Nexus switches as admin using ssh.

Step 2. Configure the OCP Bare Metal VLAN:

config t

vlan <bm-vlan-id for example, 1022>

name <tenant-name>-BareMetal-MGMT

Step 3. Configure OCP iSCSI VLANs:

vlan <iscsi-a-vlan-id for example, 3012>

name <tenant-name>-iSCSI-A

vlan <iscsi-b-vlan-id for example, 3022>

name <tenant-name>-iSCSI-B

Step 4. If configuring NVMe-TCP storage access, create the following two additional VLANs:

vlan <nvme-tcp-a-vlan-id for example, 3032>

name <tenant-name>-NVMe-TCP-A

vlan <nvme-tcp-b-vlan-id for example, 3042>

name <tenant-name>-NVMe-TCP-B

exit

Step 5. Add OCP NFS VLAN:

vlan <nfs-vlan-id for example, 3052>

name <tenant-name>-NFS

Step 6. Add VLANs to the vPC peer link in both Nexus switches:

int Po10

switchport trunk allowed vlan add

<bm-vlan-id>,<iscsi-a-vlan-id>,<iscsi-b-vlan-id>,<nvme-tcp-a-vlan-id>,<nvme-tcp-b-vlan-id>,<nfs-vlan-id>

Step 7. Add VLANs to the storage interfaces in both Nexus switches:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 25 of 170

-

int Po11,Po12

switchport trunk allowed vlan add

<bm-vlan-id>,<iscsi-a-vlan-id>,<iscsi-b-vlan-id>,<nvme-tcp-a-vlan-id>,<nvme-tcp-b-vlan-id>,<nfs-vlan-id>

Step 8. Add VLANs to the UCS Fabric Interconnect Uplink interfaces in both Nexus switches:

int Po19,Po110

switchport trunk allowed vlan add

<bm-vlan-id>,<iscsi-a-vlan-id>,<iscsi-b-vlan-id>,<nvme-tcp-a-vlan-id>,<nvme-tcp-b-vlan-id>,<nfs-vlan-id>

Step 9. Add the Bare Metal VLAN to the Switch Uplink interface in both Nexus switches:

interface Po127

switchport trunk allowed vlan add <bm-vlan-id>

exit

Step 10. If configuring NTP Distribution in these Nexus Switches, add Tenant VRF and NTP Distribution
Interface in Cisco Nexus A:

vrf context <tenant-name>

ip route 0.0.0.0/0 <bm-subnet-gateway>

exit

interface vlan<bm-vlan-id>

no shutdown

vrf member <tenant-name>

ip address <bm-switch-a-ntp-distr-ip>/<bm-vlan-mask-length>

exit

copy run start

Step 11. If configuring NTP Distribution in these Nexus Switches, add Tenant VRF and NTP Distribution
Interface in Cisco Nexus B:

vrf context <tenant-name>

ip route 0.0.0.0/0 <bm-subnet-gateway>

exit

interface vlan<bm-vlan-id>

no shutdown

vrf member <tenant-name>

ip address <bm-switch-b-ntp-distr-ip>/<bm-vlan-mask-length>

exit

copy run start

Step 12. The following commands can be used to see the switch configuration and status:

show run

show vpc

show vlan

show port-channel summary

show ntp peer-status

show cdp neighbors

show lldp neighbors

show run int

show int

show udld neighbors

show int status

NetApp ONTAP Storage Configuration

Procedure 1. Configure the NetApp ONTAP storage

Step 1. Log into the Cluster.

Step 2. Open an SSH connection to either the cluster IP or the host name.

Step 3. Log into the admin user with the password you provided earlier.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 26 of 170

-

Procedure 2. Configure the NetApp ONTAP Storage for the OCP Tenant

Note: By default, all network ports are included in a separate default broadcast domain. Network ports used for

data services (for example, e5a, e5b, and so on) should be removed from their default broadcast domain and that

broadcast domain should be deleted.

Step 1. Delete any Default-N automatically created broadcast domains:

network port broadcast-domain delete -broadcast-domain <Default-N> -ipspace Default

network port broadcast-domain show

Note: Delete the Default broadcast domains with Network ports (Default-1, Default-2, and so on). This does not

include Cluster ports and management ports.

Step 2. Create an IPspace for the OCP tenant:

network ipspace create -ipspace AA02-OCP

Step 3. Create the OCP-MGMT, OCP-iSCSI-A, OCP-iSCSI-B, OCP-NVMe-TCP-A , OCP-NVMe-TCP-B,
and OCP-NFS broadcast domains with appropriate maximum transmission unit (MTU):

network port broadcast-domain create -broadcast-domain OCP-MGMT -mtu 1500 -ipspace AA02-OCP

network port broadcast-domain create -broadcast-domain OCP-iSCSI-A -mtu 9000 -ipspace AA02-OCP

network port broadcast-domain create -broadcast-domain OCP-iSCSI-B -mtu 9000 -ipspace AA02-OCP

network port broadcast-domain create -broadcast-domain OCP-NVMe-TCP-A -mtu 9000 -ipspace AA02-OCP

network port broadcast-domain create -broadcast-domain OCP-NVMe-TCP-B -mtu 9000 -ipspace AA02-OCP

network port broadcast-domain create -broadcast-domain OCP-NFS -mtu 9000 -ipspace AA02-OCP

Step 4. Create the OCP management VLAN ports and add them to the OCP management broadcast do-
main:

network port vlan create -node AA02-C800-01 -vlan-name a0a-1022

network port vlan create -node AA02-C800-02 -vlan-name a0a-1022

network port broadcast-domain add-ports -ipspace AA02-OCP -broadcast-domain OCP-MGMT -ports

AA02-C800-01:a0a-1022,AA02-C800-02:a0a-1022

Step 5. Create the OCP iSCSI VLAN ports and add them to the OCP iSCSI broadcast domains:

network port vlan create -node AA02-C800-01 -vlan-name a0a-3012

network port vlan create -node AA02-C800-02 -vlan-name a0a-3012

network port broadcast-domain add-ports -ipspace AA02-OCP -broadcast-domain OCP-iSCSI-A -ports

AA02-C800-01:a0a-3012,AA02-C800-02:a0a-3012

network port vlan create -node AA02-C800-01 -vlan-name a0a-3022

network port vlan create -node AA02-C800-02 -vlan-name a0a-3022

network port broadcast-domain add-ports -ipspace AA02-OCP -broadcast-domain OCP-iSCSI-B -ports

AA02-C800-01:a0a-3022,AA02-C800-02:a0a-3022

Step 6. Create the OCP NVMe-TCP VLAN ports and add them to the OCP NVMe-TCP broadcast domains:

network port vlan create -node AA02-C800-01 -vlan-name a0a-3032

network port vlan create -node AA02-C800-02 -vlan-name a0a-3032

network port broadcast-domain add-ports -ipspace AA02-OCP -broadcast-domain OCP-NVMe-TCP-A -ports

AA02-C800-01:a0a-3032,AA02-C800-02:a0a-3032

network port vlan create -node AA02-C800-01 -vlan-name a0a-3042

network port vlan create -node AA02-C800-02 -vlan-name a0a-3042

network port broadcast-domain add-ports -ipspace AA02-OCP -broadcast-domain OCP-NVMe-TCP-B -ports

AA02-C800-01:a0a-3042,AA02-C800-02:a0a-3042

Step 7. Create the OCP NFS VLAN ports and add them to the OCP NFS broadcast domain:

network port vlan create -node AA02-C800-01 -vlan-name a0a-3052

network port vlan create -node AA02-C800-02 -vlan-name a0a-3052

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 27 of 170

-

network port broadcast-domain add-ports -ipspace AA02-OCP -broadcast-domain OCP-NFS -ports

AA02-C800-01:a0a-3052,AA02-C800-02:a0a-3052

Step 8. Create the SVM (Storage Virtual Machine) in the IPspace. Run the vserver create command:

vserver create -vserver OCP-Trident-SVM -ipspace AA02-OCP

Note: The SVM must be created in the IPspace. An SVM cannot be moved into an IPspace later.

Step 9. Add the required data protocols to the SVM and remove the unused data protocols from the SVM:

vserver add-protocols -vserver OCP-Trident-SVM -protocols iscsi,nfs,nvme

vserver remove-protocols -vserver OCP-Trident-SVM -protocols cifs,fcp,s3

Step 10. Add the two data aggregates to the OCP-Trident-SVM aggregate list and enable and run the NFS
protocol in the SVM:

vserver modify -vserver OCP-Trident-SVM -aggr-list AA02_C800_01_SSD_CAP_1,AA02_C800_02_SSD_CAP_1

vserver nfs create -vserver OCP-Trident-SVM -udp disabled -v3 enabled -v4.1 enabled

Step 11. Create a Load-Sharing Mirror of the SVM Root Volume. Create a volume to be the load-sharing
mirror of the infrastructure SVM root volume only on the node that does not have the Root Volume:

volume show -vserver OCP-Trident-SVM # Identify the aggregate and node where the vserver root volume is located.

volume create -vserver OCP-Trident-SVM -volume OCP_Trident_SVM_root_lsm01 -aggregate AA02_C800_0<x>_SSD_CAP_1

-size 1GB -type DP # Create the mirror volume on the other node

Step 12. Create the 15min interval job schedule:

job schedule interval create -name 15min -minutes 15

Step 13. Create the mirroring relationship:

snapmirror create -source-path OCP-Trident-SVM:OCP_Trident_SVM_root -destination-path

OCP-Trident-SVM:OCP_Trident_SVM_root_lsm01 -type LS -schedule 15min

Step 14. Initialize and verify the mirroring relationship:

snapmirror initialize-ls-set -source-path OCP-Trident-SVM:OCP_Trident_SVM_root

snapmirror show -vserver OCP-Trident-SVM

 Progress

Source Destination Mirror Relationship Total Last

Path Type Path State Status Progress Healthy Updated

----------- ---- ------------ ------- -------------- --------- ------- --------

AA02-C800://OCP-Trident-SVM/OCP_Trident_SVM_root

 LS AA02-C800://OCP-Trident-SVM/OCP_Trident_SVM_root_lsm01

 Snapmirrored

 Idle - true -

Step 15. Create the iSCSI and NVMe services:

vserver iscsi create -vserver OCP-Trident-SVM -status-admin up

vserver iscsi show -vserver OCP-Trident-SVM

 Vserver: OCP-Trident-SVM

 Target Name: iqn.1992-08.com.netapp:sn.8442b0854ebb11efb1a7d039eab7b2f3:vs.5

 Target Alias: OCP-Trident-SVM

 Administrative Status: up

vserver nvme create -vserver OCP-Trident-SVM -status-admin up

vserver nvme show -vserver OCP-Trident-SVM

 Vserver Name: OCP-Trident-SVM

 Administrative Status: up

Discovery Subsystem NQN: nqn.1992-08.com.netapp:sn.8442b0854ebb11efb1a7d039eab7b2f3:discovery

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 28 of 170

-

Note: Make sure licenses are installed for all storage protocols used before creating the services.

Step 16. To create the login banner for the SVM, run the following command:

security login banner modify -vserver OCP-Trident-SVM -message "This OCP-Trident-SVM is reserved for authorized

users only!"

Step 17. Remove insecure ciphers from the SVM. Ciphers with the suffix CBC are considered insecure. To
remove the CBC ciphers, run the following NetApp ONTAP command:

security ssh remove -vserver OCP-Trident-SVM -ciphers aes256-cbc,aes192-cbc,aes128-cbc,3des-cbc

Step 18. Create a new rule for the SVM NFS subnet in the default export policy and assign the policy to the
SVM’s root volume:

vserver export-policy rule create -vserver OCP-Trident-SVM -policyname default -ruleindex 1 -protocol nfs

-clientmatch 192.168.52.0/24 -rorule sys -rwrule sys -superuser sys -allow-suid true

volume modify –vserver OCP-Trident-SVM –volume OCP_Trident_SVM_root –policy default

Step 19. Create and enable the audit log in the SVM:

volume create -vserver OCP-Trident-SVM -volume audit_log -aggregate AA02_C800_01_SSD_CAP_1 -size 50GB -state

online -policy default -junction-path /audit_log -space-guarantee none -percent-snapshot-space 0

snapmirror update-ls-set -source-path OCP-Trident-SVM:OCP_Trident_SVM_root

vserver audit create -vserver OCP-Trident-SVM -destination /audit_log

vserver audit enable -vserver OCP-Trident-SVM

Step 20. Run the following commands to create NFS Logical Interfaces (LIFs):

network interface create -vserver OCP-Trident-SVM -lif nfs-lif-01 -service-policy default-data-files -home-node

AA02-C800-01 -home-port a0a-3052 -address 192.168.52.51 -netmask 255.255.255.0 -status-admin up -failover-policy

broadcast-domain-wide -auto-revert true

network interface create -vserver OCP-Trident-SVM -lif nfs-lif-02 -service-policy default-data-files -home-node

AA02-C800-02 -home-port a0a-3052 -address 192.168.52.52 -netmask 255.255.255.0 -status-admin up -failover-policy

broadcast-domain-wide -auto-revert true

Step 21. Run the following commands to create iSCSI LIFs:

network interface create -vserver OCP-Trident-SVM -lif iscsi-lif-01a -service-policy default-data-iscsi

-home-node AA02-C800-01 -home-port a0a-3012 -address 192.168.12.51 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-Trident-SVM -lif iscsi-lif-01b -service-policy default-data-iscsi

-home-node AA02-C800-01 -home-port a0a-3022 -address 192.168.22.51 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-Trident-SVM -lif iscsi-lif-02a -service-policy default-data-iscsi

-home-node AA02-C800-02 -home-port a0a-3012 -address 192.168.12.52 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-Trident-SVM -lif iscsi-lif-02b -service-policy default-data-iscsi

-home-node AA02-C800-02 -home-port a0a-3022 -address 192.168.22.52 -netmask 255.255.255.0 -status-admin up

Step 22. Run the following commands to create NVMe-TCP LIFs:

network interface create -vserver OCP-Trident-SVM -lif nvme-tcp-lif-01a -service-policy default-data-nvme-tcp

-home-node AA02-C800-01 -home-port a0a-3032 -address 192.168.32.51 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-Trident-SVM -lif nvme-tcp-lif-01b -service-policy default-data-nvme-tcp

-home-node AA02-C800-01 -home-port a0a-3042 -address 192.168.42.51 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-Trident-SVM -lif nvme-tcp-lif-02a -service-policy default-data-nvme-tcp

-home-node AA02-C800-02 -home-port a0a-3032 -address 192.168.32.52 -netmask 255.255.255.0 -status-admin up

network interface create -vserver OCP-Trident-SVM -lif nvme-tcp-lif-02b -service-policy default-data-nvme-tcp

-home-node AA02-C800-02 -home-port a0a-3042 -address 192.168.42.52 -netmask 255.255.255.0 -status-admin up

Step 23. Run the following command to create the SVM-MGMT LIF:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 29 of 170

-

network interface create -vserver OCP-Trident-SVM -lif svm-mgmt -service-policy default-management -home-node

AA02-C800-01 -home-port a0a-1022 -address 10.102.2.50 -netmask 255.255.255.0 -status-admin up -failover-policy

broadcast-domain-wide -auto-revert true

Step 24. Run the following command to verify LIFs:

network interface show -vserver OCP-Trident-SVM

 Logical Status Network Current Current Is

Vserver Interface Admin/Oper Address/Mask Node Port Home

----------- ---------- ---------- ------------------ ------------- ------- ----

OCP-Trident-SVM

 iscsi-lif-01a

 up/up 192.168.12.51/24 AA02-C800-01 a0a-3012

 true

 iscsi-lif-01b

 up/up 192.168.22.51/24 AA02-C800-01 a0a-3022

 true

 iscsi-lif-02a

 up/up 192.168.12.52/24 AA02-C800-02 a0a-3012

 true

 iscsi-lif-02b

 up/up 192.168.22.52/24 AA02-C800-02 a0a-3022

 true

 nfs-lif-01 up/up 192.168.52.51/24 AA02-C800-01 a0a-3052

 true

 nfs-lif-02 up/up 192.168.52.52/24 AA02-C800-02 a0a-3052

 true

 nvme-tcp-lif-01a

 up/up 192.168.32.51/24 AA02-C800-01 a0a-3032

 true

 nvme-tcp-lif-01b

 up/up 192.168.42.51/24 AA02-C800-01 a0a-3042

 true

 nvme-tcp-lif-02a

 up/up 192.168.32.52/24 AA02-C800-02 a0a-3032

 true

 nvme-tcp-lif-02b

 up/up 192.168.42.52/24 AA02-C800-02 a0a-3042

 true

 svm-mgmt up/up 10.102.2.50/24 AA02-C800-01 a0a-1022

 true

11 entries were displayed.

Step 25. Create a default route that enables the SVM management interface to reach the outside world:

network route create -vserver OCP-Trident-SVM -destination 0.0.0.0/0 -gateway 10.102.2.254

Step 26. Set a password for the SVM vsadmin user and unlock the user:

security login password -username vsadmin -vserver OCP-Trident-SVM

Enter a new password:

Enter it again:

security login unlock -username vsadmin -vserver OCP-Trident-SVM

Step 27. Add the OCP DNS servers to the SVM:

dns create -vserver OCP-Trident-SVM -domains ocp.flexpodb4.cisco.com -name-servers 10.102.2.249,10.102.2.250

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 30 of 170

-

Cisco Intersight Managed Mode Configuration

This chapter contains the following:

● Set up Cisco Intersight Resource Group

● Set up Cisco Intersight Organization

● Add OCP VLANs to VLAN Policy

● Cisco UCS IMM Manual Configuration

● Create Master Node Server Profile Template

● Compute Configuration

● Configure BIOS Policy

● Configure Boot Order Policy for M2

● Configure Firmware Policy (optional)

● Configure Power Policy

● Configure Virtual Media Policy

● Configure Cisco IMC Access Policy

● Configure IPMI Over LAN Policy

● Configure Local User Policy

● Configure Virtual KVM Policy

● Storage Configuration (optional)

● Network Configuration

● Create MAC Address Pool for Fabric A and B

● Create Ethernet Network Group Policy

● Create Ethernet Network Control Policy

● Create Ethernet QoS Policy

● Create Ethernet Adapter Policy

● Add vNIC(s) to LAN Connectivity Policy

● Complete the Master Server Profile Template

● Build the OCP Worker LAN Connectivity Policy

● Create the OCP Worker Server Profile Template

● Derive Server Profiles

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 31 of 170

-

The Cisco Intersight platform is a management solution delivered as a service with embedded analytics for Cisco

and third-party IT infrastructures. The Cisco Intersight Managed Mode (also referred to as Cisco IMM or Intersight

Managed Mode) is an architecture that manages Cisco Unified Computing System (Cisco UCS) Fabric Intercon-

nect–attached systems through a Redfish-based standard model. Cisco Intersight managed mode standardizes

both policy and operation management for Cisco UCS X210c M7 compute nodes used in this deployment guide.

Cisco UCS B-Series M5, M6, M7 blades and C-Series M6 and M7 servers, connected and managed through

Cisco UCS 6400 & 6500 Fabric Interconnects, are also supported by IMM. For a complete list of supported plat-

forms, go to:

https://www.cisco.com/c/en/us/td/docs/unified_computing/Intersight/b_Intersight_Managed_Mode_Configurati

on_Guide/b_intersight_managed_mode_guide_chapter_01010.html

Procedure 1. Set up Cisco Intersight Resource Group

In this procedure, a Cisco Intersight resource group for the Red Hat OCP tenant is created where resources such

as targets will be logically grouped. In this deployment, a single resource group is created to host all the resources,

but you can choose to create multiple resource groups for granular control of the resources.

Step 1. Log into Cisco Intersight.

Step 2. Select System. On the left, click Settings (the gear icon).

Step 3. Click Resource Groups in the middle panel.

Step 4. Click + Create Resource Group in the top-right corner.

Step 5. Provide a name for the Resource Group (for example, AA02-OCP-rg).

Step 6. Under Resources, select Custom.

Step 7. Select all resources that are connected to this Red Hat OCP FlexPod.

https://www.cisco.com/c/en/us/td/docs/unified_computing/Intersight/b_Intersight_Managed_Mode_Configuration_Guide/b_intersight_managed_mode_guide_chapter_01010.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/Intersight/b_Intersight_Managed_Mode_Configuration_Guide/b_intersight_managed_mode_guide_chapter_01010.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 32 of 170

-

Step 8. Click Create.

Procedure 2. Set Up Cisco Intersight Organization

In this procedure, an Intersight organization for the Red Hat OCP tenant is created where all Cisco Intersight

Managed Mode configurations including policies are defined.

Step 1. Log into the Cisco Intersight portal.

Step 2. Select System. On the left, click Settings (the gear icon).

Step 3. Click Organizations in the middle panel.

Step 4. Click + Create Organization in the top-right corner.

Step 5. Provide a name for the organization (for example, AA02-OCP), optionally select Share Resources
with Other Organizations, and click Next.

Step 6. Select the Resource Group created in the last step (for example, AA02-OCP-rg) and click Next.

Step 7. Click Create.

Procedure 3. Add OCP VLANs to VLAN Policy

Step 1. Log into the Cisco Intersight portal.

Step 2. Select Infrastructure Service. On the left, select Profiles then under Profiles select UCS Domain
Profiles.

Step 3. To the right of the UCS Domain Profile used for the OCP tenant, click … and select Edit.

Step 4. Click Next to go to UCS Domain Assignment.

Step 5. Click Next to go to VLAN & VSAN Configuration.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 33 of 170

-

Step 6. Under VLAN & VSAN Configuration, click the pencil icon to the left of the VLAN Policy to Edit the
policy.

Step 7. Click Next to go to Policy Details.

Step 8. To add the OCP-BareMetal VLAN, click Add VLANs.

Step 9. For the Prefix, enter the VLAN name. For the VLAN ID, enter the VLAN id. Leave Auto Allow on
Uplinks enabled and Enable VLAN Sharing disabled.

Step 10. Under Multicast Policy, click Select Policy and select the already configured Multicast Policy (for
example, AA02-MCAST).

Step 11. Click Add to add the VLAN to the policy.

Step 12. Repeat step 10 and step 11 to add all the VLANs in Table 1 to the VLAN Policy.

Step 13. Click Save to save the VLAN Policy.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 34 of 170

-

Step 14. Click Next three times to get to the UCS Domain Profile Summary page.

Step 15. Click Deploy and then Deploy again to deploy the UCS Domain Profile.

Cisco UCS IMM Manual Configuration

Configure Server Profile Template

In the Cisco Intersight platform, a server profile enables resource management by simplifying policy alignment and

server configuration. The server profiles are derived from a server profile template. A Server profile template and

its associated policies can be created using the server profile template wizard. After creating the server profile

template, customers can derive multiple consistent server profiles from the template.

The server profile templates captured in this deployment guide supports Cisco UCS X210c M7 compute nodes

with 5th Generation VICs and can be modified to support other Cisco UCS blades and rack mount servers.

vNIC and vHBA Placement for Server Profile Template

In this deployment, separate server profile templates are created for OCP Worker and Master Nodes where

Worker Nodes have storage network interfaces to support workloads, but Master Nodes do not. The vNIC layout is

explained below. While most of the policies are common across various templates, the LAN connectivity policies

are unique and will use the information in the following tables:

● 1 vNIC is configured for OCP Master Nodes. This vNIC is manually placed as listed in Table 4.

● 4 vNICs are configured for OCP Worker Nodes. These vNICs are manually placed as listed in Table 5.

NVMe-TCP VLAN Interfaces can be added as tagged VLANs to the iSCSI vNICs when NVMe-TCP is being

used.

Table 4. vNIC placement for OCP Master Nodes

vNIC/vHBA

Name

Switch

ID

PCI

Order

Fabric

Failover

Native VLAN Allowed VLANs

eno5 A 0 Y OCP-BareMetal OCP-BareMetal-MGMT

Table 5. vNIC placement for OCP Worker Nodes

vNIC/vHBA

Name

Switch

ID

PCI

Order

Fabric

Failover

Native VLAN Allowed VLANs

eno5 A 0 Y OCP-BareMetal OCP-BareMetal-MGMT

eno6 A 1 N OCP-iSCSI-A OCP-iSCSI-A,

OCP-NVMe-TCP-A

eno7 B 2 N OCP-iSCSI-B OCP-iSCSI-B,

OCP-NVMe-TCP-B

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 35 of 170

-

vNIC/vHBA

Name

Switch

ID

PCI

Order

Fabric

Failover

Native VLAN Allowed VLANs

eno8 A 3 N OCP-NFS OCP-NFS

Note: OCP-NVMe-TCP-A will be added to eno6 as a VLAN interface. OCP-NVMe-TCP-B will be added to eno7

as a VLAN interface.

Procedure 1. Create Master Node Server Profile Template

A Server Profile Template will first be created for the OCP Master Nodes. This procedure will assume an X210C

M7 is being used but can be modified for other server types.

Step 1. Log into Cisco Intersight.

Step 2. Go to Infrastructure Service > Configure > Templates and in the main window and select UCS
Server Profile Templates. Click Create UCS Server Profile Template.

Step 3. Select the organization from the drop-down list (for example, AA02-OCP).

Step 4. Provide a name for the server profile template (for example, AA02-OCP-Master-X210C-M7)

Step 5. Select UCS Server (FI-Attached).

Step 6. Provide an optional description.

Step 7. Click Next.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 36 of 170

-

Compute Configuration

Procedure 2. Compute Configuration – Configure UUID Pool

Step 1. Click Select Pool under UUID Pool and then in the pane on the right, click Create New.

Step 2. Verify correct organization is selected from the drop-down list (for example, AA02) and provide a
name for the UUID Pool (for example, AA02-OCP-UUID-Pool).

Step 3. Provide an optional Description and click Next.

Step 4. Provide a unique UUID Prefix (for example, a prefix of AA020000-0000-0001 was used).

Step 5. Add a UUID block.

Step 6. Click Create.

Procedure 3. Configure BIOS Policy

Step 1. Click Select Policy next to BIOS and in the pane on the right, click Create New.

Step 2. Verify correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-Intel-M7-Virtualization-BIOS).

Step 3. Enter an optional Description.

Step 4. Click Select Cisco Provided Configuration. In the Search box, type Vir. Select Virtualiza-
tion-M7-Intel or the appropriate Cisco Provided Configuration for your platform.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 37 of 170

-

Step 5. Click Next.

Step 6. On the Policy Details screen, expand Server Management. From the drop-down list select ena-
bled for the Consistent Device Naming BIOS token.

Note: The BIOS Policy settings specified here are from the Performance Tuning Best Practices Guide for Cisco

UCS M7 Platforms - Cisco with the Virtualization workload. For other platforms, the appropriate documents are

listed below:

● Performance Tuning Guide for Cisco UCS M6 Servers - Cisco

● Performance Tuning Guide for Cisco UCS M5 Servers White Paper - Cisco

● Performance Tuning for Cisco UCS C225 M6 and C245 M6 Rack Servers with 3rd Gen AMD EPYC Pro-

cessors White Paper - Cisco

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/ucs-m7-platforms-wp.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/ucs-m7-platforms-wp.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/performance-tuning-guide-ucs-m6-servers.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/white-paper-c11-744678.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-wp.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-wp.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 38 of 170

-

● Products - Performance Tuning for Cisco UCS C125 Rack Server Nodes with AMD Processors (White

Paper) - Cisco
Step 7. Click Create to create the BIOS Policy.

Procedure 4. Configure Boot Order Policy for M2

Step 1. Click Select Policy next to Boot Order and then, in the pane on the right, click Create New.

Step 2. Verify correct organization is selected from the drop-down list (for example, AA02) and provide a
name for the policy (for example, AA02-OCP-M2-Boot-Order).

Step 3. Click Next.

Step 4. For Configured Boot Mode, select Unified Extensible Firmware Interface (UEFI).

Step 5. Do not turn on Enable Secure Boot.

Note: It is critical to not enable UEFI Secure Boot. If Secure Boot is enabled, the NVIDIA GPU Operator GPU driver

will fail to initialize.

Step 6. Click the Add Boot Device drop-down list and select Virtual Media.

Note: You are entering the Boot Devices in reverse order here to avoid having to move them in the list later.

Step 7. Provide a Device Name (for example, KVM-Mapped-ISO) and then, for the subtype, select KVM
Mapped DVD.

Step 8. Click the Add Boot Device drop-down list and select Local Disk.

Step 9. Provide a Device Name (for example, M2) and MSTOR-RAID for the Slot.

Step 10. Verify the order of the boot devices and adjust the boot order as necessary using arrows next to
the Delete button.

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-guide.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/performance-tuning-guide.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 39 of 170

-

Step 11. Click Create.

Procedure 5. Configure Firmware Policy (optional)

Since Red Hat OCP recommends using homogeneous server types for Masters (and Workers), a Firmware Policy

can ensure that all servers are running the appropriate firmware when the Server Profile is deployed.

Step 1. Click Select Policy next to Firmware and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-Firmware). Click Next.

Step 3. Select the Server Model (for example, UCSX-210C-M7) and the latest 5.2(2) firmware version.

Step 4. Optionally, other server models can be added using the plus sign.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 40 of 170

-

Step 5. Click Create to create the Firmware Policy.

Procedure 6. Configure Power Policy

A Power Policy can be defined and attached to blade servers (Cico UCS X- and B-Series).

Step 1. Click Select Policy next to Power and in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-Server-Power). Click Next.

Step 3. Make sure UCS Server (FI-Attached) is selected and adjust any of the parameters according to
your organizational policies.

Step 4. Click Create to create the Power Policy.

Step 5. Optionally, if you are using Cisco UCS C-Series servers, a Thermal Policy can be created and
attached to the profile.

Procedure 7. Configure Virtual Media Policy

Step 1. Click Select Policy next to Virtual Media and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-KVM-Mount-Media). Click Next.

Step 3. Ensure that Enable Virtual Media, Enable Virtual Media Encryption, and Enable Low Power USB
are turned on.

Step 4. Do not Add Virtual Media at this time, but the policy can be modified and used to map an ISO for a
CIMC Mapped DVD.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 41 of 170

-

Step 5. Click Create to create the Virtual Media Policy.

Step 6. Click Next to move to Management Configuration.

Management Configuration

The following policies are added to the management configuration:

● IMC Access to define the pool of IP addresses for compute node KVM access

● IPMI Over LAN to allow Intersight to manage IPMI messages

● Local User to provide local administrator to access KVM

● Virtual KVM to allow the Tunneled KVM

Procedure 1. Configure Cisco IMC Access Policy

Step 1. Click Select Policy next to IMC Access and then, in the pane on the right, click Create New.

Step 2. Verify correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-IMC-Access-Policy).

Step 3. Click Next.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 42 of 170

-

Note: Since certain features are not yet enabled for Out-of-Band Configuration (accessed via the Fabric Inter-

connect mgmt0 ports), we are bringing in the OOB-MGMT VLAN through the Fabric Interconnect Uplinks and

mapping it as the In-Band Configuration VLAN.

Step 4. Ensure UCS Server (FI-Attached) is selected.

Step 5. Enable In-Band Configuration. Enter the OCP-BareMetal VLAN ID (for example, 1022) and select
“IPv4 address configuration.”

Step 6. Under IP Pool, click Select IP Pool and then, in the pane on the right, click Create New.

Step 7. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-BareMetal-IP-Pool). Click Next.

Step 8. Ensure Configure IPv4 Pool is selected and provide the information to define a unique pool for
KVM IP address assignment including an IP Block (added by clicking Add IP Blocks).

Note: You will need the IP addresses of the OCP DNS servers.

Note: The management IP pool subnet should be accessible from the host that is trying to open the KVM con-

nection. In the example shown here, the hosts trying to open a KVM connection would need to be able to route to

the 10.102.2.0/24 subnet.

Step 9. Click Next.

Step 10. Deselect Configure IPv6 Pool.

Step 11. Click Create to finish configuring the IP address pool.

Step 12. Click Create to finish configuring the IMC access policy.

Procedure 2. Configure IPMI Over LAN Policy

The IPMI Over LAN Policy can be used to allow both IPMI and Redfish connectivity to Cisco UCS Servers.

Step 1. Click Select Policy next to IPMI Over LAN and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02) and pro-
vide a name for the policy (for example, AA02-OCP-IPMIoLAN-Policy). Click Next.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 43 of 170

-

Step 3. Ensure UCS Server (FI-Attached) is selected.

Step 4. Ensure Enable IPMI Over LAN is selected.

Step 5. From the Privilege Level drop-down list, select admin.

Step 6. For Encryption Key, enter 00 to disable encryption.

Step 7. Click Create to create the IPMI Over LAN policy.

Procedure 3. Configure Local User Policy

Step 1. Click Select Policy next to Local User and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-LocalUser-Policy). Click Next.

Step 3. Verify that UCS Server (FI-Attached) is selected.

Step 4. Verify that Enforce Strong Password is selected.

Step 5. Enter 0 under Password History.

Step 6. Click Add New User.

Step 7. Provide the username (for example, flexadmin), select a role (for example, admin), and provide a
password and password confirmation.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 44 of 170

-

Note: The username and password combination defined here will be used as an alternate to log in to KVMs and

can be used for IPMI.

Step 8. Click Create to complete configuring the Local User policy.

Procedure 4. Configure Virtual KVM Policy

Step 1. Click Select Policy next to Virtual KVM and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-Virtual-KVM). Click Next.

Step 3. Verify that UCS Server (FI-Attached) is selected.

Step 4. Turn on Allow Tunneled vKVM.

Step 5. Click Create.

Note: To fully enable Tunneled KVM, once the Server Profile Template has been created, go to System > Set-

tings > Security and Privacy and click Configure. Turn on Allow Tunneled vKVM Launch and Allow Tunneled

vKVM Configuration. If Tunneled vKVM Launch and Tunneled vKVM Configuration are not Allowed, click Con-

figure to change these settings.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 45 of 170

-

Step 6. Click Next to go to Storage Configuration.

Storage Configuration

Procedure 1. Storage Configuration (optional)

If you have two M.2 drives in your servers you can create an optional policy to mirror these drives using RAID1.

Step 1. If it is not necessary to configure a Storage Policy, click Next to continue to Network Configuration.

Step 2. Click Select Policy and in the pane on the right-click Create New.

Step 3. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-M.2-RAID1-Storage). Click Next.

Step 4. Enable M.2 RAID Configuration and leave the default Virtual Drive Name and Slot of the M.2 RAID
controller field values, or values appropriate to your environment. Click Create.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 46 of 170

-

Step 5. Click Next.

Network Configuration

Procedure 1. Create Network Configuration – LAN Connectivity for Master Nodes

The LAN connectivity policy defines the connections and network communication resources between the server

and the LAN. This policy uses pools to assign MAC addresses to servers and to identify the vNICs that the servers

use to communicate with the network. For iSCSI hosts, this policy also defines an IQN address pool.

For consistent vNIC placement, manual vNIC placement is utilized. Additionally, the assumption is being made

here that each server contains only one VIC card and Simple placement, which adds vNICs to the first VIC, is being

used. If you have more than one VIC in a server, the Advanced placement will need to be used.

The Master hosts use 1 vNIC configured as listed in Table 6.

Table 6. vNIC placement for iSCSI connected storage for OCP Master Nodes

vNIC/vHBA

Name

Switch

ID

PCI

Orde

r

Fabric

Failove

r

Native VLAN Allowed VLANs MTU

eno5 A 0 Y OCP-BareMetal-MGMT OCP-BareMetal-MGMT 1500

Step 1. Click Select Policy next to LAN Connectivity and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP),
provide a name for the policy (for example, AA02-OCP-Master-M2Bt-5G-LANConn) and select UCS Server
(FI-Attached) under Target Platform. Click Next.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 47 of 170

-

Step 3. Leave None selected under IQN and under vNIC Configuration, select Manual vNICs Placement.

Step 4. Use the Add drop-down list to select vNIC from Template.

Step 5. Enter the name for the vNIC from the table above (for example, eno5) and click Select vNIC
Template.

Step 6. In the upper right, click Create New.

Step 7. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the vNIC Template (for example, AA02-OCP-BareMetal-MGMT-vNIC). Click Next.

Procedure 2. Create MAC Address Pool for Fabric A and B

Note: When creating the first vNIC, the MAC address pool has not been defined yet, therefore a new MAC ad-

dress pool will need to be created. Two separate MAC address pools are configured for each Fabric.

MAC-Pool-A will be used for all Fabric-A vNICs, and MAC-Pool-B will be used for all Fabric-B vNICs. Adjust the

values in the table for your environment.

Table 7. MAC Address Pools

Pool Name Starting MAC Address Size vNICs

MAC-Pool-A 00:25:B5:A2:0A:00 64* eno5, eno6

MAC-Pool-B 00:25:B5:A2:0B:00 64* eno7, eno8

Note: For Masters, each server requires 1 MAC address from MAC-Pool-A, and for Workers, each server re-

quires 3 MAC addresses from MAC-Pool-A and 2 MAC addresses from MAC-Pool-B. Adjust the size of the pool

according to your requirements.

Step 1. Click Select Pool under MAC Pool and then, in the pane on the right, click Create New.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 48 of 170

-

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the pool from Table 7 with the prefix applied depending on the vNIC being created (for ex-
ample, AA02-OCP-MAC-Pool-A for Fabric A).

Step 3. Click Next.

Step 4. Provide the starting MAC address from Table 7 (for example, 00:25:B5:A2:0A:00)

Step 5. For ease of troubleshooting FlexPod, some additional information is always coded into the MAC
address pool. For example, in the starting address 00:25:B5:A2:0A:00, A2 is the rack ID and 0A indicates Fabric
A.

Step 6. Provide the size of the MAC address pool from Table 7 (for example, 64).

Step 7. Click Create to finish creating the MAC address pool.

Step 8. From the Create vNIC Template window, provide the Switch ID from Table 6.

Step 9. For Consistent Device Naming (CDN), from the drop-down list, select vNIC Name.

Step 10. For Failover, set the value from Table 6.

Procedure 3. Create Ethernet Network Group Policy

Ethernet Network Group policies will be created and reused on applicable vNICs as explained below. The ethernet

network group policy defines the VLANs allowed for a particular vNIC, therefore multiple network group policies

will be defined for this deployment as listed in Table 8.

Table 8. Ethernet Group Policy Values

Group Policy Name Native VLAN Apply to vNICs Allowed VLANs

AA02-OCP-BareMetal-NetGrp OCP-BareMetal-MGMT

(1022)

eno5 OCP-BareMetal-MGMT

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 49 of 170

-

Group Policy Name Native VLAN Apply to vNICs Allowed VLANs

AA02-OCP-iSCSI-NVMe-TCP-A-NetGrp OCP-iSCSI-A (3012) eno6 OCP-iSCSI-A,

OCP-NVMe-TCP-A*

AA02-OCP-iSCSI-NVMe-TCP-B-NetGrp OCP-iSCSI-B (3022) eno7 OCP-iSCSI-B,

OCP-NVMe-TCP-B*

AA02-OCP-NFS-NetGrp OCP-NFS eno8 OCP-NFS

Note: *Add the NVMe-TCP VLANs when using NVMe-TCP.

Step 1. Click Select Policy under Ethernet Network Group Policy and then, in the pane on the right, click
Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy from the Table 8 (for example, AA02-OCP-BareMetal-NetGrp).

Step 3. Click Next.

Step 4. Enter the Native VLAN ID (for example,1022) and the allowed VLANs (for example, 1022) from
Table 2.

Step 5. Click Create to finish configuring the Ethernet network group policy.

Note: When ethernet group policies are shared between two vNICs, the ethernet group policy only needs to be

defined for the first vNIC. For subsequent vNIC policy mapping, click Select Policy and pick the previously defined

ethernet network group policy from the list.

Procedure 4. Create Ethernet Network Control Policy

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 50 of 170

-

The Ethernet Network Control Policy is used to enable Cisco Discovery Protocol (CDP) and Link Layer Discovery

Protocol (LLDP) for the vNICs. A single policy will be created here and reused for all the vNICs.

Step 1. Click Select Policy under Ethernet Network Control Policy and then, in the pane on the right, click
Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-Enable-CDP-LLDP).

Step 3. Click Next.

Step 4. Enable Cisco Discovery Protocol (CDP) and Enable Transmit and Enable Receive under LLDP.

Step 5. Click Create to finish creating Ethernet network control policy.

Procedure 5. Create Ethernet QoS Policy

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 51 of 170

-

Note: The Ethernet QoS policy is used to enable the appropriate maximum transmission unit (MTU) for all the

vNICs. Across the vNICs, two policies will be created (one for MTU 1500 and one for MTU 9000) and reused for all

the vNICs.

Step 1. Click Select Policy under Ethernet QoS and in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-MTU1500-EthernetQoS). The name of the policy should
conform to the MTU from Table 8.

Step 3. Click Next.

Step 4. Change the MTU, Bytes value to the value from Table 8.

Step 5. Set the Rate Limit Mbps to 100000.

Step 6. Click Create to finish setting up the Ethernet QoS policy.

Procedure 6. Create Ethernet Adapter Policy

The ethernet adapter policy is used to set the interrupts, send, and receive queues, and queue ring size. The

values are set according to the best-practices guidance for the operating system in use. Cisco Intersight provides

a default Linux Ethernet Adapter policy for typical Linux deployments.

You can optionally configure a tweaked ethernet adapter policy for additional hardware receive queues handled by

multiple CPUs in scenarios where there is a lot of traffic and multiple flows. In this deployment, a modified ethernet

adapter policy, AA02-EthAdapter-16RXQs-5G, is created and attached to storage vNICs. Non-storage vNICs will

use the default Linux-v2 Ethernet Adapter policy.

Table 9. Ethernet Adapter Policy association to vNICs

Policy Name vNICs

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 52 of 170

-

Policy Name vNICs

AA02-OCP-EthAdapter-Linux-v2 eno5

AA02-OCP-EthAdapter-16RXQs-5G eno6, eno7, eno8

Step 1. Click Select Policy under Ethernet Adapter and then, in the pane on the right, click Create New.

Step 2. Verify the correct organization is selected from the drop-down list (for example, AA02-OCP) and
provide a name for the policy (for example, AA02-OCP-EthAdapter-Linux-v2).

Step 3. Click Select Cisco Provided Configuration under Cisco Provided Ethernet Adapter Configuration.

Step 4. From the list, select Linux-v2.

Step 5. Click Next.

Step 6. For the AA02-OCP-EthAdapter-Linux-v2 policy, click Create and skip the rest of the steps in this
“Create Ethernet Adapter Policy” section.

Step 7. For the AA02-OCP-EthAdapter-16RXQs-5G policy, make the following modifications to the pol-
icy:

● Increase Interrupts to 19

● Increase Receive Queue Count to 16

● Increase Receive Ring Size to 16384 (Leave at 4096 for 4G VICs)

● Increase Transmit Ring Size to 16384 (Leave at 4096 for 4G VICs)

● Increase Completion Queue Count to 17

● Ensure Receive Side Scaling is enabled

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 53 of 170

-

Step 8. Click Create.

Procedure 7. Add vNIC(s) to LAN Connectivity Policy

The vNIC Template exists and all policies attached.

Step 1. For PCI Order enter the number from Table 8. Verify the other values.

Step 2. Click Add to add the vNIC to the LAN Connectivity Policy.

Step 3. If building the Worker LAN Connectivity Policy, go back to Procedure 1 Create Network Configu-
ration - LAN Connectivity for Master Nodes, Step 4 and repeat the vNIC Template and vNIC creation for all five
vNICs often selecting existing policies instead of creating them.

Step 4. Verify all vNICs were successfully created.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 54 of 170

-

Step 5. Click Create to finish creating the LAN Connectivity policy.

Procedure 8. Complete the Master Server Profile Template

Step 1. When the LAN connectivity policy is created, click Next to move to the Summary screen.

Step 2. On the Summary screen, verify the policies are mapped to various settings. The screenshots be-
low provide the summary view for the OCP Master M.2 Boot server profile template.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 55 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 56 of 170

-

Step 3. Click Close to close the template.

Procedure 9. Build the OCP Worker LAN Connectivity Policy

The OCP Master LAN Connectivity Policy can be cloned and four vNICs added to build the OCP Worker LAN

Connectivity Policy that will then be used in the OCP Worker Server Profile Template. Table 10 lists the vNICs that

will be added to the cloned policy.

Table 10. vNIC additions for iSCSI connected storage for OCP Worker Nodes

vNIC/vHBA

Name

Switch

ID

PCI Order Fabric

Failover

Native VLAN Allowed VLANs MTU

eno6 A 1 N OCP-iSCSI-A OCP-iSCSI-A,

OCP-NVMe-TCP-A

9000

eno7 B 2 N OCP-iSCSI-B OCP-iSCSI-B,

OCP-NVMe-TCP-B

9000

eno8 A 3 N OCP-NFS OCP-NFS 9000

Step 1. Log into Cisco Intersight and select Infrastructure Service > Policies.

Step 2. In the policy list, look for the <org-name>-Master-M2Bt-5G-LANConn or the LAN Connectivity
policy created above. Click … to the right of the policy and select Clone.

Step 3. Change the name of the cloned policy to something like AA02-OCP-Worker-M2Bt-5G-LANConn
and select the correct Organization (for example, AA02-OCP).

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 57 of 170

-

Step 4. Click Clone to clone the policy.

Step 5. From the Policies window, click the refresh button to refresh the list. The newly cloned policy
should now appear at the top of the list. Click … to the right of the newly cloned policy and select Edit.

Step 6. Click Next.

Step 7. Go to Procedure 1 Create Network Configuration - LAN Connectivity for Master Nodes and start at
Step 4 to add the 4 vNICs from Template listed in Table 10.

The OCP-Worker-M2Bt-5G-LANConn policy is now built and can be added to the OCP Worker Server Profile

Template.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 58 of 170

-

Step 8. Click Save to save the policy.

Procedure 10. Create the OCP Worker Server Profile Template

The OCP Master Server Profile Template can be cloned and modified to create the OCP Worker Server Profile

Template.

Step 1. Log into Cisco Intersight and select Infrastructure Service > Templates > UCS Server Profile
Templates.

Step 2. To the right of the OCP-Master-X210C-M7 template, click … and select Clone.

Step 3. Ensure that the correct Destination Organization is selected (for example, AA02-OCP) and click
Next.

Step 4. Adjust the Clone Name (for example, AA02-Worker-X210C-M7) and Description as needed and
click Next.

Step 5. From the Templates window, click the … to the right of the newly created clone and click Edit.

Step 6. Click Next until you get to Storage Configuration. If the Storage Policy needs to be added or
deleted, make that adjustment.

Step 7. Click Next to get to Network Configuration. Click the page icon to the right of the LAN Connectivity
Policy and select the Worker LAN Connectivity Policy. Click Select.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 59 of 170

-

Step 8. Click Next and Close to save this template.

Complete the Cisco UCS IMM Setup

Procedure 1. Derive Server Profiles

Step 1. From the Infrastructure Service > Templates page, to the right of the OCP-Master template,
click … and select Derive Profiles.

Step 2. Under the Server Assignment, select Assign Now and select the 3 Cisco UCS X210c M7 servers
that will be used as OCP Master Nodes.

Step 3. Click Next.

Step 4. For the Profile Name Prefix, enter the first part of the OCP Master Node hostnames (for example,
ocp-master. Set Start Index for Suffix to 0 (zero). The 3 server Names should now correspond to the OCP Master
Node hostnames.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 60 of 170

-

Step 5. Click Next.

Step 6. Click Derive to derive the OCP Master Node Server Profiles.

Step 7. Select Profiles on the left and then select the UCS Server Profiles tab.

Step 8. Select the 3 OCP Master profiles and then click the … at the top or bottom of the list and select
Deploy.

Step 9. Select Reboot Immediately to Activate and click Deploy.

Step 10. Repeat this process to create 3 OCP Worker Node Server Profiles.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 61 of 170

-

OpenShift Container Platform Installation and Configuration

This chapter contains the following:

● OpenShift Container Platform – Installation Requirements

● Prerequisites

● Network Requirements

● Deploy NetApp Astra Trident

● NetApp DataOps Toolkit

OCP 4.16 is deployed on the Cisco UCS infrastructure as M.2 booted bare metal servers. The Cisco UCS X210C

M7 servers need to be equipped with an M.2 controller (SATA or NVMe) card and either 1 or 2 identical M.2 drives.

Three master nodes and three worker nodes are deployed in the validation environment and additional worker

nodes can easily be added to increase the scalability of the solution. This document will guide you through the

process of using the Assisted Installer to deploy OCP 4.16.

OpenShift Container Platform – Installation Requirements

The Red Hat OCP Assisted Installer provides support for installing OpenShift Container Platform on bare metal

nodes. This guide provides a methodology to achieving a successful installation using the Assisted Installer.

Prerequisites

The FlexPod for OCP utilizes the Assisted Installer for OCP installation therefore when provisioning and managing

the FlexPod infrastructure, you must provide all the supporting cluster infrastructure and resources, including an

installer VM or host, networking, storage, and individual cluster machines.

The following supporting cluster resources are required for the Assisted Installer installation:

● The control plane and compute machines that make up the cluster

● Cluster networking

● Storage for the cluster infrastructure and applications

● The Installer VM or Host

Network Requirements

The following infrastructure services need to be deployed to support the OCP cluster, during the validation of this

solution we have provided VMs on your hypervisor of choice to run the required services. Customers can use

existing DNS and DHCP services available in the data center:

There are various infrastructure services prerequisites for deploying OCP 4.16. These prerequisites are as follows:

● DNS and DHCP services – these services were configured on Microsoft Windows Server VMs in this val-

idation

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 62 of 170

-

● NTP Distribution was done with Nexus switches

● Specific DNS entries for deploying OCP – added to the DNS server

● A Linux VM for initial automated installation and cluster management – a Rocky Linux / RHEL VM with

appropriate packages

NTP

Each OpenShift Container Platform node in the cluster must have access to at least two NTP servers.

NICs

NICs configured on the Cisco UCS servers based on the design previously discussed.

DNS

Clients access the OpenShift Container Platform cluster nodes over the bare metal network. Configure a sub-

domain or subzone where the canonical name extension is the cluster name.

The following domain and OCP cluster names are used in this deployment guide:

● Base Domain: flexpodb4.cisco.com

● OCP Cluster Name: ocp

The DNS domain name for the OCP cluster should be the cluster name followed by the base domain, for example,

ocp.flexpodb4.cisco.com.

Table 11 lists the information for fully qualified domain names used during validation. The API and Nameserver

addresses begin with canonical name extensions. The hostnames of the control plane and worker nodes are

exemplary, so you can use any host naming convention you prefer.

Table 11. DNS FQDN Names Used

Usage Hostname IP Address

API api.ocp.flexpodb4.cisco.com 10.102.2.228

Ingress LB (apps) *.apps.ocp.flexpodb4.cisco.com 10.102.2.229

ocp-master0 ocp-master0.ocp.flexpodb4.cisco.com 10.102.2.211

ocp-master1 ocp-master1.ocp.flexpodb4.cisco.com 10.102.2.212

ocp-master2 ocp-master2.ocp.flexpodb4.cisco.com 10.102.2.213

ocp-worker0 ocp-worker0.ocp.flexpodb4.cisco.com 10.102.2.214

ocp-worker1 ocp-worker1.ocpflexpodb4.cisco.com 10.102.2.215

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 63 of 170

-

Usage Hostname IP Address

ocp-worker2 ocp-worker2.ocp.flexpodb4.cisco.com 10.102.2.216

DHCP

For the bare metal network, a network administrator must reserve several IP addresses, including:

● One IP address for the API endpoint

● One IP address for the wildcard Ingress endpoint

● One IP address for each master node (DHCP server assigns to the node)

● One IP address for each worker node (DHCP server assigns to the node)

Note: Get the MAC addresses of the bare metal Interfaces from the UCS Server Profile for each node to be used

in the DHCP configuration to assign reserved IP addresses to the nodes. The KVM IP address also needs to be

gathered for the master and worker nodes from the server profiles.

Procedure 1. Gather MAC Addresses of Node Bare Metal Interfaces

Step 1. Log into Cisco Intersight.

Step 2. Select Infrastructure Service > Profiles > Server Profile (for example, ocp-worker2).

Step 3. In the center pane, select Inventory > Network Adapters > Network Adapter (for example,
UCSX-ML-V5D200G).

Step 4. In the center pane, select Interfaces.

Step 5. Record the MAC address for NIC Interface eno5.

Step 6. Select the General tab and select Identifiers in the center pane.

Step 7. Record the Management IP assigned from the OCP-BareMetal-IP-Pool.

Table 12 lists the IP addresses used for the OCP cluster including bare metal network IPs and UCS KVM Man-

agement IPs for IPMI or Redfish access.

Table 12. Host BMC Information

Hostname IP Address UCS KVM Mgmt. IP

Address

BareMetal MAC

Address (eno5)

ocp-master0.ocp.flexpodb4.cisco.com 10.102.2.211 10.102.2.243 00:25:B5:A2:0A:0D

ocp-master1.ocp.flexpodb4.cisco.com 10.102.2.212 10.102.2.244 00:25:B5:A2:0A:09

ocp-master2.ocp.flexpodb4.cisco.com 10.102.2.213 10.102.2.240 00:25:B5:A2:0A:0B

ocp-worker0.ocp.flexpodb4.cisco.com 10.102.2.214 10.102.2.239 00:25:B5:A2:0A:12

ocp-worker1.ocp.flexpodb4.cisco.com 10.102.2.215 10.102.2.242 00:25:B5:A2:0A:13

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 64 of 170

-

Hostname IP Address UCS KVM Mgmt. IP

Address

BareMetal MAC

Address (eno5)

ocp-worker2.ocp.flexpodb4.cisco.com 10.102.2.216 10.102.2.241 00:25:B5:A2:0A:14

Step 8. From Table 12, enter the hostnames, IP addresses, and MAC addresses as reservations in your
DHCP and DNS server(s) or configure the DHCP server to dynamically update DNS.

Step 9. You will need to pipe VLAN interfaces for all 5 storage VLANs into your DHCP server(s) and assign
IPs in the storage networks on those interfaces. Then create a DHCP scope for each storage VLAN and subnet
where the IPs assigned by the scope do not overlap with storage LIF IPs.

Step 10. Set up either a VM or spare server as an OCP-Installer machine with the network interface con-
nected to the Bare Metal VLAN and install either Red Hat Enterprise Linux (RHEL) 9.4 or Rocky Linux 9.4 “Server
with GUI” and create an administrator user. Once the VM or host is up and running, update it and install and con-
figure XRDP. Also, install Google Chrome onto this machine. Connect to this host with a Windows Remote Desktop
client as the admin user.

Procedure 2. Install Red Hat OCP using the Assisted Installer

Step 1. From the Installer desktop, open a terminal session and create an SSH key pair to use to com-
municate with the OCP hosts:

ssh-keygen -t ed25519 -N '' -f ~/.ssh/id_ed25519

Step 2. Copy the public SSH key to the user directory:

cp ~/.ssh/id_ed25519.pub ~/

Step 3. Add the private key to the ssh-agent:

ssh add ~/.ssh/id_ed25519

Step 4. Launch Chrome and connect to https://console.redhat.com/openshift/cluster-list. Log into your
Red Hat account.

Step 5. Click Create cluster to create an OCP cluster.

Step 6. Select Datacenter and then select Bare Metal (x86_64).

Step 7. Select Interactive to launch the Assisted Installer.

Step 8. Provide the cluster name and base domain. Scroll down and click Next.

https://console.redhat.com/openshift/cluster-list

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 65 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 66 of 170

-

Step 9. It is not necessary to install any Operators at this time, they can be added later. Click Next.

Step 10. Click Add hosts.

Step 11. Under Provisioning type, from the drop-down list select the Full image file. Under SSH public key,
click Browse and browse to, select, and open the id_ed25519.pub file. The contents of the public key should now
appear in the box. Click Generate Discovery ISO.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 67 of 170

-

Step 12. Click Download Discovery ISO to download the Discover ISO into the Downloads directory. Click
Close when the download is done.

Step 13. Use Chrome to connect to Cisco Intersight and log into the Intersight account set up earlier.

Step 14. Go to Infrastructure Service > Operate > Servers and open a vKVM session on each of the six
servers. If the servers are powered on, each server’s console should be connected to the Cisco UEFI Interactive
Shell.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 68 of 170

-

Step 15. In each of the six vKVMs, click Virtual Media and select vKVM-Mapped DVD. Map the Discovery
ISO from the Downloads folder. Go to Power > Reset System and then click Confirm to boot the server from the
Discovery ISO. Boot all six servers from the Discovery ISO.

Step 16. Once all six servers have booted “RHEL CoreOS (Live)” from the Discovery ISO, they will appear in
the Assisted Installer. From the drop-down lists under Role, assign the appropriate server roles. Scroll down and
click Next.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 69 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 70 of 170

-

Step 17. Expand each node and verify CoreOS and OCP is being installed to sda (the M.2 device). Click
Next.

Step 18. Under Network Management, make sure Cluster-Managed Networking is selected. Under
Machine network, from the drop-down list select the subnet for the BareMetal VLAN. Enter the API IP for the
api.cluster.basedomain entry in the DNS servers. For the Ingress IP, enter the IP for the *.apps.cluster.basedomain
entry in the DNS servers.

Step 19. Scroll down. All nodes should all have a status of Ready. Click Next.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 71 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 72 of 170

-

Step 20. Review the information and click Install cluster to begin the cluster installation.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 73 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 74 of 170

-

Step 21. On the Installation progress page, expand the Host inventory. The installation will take 30-45
minutes. When installation is complete, all nodes displays a Status of Installed.

Step 22. Select Download kubeconfig to download the kubeconfig file. In a terminal window, setup a
cluster directory and save credentials:

cd

mkdir <clustername> # for example, ocp

cd <clustername>

mkdir auth

cd auth

mv ~/Downloads/kubeconfig ./

mkdir ~/.kube

cp kubeconfig ~/.kube/config

Step 23. In the Assisted Installer, click the icon to copy the kubeadmin password:

echo <paste password> > ./kubeadmin-password

Step 24. In a new tab in Chrome, connect to https://access.redhat.com/downloads/content/290. Download
the OpenShift Linux Client:

cd ..

mkdir client

cd client

ls ~/Downloads

mv ~/Downloads/oc-x.xx.x-linux.tar.gz ./

https://access.redhat.com/downloads/content/290

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 75 of 170

-

tar xvf oc-x.xx.x-linux.tar.gz

ls

sudo mv oc /usr/local/bin/

sudo mv kubectl /usr/local/bin/

oc get nodes

Step 25. To enable oc tab completion for bash, run the following:

oc completion bash > oc_bash_completion

sudo mv oc_bash_completion /etc/bash_completion.d/

Step 26. In Chrome, in the Assisted Installer page, click Launch OpenShift Console to launch the OCP
Console. Use kubeadmin and the kubeadmin password to login. On the left, select Compute > Nodes to see the
status of the OCP nodes.

Step 27. In the Red Hat OpenShift console, go to Compute > Bare Metal Hosts. For each Bare Metal Host,
click the ellipses to the right of the host and select Edit Bare Metal Host. Select Enable power management.
Using Table12, fill in the BMC Address. Also, make sure the Boot MAC Address matches the MAC address in
Table12. For the BMC Username and BMC Password, use what was entered into the Cisco Intersight IPMI over
LAN policy. Click Save to save the changes. Repeat this step for all Bare Metal Hosts.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 76 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 77 of 170

-

Step 28. Go to Compute > Bare Metal Hosts. Once all hosts have been configured. The Status should
show “Externally provisioned,” and the Management Address should be populated. You can now manage power
on the OCP hosts from the OCP console.

Step 29. To configure storage networking on the worker nodes, NTP on the worker and master nodes, and
NVMe-TCP on the worker nodes, run the following:

cd

cd <cluster-name> # For example, ocp

mkdir machine-configs

cd machine-configs

curl https://mirror.openshift.com/pub/openshift-v4/clients/butane/latest/butane --output butane

chmod +x butane

Step 30. Build the following files in the machine-configs directory with variations for your network:

Note: It is critical that the NetworkManager configuration files have the mode “0600” to set the permissions of

the file correctly.

cat 99-worker-eno6.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-eno6

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/NetworkManager/system-connections/eno6.nmconnection

 mode: 0600

 overwrite: true

 contents:

 inline: |

 [connection]

 id=eno6

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 78 of 170

-

 type=ethernet

 interface-name=eno6

 [ethernet]

 [ipv4]

 method=auto

 [ipv6]

 addr-gen-mode=default

 method=disabled

 [proxy]

 [user]

cat 99-worker-eno6-3032.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-eno6-3032

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/NetworkManager/system-connections/eno6-3032.nmconnection

 mode: 0600

 overwrite: true

 contents:

 inline: |

 [connection]

 id=eno6-3032

 type=vlan

 interface-name=eno6-3032

 [ethernet]

 [vlan]

 flags=1

 id=3032

 parent=eno6

 [ipv4]

 method=auto

 [ipv6]

 addr-gen-mode=default

 method=disabled

 [proxy]

cat 99-worker-eno7.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-eno7

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/NetworkManager/system-connections/eno7.nmconnection

 mode: 0600

 overwrite: true

 contents:

 inline: |

 [connection]

 id=eno7

 type=ethernet

 interface-name=eno7

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 79 of 170

-

 [ethernet]

 [ipv4]

 method=auto

 [ipv6]

 addr-gen-mode=default

 method=disabled

 [proxy]

 [user]

cat 99-worker-eno7-3042.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-eno7-3042

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/NetworkManager/system-connections/eno7-3042.nmconnection

 mode: 0600

 overwrite: true

 contents:

 inline: |

 [connection]

 id=eno7-3042

 type=vlan

 interface-name=eno7-3042

 [ethernet]

 [vlan]

 flags=1

 id=3042

 parent=eno7

 [ipv4]

 method=auto

 [ipv6]

 addr-gen-mode=default

 method=disabled

 [proxy]

cat 99-worker-eno8.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-eno8

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/NetworkManager/system-connections/eno8.nmconnection

 mode: 0600

 overwrite: true

 contents:

 inline: |

 [connection]

 id=eno8

 type=ethernet

 interface-name=eno8

 [ethernet]

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 80 of 170

-

 [ipv4]

 method=auto

 [ipv6]

 addr-gen-mode=default

 method=disabled

 [proxy]

 [user]

cat 99-master-chrony-conf-override.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-master-chrony-conf-override

 labels:

 machineconfiguration.openshift.io/role: master

storage:

 files:

 - path: /etc/chrony.conf

 mode: 0644

 overwrite: true

 contents:

 inline: |

 driftfile /var/lib/chrony/drift

 makestep 1.0 3

 rtcsync

 logdir /var/log/chrony

 server 10.102.2.3 iburst

 server 10.102.2.4 iburst

cat 99-worker-chrony-conf-override.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-chrony-conf-override

 labels:

 machineconfiguration.openshift.io/role: worker

storage:

 files:

 - path: /etc/chrony.conf

 mode: 0644

 overwrite: true

 contents:

 inline: |

 driftfile /var/lib/chrony/drift

 makestep 1.0 3

 rtcsync

 logdir /var/log/chrony

 server 10.102.2.3 iburst

 server 10.102.2.4 iburst

cat 99-worker-nvme-discovery.bu

variant: openshift

version: 4.16.0

metadata:

 name: 99-worker-nvme-discovery

 labels:

 machineconfiguration.openshift.io/role: worker

openshift:

 kernel_arguments:

 - loglevel=7

storage:

 files:

 - path: /etc/nvme/discovery.conf

 mode: 0644

 overwrite: true

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 81 of 170

-

 contents:

 inline: |

 --transport=tcp --traddr=192.168.32.51 --trsvcid=8009

 --transport=tcp --traddr=192.168.42.52 --trsvcid=8009

Step 31. Create .yaml files from the butane files with butane, then load the configurations into OCP:

./butane 99-worker-eno6.bu -o ./99-worker-eno6.yaml

./butane 99-worker-eno6-3032.bu -o ./99-worker-eno6-3032.yaml

./butane 99-worker-eno7.bu -o ./99-worker-eno7.yaml

./butane 99-worker-eno7-3042.bu -o ./99-worker-eno7-3042.yaml

./butane 99-worker-eno8.bu -o ./99-worker-eno8.yaml./butane 99-master-chrony-conf-override.bu

-o ./99-master-chrony-conf-override.yaml

./butane 99-worker-chrony-conf-override.bu -o ./99-worker-chrony-conf-override.yaml

./butane 99-worker-nvme-discovery.bu -o ./99-worker-nvme-discovery.yaml

oc create -f 99-worker-eno6.yaml

oc create -f 99-worker-eno6-3032.yaml

oc create -f 99-worker-eno7.yaml

oc create -f 99-worker-eno7-3042.yaml

oc create -f 99-worker-eno8.yaml

oc create -f 99-master-chrony-conf-override.yaml

oc create -f 99-worker-chrony-conf-override.yaml

oc create -f 99-worker-nvme-discovery.yaml

Step 32. To enable iSCSI and multipathing on the workers, create the 99-worker-ontap-iscsi.yaml and
upload as a machine config:

cat 99-worker-ontap-iscsi.yaml

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 name: 99-worker-ontap-iscsi

 labels:

 machineconfiguration.openshift.io/role: worker

spec:

 config:

 ignition:

 version: 3.2.0

 storage:

 files:

 - contents:

 source:

data:text/plain;charset=utf-8;base64,IyBkZXZpY2UtbWFwcGVyLW11bHRpcGF0aCBjb25maWd1cmF0aW9uIGZpbGUKCiMgRm9yIGEg

Y29tcGxldGUgbGlzdCBvZiB0aGUgZGVmYXVsdCBjb25maWd1cmF0aW9uIHZhbHVlcywgcnVuIGVpdGhlcjoKIyAjIG11bHRpcGF0aCAtdAojI

G9yCiMgIyBtdWx0aXBhdGhkIHNob3cgY29uZmlnCgojIEZvciBhIGxpc3Qgb2YgY29uZmlndXJhdGlvbiBvcHRpb25zIHdpdGggZGVzY3JpcH

Rpb25zLCBzZWUgdGhlCiMgbXVsdGlwYXRoLmNvbmYgbWFuIHBhZ2UuCgpkZWZhdWx0cyB7Cgl1c2VyX2ZyaWVuZGx5X25hbWVzIHllcwoJZml

uZF9tdWx0aXBhdGhzIG5vCn0KCmJsYWNrbGlzdCB7Cn0K

 verification: {}

 filesystem: root

 mode: 600

 overwrite: true

 path: /etc/multipath.conf

 systemd:

 units:

 - name: iscsid.service

 enabled: true

 state: started

 - name: multipathd.service

 enabled: true

 state: started

 osImageURL: ""

oc create -f 99-worker-ontap-iscsi.yaml

Note: The Base 64 encoded source above is the following file (/etc/multipath.conf) encoded. It is necessary to

set “find_multipaths” to no.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 82 of 170

-

cat multipath.conf

device-mapper-multipath configuration file

For a complete list of the default configuration values, run either:

multipath -t

or

multipathd show config

For a list of configuration options with descriptions, see the

multipath.conf man page.

defaults {

 user_friendly_names yes

 find_multipaths no

}

blacklist {

}

Step 33. Over the next 20-30 minutes each of the nodes will go through the “Not Ready” state and reboot.
You can monitor this by going to Compute > MachineConfigPools in the OCP Console. After each Worker moves
back to the “Ready” state, ssh into the Worker and type “ifconfig -a.” Verify that the two VLAN interfaces are set
up correctly, are receiving IPs, and have an MTU of 9000.

Procedure 3. Install the NVIDIA GPU Operator

If you have GPUs installed in your Cisco UCS servers, you need to install the Node Feature Discovery (NFD) Op-

erator to detect NVIDIA GPUs and the NVIDIA GPU Operator to make these GPUs available to containers and vir-

tual machines.

Step 1. In the OpenShift Container Platform web console, click Operators > OperatorHub.

Step 2. Type Node Feature in the Filter box and then click on the Node Feature Discovery Operator with
Red Hat in the upper right corner. Click Install.

Step 3. Do not change any settings and click Install.

Step 4. When the Install operator is ready for use, click View Operator.

Step 5. In the bar to the right of Details, click NodeFeatureDiscovery.

Step 6. Click Create NodeFeatureDiscovery.

Step 7. Click Create.

Step 8. When the nfd-instance has a status of Available, Upgradeable, select Compute > Nodes.

Step 9. Select a node that has one or more GPUs and then select Details.

The following label should be present on the host:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 83 of 170

-

Note: This label should appear on all nodes with GPUs.

Step 10. Go to Operators > OperatorHub.

Step 11. Type NVIDIA in the Filter box and then click the NVIDIA GPU Operator. Click Install.

Step 12. Do not change any settings and click Install.

Step 13. When the Install operator is ready for use, click View Operator.

Step 14. In the bar to the right of Details, click ClusterPolicy.

Step 15. Click Create ClusterPolicy.

Step 16. Do not change any settings and scroll down and click Create. This will install the latest GPU driver.

Step 17. Wait for the gpu-cluster-policy Status to become Ready.

Step 18. Connect to a terminal window on the OCP Installer machine. Type the following commands. The
output shown is for two servers that are equipped with GPUs:

oc project nvidia-gpu-operator

Now using project "nvidia-gpu-operator" on server "https://api.ocp.flexpodb4.cisco.com:6443".

oc get pods

NAME READY STATUS RESTARTS AGE

gpu-feature-discovery-jmlbr 1/1 Running 0 6m45s

gpu-feature-discovery-l2l6n 1/1 Running 0 6m41s

gpu-operator-6656d9fbf-wkkfm 1/1 Running 0 11m

nvidia-container-toolkit-daemonset-gb8d9 1/1 Running 0 6m45s

nvidia-container-toolkit-daemonset-t4xdf 1/1 Running 0 6m41s

nvidia-cuda-validator-lc8zr 0/1 Completed 0 4m33s

nvidia-cuda-validator-zxvnx 0/1 Completed 0 4m39s

nvidia-dcgm-exporter-k6tnp 1/1 Running 2 (4m7s ago) 6m41s

nvidia-dcgm-exporter-vb66w 1/1 Running 2 (4m20s ago) 6m45s

nvidia-dcgm-hfgz2 1/1 Running 0 6m45s

nvidia-dcgm-qwm46 1/1 Running 0 6m41s

nvidia-device-plugin-daemonset-nr6m7 1/1 Running 0 6m41s

nvidia-device-plugin-daemonset-rpvwr 1/1 Running 0 6m45s

nvidia-driver-daemonset-416.94.202407231922-0-88zcr 2/2 Running 0 7m42s

nvidia-driver-daemonset-416.94.202407231922-0-bvph6 2/2 Running 0 7m42s

nvidia-node-status-exporter-bz79d 1/1 Running 0 7m41s

nvidia-node-status-exporter-jgjbd 1/1 Running 0 7m41s

nvidia-operator-validator-8fxqr 1/1 Running 0 6m41s

nvidia-operator-validator-tbqtc 1/1 Running 0 6m45s

Step 19. Connect to one of the nvidia-driver-daemonset containers and view the GPU status.

oc exec -it nvidia-driver-daemonset-416.94.202407231922-0-88zcr -- bash

[root@nvidia-driver-daemonset-416 drivers]# nvidia-smi

Tue Aug 13 21:19:36 2024

+---+

| NVIDIA-SMI 550.90.07 Driver Version: 550.90.07 CUDA Version: 12.4 |

|---+------------------------+----------------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===+========================+======================|

| 0 NVIDIA L40S On | 00000000:38:00.0 Off | 0 |

| N/A 26C P8 33W / 350W | 1MiB / 46068MiB | 0% Default |

| | | N/A |

+---+------------------------+----------------------+

| 1 NVIDIA L40S On | 00000000:D8:00.0 Off | 0 |

| N/A 25C P8 34W / 350W | 1MiB / 46068MiB | 0% Default |

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 84 of 170

-

| | | N/A |

+---+------------------------+----------------------+

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

Procedure 4. Enable the GPU Monitoring Dashboard (Optional)

Go to: https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
and enable the GPU Monitoring Dashboard to monitor GPUs in the OpenShift Web-Console.

Deploy NetApp Astra Trident

NetApp Astra Trident is an open-source, fully supported storage orchestrator for containers and Kubernetes dis-

tributions. It was designed to help meet the containerized applications’ persistence demands using indus-

try-standard interfaces, such as the Container Storage Interface (CSI). With Astra Trident, microservices and

containerized applications can take advantage of enterprise-class storage services provided by the NetApp

portfolio of storage systems. More information about Trident can be found here: NetApp Trident Documenta-

tion. NetApp Astra Trident can be installed via different methods. In this solution we will discuss using helm to

install Trident version 24.06.1.

Note: In this solution, we validated NetApp Astra Trident with the ontap-nas driver and ontap-nas-flexgroup

driver using the NFS protocol. We also validated the ontap-san driver for iSCSI and NVMe-TCP.

Procedure 1. Install Helm version

Step 1. Download the Helm binary and add it to your path:

sudo curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-amd64 -o

/usr/local/bin/helm

Step 2. Make the binary file executable:

sudo chmod +x /usr/local/bin/helm

Step 3. Check the installed version:

helm version

Procedure 2. Install Trident using Helm

Step 1. From the OCP directory, download Trident software from GitHub and untar the .gz file to obtain the
trident-installer folder:

wget https://github.com/NetApp/trident/releases/download/v24.06.1/trident-installer-24.06.1.tar.gz

tar -xvf trident-installer-24.06.1.tar.gz

cd trident-installer/helm

Step 2. Create Trident namespace:

oc create namespace trident

Step 3. Install Trident using helm:

https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.netapp.com/us-en/trident/
https://docs.netapp.com/us-en/trident/
https://github.com/NetApp/trident/releases/download/v24.06.1/trident-installer-24.06.1.tar.gz

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 85 of 170

-

helm install ocp-trident trident-operator-100.2406.1.tgz -n trident

Step 4. Check the Trident OCP pods after installation:

oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-controller-b786b7cdb-dw4zp 6/6 Running 0 4m18s

trident-node-linux-46t42 2/2 Running 0 4m18s

trident-node-linux-5pqss 2/2 Running 0 4m18s

trident-node-linux-9w96c 2/2 Running 0 4m18s

trident-node-linux-pb775 2/2 Running 0 4m18s

trident-node-linux-tdj4r 2/2 Running 0 4m18s

trident-node-linux-zsnnx 2/2 Running 0 4m18s

trident-operator-6c4dd7fd6-vbpbs 1/1 Running 0 4m36s

Note: If the Astra Trident deployment fails and does not bring up the pods to Running state, use the tridentctl

logs -l all -n trident command for debugging.

Note: Before configuring the backends that Trident needs to use for user apps, go to:

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-customresourcedefinition-ob

jects to understand the storage environment parameters and its usage in Trident.

Procedure 3. Configure the Storage Backends in Trident

Step 1. Configure the connections to the SVM on the NetApp storage array created for the OCP installation.
For more options regarding storage backend configuration, refer to
https://docs.netapp.com/us-en/trident/trident-use/backends.html.

Step 2. Create a backends directory and create the following backend definition files in that directory:

cat backend_NFS.yaml

version: 1

storageDriverName: ontap-nas

backendName: ocp-nfs-backend

managementLIF: 10.102.2.50

dataLIF: 192.168.52.51

svm: OCP-Trident-SVM

username: vsadmin

password: <password>

useREST: true

defaults:

 spaceReserve: none

 exportPolicy: default

 snapshotPolicy: default

 snapshotReserve: '10'

cat backend_NFS_flexgroup.yaml

version: 1

storageDriverName: ontap-nas-flexgroup

backendName: ocp-nfs-flexgroup

managementLIF: 10.102.2.50

dataLIF: 192.168.52.51

svm: OCP-Trident-SVM

username: vsadmin

password: <password>

useREST: true

defaults:

 spaceReserve: none

 exportPolicy: default

 snapshotPolicy: default

 snapshotReserve: '10'

cat backend_iSCSI.yaml

https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-customresourcedefinition-objects
https://docs.netapp.com/us-en/trident/trident-reference/objects.html#kubernetes-customresourcedefinition-objects
https://docs.netapp.com/us-en/trident/trident-use/backends.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 86 of 170

-

version: 1

storageDriverName: ontap-san

backendName: ocp-iscsi-backend

managementLIF: 10.102.2.50

svm: OCP-Trident-SVM

sanType: iscsi

useREST: true

username: vsadmin

password: <password>

defaults:

 spaceReserve: none

 spaceAllocation: 'false'

 snapshotPolicy: default

 snapshotReserve: '10'

cat backend_NVMe.yaml

version: 1

backendName: ocp-nvme-backend

storageDriverName: ontap-san

managementLIF: 10.102.2.50

svm: OCP-Trident-SVM

username: vsadmin

password: <password>

sanType: nvme

useREST: true

defaults:

 spaceReserve: none

 snapshotPolicy: default

 snapshotReserve: '10'

Step 3. Activate the storage backends for all storage protocols in your FlexPod:

tridentctl -n trident create backend -f backend_NFS.yaml

tridentctl -n trident create backend -f backend_NFS_flexgroup.yaml

tridentctl -n trident create backend -f backend_iSCSI.yaml

tridentctl -n trident create backend -f backend_NVMe.yaml

tridentctl -n trident get backend

+-------------------+---------------------+--------------------------------------+--------+------------+-----

| NAME | STORAGE DRIVER | UUID | STATE | USER-STATE | VOLU

+-------------------+---------------------+--------------------------------------+--------+------------+-----

| ocp-nfs-backend | ontap-nas | 6bcb2421-a148-40bb-b7a4-9231e58efc2a | online | normal |

| ocp-nfs-flexgroup | ontap-nas-flexgroup | 68428a01-c5e6-4676-8cb5-e5521fc04bc7 | online | normal |

| ocp-iscsi-backend | ontap-san | bbf1664d-1615-42d3-a5ed-1b8aed995a42 | online | normal |

| ocp-nvme-backend | ontap-san | 2b6861a2-6980-449a-b718-97002079e7f3 | online | normal |

+-------------------+---------------------+--------------------------------------+--------+------------+-----

Step 4. Create the following Storage Class files:

cat storage-class-ontap-nfs.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-nfs

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

cat storage-class-ontap-nfs-flexgroup.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 87 of 170

-

metadata:

 name: ontap-nfs-flexgroup

 annotations:

 storageclass.kubernetes.io/is-default-class: "false"

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas-flexgroup"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

cat storage-class-ontap-iscsi.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-iscsi

parameters:

 backendType: "ontap-san"

 sanType: "iscsi"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

provisioner: csi.trident.netapp.io

cat storage-class-ontap-nvme.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-nvme-tcp

parameters:

 backendType: "ontap-san"

 sanType: "nvme"

 provisioningType: "thin"

 snapshots: "true"

allowVolumeExpansion: true

provisioner: csi.trident.netapp.io

Step 5. Create the storage classes:

oc create -f storage-class-ontap-nfs.yaml

oc create -f storage-class-ontap-nfs-flexgroup.yaml

oc create -f storage-class-ontap-iscsi.yaml

oc create -f storage-class-ontap-nvme.yaml

Step 6. Create a VolumeSnapshotClass file:

cat ontap-volumesnapshot-class.yaml

apiVersion: snapshot.storage.k8s.io/v1

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 88 of 170

-

kind: VolumeSnapshotClass

metadata:

 name: ontap-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

Step 7. Create the VolumeSnapshotClass:

oc create -f ontap-volumesnapshot-class.yaml

Step 8. Create a test PersistentVolumeClaim (PVC). In the OCP console, click Storage > Persis-
tentVolumeClaims. Select an appropriate project or create a new project and select it. On the right, click Create
PersistentVolumeClaim.

Step 9. Select a StorageClass and give the PVC a name. Select an Access mode (RWO or RWX for NFS
classes, and RWO for iSCSI or NVMe-TCP classes). Set a size and select a Volume mode (normally Filesystem).
Click Create to create the storage class.

Step 10. Wait for the PVC to have a status of Bound. The PVC can now be attached to a container.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 89 of 170

-

Step 11. Create a NetApp volume snapshot of the PVC by clicking the three dots to the right of the PVC and
selecting Create snapshot. Adjust the snapshot name and click Create. The snapshot will appear under Vol-
umeSnapshots and can also be seen in NetApp System Manager under the corresponding PV.

NetApp DataOps Toolkit

The version 2.5.0 toolkit is currently compatible with Kubernetes versions 1.20 and above, and OpenShift versions

4.7 and above.

The toolkit is currently compatible with Trident versions 20.07 and above. Additionally, the toolkit is compatible

with the following Trident backend types used in this validation:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 90 of 170

-

● ontap-nas

● ontap-nas-flexgroup

More operations and capabilities about NetApp DataOps Toolkit are available and documented

here: https://github.com/NetApp/netapp-dataops-toolkit

Prerequisites

The NetApp DataOps Toolkit for Kubernetes requires that Python 3.8 or above be installed on the local host. Ad-

ditionally, the toolkit requires that pip for Python3 be installed on the local host. For more details regarding pip,

including installation instructions, refer to the pip documentation.

Procedure 1. NetApp DataOps Toolkit Installation

Step 1. To install the NetApp DataOps Toolkit for Kubernetes on the OCP Installer VM, run the following
command:

python3 -m pip install netapp-dataops-k8s

Note: NetApp DataOps Toolkit is used to create jupyterlab, clone jupyterlab, create a snapshot for a JupyterLab

workspace, and so on.

Note: You can use NetApp DataOps Toolkit to create Jupyter notebooks in this solution. For more information,

go to: Create a new JupyterLab workspace.

https://github.com/NetApp/netapp-dataops-toolkit
https://pip.pypa.io/en/stable/installation/
https://github.com/NetApp/netapp-dataops-toolkit/blob/main/netapp_dataops_k8s/docs/workspace_management.md#cli-create-jupyterlab

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 91 of 170

-

RAG Pipeline Installation and Configuration

This chapter contains the following:

● Canonical RAG

● Multi-turn RAG

Canonical RAG and Multi-turn RAG were deployed as example RAG pipelines. They are part of the Enterprise RAG

24.06 Release from NVIDIA. These pipelines are designed to enhance retrieval-augmented generation (RAG)

applications, providing robust solutions for enterprise needs. Early access information and further details can be

found on the NVIDIA NeMo Microservices page - https://developer.nvidia.com/nemo-microservices

Canonical RAG

This example showcases RAG pipeline. It uses NVIDIA NIM for Large Language Models microservice to host TRT

optimized LLM and NVIDIA NeMo Retriever Embedding Microservice. It uses Milvus as vectorstore to store em-

beddings and generate response for query.

Prerequisites

● You have the NGC CLI available on your client machine. You can download the CLI

from https://ngc.nvidia.com/setup/installers/cli.

● Setup your NGC API Key: https://org.ngc.nvidia.com/setup

● You have a default storage class available in the OpenShift cluster for PVC provisioning.

Procedure 1. Deploy NVIDIA NIM for LLM

NVIDIA NIM for LLMs Helm Chart simplifies NIM deployment on Kubernetes. It aims to support deployment with a

variety of possible cluster, GPU, and storage configurations.

Step 1. Set the NGC_API_KEY environment variable to your NGC API key, as shown in the following ex-
ample:

export NGC_API_KEY="key from ngc"

Step 2. Create a namespace:

oc create namespace nim

Step 3. Change the namespace to the newly created one:

oc project nim

https://developer.nvidia.com/nemo-microservices
https://ngc.nvidia.com/setup/installers/cli
https://org.ngc.nvidia.com/setup

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 92 of 170

-

Step 4. To download the NIM container image, you must set an image pull secret, which is ngc-secret in
the following example. To download model engines or weights from NGC, the chart requires a generic secret that
has an NGC API key as a value stored in a key named NGC_API_KEY. The following example creates these two
values:

oc create secret docker-registry ngc-secret --docker-server=nvcr.io --docker-username='$oauthtoken'

--docker-password=$NGC_API_KEY

oc create secret generic ngc-api --from-literal=NGC_API_KEY=$NGC_API_KEY

Step 5. Use the following command to download the helm chart. This downloads the chart as a file to your
local machine:

helm fetch https://helm.ngc.nvidia.com/nim/charts/nim-llm-1.1.2.tgz --username='$oauthtoken'

--password=$NGC_API_KEY

Step 6. Extract the content:

tar xvfz nim-llm-1.1.2.tgz

Step 7. Go to the “nim-llm” directory and customize the values.yaml file.

The following helm options are the most important options to configure to deploy a NIM using Kubernetes. For

more details see: https://docs.nvidia.com/nim/large-language-models/latest/deploy-helm.html

● image.repository – The container/NIM to deploy

● image.tag – The version of that container/NIM
image:

 repository: nvcr.io/nim/meta/llama3-8b-instruct

 pullPolicy: IfNotPresent

 # Tag overrides the image tag whose default is the chart appVersion.

 tag: "1.0.3"

● model.ngcAPISecret and imagePullSecrets to communicate with NGC
model:

 nimCache: /model-store

 name: meta/llama3-8b-instruct # optional name of the model in the OpenAI API -- used in `helm test`

 ngcAPISecret: "ngc-api"

 ngcAPIKey: ""

 openaiPort: 8000

 labels: {} # any extra labels desired on deployed pods

 jsonLogging: true

 logLevel: INFO

imagePullSecrets:

 - name: ngc-api # change this to whatever your image pull secret should be

● persistence.enabled - Enables the use of persistent volumes.

● persistence.storageClass - Specifies the persistent volume storage class. If set to "-", this disables

dynamic provisioning. If left undefined or set to null, the cluster default storage provisioner is used.

● persistence.size - Specifies the size of the persistent volume claim (for example 40Gi).

persistence:

 enabled: true

https://docs.nvidia.com/nim/large-language-models/latest/deploy-helm.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 93 of 170

-

 existingClaim: "" # if using existingClaim, run only one replica or use a `ReadWriteMany` storage setup

 # Persistent Volume Storage Class

 # If defined, storageClassName: <storageClass>

 # If set to "-", storageClassName: "", which disables dynamic provisioning.

 # If undefined (the default) or set to null, no storageClassName spec is

 # set, choosing the default provisioner.

 storageClass: "ontap-nfs"

 accessMode: ReadWriteOnce # If using an NFS or similar setup, you can use `ReadWriteMany`

 stsPersistentVolumeClaimRetentionPolicy:

 whenDeleted: Retain

 whenScaled: Retain

 size: 500Gi # size of claim in bytes (for example 8Gi)

service.type - Specifies the service type for the deployment.

service:

 type: ClusterIP

 openaiPort: 8000

Step 8. Once all the customizations are done, launch the chart:

helm install pkoppa-nim nim-llm-1.1.2.tgz -f values.yaml

Step 9. Wait for the pod to reach “Ready” status:

[admin@ocp-installer pkoppa-test]$ oc get pods

NAME READY STATUS RESTARTS AGE

pkoppa-nim-llm-0 1/1 Running 0 6d22h

In the previous example, the OpenAI compatible API endpoint is exposed on port 8000 through the Kubernetes

service of the default type with no ingress since authentication is not handled by the NIM itself. The following

commands assume the Llama 3 8B Instruct model was deployed. Adjust the “model” value in the request JSON

body to use a different model.

Step 10. Use the following command to port-forward the service to your local machine to test inference:

oc port-forward service/pkoppa-nim-llm 8000:http-openai

Step 11. Run a request:

curl -X 'POST' \

 'http://localhost:8000/v1/chat/completions' \

 -H 'accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

"messages": [

{

"content": "You are a polite and respectful chatbot helping people plan a vacation.",

"role": "system"

},

{

"content": "What should I do for a 4 day vacation in Spain?",

"role": "user"

}

],

"model": "meta/llama3-8b-instruct",

"max_tokens": 16,

"top_p": 1,

"n": 1,

"stream": false,

"stop": "\n",

"frequency_penalty": 0.0

}'

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 94 of 170

-

Procedure 2. Deploy NVIDIA NeMo Retriever Embedding Microservice

This Helm Chart simplifies Embedding NIM deployment on Kubernetes. It aims to support deployment with a va-

riety of possible cluster, GPU, and storage configurations.

More information on deploying NVIDA NIM for Text Embedding can be found here:

https://catalog.ngc.nvidia.com/orgs/nim/teams/snowflake/helm-charts/text-embedding-nim

Step 1. Export the NGC API Key in the environment:

export NGC_CLI_API_KEY="<YOUR NGC API KEY>"

Step 2. Create a dedicated namespace called nrem:

oc create namespace nrem

Step 3. Change the namespace to the newly created one:

oc project nrem

Step 4. Use the following script below to create the expected secrets for this helm chart:

DOCKER_CONFIG='{"auths":{"nvcr.io":{"username":"$oauthtoken", "password":"'${NGC_API_KEY}'" }}}'

echo -n $DOCKER_CONFIG | base64 -w0

NGC_REGISTRY_PASSWORD=$(echo -n $DOCKER_CONFIG | base64 -w0)

cat <<EOF > imagepull.yaml

apiVersion: v1

kind: Secret

metadata:

 name: nvcrimagepullsecret

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson: ${NGC_REGISTRY_PASSWORD}

EOF

cat <<EOF > ngc-cli.yaml

apiVersion: v1

kind: Secret

metadata:

 name: ngc-api

type: Opaque

data:

 NGC_CLI_API_KEY: ${NGC_API_KEY}

EOF

Step 5. Apply the configuration:

oc apply -n nrem -f imagepull.yaml

oc apply -n nrem -f ngc-cli.yaml

Step 6. Fetch the helm chart from NGC.

helm fetch https://helm.ngc.nvidia.com/nim/snowflake/charts/text-embedding-nim-1.0.0.tgz

--username='$oauthtoken' --password=<YOUR NGC API KEY>

Step 7. Extract the content:

tar xvfz text-embedding-nim-1.0.0.tgz

Step 8. Change the directory to text-embedding-nim and customize values.yaml to install the chart. You
can also install by passing the parameters as below.

Step 9. Install the helm chart for NIM Embedding:

https://catalog.ngc.nvidia.com/orgs/nim/teams/snowflake/helm-charts/text-embedding-nim

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 95 of 170

-

helm upgrade --install \

 --namespace nrem \

 --set image.repository=nvcr.io/nim/snowflake/arctic-embed-l \

 --set image.tag=1.0.0 \

 --set imagePullSecret.password=$NGC_CLI_API_KEY \

 --set imagePullSecret.create=true \

 --set persistence.class=ontap-nfs \

 nemo-embedder \

 text-embedding-nim-1.0.0.tgz

Step 10. Check the status of the pods:

oc get pods -n nrem

The pod should be running and in a ready state within couple of minutes as shown below:

[admin@ocp-installer nemo-retriever]$ oc get pods

NAME READY STATUS RESTARTS AGE

nemo-embedder-nemo-retriever-embedding-ms-0 1/1 Running 0 6d23h

In the previous example the API endpoint is exposed on port 8080 through the Kubernetes service of the default

type with no ingress since authentication is not handled by the NIM itself.

Step 11. Adjust the "model" value in the request JSON body to use a different model.

Step 12. Use the following command to port-forward the service to your local machine to test inference:

oc port-forward -n nrem service/nemo-embedder-nemo-retriever-embedding-ms 8080:8080

Step 13. Run a request:

curl -X 'POST' \

 'http://localhost:8080/v1/embeddings' \

 -H 'accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

 "input": "hello world",

 "model": "NV-Embed-QA",

 "input_type": "passage"

 }'

Procedure 3. Deploy Milvus vector store Helm Chart

Step 1. Create a new namespace for Milvus vector store:

oc create namespace vectorstore

Step 2. Change the namespace to the newly created one:

oc project vectorstore

Step 3. Add the Milvus Helm repository:

helm repo add milvus https://zilliztech.github.io/milvus-helm/

Step 4. Update charts locally:

helm repo update

Step 5. Create a file named custom_value.yaml, and update the parameters based on your environment
before deploying Milvus:

Note: Milvus can be deployed in Standalone mode or Distributed mode.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 96 of 170

-

Step 6. Standalone deployment of Milvus can be done with using this sample configuration to utilize GPUs:

standalone:

 resources:

 requests:

 nvidia.com/gpu: "1"

 limits:

 nvidia.com/gpu: "1"

Step 7. A sample configuration for Milvus Distributed with Attu for UI is provided below:

attu:

 enabled: true

 name: attu

 image:

 repository: zilliz/attu

 tag: v2.2.8

 pullPolicy: IfNotPresent

 service:

 annotations: {}

 labels: {}

 type: ClusterIP

 port: 3000

 # loadBalancerIP: ""

 resources: {}

 ingress:

 enabled: false

 annotations: {}

 # Annotation example: set nginx ingress type

 # kubernetes.io/ingress.class: nginx

 labels: {}

 hosts:

 - milvus-attu.local

 tls: []

 # - secretName: chart-attu-tls

 # hosts:

 # - milvus-attu.local

minio:

 resources:

 limits:

 cpu: 4

 memory: 16Gi

 persistence:

 storageClass:

 accessMode: ReadWriteOnce

 size: 900Gi

More information on installing Milvus can be found here: https://milvus.io/docs and go to Get Started > Install

Milvus.

To generate the configuration with proper sizing for different components of Milvus, go to:

https://milvus.io/tools/sizing. Provide the input such as the number of vectors, vector dimension etc. and down-

load the helm chart configuration yaml manifest.

https://milvus.io/docs
https://milvus.io/tools/sizing

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 97 of 170

-

Step 8. Deploy the Milvus instance using helm chart:

helm install pkoppa-milvus milvus/milvus -f custom_value.yaml

Step 9. Check the status of the pods once Milvus is deployed successfully in distributed mode:

[admin@ocp-installer milvus]$ oc -n vectorstore get pods

NAME READY STATUS RESTARTS AGE

pkoppa-milvus-attu-bbccfc786-58x5x 1/1 Running 0 21h

pkoppa-milvus-datanode-558f6548b7-dkb8c 1/1 Running 4 (21h ago) 21h

pkoppa-milvus-etcd-0 1/1 Running 0 21h

pkoppa-milvus-etcd-1 1/1 Running 0 21h

pkoppa-milvus-etcd-2 1/1 Running 0 21h

pkoppa-milvus-indexnode-5c79dd47d4-95nqc 1/1 Running 3 (21h ago) 21h

pkoppa-milvus-minio-0 1/1 Running 0 21h

pkoppa-milvus-minio-1 1/1 Running 0 21h

pkoppa-milvus-minio-2 1/1 Running 0 21h

pkoppa-milvus-minio-3 1/1 Running 0 17h

pkoppa-milvus-mixcoord-d7d5485c-x98w6 1/1 Running 4 (21h ago) 21h

pkoppa-milvus-proxy-fbbb7b79-wkg29 1/1 Running 4 (21h ago) 21h

pkoppa-milvus-pulsar-bookie-0 1/1 Running 0 21h

pkoppa-milvus-pulsar-bookie-1 1/1 Running 0 21h

pkoppa-milvus-pulsar-bookie-2 1/1 Running 0 21h

pkoppa-milvus-pulsar-bookie-init-5tppx 0/1 Completed 0 21h

pkoppa-milvus-pulsar-broker-0 1/1 Running 0 21h

pkoppa-milvus-pulsar-proxy-0 1/1 Running 0 21h

pkoppa-milvus-pulsar-pulsar-init-xvvlv 0/1 Completed 0 21h

pkoppa-milvus-pulsar-recovery-0 1/1 Running 0 21h

pkoppa-milvus-pulsar-zookeeper-0 1/1 Running 0 21h

pkoppa-milvus-pulsar-zookeeper-1 1/1 Running 0 21h

pkoppa-milvus-pulsar-zookeeper-2 1/1 Running 0 21h

pkoppa-milvus-querynode-5cdb6f6886-2zbsg 1/1 Running 3 (21h ago) 21h

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 98 of 170

-

When Milvus is deployed in standalone mode, all pods should be running and in a ready state within couple of

minutes.

NAME READY STATUS RESTARTS AGE

milvus-etcd-0 1/1 Running 0 5m34s

milvus-minio-76f9d647d5-44799 1/1 Running 0 5m34s

milvus-standalone-9ccf56df4-m4tpm 1/1 Running 3 (4m35s ago) 5m34

Step 10. Change the service type for Attu from ClusterIP to NodePort and save the file:

oc edit svc pkoppa-milvus -n vectorstore

Step 11. Confirm it has changed to NodePort:

admin@ocp-installer milvus]$ oc -n vectorstore get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

pkoppa-milvus ClusterIP 172.30.114.214 <none> 19530/TCP,9091/TCP

21h

pkoppa-milvus-attu NodePort 172.30.255.104 <none> 3000:30659/TCP

21h

pkoppa-milvus-datanode ClusterIP None <none> 9091/TCP

21h

pkoppa-milvus-etcd ClusterIP 172.30.112.63 <none> 2379/TCP,2380/TCP

21h

pkoppa-milvus-etcd-headless ClusterIP None <none> 2379/TCP,2380/TCP

21h

pkoppa-milvus-indexnode ClusterIP None <none> 9091/TCP

21h

pkoppa-milvus-minio ClusterIP 172.30.35.198 <none> 9000/TCP

21h

pkoppa-milvus-minio-svc ClusterIP None <none> 9000/TCP

21h

pkoppa-milvus-mixcoord ClusterIP 172.30.95.53 <none> 9091/TCP

21h

pkoppa-milvus-pulsar-bookie ClusterIP None <none> 3181/TCP,8000/TCP

21h

pkoppa-milvus-pulsar-broker ClusterIP None <none> 8080/TCP,6650/TCP

21h

pkoppa-milvus-pulsar-proxy ClusterIP 172.30.77.96 <none> 8080/TCP,6650/TCP

21h

pkoppa-milvus-pulsar-recovery ClusterIP None <none> 8000/TCP

21h

pkoppa-milvus-pulsar-zookeeper ClusterIP None <none>

8000/TCP,2888/TCP,3888/TCP,2181/TCP 21h

pkoppa-milvus-querynode ClusterIP None <none> 9091/TCP

21h

Procedure 4. Deploy RAG Application: Text QA Chatbot

Step 1. Create the example namespace:

oc create namespace canonical-rag

Step 2. Change the namespace to canonical-rag:

oc project canonical-rag

Step 3. To download the NIM container image, you must set an image pull secret, which is ngc-secret in
the following example. To download model engines or weights from NGC, the chart requires a generic secret that
has an NGC API key as a value stored in a key named NGC_API_KEY. The following example creates these two
values:

oc create secret docker-registry ngc-secret --docker-server=nvcr.io --docker-username='$oauthtoken'

--docker-password=$NGC_API_KEY

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 99 of 170

-

oc create secret generic ngc-api --from-literal=NGC_API_KEY=$NGC_API_KEY

Step 4. Fetch the Helm chart from NGC:

helm fetch https://helm.ngc.nvidia.com/ohlfw0olaadg/ea-participants/charts/rag-app-text-chatbot-v24.06.tgz

--username='$oauthtoken' --password=<YOUR API KEY>

Step 5. Extract the content:

tar xvfz rag-app-text-chatbot-v24.06.tgz

Step 6. Change the directory to rag-app-text-chatbot and customize the values.yaml file.

Step 7. Update the imagePullSecret:

imagePullSecret:

 # Leave blank, if no imagePullSecret is needed.

 registry: "nvcr.io"

 name: "ngc-secret"

 # If set to false, the chart expects either a imagePullSecret

 # with the name configured above to be present on the cluster or that no

 # credentials are needed.

 create: true

 username: '$oauthtoken'

 password: <YOUR NGC API KEY>

Step 8. Update the query.env with the LLM server URL, embedding server URL, model names and vector
store URL:

query:

 image: nvcr.io/ohlfw0olaadg/ea-participants/rag-application-text-chatbot:24.06

 name: chain-server-canonical-rag

 replicas: 1

 nodeSelector: {}

 tolerations: {}

 affinity: {}

 env:

 APP_VECTORSTORE_URL: "http://pkoppa-milvus.vectorstore:19530"

 APP_VECTORSTORE_NAME: "milvus"

 COLLECTION_NAME: canonical_rag

 APP_LLM_SERVERURL: "pkoppa-nim-llm.nim-llm:8000"

 APP_LLM_MODELNAME: meta/llama3-8b-instruct

 APP_LLM_MODELENGINE: nvidia-ai-endpoints

 APP_EMBEDDINGS_SERVERURL: "nemo-embedder-nemo-retriever-embedding-ms.text-embedding-nim:8080"

 APP_EMBEDDINGS_MODELNAME: NV-Embed-QA

 APP_EMBEDDINGS_MODELENGINE: nvidia-ai-endpoints

 APP_TEXTSPLITTER_CHUNKSIZE: 506

 APP_TEXTSPLITTER_CHUNKOVERLAP: 200

Step 9. To get Milvus vector store URL, look for the service running in the vectorstore namespace. Repeat
it for NIM for LLM and embedding server URL in their corresponding namespace:

[admin@ocp-installer rag-app-text-chatbot]$ oc get svc -n vectorstore

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

pkoppa-milvus ClusterIP 172.30.114.214 <none> 19530/TCP,9091/TCP

22h

pkoppa-milvus-attu NodePort 172.30.255.104 <none> 3000:30659/TCP

22h

pkoppa-milvus-datanode ClusterIP None <none> 9091/TCP

22h

pkoppa-milvus-etcd ClusterIP 172.30.112.63 <none> 2379/TCP,2380/TCP

22h

pkoppa-milvus-etcd-headless ClusterIP None <none> 2379/TCP,2380/TCP

22h

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 100 of 170

-

pkoppa-milvus-indexnode ClusterIP None <none> 9091/TCP

22h

pkoppa-milvus-minio ClusterIP 172.30.35.198 <none> 9000/TCP

22h

pkoppa-milvus-minio-svc ClusterIP None <none> 9000/TCP

22h

pkoppa-milvus-mixcoord ClusterIP 172.30.95.53 <none> 9091/TCP

22h

pkoppa-milvus-pulsar-bookie ClusterIP None <none> 3181/TCP,8000/TCP

22h

pkoppa-milvus-pulsar-broker ClusterIP None <none> 8080/TCP,6650/TCP

22h

pkoppa-milvus-pulsar-proxy ClusterIP 172.30.77.96 <none> 8080/TCP,6650/TCP

22h

pkoppa-milvus-pulsar-recovery ClusterIP None <none> 8000/TCP

22h

pkoppa-milvus-pulsar-zookeeper ClusterIP None <none>

8000/TCP,2888/TCP,3888/TCP,2181/TCP 22h

pkoppa-milvus-querynode ClusterIP None <none> 9091/TCP

22h

Step 10. Once helm chart configurations are done, create the canonical rag pipeline instance, and start the
services:

helm install canonical-rag

Step 11. Verify the pods are running and ready:

[admin@ocp-installer rag-app-text-chatbot]$ oc -n canonical-rag get pods

NAME READY STATUS RESTARTS AGE

chain-server-5446654586-rt489 1/1 Running 0 21h

rag-playground-54b9d55b7c-qvhts 1/1 Running 0 21h

Step 12. Access the application using port-forwarding:

oc port-forward service/rag-playground -n canonical-rag 30001:3001

Step 13. Open browser and access the rag-playground UI using below URL:

http://localhost:30001/orgs/nvidia/models/text-qa-chatbot

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 101 of 170

-

Step 14. Click Text QA Chatbot application and ask a question and make sure you get response.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 102 of 170

-

Step 15. Upload a document to Knowledge Base and make sure it’s updated.

Step 16. Ask a question. Click Use Knowledge Base so that LLM refers to uploaded document to provide
accurate answer.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 103 of 170

-

Step 17. Make sure vector database shows the canonical_rag collection.

Step 18. Get the compute node IP/DNS for one of the node:

[admin@ocp-installer rag-app-text-chatbot]$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP

EXTERNAL-IP OS-IMAGE KERNEL-VERSION

CONTAINER-RUNTIME

ocp-master0.ocp.flexpodb4.cisco.com Ready control-plane,master 28d v1.29.7+4510e9c 10.102.2.211

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-master1.ocp.flexpodb4.cisco.com Ready control-plane,master 28d v1.29.7+4510e9c 10.102.2.212

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-master2.ocp.flexpodb4.cisco.com Ready control-plane,master 28d v1.29.7+4510e9c 10.102.2.213

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-worker0.ocp.flexpodb4.cisco.com Ready worker 15d v1.29.7+4510e9c 10.102.2.214

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-worker1.ocp.flexpodb4.cisco.com Ready worker 28d v1.29.7+4510e9c 10.102.2.215

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-worker2.ocp.flexpodb4.cisco.com Ready worker 15d v1.29.7+4510e9c 10.102.2.216

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

Step 19. Get the node port for Attu:

[admin@ocp-installer rag-app-text-chatbot]$ oc -n vectorstore get svc pkoppa-milvus-attu

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

pkoppa-milvus-attu NodePort 172.30.255.104 <none> 3000:30659/TCP 21h

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 104 of 170

-

Step 20. Open browser and access the Attu UI using <Any of the Node IP/DNS:Attu Node Port>:

http://10.102.2.214:30659/

Step 21. Click the canonical_rag collection and navigate to Data Preview and observe that embeddings are
stored in Milvus.

Multi-turn RAG

This example showcases multi turn use case in a RAG pipeline. It stores the conversation history and knowledge

base in Milvus and retrieves them at runtime to understand contextual queries. It uses NeMo Inference Micro-

services to communicate with the embedding model and large language model. The example supports ingestion

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 105 of 170

-

of PDF, .txt files. The docs are ingested in a dedicated document vector store. The prompt for the example is

currently tuned to act as a document chat bot. For maintaining the conversation history, we store the previous

query of user and its generated answer as a text entry in a different dedicated vector store for conversation history.

Both these vector stores are part of a Langchain LCEL (LangChain Expression Language) chain as Langchain

Retrievers. When the chain is invoked with a query, it’s passed through both the retrievers. The retriever retrieves

context from the document vector store and the closest matching conversation history from conversation history

vector store and the chunks are added into the LLM prompt as part of the chain.

Prerequisites

● You have the NGC CLI available on your client machine. You can download the CLI

from https://ngc.nvidia.com/setup/installers/cli.

● NGC setup - https://org.ngc.nvidia.com/setup

● You have a default storage class available in the OpenShift cluster for PVC provisioning.

Note: Deploying NVIDIA NIM for LLM, Deploying NVIDIA NeMo Retriever Embedding Microservice, and Deploy-

ing Milvus Vector store Helm Chart as detailed in section Canonical RAG.

Procedure 1. Deploy RAG Application: Multi-turn Agent

Step 1. Create the example namespace:

oc create namespace multiturn-rag

Step 2. Change the namespace to multiturn-rag:

oc project multiturn-rag

Step 3. To download the NIM container image, you must set an image pull secret, which is ngc-secret in
the following example. To download model engines or weights from NGC, the chart requires a generic secret that
has an NGC API key as a value stored in a key named NGC_API_KEY. The following example creates these two
values:

oc create secret docker-registry ngc-secret-multi-turn --docker-server=nvcr.io --docker-username='$oauthtoken'

--docker-password=$NGC_API_KEY

oc create secret generic ngc-api --from-literal=NGC_API_KEY=$NGC_API_KEY

Step 4. Fetch the Helm chart from NGC:

helm fetch https://helm.ngc.nvidia.com/nvidia/aiworkflows/charts/rag-app-multiturn-chatbot-24.08.tgz

--username='$oauthtoken' --password=<YOUR NGC API KEY>

Step 5. Extract the content:

tar xvfz rag-app-multiturn-chatbot-v24.08.tgz

https://ngc.nvidia.com/setup/installers/cli
https://org.ngc.nvidia.com/setup

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 106 of 170

-

Step 6. Change the directory to rag-app-multiturn-chatbot and update the helm chart’s values.yaml
manifest.

Step 7. Update the imagePullSecret:

imagePullSecret:

 # Leave blank, if no imagePullSecret is needed.

 registry: "nvcr.io"

 name: "ngc-secret-multi-turn"

 # If set to false, the chart expects either a imagePullSecret

 # with the name configured above to be present on the cluster or that no

 # credentials are needed.

 create: true

 username: '$oauthtoken'

 password: <NGC_API_KEY>

Step 8. Update the query.env with the LLM server URL, embedding server URL, model names and vector
store URL:

query:

 image: nvcr.io/ohlfw0olaadg/ea-participants/rag-application-multiturn-chatbot:24.06

 name: chain-server-multi-turn

 replicas: 1

 nodeSelector: {}

 tolerations: {}

 affinity: {}

 env:

 APP_VECTORSTORE_URL: "http://pkoppa-milvus.vectorstore:19530"

 APP_VECTORSTORE_NAME: "milvus"

 APP_LLM_SERVERURL: "pkoppa-nim-llm.nim-llm:8000"

 APP_LLM_MODELNAME: meta/llama3-8b-instruct

 APP_LLM_MODELENGINE: nvidia-ai-endpoints

 APP_EMBEDDINGS_SERVERURL: "nemo-embedder-nemo-retriever-embedding-ms.text-embedding-nim:8080"

 APP_EMBEDDINGS_MODELNAME: NV-Embed-QA

 APP_EMBEDDINGS_MODELENGINE: nvidia-ai-endpoints

 COLLECTION_NAME: multi_turn_rag

 APP_RETRIEVER_TOPK: 2

 APP_RETRIEVER_SCORETHRESHOLD: 0.25

 APP_TEXTSPLITTER_CHUNKSIZE: 506

 APP_TEXTSPLITTER_CHUNKOVERLAP: 200

Step 9. To get vector store URL, look for the service running in the vectorstore namespace. Repeat it for
NIM for LLM and embedding server URL in their corresponding namespace:

[admin@ocp-installer rag-app-text-chatbot]$ oc get svc -n vectorstore

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

pkoppa-milvus ClusterIP 172.30.114.214 <none> 19530/TCP,9091/TCP

22h

pkoppa-milvus-attu NodePort 172.30.255.104 <none> 3000:30659/TCP

22h

pkoppa-milvus-datanode ClusterIP None <none> 9091/TCP

22h

pkoppa-milvus-etcd ClusterIP 172.30.112.63 <none> 2379/TCP,2380/TCP

22h

pkoppa-milvus-etcd-headless ClusterIP None <none> 2379/TCP,2380/TCP

22h

pkoppa-milvus-indexnode ClusterIP None <none> 9091/TCP

22h

pkoppa-milvus-minio ClusterIP 172.30.35.198 <none> 9000/TCP

22h

pkoppa-milvus-minio-svc ClusterIP None <none> 9000/TCP

22h

pkoppa-milvus-mixcoord ClusterIP 172.30.95.53 <none> 9091/TCP

22h

pkoppa-milvus-pulsar-bookie ClusterIP None <none> 3181/TCP,8000/TCP

22h

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 107 of 170

-

pkoppa-milvus-pulsar-broker ClusterIP None <none> 8080/TCP,6650/TCP

22h

pkoppa-milvus-pulsar-proxy ClusterIP 172.30.77.96 <none> 8080/TCP,6650/TCP

22h

pkoppa-milvus-pulsar-recovery ClusterIP None <none> 8000/TCP

22h

pkoppa-milvus-pulsar-zookeeper ClusterIP None <none>

8000/TCP,2888/TCP,3888/TCP,2181/TCP 22h

pkoppa-milvus-querynode ClusterIP None <none> 9091/TCP

22h

Step 10. Once helm chart configurations are done, create the multi turn rag pipeline instance and start the
services:

helm install multiturn-rag .

Step 11. Verify the pods are running and ready:

[admin@ocp-installer rag-app-multiturn-chatbot]$ oc get pods -n multiturn-rag

NAME READY STATUS RESTARTS AGE

chain-server-multi-turn-78c575d6db-mxj5t 1/1 Running 0 5s

rag-playground-multiturn-rag-5cbdc574d6-v5x67 1/1 Running 0 5s

Step 12. Get the node port for rag-playground-multiturn-rag service using below command:

[admin@ocp-installer rag-app-multiturn-chatbot]$ oc get svc -n multiturn-rag

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

chain-server-multi-turn ClusterIP 172.30.4.16 <none> 8082/TCP 31s

rag-playground-multiturn-rag NodePort 172.30.119.148 <none> 3001:31002/TCP 31s

Step 13. Open browser and access the rag-playground UI using one of the node IP/DNS:node port:

http://localhost:30001/orgs/nvidia/models/text-qa-chatbot

Step 14. Upload a document and make sure upload goes successful:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 108 of 170

-

Step 15. Make sure vector database shows the multi_turn_rag collection.

Step 16. Get the compute node IP/DNS for one of the node:

[admin@ocp-installer rag-app-text-chatbot]$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP

EXTERNAL-IP OS-IMAGE KERNEL-VERSION

CONTAINER-RUNTIME

ocp-master0.ocp.flexpodb4.cisco.com Ready control-plane,master 28d v1.29.7+4510e9c 10.102.2.211

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-master1.ocp.flexpodb4.cisco.com Ready control-plane,master 28d v1.29.7+4510e9c 10.102.2.212

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-master2.ocp.flexpodb4.cisco.com Ready control-plane,master 28d v1.29.7+4510e9c 10.102.2.213

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-worker0.ocp.flexpodb4.cisco.com Ready worker 15d v1.29.7+4510e9c 10.102.2.214

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-worker1.ocp.flexpodb4.cisco.com Ready worker 28d v1.29.7+4510e9c 10.102.2.215

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

ocp-worker2.ocp.flexpodb4.cisco.com Ready worker 15d v1.29.7+4510e9c 10.102.2.216

<none> Red Hat Enterprise Linux CoreOS 416.94.202408260940-0 5.14.0-427.33.1.el9_4.x86_64

cri-o://1.29.7-5.rhaos4.16.gitb130ec5.el9

Step 17. Get the node port for Attu:

[admin@ocp-installer rag-app-text-chatbot]$ oc -n vectorstore get svc pkoppa-milvus-attu

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

pkoppa-milvus-attu NodePort 172.30.255.104 <none> 3000:30659/TCP 21h

Step 18. Open browser and access the Attu UI using <Any of the Node IP/DNS:Attu Node Port>:

http://10.102.2.214:30659/

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 109 of 170

-

Step 19. Click the multi_turn_rag collection and navigate to Data Preview and observe that embeddings
are stored in Milvus.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 110 of 170

-

Benchmarking, Evaluation, and Sizing

This chapter contains the following:

● NIM for LLM Benchmarking

● Sizing

● RAG Evaluation

● Milvus Benchmarking with VectorDBBench

This section examines the performance benchmarking of NIM for LLM, RAG Evaluation using RAGAS framework,

Sizing guidance for GPU and model selection and vector database benchmarking.

NIM for LLM Benchmarking

Benchmarking the deployment of Large Language Models (LLMs) involves understanding key metrics such as

inference latency and throughput, which are crucial for evaluating performance. Developers and enterprise system

owners can utilize various benchmarking tools, each with distinct features and capabilities, to measure these

metrics effectively.

GenAI-Perf is a tool for measuring and analyzing the performance indicators, ensuring their LLM deployments are

optimized for efficiency and scalability.

How LLM Inference Works

Before examining benchmark metrics, it is crucial to understand the mechanics of LLM inference and the associ-

ated terminologies. An LLM application generates results through a multi-stage inference process. Initially, the

user submits a query (prompt), which enters a queue, awaiting its turn for processing—this is the queuing phase.

Next, the LLM model processes the prompt during the prefill phase. Finally, the model generates a response token

by token in the generation phase.

A token, a fundamental concept in LLMs, serves as a core performance metric for LLM inference. It represents the

smallest unit of natural language that the LLM processes. The aggregation of all tokens forms the vocabulary, with

each LLM employing a tokenizer learned from data to efficiently represent input text. Typically, for many popular

LLMs, one token approximates 0.75 English words.

Sequence length pertains to the length of the data sequence. The Input Sequence Length (ISL) denotes the

number of tokens the LLM receives, encompassing the user query, system prompts (e.g., model instructions),

previous chat history, chain-of-thought reasoning, and documents from the retrieval-augmented generation (RAG)

pipeline. The Output Sequence Length (OSL) indicates the number of tokens the LLM generates. Context length

refers to the number of tokens the LLM utilizes at each generation step, including both input and output tokens

generated thus far. Each LLM has a maximum context length that can be allocated to both input and output tokens.

Streaming is a feature that allows partial LLM outputs to be returned to users incrementally, in chunks of tokens

generated so far. This is particularly advantageous for chatbot applications, where receiving an initial response

quickly is desirable. While the user processes the partial content, the subsequent chunk of the result is generated

in the background. Conversely, in non-streaming mode, the complete answer is returned in a single response.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 111 of 170

-

Metrics

There can be variations in the benchmarking results between different tools. Figure 14 illustrates some of the

widely used LLM inference metrics.

 Overview of popular LLM inference performance metrics. Figure 14.

Time to First Token

Time to First Token (TTFT) measures the duration from submitting a query to receiving the first token of the

model’s output. This metric encompasses request queuing time, prefill time, and network latency. Generally, a

longer prompt results in a higher TTFT due to the attention mechanism, which requires the entire input sequence

to compute and create the key-value cache (KV-cache) before the iterative generation loop can commence. In

production environments, multiple requests may be processed simultaneously, causing the prefill phase of one

request to overlap with the generation phase of another, further impacting TTFT.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 112 of 170

-

 Overview of popular LLM inference performance metrics. Figure 15.

Generation Time

Generation time is the duration from the first token received to the final token received. GenAI-Perf removes the

last [done] signal or empty response, so they don’t get included in the e2e latency.

End-to-End Request Latency (e2e_latency)

End-to-End Request Latency (e2e_latency) quantifies the total time from submitting a query to receiving the

complete response. This metric encompasses the performance of queuing/batching mechanisms and network

latencies as demonstrated in Figure 16.

 End-to-end Request latency Figure 16.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 113 of 170

-

Mathematically, it is expressed as: e2e_latency=TTFT + Generation Time

For an individual request, the end-to-end request latency is the time difference between when the request is sent

and when the final token is received. This metric provides a comprehensive measure of the system’s respon-

siveness, accounting for all stages of the request processing pipeline.

Inter Token Latency (ITL)

This is defined as the average time between consecutive tokens and is also known as time per output token

(TPOT).

 ITL - Latency between successive token generations. Figure 17.

GenAI-Perf defines ITL as follows:

The equation for this metric excludes the first token (hence subtracting 1 in the denominator) to ensure that In-

ter-Token Latency (ITL) reflects only the decoding phase of request processing.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 114 of 170

-

Longer output sequences increase the size of the KV cache, thereby raising memory costs. Additionally, the cost

of attention computation grows linearly with the length of the combined input and output sequence for each new

token, although this computation is typically not compute-bound. Consistent inter-token latencies indicate effi-

cient memory management, optimal memory bandwidth utilization, and effective attention computation.

Tokens Per Second (TPS)

Total TPS per system represents the total output tokens per seconds throughput, accounting for all the requests

happening simultaneously. As the number of requests increases, the total TPS per system increases, until it

reaches a saturation point for all the available GPU compute resources, beyond which it might decrease.

Given the following timeline of the entire benchmark with n total requests.

 Timeline of events in a benchmarking run Figure 18.

Li : End-to-end latency of i-th request

T_start : start of benchmark

Tx : timestamp of the first request

Ty : timestamp of the last response of the last request

T_end : end of benchmark

GenAI-perf defines the TPS as total output tokens divided by the end-to-end latency between the first request

and the last response of the last request.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 115 of 170

-

Requests Per Second (RPS)

This is the average number of requests that can be successfully completed by the system in a 1-second period. It

is calculated as:

Use Cases

An application’s specific use cases influence sequence lengths - Input Sequence Length(ISL) and Output Se-

quence Length(OSL), which in turn affect how efficiently a system processes input to form the KV-cache and

generate output tokens. Longer ISL increases memory requirements for the prefill stage, thereby extending TTFT,

while longer OSL increases memory requirements (both bandwidth and capacity) for the generation stage, thus

raising ITL. Understanding the distribution of inputs and outputs in an LLM deployment is crucial for optimizing

hardware utilization. Common use cases and their typical ISL/OSL pairs include:

● Translation

Involves translating between languages and code, characterized by similar ISL and OSL, typically ranging

from 500 to 2000 tokens each.

● Generation

Encompasses generating code, stories, emails, and generic content via search, characterized by an OSL

of O(1000) tokens, significantly longer than an ISL of O(100) tokens.

● Summarization

Includes retrieval, chain-of-thought prompting, and multi-turn conversations, characterized by an ISL of

O(1000) tokens, much longer than an OSL of O(100) tokens.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 116 of 170

-

Real data can also be used as inputs. GenAI-Perf supports datasets such as HuggingFace OpenOrca and

CNN Dailymail.

Load Control

● Concurrency (N)

Refers to the number of concurrent users, each with one active request, or equivalently, the number of

requests being served simultaneously by an LLM service. As soon as a user’s request receives a complete

response, another request is sent, ensuring the system always has exactly N active requests.

LLMperf sends requests in batches of N but includes a draining period where it waits for all requests to

complete before sending the next batch. Consequently, the number of concurrent requests gradually

reduces to zero towards the end of the batch. This differs from GenAI-perf, which maintains N active

requests throughout the benchmarking period.

Concurrency is primarily used to describe and control the load on the inference system.

● Max Batch Size

A batch is a group of simultaneous requests processed by the inference engine, which may be a subset of

the concurrent requests. The maximum batch size parameter defines the maximum number of requests

the inference engine can process simultaneously.

If concurrency exceeds the maximum batch size multiplied by the number of active replicas, some re-

quests will queue for later processing, potentially increasing the Time-to-First-Token (TTFT) due to the

queuing effect.

● Request Rate

This parameter controls load by determining the rate at which new requests are sent. A constant (static)

request rate (r) means one request is sent every (\frac{1}{r}) seconds, while a Poisson (exponential)

request rate determines the average inter-arrival time.

GenAI-perf supports both concurrency and request rate, but concurrency is recommended. With request

rate, the number of outstanding requests may grow unbounded if the requests per second exceed system

throughput.

When specifying concurrencies to test, it is useful to sweep over a range of values, from a minimum of 1 to

a maximum not much greater than the max batch size. When concurrency exceeds the max batch size of

the engine, some requests will queue, causing system throughput to saturate around the max batch size

while latency steadily increases.

Procedure 1. Set up GenAI-Perf

Step 1. Make sure that the NIM LLama-3 inference service is running:

[admin@ocp-installer ~]$ oc -n nim-llm get pods

NAME READY STATUS RESTARTS AGE

pkoppa-nim-llm-0 1/1 Running 0 19h

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 117 of 170

-

[admin@ocp-installer ~]$ oc -n nim-llm get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

pkoppa-nim-llm NodePort 172.30.183.181 <none> 8000:31641/TCP 3d8h

pkoppa-nim-llm-sts ClusterIP None <none> 8000/TCP 3d8h.

Step 2. Observe that the POD is running. The cluster IP of the service is 172.30.183.181 and it’s running
on Port 8000. It is also exposed as NodePort on Port 31641.

Step 3. Make a test chat completion to make sure that the LLM endpoint is working:

curl -X GET 'http://172.30.183.181:8000/v1/models'

curl -X 'POST' \

 'http://172.30.183.181:8000/v1/completions' \

 -H 'accept: application/json' \

 -H 'Content-Type: application/json' \

 -d '{

"model": "meta/llama3-8b-instruct",

"prompt": "Capital of USA",

"max_tokens": 64

}'

Once the NIM LLama-3 inference service is running, you can set up a benchmarking tool. The easiest way to install

GenAI-Perf is by creating a deployment object in OpenShift using the Triton Server SDK container image.

Step 4. A sample deployment YAML manifest is provided below:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 118 of 170

-

 Sample Deployment Manifest Figure 19.

It is recommended to starting a GenAI-perf pod on the same server as NIM to avoid network latency unless you

specifically want to factor in the network latency as part of the measurement. Therefore nodeName:

ocp-worker1.ocp.flexpodb4.cisco.com is passed in pod spec.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 119 of 170

-

Step 5. The image pull secret is required with a NGC API key to download the image. It can be created
using:

oc create secret docker-registry ngc-registry --docker-server=nvcr.io --docker-username=\$oauthtoken

--docker-password=<API Key>

Step 6. A repository is required to store the NeMo check points and other temp folders. A sample PVC
configuration to provide persistent storage to the pod is provided below:

 Sample PVC Figure 20.

Step 7. Apply the YAML manifests against the OpenShift cluster and make sure all the resources are cre-
ated:

[admin@ocp-installer ~]$ oc -n genaiperf get secrets

NAME TYPE DATA AGE

ngc-registry kubernetes.io/dockerconfigjson 1 4d12h

[admin@ocp-installer ~]$ oc -n genaiperf get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

VOLUMEATTRIBUTESCLASS AGE

genai-perf-data Bound pvc-6be6a2a5-c6d0-4d03-b36e-6906dd968d26 50Gi RWO ontap-nfs

<unset> 4d12h

[admin@ocp-installer ~]$ oc -n genaiperf get pods

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 120 of 170

-

NAME READY STATUS RESTARTS AGE

genai-perf-5ffd6d466b-zrg4n 1/1 Running 0 19h

Step 8. From the above output, you can see that the pod is running. Run the following commands to get
access to the pod:

[admin@ocp-installer ~]$ oc -n genaiperf exec -it genai-perf-5ffd6d466b-zrg4n -- bash

root@genai-perf-5ffd6d466b-zrg4n:/workspace#

Step 9. Once inside the pod, you can start the GenAI-perf evaluation harness as follows, which runs a
warming load test on the NIM backend:

export INPUT_SEQUENCE_LENGTH=500

export INPUT_SEQUENCE_STD=10

export OUTPUT_SEQUENCE_LENGTH=100

export CONCURRENCY=10

export MODEL=meta/llama3-8b-instruct

genai-perf \

 -m $MODEL \

 --endpoint-type chat \

 --service-kind openai \

 --streaming \

 -u 172.30.183.181:8000 \

 --synthetic-input-tokens-mean $INPUT_SEQUENCE_LENGTH \

 --synthetic-input-tokens-stddev $INPUT_SEQUENCE_STD \

 --concurrency $CONCURRENCY \

 --output-tokens-mean $OUTPUT_SEQUENCE_LENGTH \

 --extra-inputs max_tokens:$OUTPUT_SEQUENCE_LENGTH \

 --extra-inputs min_tokens:$OUTPUT_SEQUENCE_LENGTH \

 --extra-inputs ignore_eos:true \

 --tokenizer meta-llama/Meta-Llama-3-8B-Instruct \

 -- \

 -v \

 --max-threads=256

This example specifies the input and output sequence length and a concurrency to test.

Step 10. This test will use the llama-3 tokenizer from HuggingFace, which is a guarded repository. You will
need to apply for access, then login with your HF credential:

pip install huggingface_hub

huggingface-cli login

Step 11. With a successful execution, you will see similar results in the terminal as shown below:

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 121 of 170

-

When the tests complete, GenAI-perf generates the structured outputs in a default directory named “artifacts”

under your mounted working directory (/workdir in these examples), organized by model name, concurrency, and

input/output length. Your results should look similar to the following:

root@genai-perf-5ffd6d466b-zrg4n:/workspace/artifacts# find .

.

./meta_llama3-8b-instruct-openai-chat-concurrency10

./meta_llama3-8b-instruct-openai-chat-concurrency10/llm_inputs.json

./meta_llama3-8b-instruct-openai-chat-concurrency10/profile_export_genai_perf.json

./meta_llama3-8b-instruct-openai-chat-concurrency10/profile_export_genai_perf.csv

./meta_llama3-8b-instruct-openai-chat-concurrency10/profile_export.json

root@genai-perf-5ffd6d466b-zrg4n:/workspace/artifacts#

Procedure 2. Sweep through Use Cases

Typically, with benchmarking, a test would be set up to sweep over a number of use cases, such as input/output

length combinations, and load scenarios, such as different concurrency values.

Step 1. Use the following bash script to define the parameters so that GenAI-perf executes through all the
combinations.

declare -A useCases

Populate the array with use case descriptions and their specified input/output lengths

useCases["Translation"]="200/200"

useCases["Text classification"]="200/5"

useCases["Text summary"]="1000/200"

Function to execute genAI-perf with the input/output lengths as arguments

runBenchmark() {

 local description="$1"

 local lengths="${useCases[$description]}"

 IFS='/' read -r inputLength outputLength <<< "$lengths"

 echo "Running genAI-perf for$descriptionwith input length$inputLengthand output length$outputLength"

 #Runs

 for concurrency in 1 2 5 10 50 100 250; do

 local INPUT_SEQUENCE_LENGTH=$inputLength

 local INPUT_SEQUENCE_STD=0

 local OUTPUT_SEQUENCE_LENGTH=$outputLength

 local CONCURRENCY=$concurrency

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 122 of 170

-

 local MODEL=meta/llama3-8b-instruct

 genai-perf \

 -m $MODEL \

 --endpoint-type chat \

 --service-kind openai \

 --streaming \

 -u 172.30.183.181:8000 \

 --synthetic-input-tokens-mean $INPUT_SEQUENCE_LENGTH \

 --synthetic-input-tokens-stddev $INPUT_SEQUENCE_STD \

 --concurrency $CONCURRENCY \

 --output-tokens-mean $OUTPUT_SEQUENCE_LENGTH \

 --extra-inputs max_tokens:$OUTPUT_SEQUENCE_LENGTH \

 --extra-inputs min_tokens:$OUTPUT_SEQUENCE_LENGTH \

 --extra-inputs ignore_eos:true \

 --tokenizer meta-llama/Meta-Llama-3-8B-Instruct \

 --measurement-interval 10000 \

 --profile-export-file ${INPUT_SEQUENCE_LENGTH}_${OUTPUT_SEQUENCE_LENGTH}.json \

 -- \

 -v \

 --max-threads=256

 done

}

Iterate over all defined use cases and run the benchmark script for each

for description in "${!useCases[@]}"; do

 runBenchmark "$description"

done

Step 2. Save this script in a working directory, such as under /workdir/benchmark.sh. You can then exe-
cute it with the following command:

cd /workdir

bash benchmark.sh

The following tables lists the details of performance for three different use cases.

Table 13. NIM for LLM Benchmarking for Generation Use Case (I/O = 1000/200)

Number

of GPUs

Concurrenc

y

Time to First

Token

(ms)

Inter-token

Latency (ms)

End-to-End

Request Latency

(ms)

Output Token

Throughput

(Tokens Per

Second)

Request Throughput

(Requests Per

Second)

1 X L40S

1 58.64 14.75 2993.93 66.8 0.33

2 91.69 14.92 3061.35 130.62 0.65

5 238.71 15.72 3366.86 296.97 1.48

10 519.59 16.4 3783.3 528.56 2.64

25 1430.98 18.15 5043 991.26 4.96

50 2223.81 24.72 7143.2 1398.09 6.99

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 123 of 170

-

Number

of GPUs

Concurrenc

y

Time to First

Token

(ms)

Inter-token

Latency (ms)

End-to-End

Request Latency

(ms)

Output Token

Throughput

(Tokens Per

Second)

Request Throughput

(Requests Per

Second)

100 3202.2 42.89 11737.23 1523.29 7.62

2 X L40S

1 80.05 9.24 1917.86 104.27 0.52

2 118.46 9.55 2018.88 198.08 0.99

5 306.56 11.05 2505.44 399.08 2

10 654.43 12.11 3064.37 652.51 3.26

25 1726.59 13.79 4470.19 1118.26 5.59

50 2808.82 20.68 6923.89 1441.51 7.21

100 5496.26 31.46 11757.24 1698.14 8.49

Table 14. NIM for LLM Benchmarking for Summarization Use Case (I/O = 200/5)

Number

of

GPUs

Concurrency

Time to First

Token

(ms)

Inter-token

Latency (ms)

End-to-End

Request Latency

(ms)

Output Token

Throughput

(Tokens Per

Second)

Request Throughput

(Requests Per

Second)

1 X

L40S

1 20.09 14.47 77.98 64.07 12.81

2 34.29 14.99 94.25 105.96 21.19

5 58.6 17 126.61 197.29 39.46

10 110.22 17.76 181.25 275.67 55.13

25 173.33 42.72 344.2 362.89 72.58

50 434.64 52.66 645.27 387.34 77.47

100 855.6 104.41 1273.24 391.03 78.21

2 X

L40S

1 23.31 8.88 58.83 84.89 16.98

2 36.68 10.54 78.86 126.67 25.33

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 124 of 170

-

Number

of

GPUs

Concurrency

Time to First

Token

(ms)

Inter-token

Latency (ms)

End-to-End

Request Latency

(ms)

Output Token

Throughput

(Tokens Per

Second)

Request Throughput

(Requests Per

Second)

5 75.11 12.8 126.3 197.79 39.56

10 143.68 14.06 199.9 249.98 50

25 328.88 22.79 420.02 297.4 59.48

50 560.9 57.45 790.7 315.98 63.2

100 1197.09 87.61 1547.54 322.89 64.58

Table 15. NIM for LLM Benchmarking for Translation Use Case (I/O = 200/200)

Number

of GPUs

Concurrency

Time to First

Token

(ms)

Inter-token

Latency (ms)

End-to-End

Request Latency

(ms)

Output Token

Throughput

(Tokens Per

Second)

Request Throughput

(Requests Per

Second)

1 X L40S

1 21.35 14.51 2908.4 68.76 0.34

2 33.85 14.56 2931.88 136.39 0.68

5 57.89 14.98 3038.66 329.04 1.65

10 109.57 15.22 3137.97 637.23 3.19

25 229.13 16.25 3463.21 1442.89 7.21

50 434.81 17.8 3977.64 2512.5 12.56

100 996.21 20.84 5143.22 3884.17 19.42

2 X L40S

1 24.11 9.01 1816.91 110.06 0.55

2 36.65 9.18 1864.46 214.48 1.07

5 75.07 10.58 2180.26 458.59 2.29

10 143.17 11.3 2390.88 836.37 4.18

25 289.17 12.95 2867.12 1742.74 8.71

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 125 of 170

-

Number

of GPUs

Concurrency

Time to First

Token

(ms)

Inter-token

Latency (ms)

End-to-End

Request Latency

(ms)

Output Token

Throughput

(Tokens Per

Second)

Request Throughput

(Requests Per

Second)

50 550.76 15.5 3635.91 2748.16 13.74

100 1236.57 20.18 5253.18 3801.69 19.01

Analyzing the Output

The figure below shows the total output tokens per seconds throughput, accounting for all the requests happening

simultaneously from all 3 uses case.

The figure below shows how long it takes from submitting a query to receiving the full response for 3 different use

cases.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 126 of 170

-

The figure below shows the total output tokens per seconds throughput, accounting for all the requests happening

simultaneously with 1 L40S GPU vs 2 X L40S GPU.

The figure below shows the average number of requests that can be successfully completed by the system in a

1-second period with 1 L40S GPU vs 2 X L40S GPU.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 127 of 170

-

The figure below shows how long a user needs to wait before seeing the model’s output with 1 L40S GPU vs 2 X

L40S GPU.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 128 of 170

-

The figure below shows the average time between consecutive tokens with 1 L40S GPU vs 2 X L40S GPU.

Interpreting the Results

The following plots illustrate the Latency-Throughput curves for three different use cases with different Input

Sequence Length and Output Sequence Lengths.

Generation (I/O : 1000/200), Summarization (I/O : 200/5), and Translation (I/O : 200/200).

https://docs.nvidia.com/nim/benchmarking/llm/latest/step-by-step.html#step-5-interpreting-the-results

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 129 of 170

-

 Latency-Throughput Curve for Generation (I/O : 1000/200) Figure 21.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 130 of 170

-

 Latency-Throughput Curve for Summarization (I/O : 200/5) Figure 22.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 131 of 170

-

 Latency-Throughput Curve for Translation (I/O : 200/200) Figure 23.

● Axes Definitions

◦ X-axis: Time to First Token (TTFT) - The duration a user waits before the model starts generating

output.

◦ Y-axis: Total System Throughput - The total number of output tokens generated per second.

◦ Dots: Represent different concurrency levels.

Usage Guidelines

● Latency Budget Approach

◦ Objective: Determine the highest achievable throughput within a specified latency limit.

◦ Method: Identify the maximum acceptable TTFT on the X-axis, then find the corresponding Y value and

concurrency level. This indicates the highest throughput achievable within the given latency constraint.

● Concurrency-Based Approach

◦ Objective: Understand the latency and throughput for a specific concurrency level.

◦ Method: Locate the desired concurrency level on the plot. The intersecting X and Y values represent

the latency and throughput for that concurrency.

● Key Observations

The Latency-Throughput Curve for Summarization plot highlights concurrency levels where latency in-

creases significantly with minimal or no throughput gain. Concurrency = 50 is an example of such a point.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 132 of 170

-

● Alternative Metrics

Similar plots can be generated using different metrics on the X-axis, such as ITL (Inference Time Latency),

e2e_latency (End-to-End Latency), or TPS_per_user (Transactions Per Second per User). These plots

help visualize the trade-offs between total system throughput and individual user latency.

Sizing

Memory Calculations for LLM Inferencing

Total Memory required is the sum of model memory size and the KV cache.

Calculations for the required total memory are provided below:

Model Memory Size = Model Parameters * Precision

KV Cache Size = 2 x Batch Size x Context Size x Number of Layers x Model Dimensions x Precision

Total Memory Requirements (GB) = Model Memory Size (GB) + KV Cache Size (GB)

For some models, model dimension data might not be available. In that case, model dimension can be calculated

as:

Model Dimensions = Attention Head Size X Number of Attention Heads

Model Parameters, Precision, Number of layers, Model Dimension are specific to models, and it can be found in

the Model card for the model.

Context Size and batch size are input from users.

The following is an example memory calculation for Llama 2:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 133 of 170

-

For the Llama 2 model:

Total model parameters: 6.74B Parameters.

Precision: FP16. (2 Bytes)

Number of layers: 32

Model Dimension: 4096

Therefore, the model memory is calculated as shown below:

Model Memory Size = Model Parameters * Precision

Model Memory Size for Llama 2 = 6,740,000,000 * 2 Bytes/Parameter

 = 13,480,000,000 Bytes

 = 13.48 Giga Bytes

Also, considering an example of maximum Input Tokens Length of 1024, Maximum Output Tokens Length of 1024,

and the Batch size of 8, below are the calculations for KV Cache Size:

KV Cache Size = 2 x Batch Size x Context Size x Number of Layers x Model Dimensions x Precision

KV Cache Size = 2 x 8 x (1024+1024) x 32 x 4096 x 2 Bytes/Parameter

 = 8,589,934,592 Bytes

 = 8.59 Giga Bytes

Therefore, Llama2 with maximum Input Tokens Length of 1024, Maximum Output Tokens Length of 1024, and the

Batch size of 8, the total memory required is shown below:

Total Memory Requirements (GB) = Model Memory Size (GB) + KV Cache Size (GB)

 = 13.48 + 8.59 Giga Bytes

 = 22.07 Giga Bytes

Performance Calculations

Note: The performance benchmark can be run on model.

Based on the performance requirement, number of users, number of input and output tokens, latency and

throughput required, you can choose the appropriate Large Language Model, Inferencing backend, GPUs, and

compute infrastructure.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 134 of 170

-

Performance of the model depends on the prefill and decode phases. These two phases have different impacts on

the performance of the LLM. While the prefill phase effectively saturates GPU compute at small batch sizes, the

decode phase results in low compute utilization as it generates one token at a time per request.

The prefill phase is compute-bound, while the decode phase is memory-bound. So, the following factors need to

be considered and measured:

● Prefill Latency

● Prefill Throughput

● Decode Total Latency

● Decode Token Latency

● Decode Throughput

The performance benchmark can be run with different sizes (1,2,4,8,10,25,250, 100 and so on). Also, separate

tests can be run focused on performance comparison between 2 different models.

RAG Evaluation

How RAG Works

Retrieval-Augmented Generation (RAG) is a technique used to enrich LLM outputs by using additional relevant

information from an external knowledge base. This allows an LLM to generate responses based on context be-

yond the scope of its training data.

Why Evaluate RAG?

RAG enhances content generation by leveraging existing information effectively. It can amalgamate specific,

relevant details from multiple sources to generate more accurate and relevant query results. This makes RAG

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 135 of 170

-

potentially invaluable in various domains, including content creation, question & answer applications, and infor-

mation synthesis. RAG does this by combining the strengths of retrieval, usually using dense vector search, and

text generation, but to see what is and isn't working in your RAG system, to refine and optimize, you must evaluate

it.

Note: Evaluation is essential to validate and make sure your application does what is expected.

Evaluation Process

Evaluating RAG goes through the following steps:

1. Choose Right Evaluation Framework.

2. Generate Synthetic Dataset.

3. Generate RAG Outputs for the Questions from Synthetic Dataset.

4. Evaluating Using the Generated Dataset.

5. Understanding The Metrics.

Choose the Right Evaluation Framework

RAG evaluation quantifies the accuracy of retrieval phrase by calculating metrics on the top results your system

returns, enabling you to programmatically monitor pipeline’s precision, recall ability, and faithfulness to facts.

It is not only important to have good metrics, but that the ability to measure things separately.

To see where things are going well, can be improved, and where errors may originate, it's important to evaluate

each component in isolation. The following figure classifies the RAG’s components – along with what needs

evaluation in each:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 136 of 170

-

 Challenges of RAG Figure 24.

The Evaluation Framework is meant to ensure granular and thorough measurement, addressing the challenges

faced in all three components.

To meet the evaluation challenges systematically, it’s a best practice to breakdown evaluation into different levels.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 137 of 170

-

Embedding Model Evaluation

The Massive Text Embedding Benchmark (MTEB) leverages different public/private datasets to evaluate and re-

port on the different capabilities of individual models. We can use the MTEB to evaluate any model in its list

The Model used in this deployment type is “snowflake-arctic-embed-I” and here below is the model’s perfor-

mance listed on leaderboard.

Data Ingestion Evaluation

After evaluating model’s performance using benchmarks, and (optionally) fine-tune it, then configure data inges-

tion into semantic retrieval store (vector store).

To evaluate data ingestion, observe and measure how changes in related variables affect ingestion outcomes:

● Chunk Size: The size of each data segment, which depends on the token limit of the embedding model.

Chunk size substantially determines data granularity and the contextual understanding of the data, which

impacts the precision, recall, and relevancy of results.

● Chunk Overlap: The extent to which data points of events are shared by adjacent data chunks. Overlap

helps with retention of context information contained in chunks but should be paired with strategies like

deduplication and content normalization to eradicate adverse effects (redundancy or inconsistency).

● Chunking/ Text Splitting Strategy: The process of data splitting and further treatment, based on both data

type (for example, html, markdown, code, or pdf, and so on) and nuances of your use-case.

Semantic Retrieval Evaluation

In this deployment, the Milvus Vector Database has been deployed, and milvus offers similarity metrics.

Similarity metrics are used to measure similarities among vectors. Choosing a good distance metric helps improve

the classification and clustering performance significantly.

Similarity Metrics Index Type

 Euclidean distance (L2) ●

 Inner Product (IP) ●

 FLAT ●

 IVF_FLAT ●

 IVF_SQ8 ●

 IVF_PQ ●

 HNSW ●

 IVF_HNSW ●

 RHNSW_FLAT ●

https://huggingface.co/spaces/mteb/leaderboard

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 138 of 170

-

Similarity Metrics Index Type

 RHNSW_SQ ●

 RHNSW_PQ ●

 ANNOY ●

Euclidean distance (L2)—essentially, Euclidean distance measures the length of a segment that connects 2 points.

The formula for Euclidean distance is as follows:

where a = (a1, a2,…, an) and b = (b1, b2,…, bn) are two points in n-dimensional Euclidean space

It’s the most used distance metric and is very useful when the data are continuous.

Inner Product (IP)—The IP distance between two embeddings is defined as follows:

ip

Where A and B are embeddings, ||A|| and ||B|| are the norms of A and B.

IP is more useful if you are more interested in measuring the orientation but not the magnitude of the vectors.

If you use IP to calculate embeddings similarities, you must normalize your embeddings. After normalization, the

inner product equals cosine similarity.

Suppose X’ is normalized from embedding X:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 139 of 170

-

The correlation between the two embeddings is as follows:

End-to-End Evaluation

An end-to-end evaluation of a RAG application assesses the final outputs generated by LLMs in response to given

inputs. It requires addressing issues discussed above related to data heterogeneity, domain specificity, and user

query and preference diversity. It's impossible to devise a fixed metric or methodology that fits all domains and

use-cases.

E2E evaluation frameworks range from proprietary solutions to open-source tools. Selecting the right solution

requires balancing considerations around ease of maintenance and operational burden, plus how well the metrics

observed by the tool map to your Retrieval Augmented Generation pipeline’s use case.

Table 16. Recommended RAG Frameworks based on Use Case

Use Case Framework Metrics Used Reasoning

Initial RAG Evaluations RAGAS Average Precision (AP),

Faithfulness

RAGAS is ideal for initial evaluations,

especially in environments where

reference data is scarce. It focuses

on precision and how faithfully the

response matches the provided

context.

Dynamic, Continuous RAG

Deployments

ARES MRR, NDCG ARES uses synthetic data and LLM

judges, which are suitable for

environments needing continuous

updates and training and focusing

on response ranking and relevance.

Full System Traces, Including LLM’s

and Vector Storage

TraceLoop Informational Gain, Factual

Consistency, Citation Accuracy

TraceLoop is best suited for

applications where tracing the flow

and provenance of information used

in the generated output is critical,

such as academic research or

journalism.

Realtime RAG Monitoring Arize Precision, Recall, F1 Arize excels in real-time

performance monitoring, making it

perfect for deployments where

immediate feedback on RAG

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 140 of 170

-

Use Case Framework Metrics Used Reasoning

performance is essential

Enterprise Level RAG Applications Galileo Custom Metrics, Context

Adherence

Galileo provides advanced insights

and metrics integration for complex

applications, ensuring RAG’s

adherence to context.

Optimizing RAG for Specific

Domains

TruLens Domain-Specific Accuracy,

Precision

TruLens is designed to optimize RAG

systems within specific domains, by

enhancing the accuracy and

precision of domain-relevant

responses

Since a satisfactory LLM output depends entirely on the quality of the retriever and generator, RAG evaluation

focuses on evaluating the retriever and generator in RAG pipeline separately. This allows for easier debugging and

to pinpoint issues on a component level.

This document provides the steps necessary to run RAGAS Evaluation Framework. RAGAS is a framework that

helps evaluate Retrieval Augmented Generation (RAG) Initial pipelines.

Generate Synthetic Dataset

To set up RAGAS evaluation Framework, apply ground truth concept. Some ground truth data - a golden set -

provides a meaningful context for the metrics to evaluate our RAG pipeline's generated responses.

The first step in setting up RAGAS is creating an evaluation dataset, complete with questions, answers, and

ground-truth data, which takes account of relevant context.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 141 of 170

-

Procedure 1. Create an evaluation dataset

Step 1. Create LLM Prompt template:

LLM_PROMPT_TEMPLATE = (

 "<s>[INST] <<SYS>>"

 "{system_prompt}"

 "<</SYS>>"

 " "

 "[The Start of the Reference Context]"

 "{ctx_ref}"

 "[The End of Reference Context][/INST]"

)

Step 2. Create the System template:

SYS_PROMPT = """

 Given the context paragraph, create two very good question answer pairs.

 Your output should be strictly in a json format of individual question answer pairs with keys from

["question","answer"].

 Restrict the question to the context information provided.

 """

Step 3. Generate Synthetic Data:

def generate_synthetic_data(

 dataset_folder_path,

 qa_generation_file_path,

 text_splitter_params={"chunk_size": 3000, "chunk_overlap": 100},

):

 files=[dataset_folder_path]

 llm = ChatNVIDIA(base_url="http://10.102.2.216:31641/v1",

model="meta/llama3-8b-instruct",nvidia_api_key="not-used", max_tokens=1024)

 json_data = []

 i = 0

 for pdf_file in files:

 i += 1

 try:

 logger.info(f"{i}/{len(files)}")

 # pdf_file = dataset_folder_path +'/'+ pdf_file

 loader = PyPDFLoader(pdf_file)

 data = loader.load()

 text_splitter = RecursiveCharacterTextSplitter(**text_splitter_params)

 all_splits = text_splitter.split_documents(data)

 for split in all_splits:

 context = LLM_PROMPT_TEMPLATE.format(

 system_prompt=SYS_PROMPT,

 ctx_ref=split.page_content)

 try:

 answer = llm.invoke(context).content

 question_pattern = r'"question":\s*"([^"]*)"'

 answer_pattern = r'"answer":\s*"([^"]*)"'

 question_match = re.findall(question_pattern, answer)

 answer_match = re.findall(answer_pattern, answer)

 if(len(question_match)==len(answer_match)):

 for j, _ in enumerate(question_match):

 my_data = {

 'question': question_match[j],

 'ground_truth_answer': answer_match[j],

 'ground_truth_context': split.page_content,

 'document': pdf_file,

 }

 json_data.append(my_data)

 except Exception as e:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 142 of 170

-

 logger.info(

 f"\n PDF: {pdf_file} \n \t Context: {context} \n Exception Occured: {e}"

)

 except Exception as e:

 logger.info(f"\n PDF: {pdf_file} \n Exception Occured: {e}")

 with open(qa_generation_file_path, "w", encoding="utf-8") as f:

 json.dump(json_data, f)

Step 4. Call this function with path to the document and file name for q&a.

generate_synthetic_data('/home/admin/RAG/flexpod_ai_generative_ocp_m7.pdf','/home/admin/RAG/flexpod_qa_genera

tion.json')

This will create a JSON file called “flexpod_qa_generation.json”

Procedure 2. Generate RAG Outputs for the Questions from Synthetic Dataset

Step 1. Load the JSON file and iterate through each question, retrieve context from vector store and ask
LLM to generate the response:

url_upload = f"http://10.102.2.216:31935/documents"

url_generate = f"http://10.102.2.216:31935/generate"

url_doc_search = f"http://10.102.2.216:31935/search"

f = open('/home/admin/RAG/flexpod_qa_generation.json')

data = json.load(f)

generate_api_params={"use_knowledge_base": True, "temperature":0.2,"top_p":0.7,"max_tokens": 256}

document_search_api_params={"num_docs": 1}

new_data=[]

for entry in data:

 entry_generate = {

 "messages":[

 {

 "role":"user",

 "content":entry["question"]

 }

],

 "use_knowledge_base": generate_api_params["use_knowledge_base"],

 "temperature": generate_api_params["temperature"],

 "top_p": generate_api_params["top_p"],

 "max_tokens": generate_api_params["max_tokens"],

 "stop":[

 "string"

]

 }

 entry["answer"] = ""

 try:

 with requests.post(url_generate, stream=True, json=entry_generate) as r:

 for chunk in r.iter_lines():

 raw_resp = chunk.decode("UTF-8")

 if not raw_resp:

 continue

 resp_dict = None

 try:

 print(raw_resp)

 resp_dict = json.loads(raw_resp[6:])

 resp_choices = resp_dict.get("choices", [])

 if len(resp_choices):

 resp_str = resp_choices[0].get("message", {}).get("content", "")

 entry["answer"] += resp_str

 except Exception as e:

 print(f"Exception Occured: {e}")

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 143 of 170

-

 except Exception as e:

 print(f"Exception Occured: {e}")

 entry["answer"] = "Answer couldn't be generated."

 print(entry["answer"])

 entry_doc_search = {

 "query": entry["question"],

 "top_k": document_search_api_params["num_docs"]

 }

 response = requests.post(url_doc_search, json=entry_doc_search).json()

 context_list =typing.cast(typing.List[typing.Dict[str, typing.Union[str, float]]], response)

 contexts = [context.get("content") for context in context_list['chunks']]

 try:

 entry["contexts"] = [contexts[0]]

 except Exception as e:

 print(f"Exception Occured: {e}")

 entry["contexts"] = ""

 new_data.append(entry)

Step 2. Once the new list of objects is created, store them on the file system as shown below:

with open('/home/admin/RAG/flexpod_eval.json', 'w') as f:

 json.dump(data, f)

This creates a JSON file called “flexpod_eval.json”

Procedure 3. Evaluate using the Generated Dataset

Step 1. Create the Prompt Template:

LLAMA_PROMPT_TEMPLATE = (

 "<s>[INST] <<SYS>>"

 "{system_prompt}"

 "<</SYS>>"

 ""

 "Example 1:"

 "[Question]"

 "When did Queen Elizabeth II die?"

 "[The Start of the Reference Context]"

 """On 8 September 2022, Buckingham Palace released a statement which read: "Following further evaluation this

morning, the Queen's doctors are concerned for Her Majesty's health and have recommended she remain under medical

supervision. The Queen remains comfortable and at Balmoral."[257][258] Her immediate family rushed to Balmoral

to be by her side.[259][260] She died peacefully at 15:10 BST at the age of 96, with two of her children, Charles

and Anne, by her side;[261][262] Charles immediately succeeded as monarch. Her death was announced to the public

at 18:30,[263][264] setting in motion Operation London Bridge and, because she died in Scotland, Operation

Unicorn.[265][266] Elizabeth was the first monarch to die in Scotland since James V in 1542.[267] Her death

certificate recorded her cause of death as old age"""

 "[The End of Reference Context]"

 "[The Start of the Reference Answer]"

 "Queen Elizabeth II died on September 8, 2022."

 "[The End of Reference Answer]"

 "[The Start of the Assistant's Answer]"

 "She died on September 8, 2022"

 "[The End of Assistant's Answer]"

 '"Rating": 5, "Explanation": "The answer is helpful, relevant, accurate, and concise. It matches the information

provided in the reference context and answer."'

 ""

 "Example 2:"

 "[Question]"

 "When did Queen Elizabeth II die?"

 "[The Start of the Reference Context]"

 """On 8 September 2022, Buckingham Palace released a statement which read: "Following further evaluation this

morning, the Queen's doctors are concerned for Her Majesty's health and have recommended she remain under medical

supervision. The Queen remains comfortable and at Balmoral."[257][258] Her immediate family rushed to Balmoral

to be by her side.[259][260] She died peacefully at 15:10 BST at the age of 96, with two of her children, Charles

and Anne, by her side;[261][262] Charles immediately succeeded as monarch. Her death was announced to the public

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 144 of 170

-

at 18:30,[263][264] setting in motion Operation London Bridge and, because she died in Scotland, Operation

Unicorn.[265][266] Elizabeth was the first monarch to die in Scotland since James V in 1542.[267] Her death

certificate recorded her cause of death as old age"""

 "[The End of Reference Context]"

 "[The Start of the Reference Answer]"

 "Queen Elizabeth II died on September 8, 2022."

 "[The End of Reference Answer]"

 "[The Start of the Assistant's Answer]"

 "Queen Elizabeth II was the longest reigning monarch of the United Kingdom and the Commonwealth."

 "[The End of Assistant's Answer]"

 '"Rating": 1, "Explanation": "The answer is not helpful or relevant. It does not answer the question and instead

goes off topic."'

 ""

 "Follow the exact same format as above. Put Rating first and Explanation second. Rating must be between 1 and

5. What is the rating and explanation for the following assistant's answer"

 "Rating and Explanation should be in JSON format"

 "[Question]"

 "{question}"

 "[The Start of the Reference Context]"

 "{ctx_ref}"

 "[The End of Reference Context]"

 "[The Start of the Reference Answer]"

 "{answer_ref}"

 "[The End of Reference Answer]"

 "[The Start of the Assistant's Answer]"

 "{answer}"

 "[The End of Assistant's Answer][/INST]"

)

Step 2. Create System Prompt:

SYS_PROMPT = """

 You are an impartial judge that evaluates the quality of an assistant's answer to the question provided.

 You evaluation takes into account helpfullness, relevancy, accuracy, and level of detail of the answer.

 You must use both the reference context and reference answer to guide your evaluation.

 """

The performance of individual components within the LLM and RAG pipeline has a significant impact on the overall

experience. Ragas offers metrics tailored for evaluating each component of RAG pipeline in isolation.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 145 of 170

-

Step 3. Create a Function to choose the metric types:

def calculate_ragas_score(row):

 values = row[['faithfulness', 'context_relevancy', 'answer_relevancy','context_recall']].values

 return statistics.harmonic_mean(values)

Step 4. Create a Function to run RAGAS Evaluation from the evaluation json dataset:

def eval_ragas(ev_file_path, ev_result_path,llm_model='ai-mixtral-8x7b-instruct'):

 """

 This function evaluates a language model's performance using a dataset and metrics.

 It sets the NVAPI_KEY, initializes a ChatNVIDIA model and LangchainLLM object, loads the

 evaluation dataset, prepares data samples, creates a Dataset object, sets the language model

 for each metric, and evaluates the model with the specified metrics, printing the results.

 """

 llm = ChatNVIDIA(base_url="http://10.102.2.216:31641/v1",

model="meta/llama3-8b-instruct",nvidia_api_key="not-used", max_tokens=1024)

 nvpl_llm = LangchainLLMWrapper(langchain_llm=llm)

 model = "NV-Embed-QA"

 url="http://10.102.2.216:32128/v1/embeddings"

 batch_size=32

 embeddings = NeMoEmbeddings(

 batch_size=batch_size, model=model, api_endpoint_url=url

)

 nvpl_embeddings = LangchainEmbeddingsWrapper(embeddings)

 try:

 with open(ev_file_path, "r", encoding="utf-8") as file:

 json_data = json.load(file)

 except Exception as e:

 logger.info(f"Error Occured while loading file : {e}")

 eval_questions = []

 eval_answers = []

 ground_truth = []

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 146 of 170

-

 vdb_contexts = []

 for entry in json_data:

 eval_questions.append(entry["question"])

 eval_answers.append(entry["answer"])

 vdb_contexts.append(entry['contexts'])

 ground_truth.append(entry["ground_truth_answer"])

 data_samples = {

 'question': eval_questions,

 'answer': eval_answers,

 'contexts': vdb_contexts,

 'ground_truth': ground_truth,

 }

 # print(data_samples)

 dataset = Dataset.from_dict(data_samples)

 print(dataset)

 result = evaluate(

 dataset,

 llm=llm,

 embeddings=nvpl_embeddings,

 metrics=[

 answer_similarity,

 faithfulness,

 context_precision,

 context_relevancy,

 answer_relevancy,

 context_recall

],

)

 df = result.to_pandas()

 df['ragas_score']=df.apply(calculate_ragas_score,axis=1)

 df.to_parquet(ev_result_path+'.parquet')

 result['ragas_score']= statistics.harmonic_mean([result['faithfulness'], result['context_relevancy'],

result['answer_relevancy'], result['context_recall']])

 with open(ev_result_path+'.json', "w", encoding="utf-8") as json_file:

 json.dump(result, json_file, indent=2)

The following are the results:

eval_ragas('/home/admin/RAG/flexpod_eval.json','/home/admin/RAG/results/flexpod_evaluator')

{

 "answer_similarity": 0.7552602351824748,

 "faithfulness": 0.7331417379645726,

 "context_precision": 0.5098039215176471,

 "context_relevancy": 0.24522045977793314,

 "answer_relevancy": 0.6320471238774731,

 "context_recall": 0.5671783662960134,

 "ragas_score": 0.45520601087765455

}

Understanding the Metrics

● Answer Similarity

The concept of Answer Semantic Similarity pertains to the assessment of the semantic resemblance

between the generated answer and the ground truth. This evaluation is based on the ground truth and

the answer, with values falling within the range of 0 to 1. A higher score signifies a better alignment be-

tween the generated answer and the ground truth.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 147 of 170

-

Measuring the semantic similarity between answers can offer valuable insights into the quality of the

generated response. This evaluation utilizes a cross-encoder model to calculate the semantic similarity

score.

● Faithfulness

This measures the factual consistency of the generated answer against the given context. It is calculated

from answer and retrieved context. The answer is scaled to (0,1) range. Higher the better.

The generated answer is regarded as faithful if all the claims made in the answer can be inferred from the

given context. To calculate this, a set of claims from the generated answer is first identified. Each of these

claims is cross-checked with the given context to determine if it can be inferred from the context. The

faithfulness score is determined by:

● Context Precision

Context Precision is a metric that evaluates whether all the ground-truth relevant items present in

the contexts are ranked higher or not. Ideally all the relevant chunks must appear at the top ranks. This

metric is computed using the question, ground_truth and the contexts, with values ranging between 0 and

1, where higher scores indicate better precision.

Where K is the total number of chunks in contexts and vk∈ {0,1} is the relevance indicator at rank k.

● Context Relevancy

This metric gauge the relevancy of the retrieved context, calculated based on both

the question and contexts. The values fall within the range of (0, 1), with higher values indicating better

relevancy.

Ideally, the retrieved context should exclusively contain essential information to address the provided

query. To compute this, we initially estimate the value of |S| by identifying sentences within the retrieved

context that are relevant for answering the given question. The final score is determined by the following

formula:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 148 of 170

-

● Answer Relevancy

The evaluation metric, Answer Relevancy, focuses on assessing how pertinent the generated answer is to

the given prompt. A lower score is assigned to answers that are incomplete or contain redundant infor-

mation and higher scores indicate better relevancy. This metric is computed using the question,

the context, and the answer.

The Answer Relevancy is defined as the mean cosine similarity of the original question to a number of

artificial questions, which were generated (reverse engineered) based on the answer:

Where:

● Egi is the embedding of the generated question i.

● Eo is the embedding of the original question.

● N is the number of generated questions, which is 3 default.

Note: Even though in practice the score will range between 0 and 1 most of the time, this is not mathematically

guaranteed, due to the nature of the cosine similarity ranging from -1 to 1.

● Context Recall

Context recall measures the extent to which the retrieved context aligns with the annotated answer,

treated as the ground truth. It is computed using question, ground truth and the retrieved context, and the

values range between 0 and 1, with higher values indicating better performance. To estimate context

recall from the ground truth answer, each claim in the ground truth answer is analyzed to determine

whether it can be attributed to the retrieved context or not. In an ideal scenario, all claims in the ground

truth answer should be attributable to the retrieved context. A reference free version of this is available

as context_utilization.

The formula for calculating context recall is as follows:

https://docs.ragas.io/en/latest/concepts/metrics/context_utilization.html

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 149 of 170

-

● RAGAS Score

This metric provides a measure of how well the summary captures the important information from

the contexts. The intuition behind this metric is that a good summary shall contain all the important in-

formation present in the context (or text).

First extract a set of important key phrases from the context. These key phrases are then used to generate

a set of questions. The answers to these questions are always yes (1) for the context. Ask these questions

to the summary and calculate the summarization score as the ratio of correctly answered questions to the

total number of questions.

Compute the question-answer score using the answers, which is a list of 1s and 0s. The question-answer

score is then calculated as the ratio of correctly answered questions (answer = 1) to the total number of

questions.

Milvus Benchmarking with VectorDBBench

Today, the growth of unstructured data and the rise of AI and LLMs have highlighted vector databases as a crucial

component of the infrastructure. As the focus shifts to these tools, enterprises need to assess and select the right

one for their business. Vector databases manage unstructured data like images, video, text and so on, using

vector embeddings. Vector databases specialize in semantic similarity searches using a machine-learning tech-

nique called Approximate Nearest Neighbor (ANN). Vector databases are the vector store for RAG applications.

Milvus is a high-performance, highly scalable vector database that runs efficiently across a wide range of envi-

ronments. Unstructured data varies in format and carries rich underlying semantics, making it challenging to an-

alyze. To manage this complexity, embeddings are used to convert unstructured data into numerical vectors that

capture its essential characteristics. These vectors are then stored in a vector database, enabling fast and scala-

ble searches and analytics. Milvus offers robust data modeling capabilities, enabling you to organize your un-

structured or multi-modal data into structured collections. Milvus allocates over 80% of its computing resources to

its vector databases and search engine. Given the computational demands of high-performance computing, GPUs

emerge as a pivotal element of vector database platform, especially within the vector search domain.

NVIDIA’s latest innovation, the GPU-based graph index CAGRA (CUDA ANNs GRAph-based), represents a sig-

nificant milestone. With NVIDIA’s assistance, Milvus integrated support for CAGRA in its 2.4 version, marking a

significant stride toward overcoming the obstacles of efficient GPU implementation in vector search.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 150 of 170

-

The decision to leverage GPU indexes was primarily motivated by performance considerations. We undertook a

comprehensive evaluation of Milvus’ performance utilizing the VectorDBBench tool, focusing on CAGRA index and

observing key evaluation metrics like QPS (Queries Per Second), latency, and recall.

VectorDBBench is the best performing and cost-effective comparison open-source tool, and it offers more than

just benchmark results for popular vector databases and cloud services.

Query Performance Metrics

Assessing the query performance of vector databases typically involves three key metrics: latency, queries per

second (QPS), and recall rate.

Latency testing measures the time taken for a single query under serial testing conditions. P99 latency is a

commonly used metric representing the duration within which 99% of queries are completed. It offers a more

nuanced perspective than average latency and aligns closely with user experience.

Note: While latency testing is straightforward, it's heavily influenced by network conditions, especially for cloud

products.

QPS refers to a database's query capability under high concurrency. It is achieved by simultaneously sending

multiple requests from the test client to maximize database CPU/ GPU utilization and observe throughput. Unlike

latency, QPS is less susceptible to network fluctuations, providing a comprehensive evaluation of a vector data-

base's real-world performance.

Recall is the proportion of the ground truth documents that are represented in the retrieved chunks. This is a

measure of the completeness of the results.

High recall ensures that the LLM is comprehensive in its responses, capturing all the relevant information neces-

sary for the task.

Procedure 1. Milvus Standalone deployment with NetApp NFS FlexGroup

Step 1. Create a new namespace for milvus:

oc create namespace milvus-dbstore

Step 2. Add the milvus repository:

 helm repo add milvus https://zilliztech.github.io/milvus-helm/

Step 3. Update the helm repository:

helm repo update

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 151 of 170

-

Note: Make sure that storageclass created for flexgroup is the default storageclass in the cluster FlexGroup has

a requirement of minimum size of the PVC to be 800G. Therefore, update the custom_value.yaml file to update the

PVC size.

Step 4. Create a file named custom_value.yaml to ensure PVCs are on flexgroup and use the milvus image
for deployment on GPUs:

image:

 all:

 repository: milvusdb/milvus

 tag: latest-gpu

 pullPolicy: IfNotPresent

standalone:

 replicas: 1 # Run standalone mode with replication disabled

 resources:

 requests:

 nvidia.com/gpu: "1"

 limits:

 nvidia.com/gpu: "1"

persistentVolumeClaim:

 storageClass:

 accessModes: ReadWriteOnce

 size: 800Gi

Step 5. Install the helm chart and point to the above created file using -f argument as shown below:

helm install milvus milvus/milvus -f custom_value.yaml -n milvus-dbstore

Step 6. Check the status of the pods:

oc get pods -n milvus-dbstore

All pods should be running and in a ready state within couple of minutes:

[admin@ocp-installer ~]$ oc get all -n milvus-dbstore

Warning: apps.openshift.io/v1 DeploymentConfig is deprecated in v4.14+, unavailable in v4.10000+

Warning: kubevirt.io/v1 VirtualMachineInstancePresets is now deprecated and will be removed in v2.

NAME READY STATUS RESTARTS AGE

pod/milvus-db-etcd-0 1/1 Running 2 10h

pod/milvus-db-minio-74bc764f5c-vtfrb 1/1 Running 2 10h

pod/milvus-db-standalone-5d765d788-bpdcz 1/1 Running 0 8h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

 AGE

service/milvus-db NodePort 172.30.27.219 <none> 19530:32063/TCP,9091:30467/TCP

 10h

service/milvus-db-etcd ClusterIP 172.30.121.134 <none> 2379/TCP,2380/TCP

 10h

service/milvus-db-etcd-headless ClusterIP None <none> 2379/TCP,2380/TCP

 10h

service/milvus-db-minio ClusterIP 172.30.40.200 <none> 9000/TCP

 10h

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/milvus-db-minio 1/1 1 1 10h

deployment.apps/milvus-db-standalone 1/1 1 1 10h

NAME DESIRED CURRENT READY AGE

replicaset.apps/milvus-db-minio-74bc764f5c 1 1 1 10h

replicaset.apps/milvus-db-standalone-5d765d788 1 1 1 10h

NAME READY AGE

statefulset.apps/milvus-db-etcd 1/1 10h

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 152 of 170

-

NAME HOST/PORT PATH SE

RVICES PORT TERMINATION WILDCARD

route.route.openshift.io/milvus-route milvus-route-milvus-vectordb.apps.ocp.flexpodb4.cisco.com mi

lvus-db milvus None

The milvus version used in the solution is 2.4.12:

[admin@ocp-installer ~]$ helm list -n milvus-dbstore

NAME NAMESPACE REVISION UPDATED STATUS CHART

 APP VERSION

milvus-db milvus-dbstore 1 2024-10-10 14:23:34.0631291 -0400

EDT deployed milvus-4.2.12 2.4.12

For detailed information, click the following links:

● https://milvus.io/docs/install_cluster-helm-gpu.md

● https://github.com/milvus-io/milvus

VectorDBBench

VectorDBBench is an open-source benchmarking tool designed for high-performance data storage and retrieval

systems. This tool allows users to test and compare different vector database systems' performance to determine

their specific use case's most suitable database system. Using VectorDBBench, users can make informed deci-

sions based on the actual vector database performance of the systems they are evaluating.

VectorDBBench is written in Python and licensed under the MIT open-source license, The tool is actively main-

tained by a community of developers committed to improving its features and performance.

Procedure 1. Install and run the VectorDBBench tool

Step 1. Prerequisite:

Python >= 3.11

Step 2. Install vectordb-bench:

pip install vectordb-bench

Step 3. Run vectordb-bench:

python -m vectordb_bench

OR

init_bench

After completion, the tool is up and running and can access the streamlit web application via the network URL.

For more information, see: https://github.com/zilliztech/VectorDBBench

Procedure 2. Run the Test

Step 1. Select the database(s). There are various options available for vector databases like Milvus,
Pinecone, PgVector, and so on.

https://milvus.io/docs/install_cluster-helm-gpu.md
https://github.com/milvus-io/milvus
https://github.com/zilliztech/VectorDBBench

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 153 of 170

-

Note: In our tests, we used Milvus.

Step 2. Provide the required configuration information for the selected database:

Step 3. Select the test case to run the benchmarking test.

Note: We ran a Search Performance Test case with a medium dataset (Cohere 1M vectors, 768 dimensions)

Step 4. Select the index type. You can select the index type depending upon their deployment charac-
teristics and datasets. Some of the options provided by vectordbbench are DISKANN, HNSW, GPU_IVF_FLAT,
GPU_IVF_PQ and so on. There is a flexibility provided to change the test parameters pertaining to a particular
index type.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 154 of 170

-

Note: We used GPU_CAGRA index with default parameters for running the tests.

● GPU_CAGRA Index Type

GPU_CAGRA is a graph-based index optimized for GPUs. Using inference-grade GPUs to run the Milvus

GPU version can be more cost-effective compared to using expensive training-grade GPUs.

Note: For more information about index building and search parameters, go to:

https://milvus.io/docs/gpu_index.md.

Note: For detailed information about the integration of milvus with CAGRA, go to:

https://zilliz.com/blog/Milvus-introduces-GPU-index-CAGRA

● Task Label

You can provide your custom task label or go by default as provided by the tool.

Benchmarking Test Details

In this solution, we executed Search Performance test of Milvus vectorstore DB with Cohere 1M dataset size and

768 dimensions and varied the batch size for the ML model. To validate the test, we used latencyp99, recall,

load-duration, and QPS (Queries Per Second) as the KPIs.

To update the batch size between test iterations, update the NUM_PER_BATCH variable in the __init__.py file

which is stored under python3.11/site-packages/vectordb_bench directory.

Note: We used batch sizes of 1, 10, 50, and 100 in the test iterations.

Note: The dataset gets downloaded on the client machine where vectordb_bench is running. Therefore, make

sure there is sufficient disk space on the system.

Since these tests are performed with GPU-based index, you will also observe GPU utilization during the test.

https://milvus.io/docs/gpu_index.md
https://zilliz.com/blog/Milvus-introduces-GPU-index-CAGRA

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 155 of 170

-

Test Results

This chapter contains the following:

● Batch Size 1

● Batch Size 10

● Batch Size 50

● Batch Size 100

● Results Inference

Batch Size 1

While running the test, we noticed that the GPU was being utilized during multiple processes like data ingestion,

querying, and so on. One instant is shown below using the nvidia-smi tool.

With batch size 1, we observed QPS of around 4729, Recall of 0.9605, and latencyp99 of 3.4ms.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 156 of 170

-

Batch Size 10

With batch size 10, latencyp99 of 2.6ms, recall of 0.9715, and QPS of 4772 was observed.

Batch Size 50

With batch size 50, recall of 0.9753, latencyp99 of 2.5ms, and QPS of 4866 was observed.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 157 of 170

-

Batch Size 100

With batch size 100, QPS of 5017, latencyp99 of 2.4ms, and recall of 0.9761 was recorded.

Results Inference

Table 17 lists the test results and specifications.

Table 17. Test Results

Test configuration:

Vector Database - Milvus standalone

Index type - GPU_CAGRA

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 158 of 170

-

Storage backend – NFS FlexGroup

Cluster details - 2 worker nodes with GPU and 3 master nodes

OpenShift version – 4.16

Batch size Recall serial_latency_p99

(ms)

QPS (Query per second)

1 0.9605 3.4 4729

10 0.9715 2.6 4772

50 0.9753 2.5 4866

100 0.9761 2.4 5017

From these results, we can infer that as the batch size increases, the Multi Modal RAG performs better, that is

validated by the trend in the output KPIs with Milvus vectorstore using VectorDBBench tool.

Note: Our test results are in agreement with the observations made by Zilliz as explained in the following link:

https://zilliz.com/blog/Milvus-introduces-GPU-index-CAGRA

The benchmark results underscore the substantial performance benefits of adopting GPU-accelerated indexes

like CAGRA in Milvus. Not only does it excel in accelerating search tasks across batch sizes, but it also significantly

enhances index construction speed, affirming the value of GPUs in optimizing vector database performance.

https://zilliz.com/blog/Milvus-introduces-GPU-index-CAGRA

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 159 of 170

-

Inferencing with Webex Bot

This chapter contains the following:

● About Webex Bot

● About NVIDIA NIM Microservice

● Deploy BOT Microservice

● AI Endpoints from NVIDIA NIM

● Inferencing with NIM

About Webex Bot

Webex Bots are like regular Webex users. They can participate in 1-to-1 and group spaces and users can mes-

sage them directly or add them to a group space. A special badge is added to a bot's avatar in the Webex clients,

so users know they're interacting with a bot instead of a human.

In this design, the Webex Bot Microservice is deployed to the stack and that microservice calls the NVIDIA NIM API

to perform the LLM Inferencing.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 160 of 170

-

About NVIDIA NIM Microservice

NVIDIA NIM is a set of easy-to-use microservices designed to accelerate the deployment of generative AI models

across the cloud, data center, and workstations. NIM packages are categorized by model family and a per model

basis. For example, NVIDIA NIM for large language models (LLMs) brings the power of state-of-the-art LLMs to

enterprise applications, providing unmatched natural language processing and understanding capabilities.

In this solution, we demonstrated how quickly you can get started with NVIDIA NIM (as a Large Language Model

inference framework).

NIM makes it easy for IT and DevOps teams to self-host large language models (LLMs) in their own managed

environments while still providing developers with industry standard APIs that allow them to build powerful copi-

lots, chatbots, and AI assistants that can transform their business. Leveraging NVIDIA’s cutting-edge GPU ac-

celeration and scalable deployment, NIM offers the fastest path to inference with unparalleled performance.

Deploy BOT Microservice

A prerequisite is to create a Config File JSON and update the bot’s name and bot token. To create a new bot, visit

developer.Webex.com.

Procedure 1. Deploy BOT microservice

Step 1. Create Bot config.json file:

 {
 "bot_name": "examplename…..",
 "Webex_token": "lakjsdflkjalsjfd……………………………",
 "approved_domains": ["cisco.com"],
 "approved_users": [],
 "approved_rooms": [],
 "ai_generate_endpoint": "http://10.102.2.216:32126/api/chain-server/generate",
 "ai_document_upload_url":"http://10.102.2.216:31935/documents",
 "ai_generate":"http://10.102.2.215:31641/v1",
 "ai_model":"meta/llama3-8b-instruct",
 "ai_embed":"http://10.102.2.214:32128/v1",
 "ai_embed_model":"NV-Embed-QA",
 "nvidia_api_key":"not-used",
 "batch_size":32,
 "max_tokens":1024,
 "temperature":0.75,
 "top_p":0.7

}

Step 2. Mount this config.json file to bot microservice to start interacting with NVIDIA NIM. Next Section
describes more on how to access different services which are being deployed on this stack.

AI Endpoints from NVIDIA NIM

The AI Generate, embedding endpoints are exposed from multiple microservices. Below is the example way to

find out the list of endpoints needed for inferencing based on the use case.

Procedure 1. Run Kubernetes or OpenShift commands

Step 1. Fetch the Node Port for Chain-Server, Playground and NIM LLM using the following commands:

http://developer.webex.com/

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 161 of 170

-

[admin@ocp-installer conf]$ kubectl get svc -A | grep 31935

canonical-rag chain-server

NodePort 172.30.72.223 <none> 8081:31935/TCP

4d4h

[admin@ocp-installer conf]$ kubectl get svc -A | grep 32126

canonical-rag rag-playground

NodePort 172.30.214.103 <none> 3001:32126/TCP

4d4h

[admin@ocp-installer conf]$ kubectl get svc -A | grep 31641

nim-llm pkoppa-nim-llm

NodePort 172.30.66.137 <none> 8000:31641/TCP

4d8h

[admin@ocp-installer conf]$ kubectl get svc -A | grep 32128

text-embedding-nim nemo-embedder-nemo-retriever-embedding-ms

NodePort 172.30.14.58 <none> 8080:32128/TCP,8001:31785/TCP

4d6h

Once the Node Ports are fetched, the API’s can be viewed for each microservice. Depending on inferencing re-

quirements, multiple of these API’s can be leveraged:

In this solution, the NVIDIA Chain-Server has been deployed to perform RAG Testing. Chain Server provides APIs

to upload, delete, Search, and generate answers from Vector Store:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 162 of 170

-

This solution also contains NVIDIA NeMo Retriever Embedding Microservice and their API’s can be accessed:

Inferencing with NIM

Python based OpenAI libraries or Langchain based ChatNVIDIA Library can be leveraged to generate answers

from user’s queries.

Procedure 1. Create LLM Class

Step 1. Call the Generate Endpoint from the Python Class:

class LLM:
 def __init__(self):
 self.model = ChatNVIDIA(
 base_url=CONF.ai_generate,
 model=CONF.ai_model,
 nvidia_api_key=CONF.nvidia_api_key,
 max_tokens=CONF.max_tokens
)

 def __call__(self):
 return self.model

 def _generate(self, query):
 response=self.model.invoke(query)
 return response.content

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 163 of 170

-

Procedure 2. Classify User Query

Since the users through the Webex bot can ask general text generation queries or RAG based queries, pass the

user question through a router, and classify between General or Knowledge.

Step 1. Create the LLM Prompt to classify:

init_prompt='''

Given the user question below, classify it as either being about fetching results from the knowledge base or general

enquiry.

example: from the attachment, tell me the number of employees in the company.

classification: knowledge

example: Write a python program to calculate the factorial of a number.

classification: general enquiry

Do not respond with more than one word.

<question>

{question}

</question>

Classification:'''

Step 2. Create a general enquiry prompt:

general_prompt='''

 Respond to the user question below.

 Question: {question}

 Answer:

'''

Step 3. Define a router function:

def router(info):

 if "general" in info['topic'].lower():

 chain=PromptTemplate.from_template(general_prompt)

 elif "classification" in info['topic'].lower():

 chain=PromptTemplate.from_template(init_prompt)

 else:

 chain=PromptTemplate.from_template(general_prompt)

 return chain

Step 4. Loop through to create chain of tasks and get the final response:

def generate_loop(query):
 model=LLM()
 rag_model=LLM(use_knowledge_base=True)
 response='classification'
 try:
 cont=True
 while cont:
 if 'general' in response.lower():
 chain=(
 RunnableLambda(router) |
 model() |
 StrOutputParser()
)
 cont=False
 elif 'knowledge' in response.lower():
 chain=(
 RunnableLambda(router) |
 rag_model() |
 StrOutputParser()
)
 cont=False
 else:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 164 of 170

-

 chain=(
 RunnableLambda(router) |
 model() |
 StrOutputParser()
)
 response=chain.invoke({"topic":response,"question":query})
 if response == 'classification':
 pass
 return response
 except:
 logging.error(traceback.format_exc())
 return "An error occurred"

The following are some example screenshots of Inferencing with Webex Bot:

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 165 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 166 of 170

-

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 167 of 170

-

About the Authors

Paniraja Koppa, Technical Marketing Engineer, Cisco Systems, Inc.

Paniraja Koppa is a member of the Cisco Unified Computing System (Cisco UCS) solutions team. He has over 15

years of experience designing, implementing, and operating solutions in the data center. In his current role, he

works on design and development, best practices, optimization, automation and technical content creation of

compute and hybrid cloud solutions. He also worked as technical consulting engineer in the data center virtual-

ization space. Paniraja holds a master’s degree in computer science. He has presented several papers at inter-

national conferences and speaker at events like Cisco Live US and Europe, Open Infrastructure Summit, and other

partner events. Paniraja’s current focus is on Generative AI solutions.

Mahesh Pabba, Customer Delivery Architect, Cisco Systems, Inc.

Mahesh Pabba is a seasoned technology professional with vast experience in the IT industry. With a strong

foundation in enterprise applications, he has successfully navigated various domains, excelling in automation and

development using cutting-edge technologies. As a skilled Solution Architect, he has designed and implemented

numerous innovative solutions throughout his career. Additionally, he possesses expertise in artificial intelligence,

specializing in training, inferencing, and deploying AI solutions on Cisco hardware, encompassing compute,

network, and storage environments. His unique blend of technical acumen and solution-oriented approach posi-

tions him as a valuable contributor to any AI design initiative.

Keith Brant, Customer Delivery Architect, Cisco Systems, Inc.

Keith has more than 25 years of experience in IT, 15 of which have been at Cisco. He focuses on Compute, Vir-

tualization, Hyperconverged Infrastructure, and AI. Keith earned a bachelor’s degree in Computer Management

Systems.

Anurag Guda, Technical Marketing Engineer, NVIDIA

Anurag Guda is a technical marketing engineer at NVIDIA, focusing on building AI software solutions on

cloud-native technologies. He helps customers to deploy applications on the EGX platform with NVIDIA Certified

Systems. He also works closely with leading ISVs, and OEMs partners to bring AI solutions to enterprise. Anurag

has an M.Sc. in engineering and technology from Murray State University.

Kamini Singh, Technical Marketing Engineer, Hybrid Cloud Infra & OEM Solutions, NetApp Inc.

Kamini Singh is a Technical Marketing engineer at NetApp. She has more than five years of experience in data

center infrastructure solutions. She focuses on FlexPod hybrid cloud infrastructure solution design, implementa-

tion, validation, automation, and sales enablement. Kamini holds a bachelor’s degree in Electronics and Commu-

nication and a master’s degree in Communication Systems.

Kavyashree Mahadevaiah, Technical Marketing Engineer, Hybrid Cloud Infra & OEM Solutions, NetApp Inc.

Kavyashree Mahadevaiah is a Technical Marketing Engineer for the FlexPod solutions team and has more than 2

years of experience in Data Center infrastructure solutions which includes On-prem, Hybrid cloud space. She

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 168 of 170

-

focuses on the design, implementation, validation and automation of converged infrastructure and hybrid cloud

infrastructure solutions. Kavyashree holds a Bachelor's degree in Electronics and Communication.

Acknowledgements

For their support and contribution to the design, validation, and creation of this Cisco Validated Design, the au-

thors would like to thank:

● John George, Technical Marketing Engineer, Cisco Systems, Inc.

● Chris O'Brien, Senior Director, Cisco Systems, Inc.

● Dwight Ludington, Customer Delivery Architect, Cisco Systems, Inc.

● Rohit Mittal, Product Manager, Cisco Systems, Inc.

● Urshila Lohani, Product Manager, Cisco Systems, Inc.

● Abhinav Singh, Senior Technical Marketing Engineer, NetApp Inc.

● Sriram Sagi, Principal Product Manager, FlexPod, NetApp Inc.

● Bobby Oommen, Senior Manager, FlexPod Solutions, NetApp Inc.

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 169 of 170

-

Feedback

For comments and suggestions about this guide and related guides, join the discussion on Cisco Community at

https://cs.co/en-cvds.

CVD Program

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY,

"DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND ITS SUPPLIERS DIS-

CLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING,

USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,

SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR

LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR

ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR

APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER PROFES-

SIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECHNICAL

ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT TESTED

BY CISCO.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco Webex,

the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play,

and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To

You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork

Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Uni-

fied Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers, Cisco UCS C-Series Rack Servers,

Cisco UCS S-Series Storage Servers, Cisco UCS Manager, Cisco UCS X-Series, Cisco UCS Management Soft-

ware, Cisco Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000 Series, Cisco Nexus 7000

Series. Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco MDS Series, Cisco Unity,

Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing,

FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, LightStream, Linksys, MediaTone,

MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow,

PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, SE1tackWise, The Fast-

est Way to Increase Your Internet Quotient, TransPath, Webex, and the Webex logo are registered trade-marks of

Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. (LDW_P1)

All other trademarks mentioned in this document or website are the property of their respective owners. The use

of the word partner does not imply a partnership relationship between Cisco and any other company. (0809R)

https://cs.co/en-cvds
https://cs.co/en-cvds

© 2024 Cisco Systems Inc., and/or its affiliates. All rights reserved. Page 170 of 170

-

