
Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
First Published: 2018-07-18

Last Modified: 2019-07-24

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1721R)

© 2018–2019 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/go/trademarks

C O N T E N T S

Preface xiiiP R E F A C E

Audience xiii

Document Conventions xiii

Related Documentation for Cisco Nexus 3600 Platform Switches xiv

Documentation Feedback xiv

Communications, Services, and Additional Information xiv

New and Changed Information 1C H A P T E R 1

New and Changed Information 1

Overview 3C H A P T E R 2

Programmability Overview 3

Standard Network Manageability Features 4

Advanced Automation Feature 4

Power On Auto Provisioning Support 4

Programmability Support 4

NX-API Support 5

Python Scripting 5

Bash 5

Perl Modules 5

Shells and Scripting 7P A R T I

Bash 9C H A P T E R 3

About Bash 9

Guidelines and Limitations 9

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
iii

Accessing Bash 9

Escalate Privileges to Root 11

Examples of Bash Commands 12

Displaying System Statistics 12

Running Bash from CLI 13

Running Python from Bash 13

Managing RPMs 14

Installing RPMs from Bash 14

Upgrading RPMs 15

Downgrading an RPM 15

Erasing an RPM 15

Persistently Daemonizing an SDK- or ISO-built Third Party Process 16

Persistently Starting Your Application from the Native Bash Shell 17

An Example Application in the Native Bash Shell 17

Guest Shell 21C H A P T E R 4

About the Guest Shell 21

Guidelines and Limitations 22

Accessing the Guest Shell 26

Resources Used for the Guest Shell 27

Capabilities in the Guest Shell 27

NX-OS CLI in the Guest Shell 27

Network Access in Guest Shell 28

Access to Bootflash in Guest Shell 30

Python in Guest Shell 30

Python 3 in Guest Shell 2.x (Centos 7) 31

Installing RPMs in the Guest Shell 34

Security Posture for Guest Shell 35

Kernel Vulnerability Patches 35

ASLR and X-Space Support 35

Namespace Isolation 36

Root-User Restrictions 37

Resource Management 37

Guest File System Access Restrictions 38

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
iv

Contents

Managing the Guest Shell 38

Disabling the Guest Shell 41

Destroying the Guest Shell 42

Enabling the Guest Shell 42

Replicating the Guest Shell 43

Exporting Guest Shell rootfs 44

Importing Guest Shell rootfs 44

Importing YAML File 45

show guestshell Command 49

Verifying Virtual Service and Guest Shell Information 49

Persistently Starting Your Application From the Guest Shell 51

Procedure for Persistently Starting Your Application from the Guest Shell 52

An Example Application in the Guest Shell 52

Troubleshooting Guest Shell Issues 53

Python API 55C H A P T E R 5

About the Python API 55

Using Python 55

Cisco Python Package 55

Using the CLI Command APIs 56

Invoking the Python Interpreter from the CLI 58

Display Formats 58

Non-interactive Python 59

Running Scripts with Embedded Event Manager 61

Python Integration with Cisco NX-OS Network Interfaces 61

Cisco NX-OS Security with Python 62

Examples of Security and User Authority 62

Example of Running Script with Scheduler 63

Scripting with Tcl 65C H A P T E R 6

About Tcl 65

Guidelines and Limitations 65

Tclsh Command Help 65

Tclsh Command History 66

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
v

Contents

Tclsh Tab Completion 66

Tclsh CLI Command 66

Tclsh Command Separation 67

Tcl Variables 67

Tclquit 67

Tclsh Security 67

Running the Tclsh Command 68

Navigating Cisco NX-OS Modes from the Tclsh Command 69

Tcl References 70

iPXE 71C H A P T E R 7

About iPXE 71

Netboot Requirements 72

Guidelines and Limitations 72

Notes for iPXE 72

Boot Mode Configuration 80

Verifying the Boot Order Configuration 82

Kernel Stack 83C H A P T E R 8

About Kernel Stack 83

Guidelines and Limitations 83

Changing the Port Range 84

Applications 87P A R T I I

Third-Party Applications 89C H A P T E R 9

About Third-Party Applications 89

Installing Signed Third-Party RPMs by Importing Keys Automatically 89

Installing Signed RPM 91

Checking a Signed RPM 91

Installing Signed RPMs by Manually Importing Key 92

Installing Signed Third-Party RPMs by Importing Keys Automatically 94

Adding Signed RPM into Repo 96

Persistent Third-Party RPMs 96

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
vi

Contents

Installing RPM from VSH 97

Package Addition 97

Package Activation 98

Deactivating Packages 99

Removing Packages 99

Displaying Installed Packages 99

Displaying Detail Logs 100

Upgrading a Package 100

Downgrading a Package 100

Third-Party Applications 101

NX-OS 101

collectd 101

Ganglia 101

Iperf 101

LLDP 102

Nagios 102

OpenSSH 102

Quagga 102

Splunk 102

tcollector 102

tcpdump 103

Tshark 103

Ansible 105C H A P T E R 1 0

Prerequisites 105

About Ansible 105

Cisco Ansible Module 105

Puppet Agent 107C H A P T E R 1 1

About Puppet 107

Prerequisites 107

Puppet Agent NX-OS Environment 108

ciscopuppet Module 108

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
vii

Contents

Using Chef Client with Cisco NX-OS 111C H A P T E R 1 2

About Chef 111

Prerequisites 111

Chef Client NX-OS Environment 112

cisco-cookbook 112

Nexus Application Development - ISO 115C H A P T E R 1 3

About ISO 115

Installing the ISO 115

Using the ISO to Build Applications 116

Using RPM to Package an Application 117

Nexus Application Development - SDK 119C H A P T E R 1 4

About the Cisco SDK 119

Installing the SDK 119

Procedure for Installation and Environment Initialization 120

Using the SDK to Build Applications 121

Using RPM to Package an Application 122

Creating an RPM Build Environment 123

Using General RPM Build Procedure 123

Example to Build RPM for collectd with No Optional Plug-Ins 124

Example to Build RPM for collectd with Optional Curl Plug-In 125

NX-SDK 127C H A P T E R 1 5

About the NX-SDK 127

Install the NX-SDK 128

Building and Packaging C++ Applications 128

Installing and Running Custom Applications 131

Using Docker with Cisco NX-OS 135C H A P T E R 1 6

About Docker with Cisco NX-OS 135

Guidelines and Limitations 135

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
viii

Contents

Prerequisites for Setting Up Docker Containers Within Cisco NX-OS 136

Starting the Docker Daemon 136

Configure Docker to Start Automatically 137

Starting Docker Containers: Host Networking Model 138

Starting Docker Containers: Bridged Networking Model 139

Mounting the bootflash and volatile Partitions in the Docker Container 140

Enabling Docker Daemon Persistence on Enhanced ISSU Switchover 140

Resizing the Docker Storage Backend 141

Stopping the Docker Daemon 143

Docker Container Security 144

Securing Docker Containers With User namespace Isolation 144

Moving the cgroup Partition 145

Docker Troubleshooting 145

Docker Fails to Start 146

Docker Fails to Start Due to Insufficient Storage 146

Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message) 147

Failure to Pull Images from Docker Hub (Client Timeout Error Message) 147

Docker Daemon or Containers Not Running On Switch Reload or Switchover 148

Resizing of Docker Storage Backend Fails 148

Docker Container Doesn't Receive Incoming Traffic On a Port 148

Unable to See Data Port And/Or Management Interfaces in Docker Container 149

General Troubleshooting Tips 149

NX-API 151P A R T I I I

NX-API CLI 153C H A P T E R 1 7

About NX-API CLI 153

Transport 153

Message Format 154

Security 154

Using NX-API CLI 154

Escalate Privileges to Root on NX-API 156

NX-API Management Commands 157

Working With Interactive Commands Using NX-API 159

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
ix

Contents

NX-API Request Elements 159

NX-API Response Elements 163

Restricting Access to NX-API 164

Updating an iptable 164

Making an Iptable Persistent Across Reloads 166

Table of NX-API Response Codes 167

XML and JSON Supported Commands 168

About JSON (JavaScript Object Notation) 169

Examples of XML and JSON Output 169

NX-API REST 177C H A P T E R 1 8

About NX-API REST 177

NX-API Developer Sandbox 179C H A P T E R 1 9

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2) 179

About the NX-API Developer Sandbox 179

Guidelines and Limitations 180

Configuring the Message Format and Command Type 180

Using the Developer Sandbox 182

Using the Developer Sandbox to Convert CLI Commands to Payloads 182

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later 185

About the NX-API Developer Sandbox 185

Guidelines and Limitations 186

Configuring the Message Format and Input Type 187

Using the Developer Sandbox 189

Using the Developer Sandbox to Convert CLI Commands to REST Payloads 189

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands 192

Using the Developer Sandbox to Convert from RESTCONF to json or XML 197

Model-Driven Programmability 201P A R T I V

Managing Components 203C H A P T E R 2 0

About the Component RPM Packages 203

Preparing For Installation 205

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
x

Contents

Downloading Components from the Cisco Artifactory 206

Installing RPM Packages 207

Installing the Programmable Interface Base And Common Model Component RPM Packages 207

Converting CLI Commands to Network Configuration Format 209C H A P T E R 2 1

Information About XMLIN 209

Licensing Requirements for XMLIN 209

Installing and Using the XMLIN Tool 210

Converting Show Command Output to XML 210

Configuration Examples for XMLIN 211

XML Management Interface 215P A R T V

XML Management Interface 217C H A P T E R 2 2

About the XML Management Interface 217

About the XML Management Interface 217

NETCONF Layers 217

SSH xmlagent 218

Licensing Requirements for the XML Management Interface 218

Prerequisites to Using the XML Management Interface 219

Using the XML Management Interface 219

Configuring SSH and the XML Server Options 219

Starting an SSH Session 219

Sending the Hello Message 220

Obtaining the XSD Files 220

Sending an XML Document to the XML Server 221

Creating NETCONF XML Instances 221

RPC Request Tag rpc 222

NETCONF Operations Tags 223

Device Tags 224

Extended NETCONF Operations 226

NETCONF Replies 229

RPC Response Tag 230

Interpreting Tags Encapsulated in the Data Tag 230

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
xi

Contents

Information About Example XML Instances 231

Example XML Instances 231

NETCONF Close Session Instance 231

NETCONF Kill-session Instance 232

NETCONF copy-config Instance 232

NETCONF edit-config Instance 232

NETCONF get-config Instance 234

NETCONF Lock Instance 234

NETCONF unlock Instance 235

NETCONF Commit Instance - Candidate Configuration Capability 236

NETCONF Confirmed-commit Instance 236

NETCONF rollback-on-error Instance 236

NETCONF validate Capability Instance 237

Additional References 237

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
xii

Contents

Preface

This preface includes the following sections:

• Audience, on page xiii
• Document Conventions, on page xiii
• Related Documentation for Cisco Nexus 3600 Platform Switches, on page xiv
• Documentation Feedback, on page xiv
• Communications, Services, and Additional Information, on page xiv

Audience
This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Document Conventions
Command descriptions use the following conventions:

DescriptionConvention
Bold text indicates the commands and keywords that you enter literally
as shown.

bold

Italic text indicates arguments for which the user supplies the values.Italic

Square brackets enclose an optional element (keyword or argument).[x]

Square brackets enclosing keywords or arguments separated by a vertical
bar indicate an optional choice.

[x | y]

Braces enclosing keywords or arguments separated by a vertical bar
indicate a required choice.

{x | y}

Nested set of square brackets or braces indicate optional or required
choices within optional or required elements. Braces and a vertical bar
within square brackets indicate a required choice within an optional
element.

[x {y | z}]

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
xiii

DescriptionConvention

Indicates a variable for which you supply values, in context where italics
cannot be used.

variable

A nonquoted set of characters. Do not use quotation marks around the
string or the string will include the quotation marks.

string

Examples use the following conventions:

DescriptionConvention
Terminal sessions and information the switch displays are in screen font.screen font

Information you must enter is in boldface screen font.boldface screen font

Arguments for which you supply values are in italic screen font.italic screen font

Nonprinting characters, such as passwords, are in angle brackets.< >

Default responses to system prompts are in square brackets.[]

An exclamation point (!) or a pound sign (#) at the beginning of a line
of code indicates a comment line.

!, #

RelatedDocumentationforCiscoNexus3600PlatformSwitches
The entire Cisco Nexus 3600 platform switch documentation set is available at the following URL:

http://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/
tsd-products-support-series-home.html

Documentation Feedback
To provide technical feedback on this document, or to report an error or omission, please send your comments
to nexus3k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
xiv

Preface
Related Documentation for Cisco Nexus 3600 Platform Switches

http://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/tsd-products-support-series-home.html
https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/go/marketplace/
https://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
xv

Preface
Preface

https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
xvi

Preface
Preface

C H A P T E R 1
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 3600
Series NX-OS Programmability Guide, 9.2(x).

• New and Changed Information, on page 1

New and Changed Information
This table summarizes the new and changed features for theCisco Nexus 3600 Series NX-OS Programmability
Guide, Release 9.2(x) and where they are documented.

Table 1: New and Changed Features

Where DocumentedChanged
in
Release

DescriptionFeature

Title pageChanged the document title
from 9.x to 9.2(x)

NX-API CLI, on page 1539.2(3)Support for displaying the
output of Cisco NX-OS show
commands is now extended to
the Cisco Nexus 3600-R
switches.

Support for XML and JSON
output

Converting CLI Commands to
Network Configuration Format,
on page 209

9.2(2)Converting NX-OS CLI
commands to Network
Configuration format is
documented.

Support for CLI commands for
NETCONF

XML Management Interface,
on page 217

9.2(2)Support for managing the Cisco
Nexus 3600 switches with an
XML-based tool through the
XML-based Network
Configuration Protocol
(NETCONF) is documented.

XML Management Interface

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
1

Where DocumentedChanged
in
Release

DescriptionFeature

NX-API Developer Sandbox,
on page 179

9.2(2)Various enhancements have
been added to the NX-API
Developer Sandbox.

Updates to NX-API Sandbox

Overview, on page 39.2(2)Support for the Perl modules
has been added.

Perl modules

9.2(1)First 9.x releaseNo updates since Cisco NX-OS
Release 7.x.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
2

New and Changed Information
New and Changed Information

C H A P T E R 2
Overview

• Programmability Overview, on page 3
• Standard Network Manageability Features, on page 4
• Advanced Automation Feature, on page 4
• Programmability Support, on page 4

Programmability Overview
The Cisco NX-OS software running on the Cisco Nexus 3600 Series devices is as follows:

• Resilient

Provides critical business-class availability.

• Modular

Has extensions that accommodate business needs.

• Highly Programmatic

Allows for rapid automation and orchestration through Application Programming Interfaces (APIs).

• Secure

Protects and preserves data and operations.

• Flexible

Integrates and enables new technologies.

• Scalable

Accommodates and grows with the business and its requirements.

• Easy to use

Reduces the amount of learning required, simplifies deployment, and provides ease of manageability.

With the Cisco NX-OS operating system, the device functions in the unified fabric mode to provide network
connectivity with programmatic automation functions.

Cisco NX-OS contains Open Source Software (OSS) and commercial technologies that provide automation,
orchestration, programmability, monitoring and compliance support.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
3

For more information on Open NX-OS, see https://developer.cisco.com/site/nx-os/.

Standard Network Manageability Features
• SNMP (V1, V2, V3)

• Syslog

• RMON

• NETCONF

• CLI and CLI scripting

Advanced Automation Feature
The enhanced Cisco NX-OS on the device supports automation. The platform includes support for Power On
Auto Provisioning (POAP).

The enhanced Cisco NX-OS on the device supports automation. The platform includes the following features
that support automation:

• Power On Auto Provisioning (POAP) support

• Chef and Puppet integration

• OpenStack integration

• OpenDayLight integration and OpenFlow support

Power On Auto Provisioning Support
Power On Auto Provisioning (POAP) automates the process of installing and upgrading software images and
installing configuration files on Cisco Nexus devices that are being deployed in the network for the first time.
It reduces the manual tasks that are required to scale the network capacity.

When a Cisco Nexus device with the POAP feature boots and does not find the startup configuration, the
device enters POAPmode. It locates a DHCP server and bootstraps itself with its interface IP address, gateway,
and DNS server IP addresses. The device obtains the IP address of a TFTP server or the URL of an HTTP
server and downloads a configuration script that enables the device to download and install the appropriate
software image and configuration file.

Programmability Support
Cisco NX-OS on Cisco Nexus 9000 devices support several capabilities to aid programmability.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
4

Overview
Standard Network Manageability Features

https://developer.cisco.com/site/nx-os/

NX-API Support
Cisco NX-API allows for HTTP-based programmatic access to the Cisco Nexus 9000 platform. This support
is delivered by NX-API, an open source webserver. NX-API provides the configuration and management
capabilities of the Cisco NX-OS CLI with web-based APIs. The device can be set to publish the output of the
API calls in XML or JSON format. This API enables rapid development on the Cisco Nexus 9000 platform.

Python Scripting
Cisco Nexus 9000 devices support Python v2.7.5 in both interactive and noninteractive (script) modes.

The Python scripting capability on the devices provides programmatic access to the switch CLI to perform
various tasks, and to Power-On Auto Provisioning (POAP) and Embedded Event Manager (EEM) actions.
Responses to Python calls that invoke the Cisco NX-OS CLI return text or JSON output.

The Python interpreter is included in the Cisco NX-OS software.

Bash
Cisco Nexus 9000 devices support direct Bourne-Again Shell (Bash) access. With Bash, you can access the
underlying Linux system on the device and manage the system.

Perl Modules
In order to support additional applications, the following Perl modules have been added:

• bytes.pm

• feature.pm

• hostname.pl

• lib.pm

• overload.pm

• Carp.pm

• Class/Struct.pm

• Data/Dumper.pm

• DynaLoader.pm

• Exporter/Heavy.pm

• FileHandle.pm

• File/Basename.pm

• File/Glob.pm

• File/Spec.pm

• File/Spec/Unix.pm

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
5

Overview
NX-API Support

• File/stat.pm

• Getopt/Std.pm

• IO.pm

• IO/File.pm

• IO/Handle.pm

• IO/Seekable.pm

• IO/Select.pm

• List/Util.pm

• MIME/Base64.pm

• SelectSaver.pm

• Socket.pm

• Symbol.pm

• Sys/Hostname.pm

• Time/HiRes.pm

• auto/Data/Dumper/Dumper.so

• auto/File/Glob/Glob.so

• auto/IO/IO.so

• auto/List/Util/Util.so

• auto/MIME/Base64/Base64.so

• auto/Socket/Socket.so

• auto/Sys/Hostname/Hostname.so

• auto/Time/HiRes/HiRes.so

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
6

Overview
Perl Modules

P A R T I
Shells and Scripting

• Bash, on page 9
• Guest Shell, on page 21
• Python API, on page 55
• Scripting with Tcl, on page 65
• iPXE, on page 71
• Kernel Stack, on page 83

C H A P T E R 3
Bash

• About Bash, on page 9
• Guidelines and Limitations, on page 9
• Accessing Bash, on page 9
• Escalate Privileges to Root, on page 11
• Examples of Bash Commands, on page 12
• Managing RPMs, on page 14
• Persistently Daemonizing an SDK- or ISO-built Third Party Process, on page 16
• Persistently Starting Your Application from the Native Bash Shell, on page 17
• An Example Application in the Native Bash Shell, on page 17

About Bash
In addition to the NX-OS CLI, Cisco Nexus 3600 devices support access to the Bourne-Again SHell (Bash).
Bash interprets commands that you enter or commands that are read from a shell script. Using Bash enables
access to the underlying Linux system on the device and to manage the system.

Guidelines and Limitations
The Bash shell has the following guidelines and limitations:

• The binaries located in the /isan folder are meant to be run in an environment which is setup differently
from that of the shell entered from the run bash command. It is advisable not to use these binaries from
the Bash shell as the behavior within this environment is not predictable.

Accessing Bash
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops
role or the Cisco NX-OS network-admin role.

The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops

Role: dev-ops

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
9

Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *

switch# show role name network-admin

Role: network-admin
Description: Predefined network admin role has access to all commands
on the switch

Rule Perm Type Scope Entity

1 permit read-write

switch#

Bash is enabled by running the feature bash-shell command.

The run bash command loads Bash and begins at the home directory for the user.

The following examples show how to enable the Bash shell feature and how to run Bash.
switch# configure terminal
switch(config)# feature bash-shell

switch# run?
run Execute/run program
run-script Run shell scripts

switch# run bash?
bash Linux-bash

switch# run bash
bash-4.2$ whoami
admin
bash-4.2$ pwd
/bootflash/home/admin
bash-4.2$

You can also execute Bash commands with run bash command.

For instance, you can run whoami using run bash command:
run bash whoami

You can also run Bash by configuring the user shelltype:
username foo shelltype bash

This command puts you directly into the Bash shell.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
10

Shells and Scripting
Accessing Bash

Escalate Privileges to Root
The privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an admin user can escalate privileges to root.

• Bash must be enabled before escalating privileges.

• Escalation to root is password protected.

• SSH to the switch using root username through a non-management interface will default to Linux Bash
shell-type access for the root user. Type vsh to return to NX-OS shell access.

NX-OS network administrator users must escalate to root to pass configuration commands to the NX-OS
VSH if:

• The NX-OS user has a shell-type Bash and logs into the switch with a shell-type Bash.

• The NX-OS user logged into the switch in Bash continues to use Bash on the switch.

Run sudo su 'vsh -c "<configuration commands>"' or sudo bash -c 'vsh -c "<configuration commands>"'.

The example below demonstrates with network administrator user MyUser with a default shelltype Bash using
sudo to pass configuration commands to the NX-OS:
ssh -l MyUser 1.2.3.4
-bash-4.2$ sudo vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show
interface eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

The example below demonstrates with network administrator userMyUser with default shelltype Bash entering
the NX-OS and then running Bash on the NX-OS:
ssh -l MyUser 1.2.3.4
-bash-4.2$ vsh -h
Cisco NX-OS Software
Copyright (c) 2002-2016, Cisco Systems, Inc. All rights reserved.
Nexus 3600 software ("Nexus 3600 Software") and related documentation,
files or other reference materials ("Documentation") are
the proprietary property and confidential information of Cisco
Systems, Inc. ("Cisco") and are protected, without limitation,
pursuant to United States and International copyright and trademark
laws in the applicable jurisdiction which provide civil and criminal
penalties for copying or distribution without Cisco's authorization.

Any use or disclosure, in whole or in part, of the Nexus 3600 Software
or Documentation to any third party for any purposes is expressly
prohibited except as otherwise authorized by Cisco in writing.
The copyrights to certain works contained herein are owned by other
third parties and are used and distributed under license. Some parts
of this software may be covered under the GNU Public License or the
GNU Lesser General Public License. A copy of each such license is
available at

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
11

Shells and Scripting
Escalate Privileges to Root

http://www.gnu.org/licenses/gpl.html and
http://www.gnu.org/licenses/lgpl.html

* Nexus 3600 is strictly limited to use for evaluation, demonstration *
* and NX-OS education. Any use or disclosure, in whole or in part of *
* the Nexus 3600 Software or Documentation to any third party for any *
* purposes is expressly prohibited except as otherwise authorized by *
* Cisco in writing. *

switch# run bash
bash-4.2$ vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show interface
eth1/2 brief"

--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --

The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
bash-4.2$ sudo su root
bash-4.2# whoami
root
bash-4.2# exit
exit

Examples of Bash Commands
This section contains examples of Bash commands and output.

Displaying System Statistics
The following example displays system statistics:
switch# run bash
bash-4.2$ cat /proc/meminfo
<snip>
MemTotal: 16402560 kB
MemFree: 14098136 kB
Buffers: 11492 kB
Cached: 1287880 kB
SwapCached: 0 kB
Active: 1109448 kB
Inactive: 717036 kB
Active(anon): 817856 kB
Inactive(anon): 702880 kB
Active(file): 291592 kB
Inactive(file): 14156 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 527088 kB

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
12

Shells and Scripting
Examples of Bash Commands

Mapped: 97832 kB
<\snip>

Running Bash from CLI
The following example runs ps from Bash using run bash command:
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 528 poll_s ? 00:00:03 init
1 S 0 2 0 0 80 0 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 80 0 - 0 run_ks ? 00:00:56 ksoftirqd/0
1 S 0 6 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/0
1 S 0 7 2 0 -40 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 8 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/1
1 S 0 9 2 0 80 0 - 0 worker ? 00:00:00 kworker/1:0
1 S 0 10 2 0 80 0 - 0 run_ks ? 00:00:00 ksoftirqd/1

Running Python from Bash
The following example shows how to load Python and configure a switch using Python objects:
switch# run bash
bash-4.2$ python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.7.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from cisco import *
>>> from cisco.vrf import *
>>> from cisco.interface import *
>>> vrfobj=VRF('myvrf')
>>> vrfobj.get_name()
'myvrf'
>>> vrfobj.add_interface('Ethernet1/3')
True
>>> intf=Interface('Ethernet1/3')
>>> print intf.config()

!Command: show running-config interface Ethernet1/3
!Time: Mon Nov 4 13:17:56 2013

version 6.1(2)I2(1)

interface Ethernet1/3
vrf member myvrf

>>>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
13

Shells and Scripting
Running Bash from CLI

Managing RPMs

Installing RPMs from Bash

Procedure

PurposeCommand or Action

Displays a list of the NX-OS feature RPMs
installed on the switch.

sudo yum installed | grep platformStep 1

Displays a list of the available RPMs.sudo yum list availableStep 2

Installs an available RPM.sudo yum -y install rpmStep 3

Example

The following is an example of installing the bfd RPM:
bash-4.2$ sudo yum list installed | grep n3600
base-files.n3600 3.0.14-r74.2 installed
bfd.lib32_n3600 1.0.0-r0 installed
core.lib32_n3600 1.0.0-r0 installed
eigrp.lib32_n3600 1.0.0-r0 installed
eth.lib32_n3600 1.0.0-r0 installed
isis.lib32_n3600 1.0.0-r0 installed
lacp.lib32_n3600 1.0.0-r0 installed
linecard.lib32_n3600 1.0.0-r0 installed
lldp.lib32_n3600 1.0.0-r0 installed
ntp.lib32_n3600 1.0.0-r0 installed
nxos-ssh.lib32_n3600 1.0.0-r0 installed
ospf.lib32_n3600 1.0.0-r0 installed
perf-cisco.n3600_gdb 3.12-r0 installed
platform.lib32_n3600 1.0.0-r0 installed
shadow-securetty.n3600_gdb 4.1.4.3-r1 installed
snmp.lib32_n3600 1.0.0-r0 installed
svi.lib32_n3600 1.0.0-r0 installed
sysvinit-inittab.n3600_gdb 2.88dsf-r14 installed
tacacs.lib32_n3600 1.0.0-r0 installed
task-nxos-base.n3600_gdb 1.0-r0 installed
tor.lib32_n3600 1.0.0-r0 installed
vtp.lib32_n3600 1.0.0-r0 installed
bash-4.2$ sudo yum list available
bgp.lib32_n3600 1.0.0-r0
bash-4.2$ sudo yum -y install bfd

Upon switch reload during boot up, use the rpm command instead of yum for persistent RPMs.
Otherwise, RPMs initially installed using yum bash or install CLI will show reponame or filename
instead of installed.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
14

Shells and Scripting
Managing RPMs

Upgrading RPMs

Before you begin

There must be a higher version of the RPM in the Yum repository.

Procedure

PurposeCommand or Action

Upgrades an installed RPM.sudo yum -y upgrade rpmStep 1

Example

The following is an example of upgrading the bfd RPM:
bash-4.2$ sudo yum -y upgrade bfd

Downgrading an RPM

Procedure

PurposeCommand or Action

Downgrades the RPM if any of the Yum
repositories has a lower version of the RPM.

sudo yum -y downgrade rpmStep 1

Example

The following example shows how to downgrade the bfd RPM:
bash-4.2$ sudo yum -y downgrade bfd

Erasing an RPM

The SNMP RPM and the NTP RPM are protected and cannot be erased.

You can upgrade or downgrade these RPMs. It requires a system reload for the upgrade or downgrade to take
effect.

For the list of protected rpms, see /etc/yum/protected.d/protected_pkgs.conf.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
15

Shells and Scripting
Upgrading RPMs

Procedure

PurposeCommand or Action

Erases the RPM.sudo yum -y erase rpmStep 1

Example

The following example shows how to erase the bfd RPM:
bash-4.2$ sudo yum -y erase bfd

Persistently Daemonizing an SDK- or ISO-built Third Party
Process

Your application should have a startup bash script that gets installed in /etc/init.d/application_name.
This startup bash script should have the following general format (for more information on this format, see
http://linux.die.net/man/8/chkconfig).
#!/bin/bash
#
<application_name> Short description of your application
#
chkconfig: 2345 15 85
description: Short description of your application
#
BEGIN INIT INFO
Provides: <application_name>
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Short description of your application
END INIT INFO
See how we were called.
case "$1" in
start)
Put your startup commands here
Set RETVAL to 0 for success, non-0 for failure
;;
stop)
Put your stop commands here
Set RETVAL to 0 for success, non-0 for failure
;;
status)
Put your status commands here
Set RETVAL to 0 for success, non-0 for failure
;;
restart|force-reload|reload)
Put your restart commands here
Set RETVAL to 0 for success, non-0 for failure
;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
16

Shells and Scripting
Persistently Daemonizing an SDK- or ISO-built Third Party Process

http://linux.die.net/man/8/chkconfig

Persistently Starting Your Application from the Native Bash
Shell

Procedure

Step 1 Install your application startup bash script that you created above into /etc/init.d/application_name

Step 2 Start your application with /etc/init.d/application_name start

Step 3 Enter chkconfig --add application_name

Step 4 Enter chkconfig --level 3 application_name on

Run level 3 is the standard multi-user run level, and the level at which the switch normally runs.

Step 5 Verify that your application is scheduled to run on level 3 by running chkconfig --list application_name and
confirm that level 3 is set to on

Step 6 Verify that your application is listed in /etc/rc3.d. You should see something like this, where there is an
'S' followed by a number, followed by your application name (tcollector in this example), and a link to your
bash startup script in ../init.d/application_name

bash-4.2# ls -l /etc/rc3.d/tcollector

lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/S15tcollector -> ../init.d/tcollector

bash-4.2#

An Example Application in the Native Bash Shell
The following example demonstrates an application in the Native Bash Shell:
bash-4.2# cat /etc/init.d/hello.sh
#!/bin/bash

PIDFILE=/tmp/hello.pid
OUTPUTFILE=/tmp/hello

echo $$ > $PIDFILE
rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
bash-4.2#
bash-4.2#
bash-4.2# cat /etc/init.d/hello
#!/bin/bash
#
hello Trivial "hello world" example Third Party App
#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
17

Shells and Scripting
Persistently Starting Your Application from the Native Bash Shell

chkconfig: 2345 15 85
description: Trivial example Third Party App
#
BEGIN INIT INFO
Provides: hello
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Trivial example Third Party App
END INIT INFO

PIDFILE=/tmp/hello.pid

See how we were called.
case "$1" in
start)

/etc/init.d/hello.sh &
RETVAL=$?

;;
stop)

kill -9 `cat $PIDFILE`
RETVAL=$?

;;
status)

ps -p `cat $PIDFILE`
RETVAL=$?

;;
restart|force-reload|reload)

kill -9 `cat $PIDFILE`
/etc/init.d/hello.sh &
RETVAL=$?

;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac

exit $RETVAL
bash-4.2#
bash-4.2# chkconfig --add hello
bash-4.2# chkconfig --level 3 hello on
bash-4.2# chkconfig --list hello
hello 0:off 1:off 2:on 3:on 4:on 5:on 6:off
bash-4.2# ls -al /etc/rc3.d/*hello*
lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/S15hello -> ../init.d/hello
bash-4.2#
bash-4.2# reboot

After reload
bash-4.2# ps -ef | grep hello
root 8790 1 0 18:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh
root 8973 8775 0 18:04 ttyS0 00:00:00 grep hello
bash-4.2#
bash-4.2# ls -al /tmp/hello*
-rw-rw-rw- 1 root root 205 Sep 27 18:04 /tmp/hello
-rw-rw-rw- 1 root root 5 Sep 27 18:03 /tmp/hello.pid
bash-4.2# cat /tmp/hello.pid
8790
bash-4.2# cat /tmp/hello
Sun Sep 27 18:03:49 UTC 2015
Hello World
Sun Sep 27 18:03:59 UTC 2015
Hello World
Sun Sep 27 18:04:09 UTC 2015
Hello World

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
18

Shells and Scripting
An Example Application in the Native Bash Shell

Sun Sep 27 18:04:19 UTC 2015
Hello World
Sun Sep 27 18:04:29 UTC 2015
Hello World
Sun Sep 27 18:04:39 UTC 2015
Hello World
bash-4.2#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
19

Shells and Scripting
An Example Application in the Native Bash Shell

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
20

Shells and Scripting
An Example Application in the Native Bash Shell

C H A P T E R 4
Guest Shell

• About the Guest Shell, on page 21
• Guidelines and Limitations, on page 22
• Accessing the Guest Shell, on page 26
• Resources Used for the Guest Shell, on page 27
• Capabilities in the Guest Shell, on page 27
• Security Posture for Guest Shell, on page 35
• Guest File System Access Restrictions , on page 38
• Managing the Guest Shell, on page 38
• Verifying Virtual Service and Guest Shell Information, on page 49
• Persistently Starting Your Application From the Guest Shell, on page 51
• Procedure for Persistently Starting Your Application from the Guest Shell, on page 52
• An Example Application in the Guest Shell, on page 52
• Troubleshooting Guest Shell Issues, on page 53

About the Guest Shell
In addition to the NX-OS CLI and Bash access on the underlying Linux environment, the Cisco Nexus 3000
Series devices support access to a decoupled execution space running within a Linux Container (LXC) called
the “Guest Shell”.

From within the Guest Shell the network-admin has the following capabilities:

• Access to the network over Linux network interfaces.

• Access to Cisco Nexus 3000 bootflash.

• Access to Cisco Nexus 3000 volatile tmpfs.

• Access to Cisco Nexus 3000 CLI.

• Access to Cisco NX-API REST.

• The ability to install and run python scripts.

• The ability to install and run 32-bit and 64-bit Linux applications.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
21

Decoupling the execution space from the native host system allows customization of the Linux environment
to suit the needs of the applications without impacting the host system or applications running in other Linux
Containers.

On NX-OS devices, Linux Containers are installed and managed with the virtual-service commands. The
Guest Shell will appear in the virtual-service show command output.

By default, the Guest Shell occupies approximately 35 MB of RAM and 200 MB of bootflash when enabled.
Use the guestshell destroy command to reclaim resources if the Guest Shell is not used.

Note

Guidelines and Limitations
Common Guidelines Across All Releases

If you have performed customwork inside your installation of the Guest Shell, save your changes to bootflash,
off-box storage, or elsewhere outside the Guest Shell root file system before performing an upgrade.

The guestshell upgrade command essentially performs a guestshell destroy and guestshell enable

in succession.

Important

• Use the run guestshell CLI command to access the Guest Shell on the Cisco Nexus device: The run
guestshell command parallels the run bash command used to access the host shell. This command
allows you to access the Guest Shell and get a bash prompt or run a command within the context of the
Guest Shell. The command uses password-less SSH to an available port on the localhost in the default
network namespace.

• sshd utility can secure the pre-configured SSH access into the Guest Shell by listening on localhost
to avoid connection attempts from ouside the network. sshd has the following features

• It is configured for key-based authentication without fallback to passwords.

• Only root can read keys use to access the Guest Shell after Guest Shell restarts.

• Only root can read the file that contains the key on the host to prevent a non-privileged user with
host bash access from being able to use the key to connect to the Guest Shell. Network-admin users
may start another instance of sshd in the Guest Shell to allow remote access directly into the Guest
Shell, but any user that logs into the Guest Shell is also given network-admin privilege

Introduced in Guest Shell 2.2 (0.2), the key file is readable for whom the user
account was created for.

In addition, the Guest Shell accounts are not automatically removed, and must
be removed by the network administrator when no longer needed.

Guest Shell installations prior to 2.2 (0.2) will not dynamically create individual
user accounts.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
22

Shells and Scripting
Guidelines and Limitations

• Installing the Cisco Nexus series switch software release on a fresh out-of-the-box Cisco Nexus switch
will automatically enable the Guest Shell. Subsequent upgrades to the Cisco Nexus series switch software
will NOT automatically upgrade Guest Shell.

• Guest Shell releases increment the major number when distributions or distribution versions change.

• Guest Shell releases increment the minor number when CVEs have been addressed. The Guest Shell will
update CVEs only when CentOS makes them publically available.

• Cisco recommends using yum update to pick up third-party security vulnerability fixes directly from
the CentOS repository. This provides the flexibility of getting updates as, and when, available without
needing to wait for a Cisco NX-OS software update.

Alternatively, using the guestshell update command would replace the existing Guest Shell rootfs. Any
customizations and software package installations would then need to be performed again within the
context of this new Guest Shell rootfs.

Upgrading from Guest Shell 1.0 to Guest Shell 2.x

Guest Shell 2.x is based upon a CentOS 7 root file system. If you have an off-box repository of .conf files
and/or utilities that pulled the content down into Guest Shell 1.0, you will need to repeat the same deployment
steps in Guest Shell 2.x. Your deployment script may need to be adjusted to account for the CentOS 7
differences.

Guest Shell 2.x

The Cisco NX-OS automatically installs and enables the Guest Shell by default on systems with sufficient
resources. However, if the device is reloaded with a Cisco NX-OS image that does not provide Guest Shell
support, the installer will automatically remove the existing Guest Shell and issue a
%VMAN-2-INVALID_PACKAGE.

Systems with 4GB of RAM will not enable Guest Shell by default. Use the guestshell enable command to
install and enable Guest Shell.

Note

The install all command validates the compatibility between the current Cisco NX-OS image against the
target Cisco NX-OS image.

The following is an example output from installing an incompatible image:
switch#
Installer will perform compatibility check first. Please wait.
uri is: /
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
23

Shells and Scripting
Guidelines and Limitations

[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guest shell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#

As a best practice, remove the Guest Shell with the guestshell destroy command before reloading an older
Cisco Nexos image that does not support the Guest Shell.

Note

Pre-Configured SSHD Service

The Guest Shell starts an OpenSSH server upon boot up. The server listens on a randomly generated port on
the localhost IP address interface 127.0.0.1 only. This provides the password-less connectivity into the Guest
Shell from the NX-OS vegas-shell when the guestshell keyword is entered. If this server is killed or its
configuration (residing in /etc/ssh/sshd_config-cisco) is altered, access to the Guest Shell from
the NX-OS CLI might not work.

The following steps instantiate an OpenSSh server within the Guest Shell as root:

1. Determine which network namespace or VRF you want to establish your SSH connections through.

2. Determine port you want OpenSSH to listen on. Use the NX-OS command show socket connection to
view ports already in use.

The Guest Shell sshd service for password-less access uses a randomized port starting at 17680 through 49150.
To avoid port conflict choose a port outside this range.

Note

The following steps start the OpenSSH server. The examples start the OpenSSH server for management netns
on IP address 10.122.84.34:2222:

1. Create the following files: /usr/lib/systemd/systm/sshd-mgmt.service and
/etc/ssh/sshd-mgmt_config. The files should have the following configurations:
-rw-r--r-- 1 root root 394 Apr 7 14:21 /usr/lib/systemd/system/sshd-mgmt.service
-rw------- 1 root root 4478 Apr 7 14:22 /etc/ssh/sshd-mgmt_config

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
24

Shells and Scripting
Guidelines and Limitations

2. Copy the Unit and Service contents from the /usr/lib/systemd/syste/ssh.service file to
sshd-mgmt.service.
[Unit]
Description=OpenSSH server daemon
After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/sbin/ip netns exec management /usr/sbin/sshd -f /etc/ssh/sshd-mgmt_config
-D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
[Install]
WantedBy=multi-user.target

3. Copy the contents of /etc/ssh/sshd-config to /etc/ssh/sshd-mgmt_config. Modify
the ListenAddress IP and port as necessary.
Port 2222
ListenAddress 10.122.84.34

4. Start the systemctl daemon using the following commands:
sudo systemctl daemon-reload
sudo systemctl start sshd-mgmt.service
sudo systemctl status sshd-mgmt.service -l

5. (optional) Check the configuration.
ss -tnldp | grep 2222

6. SSH into Guest Shell:
ssh -p 2222 guestshell@10.122.84.34

7. Save the configuration across multiple Guest Shell or switch reboots.
sudo systemctl enable sshd-mgmt.service

8. For passwordless SSH/SCP and remote execution, generate the public and private keys for the user ID
you want to user for SSH/SCP using the ssh-keygen -t dsa command.

The key is then stored in the id_rsa and id_rsa.pub files in the /.ssh directory:
[root@node01 ~]# cd ~/.ssh
[root@node02 .ssh]# ls -l
total 8
-rw-------. 1 root root 1675 May 5 15:01 id_rsa
-rw-r--r--. 1 root root 406 May 5 15:01 id_rsa.pub

9. Copy the public key into the machine you want to SSH into and fix permissions:
cat id_rsa.pub >> /root/.ssh/authorized_keys
chmod 700 /root/.ssh
chmod 600 /root/.ssh/*

10. SSH or SCP into the remote switch without a password:
ssh -p <port#> userid@hostname [<remote command>]
scp -P <port#> userid@hostname/filepath /destination

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
25

Shells and Scripting
Guidelines and Limitations

localtime

The Guest Shell shares /etc/localtime with the host system.

If you do not want to share the same localtime with the host, this symlink can be broken and a Guest Shell
specific /etc/localtime can be created.

Note

switch(config)# clock timezone PDT -7 0
switch(config)# clock set 10:00:00 27 Jan 2017
Fri Jan 27 10:00:00 PDT 2017
switch(config)# show clock
10:00:07.554 PDT Fri Jan 27 2017
switch(config)# run guestshell
guestshell:~$ date
Fri Jan 27 10:00:12 PDT 2017

Accessing the Guest Shell
In Cisco NX-OS, the Guest Shell is accessible to the network-admin. It is automatically enabled in the system
and can be accessed using the run guestshell command. Consistent with the run bash command, these
commands can be issued within the Guest Shell with the run guestshell command form of the NX-OS CLI
command.

The Guest Shell is automatically enabled on systems with more than 4 GB of RAM.Note

switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova

When running in the Guest Shell, you have network-admin level privileges.Note

The Guest Shell starting in 2.2(0.2) will dynamically create user accounts with the same as the user logged
into switch. However, all other information is NOT shared between the switch and the Guest Shell user
accounts.

In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network
administrator when no longer needed.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
26

Shells and Scripting
Accessing the Guest Shell

Resources Used for the Guest Shell
By default, the resources for the Guest Shell have a small impact on resources available for normal switch
operations. If the network-admin requires additional resources for the Guest Shell, the guestshell resize {cpu
| memory | rootfs} command changes these limits.

Minimum/MaximumDefaultResource

1/6%1%CPU

256/3840MB256MBMemory

200/2000MB200MBStorage

The CPU limit is the percentage of the system compute capacity that tasks running within the Guest Shell are
given when there is contention with other compute loads in the system. When there is no contention for CPU
resources, the tasks within the Guest Shell are not limited.

A Guest Shell reboot is required after changing the resource allocations. This can be accomplished with the
guestshell reboot command.

Note

Capabilities in the Guest Shell
The Guest Shell has a number of utilities and capabilities available by default.

The Guest Shell is populated with CentOS 7 Linux which provides the ability to Yum install software packages
built for this distribution. The Guest Shell is pre-populated with many of the common tools that would naturally
be expected on a networking device including net-tools, iproute, tcpdump and OpenSSH. Python 2.7.5 is
included by default as is the PIP for installing additional python packages.

By default the Guest Shell is a 64-bit execution space. If 32-bit support is needed, the glibc.i686 package can
be Yum installed.

The Guest Shell has access to the Linux network interfaces used to represent the management and data ports
of the switch. Typical Linux methods and utilities like ifconfig and ethtool can be used to collect counters.
When an interface is placed into a VRF in the NX-OS CLI, the Linux network interface is placed into a
network namespace for that VRF. The name spaces can be seen at /var/run/netns and the ip netns
utility can be used to run in the context of different namespaces. A couple of utilities, chvrf and vrfinfo, are
provided as a convenience for running in a different namespace and getting information about which
namespace/vrf a process is running in.

systemd is used to manage services in CentOS 7 environments, including the Guest Shell.

NX-OS CLI in the Guest Shell
The Guest Shell provides an application to allow the user to issue NX-OS commands from the Guest Shell
environment to the host network element. The dohost application accepts any valid NX-OS configuration or
exec commands and issues them to the host network element.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
27

Shells and Scripting
Resources Used for the Guest Shell

When invoking the dohost command each NX-OS command may be in single or double quotes:

dohost "<NXOS CLI>"

The NX-OS CLI can be chained together:

[guestshell@guestshell ~]$ dohost "sh lldp time | in Hold" "show cdp global"
Holdtime in seconds: 120
Global CDP information:
CDP enabled globally
Refresh time is 21 seconds
Hold time is 180 seconds
CDPv2 advertisements is enabled
DeviceID TLV in System-Name(Default) Format
[guestshell@guestshell ~]$

The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding
a semicolon between each command. (A space on either side of the semicolon is required.):

[guestshell@guestshell ~]$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
Enter configuration commands, one per line. End with CNTL/Z.
cdp timer 13
[guestshell@guestshell ~]$

Starting with Guest Shell 2.2 (0.2), commands issued on the host through the dohost command are run with
privileges based on the effective role of the Guest Shell user.

Prior versions of Guest Shell will run command with network-admin level privileges.

The dohost command fails when the number of UDS connections to NX-API are at the maximum allowed.

Note

Network Access in Guest Shell
The NX-OS switch ports are represented in the Guest Shell as Linux network interfaces. Typical Linuxmethods
like view stats in /proc/net/dev, through ifconfig or ethtool are all supported:

The Guest Shell has a number of typical network utilities included by default and they can be used on different
VRFs using the chvrf vrf command command.
[guestshell@guestshell bootflash]$ ifconfig Eth1-47
Eth1-47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 13.0.0.47 netmask 255.255.255.0 broadcast 13.0.0.255
ether 54:7f:ee:8e:27:bc txqueuelen 100 (Ethernet)
RX packets 311442 bytes 21703008 (20.6 MiB)
RX errors 0 dropped 185 overruns 0 frame 0
TX packets 12967 bytes 3023575 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Within the Guest Shell, the networking state can bemonitored, but may not be changed. To change networking
state, use the NX-OS CLI or the appropriate Linux utilities in the host bash shell.

The tcpdump command is packaged with the Guest Shell to allow packet tracing of punted traffic on the
management or switch ports.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
28

Shells and Scripting
Network Access in Guest Shell

The sudo ip netns exec management ping utility is a common method for running a command in the context
of a specified network namespace. This can be done within the Guest Shell:
[guestshell@guestshell bootflash]$ sudo ip netns exec management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

The chvrf utility is provided as a convenience:
guestshell@guestshell bootflash]$ chvrf management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Commands that are run without the chvrf command are run in the current VRF/network namespace.Note

For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management
ping 10.0.0.1”. Other utilities such as scp or ssh would be similar.

Example:

switch# guestshell
[guestshell@guestshell ~]$ cd /bootflash
[guestshell@guestshell bootflash]$ chvrf management scp foo@10.28.38.48:/foo/index.html
index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
[guestshell@guestshell bootflash]$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
[guestshell@guestshell bootflash]$
[guestshell@guestshell bootflash]$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
[guestshell@guestshell bootflash]$

To obtain a list of VRFs on the system, use the show vrf command natively from NX-OS or through the
dohost command:

Example:

[guestshell@guestshell bootflash]$ dohost 'sh vrf'
VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --
red 6 Up --

Within the Guest Shell, the network namespaces associated with the VRFs are what is actually used. It can
be more convenient to just see which network namespaces are present:
[guestshell@guestshell bootflash]$ ls /var/run/netns
default management red

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
29

Shells and Scripting
Network Access in Guest Shell

[guestshell@guestshell bootflash]$

To resolve domain names from within the Guest Shell, the resolver needs to be configured. Edit the
/etc/resolv.conf file in the Guest Shell to include a DNS nameserver and domain as appropriate for the network.

Example:

nameserver 10.1.1.1
domain cisco.com

The nameserver and domain information should match what is configured through the NX-OS configuration.

Example:

switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1

If the Cisco Nexus 3000 device is in a network that uses an HTTP proxy server, the http_proxy and
https_proxy environment variables must be set up within the Guest Shell also.

Example:

export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they
are persistent.

Access to Bootflash in Guest Shell
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI
commands. Bymounting the system bootflash at /bootflash in the Guest Shell environment, the network-admin
can operate on these files with Linux commands.

Example:

find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”

While the name of the user within the Guest Shell is the same as when on the host, the Guest Shell is in a
separate user namespace, and the uid does not match that of the user on the host. The file permissions for
group and others will control the type of access the Guest Shell user has on the file.

Note

Python in Guest Shell
Python can be used interactively or python scripts can be run in the Guest Shell.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
30

Shells and Scripting
Access to Bootflash in Guest Shell

Example:

guestshell:~$ python
Python 2.7.5 (default, Jun 24 2015, 00:41:19)
[GCC 4.8.3 20140911 (Red Hat 4.8.3-9)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
guestshell:~$

The pip python package manager is included in the Guest Shell to allow the network-admin to install new
python packages.

Example:
[guestshell@guestshell ~]$ sudo su
[root@guestshell guestshell]# pip install Markdown
Collecting Markdown
Downloading Markdown-2.6.2-py2.py3-none-any.whl (157kB)
100% |################################| 159kB 1.8MB/s
Installing collected packages: Markdown
Successfully installed Markdown-2.6.2
[root@guestshell guestshell]# pip list | grep Markdown
Markdown (2.6.2)
[root@guestshell guestshell]#

You must enter the sudo su command before entering the pip install command.Note

Python 3 in Guest Shell 2.x (Centos 7)
Guest Shell 2.X provides a Centos 7.1 environment, which does not have Python 3 installed by default. There
are multiple methods of installing Python 3 on Centos 7.1, such as using third-party repositories or building
from source. Another option is using the Red Hat Software Collections, which supports installing multiple
versions of Python within the same system.

To install the Red Hat Software Collections (SCL) tool:

1. Install the scl-utils package.

2. Enable the Centos SCL repository and install one of its provided Python 3 RPMs.

[admin@guestshell ~]$ sudo su
[root@guestshell admin]# yum install -y scl-utils | tail
Running transaction test
Transaction test succeeded
Running transaction
Installing : scl-utils-20130529-19.el7.x86_64 1/1
Verifying : scl-utils-20130529-19.el7.x86_64 1/1

Installed:
scl-utils.x86_64 0:20130529-19.el7

Complete!

[root@guestshell admin]# yum install -y centos-release-scl | tail
Verifying : centos-release-scl-2-3.el7.centos.noarch 1/2
Verifying : centos-release-scl-rh-2-3.el7.centos.noarch 2/2

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
31

Shells and Scripting
Python 3 in Guest Shell 2.x (Centos 7)

Installed:
centos-release-scl.noarch 0:2-3.el7.centos

Dependency Installed:
centos-release-scl-rh.noarch 0:2-3.el7.centos

Complete!

[root@guestshell admin]# yum install -y rh-python36 | tail
warning: /var/cache/yum/x86_64/7/centos-sclo-rh/packages/rh-python36-2.0-1.el7.x86_64.rpm:
Header V4 RSA/SHA1 Signature, key ID f2ee9d55: NOKEY
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm:
[Errno 12] Timeout on
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: (28,
'Operation too slow. Less than 1000 bytes/sec transferred the last 30 seconds')
Trying other mirror.
Importing GPG key 0xF2EE9D55:
Userid : "CentOS SoftwareCollections SIG
(https://wiki.centos.org/SpecialInterestGroup/SCLo) <security@centos.org>"
Fingerprint: c4db d535 b1fb ba14 f8ba 64a8 4eb8 4e71 f2ee 9d55
Package : centos-release-scl-rh-2-3.el7.centos.noarch (@extras)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-SCLo
rh-python36-python-libs.x86_64 0:3.6.9-2.el7
rh-python36-python-pip.noarch 0:9.0.1-2.el7
rh-python36-python-setuptools.noarch 0:36.5.0-1.el7
rh-python36-python-virtualenv.noarch 0:15.1.0-2.el7
rh-python36-runtime.x86_64 0:2.0-1.el7
scl-utils-build.x86_64 0:20130529-19.el7
xml-common.noarch 0:0.6.3-39.el7
zip.x86_64 0:3.0-11.el7

Complete!

Using SCL, it is possible to create an interactive bash session with Python 3’s environment variables
automatically setup.

The root user is not needed to use the SCL Python installation.Note

[admin@guestshell ~]$ scl enable rh-python36 bash
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python SCL installation also provides the pip utility.
[admin@guestshell ~]$ pip3 install requests --user
Collecting requests
Downloading

https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl
(57kB)

100% |################################| 61kB 211kB/s
Collecting idna<2.9,>=2.5 (from requests)
Downloading

https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl
(58kB)

100% |################################| 61kB 279kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests)
Downloading

https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
32

Shells and Scripting
Python 3 in Guest Shell 2.x (Centos 7)

(133kB)
100% |################################| 143kB 441kB/s

Collecting certifi>=2017.4.17 (from requests)
Downloading

https://files.pythonhosted.org/packages/b9/63/df50cac98ea0d5b006c55a399c3bf1db9da7b5a24de7890bc9cfd5dd9e99/certifi-2019.11.28-py2.py3-none-any.whl
(156kB)

100% |################################| 163kB 447kB/s
Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
Downloading

https://files.pythonhosted.org/packages/e8/74/6e4f91745020f967d09332bb2b8b9b10090957334692eb88ea4afe91b77f/urllib3-1.25.8-py2.py3-none-any.whl
(125kB)

100% |################################| 133kB 656kB/s
Installing collected packages: idna, chardet, certifi, urllib3, requests
Successfully installed certifi-2019.11.28 chardet-3.0.4 idna-2.8 requests-2.22.0
urllib3-1.25.8
You are using pip version 9.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>> requests.get("https://cisco.com")
<Response [200]>

The default Python 2 installation can be used alongside the SCL Python installation.
[admin@guestshell ~]$ which python3
/opt/rh/rh-python36/root/usr/bin/python3
[admin@guestshell ~]$ which python2
/bin/python2
[admin@guestshell ~]$ python2
Python 2.7.5 (default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello world!'
Hello world!

Software Collections makes it possible to install multiple versions of the same RPM on a system. In this case,
it is possible to install Python 3.5 in addition to Python 3.6.
[admin@guestshell ~]$ sudo yum install -y rh-python35 | tail
Dependency Installed:
rh-python35-python.x86_64 0:3.5.1-13.el7
rh-python35-python-devel.x86_64 0:3.5.1-13.el7
rh-python35-python-libs.x86_64 0:3.5.1-13.el7
rh-python35-python-pip.noarch 0:7.1.0-2.el7
rh-python35-python-setuptools.noarch 0:18.0.1-2.el7
rh-python35-python-virtualenv.noarch 0:13.1.2-2.el7
rh-python35-runtime.x86_64 0:2.0-2.el7

Complete!

[admin@guestshell ~]$ scl enable rh-python35 python3
Python 3.5.1 (default, May 29 2019, 15:41:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
33

Shells and Scripting
Python 3 in Guest Shell 2.x (Centos 7)

Creating new interactive bash sessions when multiple Python versions are installed in SCL can cause an issue
where the libpython shared object file cannot be loaded. There is a workaround where you can use the source
scl_source enable python-installation command to properly set up the environment in the current bash session.

The default Guest Shell storage capacity is not sufficient to install Python 3. Use the guestshell resize rootfs
size-in-MB command to increase the size of the file system. Typically, setting the rootfs size to 550 MB is
sufficient.

Note

Installing RPMs in the Guest Shell
The /etc/yum.repos.d/CentOS-Base.repo file is set up to use the CentOS mirror list by default. Follow
instructions in that file if changes are needed.

Yum can be pointed to one or more repositories at any time by modifying the yumrepo_x86_64.repo
file or by adding a new .repo file in the repos.d directory.

For applications to be installed inside Guest Shell, go to the CentOS 7 repo at http://mirror.centos.org/centos/
7/os/x86_64/Packages/.

Yum resolves the dependancies and installs all the required packages.
[guestshell@guestshell ~]$ sudo chvrf management yum -y install glibc.i686
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: bay.uchicago.edu
* extras: pubmirrors.dal.corespace.com
* updates: mirrors.cmich.edu
Resolving Dependencies
"-->" Running transaction check
"--->" Package glibc.i686 0:2.17-78.el7 will be installed
"-->" Processing Dependency: libfreebl3.so(NSSRAWHASH_3.12.3) for package:
glibc-2.17-78.el7.i686
"-->" Processing Dependency: libfreebl3.so for package: glibc-2.17-78.el7.i686
"-->" Running transaction check
"--->" Package nss-softokn-freebl.i686 0:3.16.2.3-9.el7 will be installed
"-->" Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:
glibc i686 2.17-78.el7 base 4.2 M
Installing for dependencies:
nss-softokn-freebl i686 3.16.2.3-9.el7 base 187 k

Transaction Summary
==
Install 1 Package (+1 Dependent package)

Total download size: 4.4 M
Installed size: 15 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/2): nss-softokn-freebl-3.16.2.3-9.el7.i686.rpm | 187 kB 00:00:25
(2/2): glibc-2.17-78.el7.i686.rpm | 4.2 MB 00:00:30
--

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
34

Shells and Scripting
Installing RPMs in the Guest Shell

http://mirror.centos.org/centos/7/os/x86_64/Packages/
http://mirror.centos.org/centos/7/os/x86_64/Packages/

Total 145 kB/s | 4.4 MB 00:00:30
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nss-softokn-freebl-3.16.2.3-9.el7.i686 1/2
Installing : glibc-2.17-78.el7.i686 2/2
error: lua script failed: [string "%triggerin(glibc-common-2.17-78.el7.x86_64)"]:1: attempt
to compare number with nil
Non-fatal "<"unknown">" scriptlet failure in rpm package glibc-2.17-78.el7.i686
Verifying : glibc-2.17-78.el7.i686 1/2
Verifying : nss-softokn-freebl-3.16.2.3-9.el7.i686 2/2

Installed:
glibc.i686 0:2.17-78.el7

Dependency Installed:
nss-softokn-freebl.i686 0:3.16.2.3-9.el7

Complete!

Whenmore space is needed in the Guest Shell root file system for installing or running packages, the guestshell
resize roofs size-in-MB command is used to increase the size of the file system.

Note

Some open source software packages from the repository might not install or run as expected in the Guest
Shell as a result of restrictions that have been put into place to protect the integrity of the host system.

Note

Security Posture for Guest Shell
Use of the Guest Shell in Cisco Nexus 3000 series devices is just one of the many ways the network admin
can manage or extend the functionality of the system. The Guest Shell is intended to provide an execution
environment that is decoupled from the native host context. This separation allows the introduction of software
into the system that may not be compatible with the native execution environment. It also allows the software
to run in an environment that does not interfere with the behavior, performance, or scale of the system.

Kernel Vulnerability Patches
Cisco responds to pertinent CommonVulnerabilities and Exposures (CVEs) with platform updates that address
known vulnerabilities.

ASLR and X-Space Support
Cisco Nexus 3000 NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable
Space Protection (X-Space) for runtime defense. The software in Cisco-signed packages make use of this
capability. If other software is installed on the system, it is recommended that it be built using a host OS and
development toolchain that supports these technologies. Doing so reduces the potential attack surface that the
software presents to potential intruders.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
35

Shells and Scripting
Security Posture for Guest Shell

Namespace Isolation
The Guest Shell environment runs within a Linux container that makes use of various namespaces to decouple
the Guest Shell execution space from that of the host. Starting in the NX-OS 9.2(1) release, the Guest Shell
is run in a separate user namespace, which helps protect the integrity of the host system, as processes running
as root within the Guest Shell are not root of the host. These processes appear to be running as uid 0 within
the Guest Shell due to uid mapping, but the kernel knows the real uid of these processes and evaluates the
POSIX capabilities within the appropriate user namespace.

When a user enters the Guest Shell from the host, a user of the same name is created within the Guest Shell.
While the names match, the uid of the user within the Guest Shell is not the same as the uid on the host. To
still allow users within the Guest Shell to access files on shared media (for example, /bootflash or
/volatile), the common NX-OS gids used on the host (for example, network-admin or network-operator)
are mapped into the Guest Shell such that the values are the same and the Guest Shell instance of the user is
associated with the appropriate groups based on group membership on the host.

As an example, consider user bob. On the host, bob has the following uid and gid membership:
bash-4.3$ id
uid=2004(bob) gid=503(network-admin) groups=503(network-admin),504(network-operator)

When user bob is in the Guest Shell, the group membership from the host is set up in the Guest Shell:
[bob@guestshell ~]$ id
uid=1002(bob) gid=503(network-admin)
groups=503(network-admin),504(network-operator),10(wheel)

Files created by user bob in the host Bash shell and the Guest Shell have different owner ids. The example
output below shows that the file created from within the Guest Shell has owner id 12002, instead of 1002 as
shown in the example output above. This is due to the command being issued from the host Bash shell and
the id space for the Guest Shell starting at id 11000. The group id of the file is network-admin, which is 503
in both environments.
bash-4.3$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 12002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 2004 503 4 Jun 22 15:47 /bootflash/bob_host

bash-4.3$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 12002 network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_host

The user is allowed to access the file due to the file permission settings for the network-admin group, and the
fact that bob is a member of network-admin in both the host and Guest Shell.

Inside the Guest Shell environment, the example output below shows that the owner id for the file created by
bob from the host is 65534. This indicates the actual id is in a range that is outside range of ids mapped into
the user namespace. Any unmapped id will be shown as this value.
[bob@guestshell ~]$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 1002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 503 4 Jun 22 15:47 /bootflash/bob_host

[bob@guestshell ~]$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 network-admin 4 Jun 22 15:47 /bootflash/bob_host

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
36

Shells and Scripting
Namespace Isolation

Root-User Restrictions
As a best practice for developing secure code, it is recommend running applications with the least privilege
needed to accomplish the assigned task. To help prevent unintended accesses, software added into the Guest
Shell should follow this best practice.

All processes within the Guest Shell are subject to restrictions imposed by reduced Linux capabilities. If your
application must perform operations that require root privileges, restrict the use of the root account to the
smallest set of operations that absolutely requires root access, and impose other controls such as a hard limit
on the amount of time that the application can run in that mode.

The set of Linux capabilities that are dropped for root within the Guest Shell follow:

• cap_audit_control

• cap_audit_write

• cap_mac_admin

• cap_mac_override

• cap_mknod

• cap_net_broadcast

• cap_sys_boot

• cap_syslog

• cap_sys_module

• cap_sys_nice

• cap_sys_pacct

• cap_sys_ptrace

• cap_sys_rawio

• cap_sys_resource

• cap_sys_time

• cap_wake_alarm

While the net_admin capability is not dropped, user namespace and the host ownership of the network
namespaces prevents the Guest Shell user from modifying the interface state. As root within the Guest Shell,
bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts are prevented.

Resource Management
ADenial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended
users.Misbehaving ormalicious application code can causeDoS as the result of over-consumption of connection
bandwidth, disk space, memory, and other resources. The host provides resource-management features that
ensure fair allocation of resources between Guest Shell and services on the host.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
37

Shells and Scripting
Root-User Restrictions

Guest File System Access Restrictions
To preserve the integrity of the files within the Guest Shell, the file systems of the Guest Shell are not accessible
from the NX-OS CLI.

bootflash: and volatile: of the host are mounted as /bootflash and /volatile within the Guest
Shell. A network-admin can access files on this media using the NX-OS exec commands from the host or
using Linux commands from within the Guest Shell.

Managing the Guest Shell
The following are commands to manage the Guest Shell:

Table 2: Guest Shell CLI Commands

DescriptionCommands

• When guest shell OVA file is specified:

Installs and activates the Guest Shell using the
OVA that is embedded in the system image.

Installs and activates the Guest Shell using the
specified software package (OVA file) or the
embedded package from the system image (when
no package is specified). Initially, Guest Shell
packages are only available by being embedded
in the system image.

When the Guest Shell is already installed, this
command enables the installed Guest Shell.
Typically this is used after a guestshell disable
command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs when the Guest
Shell is in a destroyed state. This command
brings up the Guest Shell with the specified
package.

guestshell enable {package [guest shell OVA file |
rootfs-file-URI]}

Exports a Guest Shell rootfs file to a local URI
(bootflash, USB1, etc.).

guestshell export rootfs package destination-file-URI

Shuts down and disables the Guest Shell.guestshell disable

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
38

Shells and Scripting
Guest File System Access Restrictions

DescriptionCommands

• When guest shell OVA file is specified:

Deactivates and upgrades the Guest Shell using
the specified software package (OVA file) or the
embedded package from the system image (if no
package is specified). Initially Guest Shell
packages are only available by being embedded
in the system image.

The current rootfs for the Guest Shell is replaced
with the rootfs in the software package. The
Guest Shell does not make use of secondary
filesystems that persist across an upgrade.
Without persistent secondary filesystems, a
guestshell destroy command followed by a
guestshell enable command could also be used
to replace the rootfs. When an upgrade is
successful, the Guest Shell is activated.

You are prompted for a confirmation prior to
carrying out the upgrade command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs file when the Guest
Shell is already installed. This command removes
the existing Guest Shell and installs the

specified package.

guestshell upgrade {package [guest shell OVA file
| rootfs-file-URI]}

Deactivates the Guest Shell and then reactivates it.

You are prompted for a confirmation prior to carrying
out the reboot command.

This is the equivalent of a guestshell
disable command followed by a guestshell
enable command in exec mode.

This is useful when processes inside the
Guest Shell have been stopped and need
to be restarted. The run guestshell
command relies on sshd running in the
Guest Shell.

If the command does not work, the sshd
process may have been inadvertently
stopped. Performing a reboot of the Guest
Shell from the NX-OS CLI allows it to
restart and restore the command.

Note

guestshell reboot

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
39

Shells and Scripting
Managing the Guest Shell

DescriptionCommands

Deactivates and uninstalls the Guest Shell. All
resources associated with the Guest Shell are returned
to the system. The show virtual-service global
command indicates when these resources become
available.

Issuing this command results in a prompt for a
confirmation prior to carrying out the destroy
command.

guestshell destroy

Connects to the Guest Shell that is already running
with a shell prompt. No username/password is
required.

guestshell

run guestshell

Executes a Linux/UNIX commandwithin the context
of the Guest Shell environment.

After execution of the command you are returned to
the switch prompt.

guestshell run command

run guestshell command

Changes the allotted resources available for the Guest
Shell. The changes take effect the next time the Guest
Shell is enabled or rebooted.

Resize values are cleared when the
guestshell destroy command is used.

Note

guestshell resize [cpu | memory | rootfs]

On systems that have active and standby supervisors,
this command synchronizes the Guest Shell contents
from the active supervisor to the standby supervisor.
The network-admin issues this command when the
Guest Shell rootfs has been set up to a point that they
would want the same rootfs used on the standby
supervisor when it becomes the active supervisor. If
this command is not used, the Guest Shell is freshly
installed when the standby supervisor transitions to
an active role using the Guest Shell package available
on that supervisor.

guestshell sync

In the event that the guestshell or virtual-services
cannot be managed, even after a system reload, the
reset command is used to force the removal of the
Guest Shell and all virtual-services. The system needs
to be reloaded for the cleanup to happen. No Guest
Shell or additional virtual-services can be installed or
enabled after issuing this command until after the
system has been reloaded.

You are prompted for a confirmation prior to initiating
the reset.

virtual-service reset force

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
40

Shells and Scripting
Managing the Guest Shell

Administrative privileges are necessary to enable/disable and to gain access to the Guest Shell environment.Note

The Guest Shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs
are installed and managed with the virtual-service commands. The Guest Shell appears in the virtual-service
commands as a virtual service named guestshell+.

Note

Virtual-service commands that do not pertain to the Guest Shell are being deprecated. These commands have
been hidden in the NX-OS 9.2(1) release and will be removed in future releases.

The following exec keywords are being deprecated:
virtual-service ?
connect Request a virtual service shell
install Add a virtual service to install database
uninstall Remove a virtual service from the install database
upgrade Upgrade a virtual service package to a different version

show virtual-service ?
detail Detailed information config)

The following config keywords are being deprecated:
(config) virtual-service ?
WORD Virtual service name (Max Size 20)

(config-virt-serv)# ?
activate Activate configured virtual service
description Virtual service description

Note

Disabling the Guest Shell
The guestshell disable command shuts down and disables the Guest Shell.

When the Guest Shell is disabled and the system is reloaded, the Guest Shell remains disabled.

Example:

switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n) y

2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual
service 'guestshell+'

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
41

Shells and Scripting
Disabling the Guest Shell

2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'
switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova

The Guest Shell is reactivated with the guestshell enable command.Note

Destroying the Guest Shell
The guestshell destroy command uninstalls the Guest Shell and its artifacts. The command does not remove
the Guest Shell OVA.

When the Guest Shell is destroyed and the system is reloaded, the Guest Shell remains destroyed.
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova

switch# guestshell destroy

You are about to destroy the guest shell and all of its contents. Be sure to save your work.
Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'

switch# show virtual-service list
Virtual Service List:

The Guest Shell can be re-enabled with the guestshell enable command.Note

If you do not want to use the Guest Shell, you can remove it with the guestshell destroy command. Once the
Guest Shell has been removed, it remains removed for subsequent reloads. This means that when the Guest
Shell container has been removed and the switch is reloaded, the Guest Shell container is not automatically
started.

Note

Enabling the Guest Shell
The guestshell enable command installs the Guest Shell from a Guest Shell software package. By default,
the package embedded in the system image is used for the installation. The command is also used to reactivate
the Guest Shell if it has been disabled.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
42

Shells and Scripting
Destroying the Guest Shell

When the Guest Shell is enabled and the system is reloaded, the Guest Shell remains enabled.

Example:

switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating

2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova

Enabling the Guest Shell in Base Boot Mode

Beginning in the NX-OS 9.2(1) release, you can choose to boot your system in base boot mode. When you
boot your system in base boot mode, the Guest Shell is not started by default. In order to use the Guest Shell
in this mode, you must activate the RPMs containing the virtualization infrastructure as well as the Guest
Shell image. Once you have done this, the Guest Shell and virtual-service commands will be available.

If the RPM activation commands are run in this order:

1. install activate guestshell

2. install activate virtualization

The Guest Shell container will be activated automatically as it would have been if the system had been booted
in full mode.

If the RPM activation commands are run in the reverse order:

1. install activate virtualization

2. install activate guestshell

Then the Guest Shell will not be enabled until you run the guestshell enable command.

Replicating the Guest Shell
Beginning with Cisco NX-OS release 7.0(3)I7(1), a Guest Shell rootfs that is customized on one switch can
be deployed onto multiple switches.

The approach is to customize and then export the Guest Shell rootfs and store it on a file server. A POAP
script can download (import) the Guest Shell rootfs to other switches and install the specific Guest Shell
across many devices simultaneously.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
43

Shells and Scripting
Replicating the Guest Shell

Exporting Guest Shell rootfs

Use the guestshell export rootfs package destination-file-URI command to export a Guest Shell rootfs.

The destination-file-URI parameter is the name of the file that the Guest Shell rootfs is copied to. This file
allows for local URI options (bootflash, USB1, etc.).

The guestshell export rootfs package command:

• Disables the Guest Shell (if already enabled).

• Creates a Guest Shell import YAML file and inserts it into the /cisco directory of the rootfs ext4 file.

• Copies the rootfs ext4 file to the target URI location.

• Re-enables the Guest Shell if it had been previously enabled.

Importing Guest Shell rootfs

When importing a Guest Shell rootfs, there are two situations to consider:

• Use the guestshell enable package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is in a destroyed state. This command brings up the Guest Shell with the specified package.

• Use the guestshell upgrade package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is already installed. This command removes the existing Guest Shell and installs the specified
package.

The rootfs-file-URI parameter is the rootfs file stored on local storage (bootflash, USB, etc.).

When this command is executed with a file that is on bootflash, the file is moved to a storage pool on bootflash.

As a best practice, you should copy the file to the bootflash and validate the md5sum before using the
guestshell upgrade package rootfs-file-URI command.

The guestshell upgrade package rootfs-file-URI command can be executed from within the Guest Shell.Note

The rootfs file is not a Cisco signed package, you must configure to allow unsigned packages before enabling
as shown in the example:

(config-virt-serv-global)# signing level unsigned
Note: Support for unsigned packages has been user-enabled. Unsigned packages are not endorsed
by Cisco. User assumes all responsibility.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
44

Shells and Scripting
Exporting Guest Shell rootfs

To restore the embedded version of the rootfs:

• Use the guestshell upgrade command (without additional parameters) when the Guest Shell has already
been installed.

• Use the guestshell enable command (without additional parameters) when the Guest Shell had been
destroyed.

Note

When running this command from within a Guest Shell, or outside a switch using NX-API, you must set
terminal dont-ask to skip any prompts.

Note

The guestshell enable package rootfs-file-URI command:

• Performs basic validation of the rootfs file.

• Moves the rootfs into the storage pool.

• Mounts the rootfs to extract the YAML file from the /cisco directory.

• Parses the YAML file to obtain VM definition (including resource requirements).

• Activates the Guest Shell.

Example workflow for guestshell enable :

switch# copy scp://user@10.1.1.1/my_storage/gs_rootfs.ext4 bootflash: vrf management
switch# guestshell resize cpu 8
Note: System CPU share will be resized on Guest shell enable
switch# guestshell enable package bootflash:gs_rootfs.ext4
Validating the provided rootfs
switch# 2017 Jul 31 14:58:01 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual
service 'guestshell+'
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2017 Jul 31 14:58:33 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

Workflow for guestshell upgrade is preceded by the existing Guest Shell being destroyed.Note

Resize values are cleared when the guestshell upgrade command is used.Note

Importing YAML File
A YAML file that defines some user modifiable characteristics of the Guest Shell is automatically created as
a part of the export operation. It is embedded into the Guest Shell rootfs in the /cisco directory. It is not a

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
45

Shells and Scripting
Importing YAML File

complete descriptor for the Guest Shell container. It only contains some of the parameters that are user
modifiable.

Example of a Guest Shell import YAML file:

import-schema-version: "1.0"
info:
name: "GuestShell"
version: "2.2(0.3)"
description: "Exported GuestShell: 20170216T175137Z"

app:
apptype: "lxc"
cpuarch: "x86_64"
resources:
cpu: 3
memory: 307200
disk:
- target-dir: "/"
capacity: 250

...

The YAML file is generated when the guestshell export rootfs package command is executed. The file
captures the values of the currently running Guest Shell.

The info section contains non-operational data that is used to help identify the Guest Shell. Some of the
information will be displayed in the output of the show guestshell detail command.

The description value is an encoding of the UTC time when the YAML file was created. The time string
format is the same as DTSTAMP in RFC5545 (iCal).

The resources section describes the resources required for hosting the Guest Shell. The value "/" for the
target-dir in the example identifies the disk as the rootfs.

If resized values were specified while the Guest Shell was destroyed, those values take precedence over the
values in the import YAML file when the guestshell enable package command is used.

Note

The cpuarch value indicates the CPU architecture that is expected for the container to run.

You can modify the YAML file (such as the description or increase the resource parameters, if appropriate)
after the export operation is complete .

Cisco provides a python script that you can run to validate a modified YAML file with a JSON schema. It is
not meant to be a complete test (for example, device-specific resource limits are not checked), but it is able
to flag common errors. The python script with examples is located at
https://github.com/datacenter/opennxos/tree/master/guestshell_import_export. The following JSON file
describes the schema for version 1.0 of the Guest Shell import YAML .

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Guest Shell import schema",
"description": "Schema for Guest Shell import descriptor file - ver 1.0",
"copyright": "2017 by Cisco systems, Inc. All rights reserved.",
"id": "",
"type": "object",
"additionalProperties": false,
"properties": {
"import-schema-version": {

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
46

Shells and Scripting
Importing YAML File

"id": "/import-schema-version",
"type": "string",
"minLength": 1,
"maxLength": 20,
"enum": [

"1.0"
]

},
"info": {
"id": "/info",
"type": "object",
"additionalProperties": false,
"properties": {
"name": {
"id": "/info/name",
"type": "string",
"minLength": 1,
"maxLength": 29

},
"description": {
"id": "/info/description",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"version": {
"id": "/info/version",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"author-name": {
"id": "/info/author-name",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"author-link": {
"id": "/info/author-link",
"type": "string",
"minLength": 1,
"maxLength": 199

}
}

},
"app": {
"id": "/app",
"type": "object",
"additionalProperties": false,
"properties": {
"apptype": {
"id": "/app/apptype",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"lxc"

]
},
"cpuarch": {
"id": "/app/cpuarch",
"type": "string",
"minLength": 1,
"maxLength": 63,

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
47

Shells and Scripting
Importing YAML File

"enum": [
"x86_64"

]
},
"resources": {
"id": "/app/resources",
"type": "object",
"additionalProperties": false,
"properties": {
"cpu": {
"id": "/app/resources/cpu",
"type": "integer",
"multipleOf": 1,
"maximum": 100,
"minimum": 1

},
"memory": {
"id": "/app/resources/memory",
"type": "integer",
"multipleOf": 1024,
"minimum": 1024

},
"disk": {
"id": "/app/resources/disk",
"type": "array",
"minItems": 1,
"maxItems": 1,
"uniqueItems": true,
"items": {
"id": "/app/resources/disk/0",
"type": "object",
"additionalProperties": false,
"properties": {
"target-dir": {
"id": "/app/resources/disk/0/target-dir",
"type": "string",
"minLength": 1,
"maxLength": 1,
"enum": [
"/"

]
},
"file": {
"id": "/app/resources/disk/0/file",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"capacity": {
"id": "/app/resources/disk/0/capacity",
"type": "integer",
"multipleOf": 1,
"minimum": 1

}
}

}
}

},
"required": [
"memory",
"disk"

]
}

},

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
48

Shells and Scripting
Importing YAML File

"required": [
"apptype",
"cpuarch",
"resources"

]
}

},
"required": [
"app"

]
}

show guestshell Command
The output of the show guestshell detail command includes information that indicates whether the Guest
Shell was imported or was installed from an OVA.

Example of the show guestshell detail command after importing rootfs.

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : rootfs_puppet
Path : usb2:/rootfs_puppet
Application
Name : GuestShell
Installed version : 2.3(0.0)
Description : Exported GuestShell: 20170613T173648Z

Signing
Key type : Unsigned
Method : Unknown

Licensing
Name : None
Version : None

Verifying Virtual Service and Guest Shell Information
You can verify virtual service and Guest Shell information with the following commands:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
49

Shells and Scripting
show guestshell Command

DescriptionCommand

Displays the global state and
limits for virtual services.

show virtual-service global

switch# show virtual-service global

Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.9
Total virtual services installed : 1
Total virtual services activated : 1

Machine types supported : LXC
Machine types disabled : KVM

Maximum VCPUs per virtual service : 1

Resource virtualization limits:
Name Quota Committed Available

system CPU (%) 20 1 19
memory (MB) 3840 256 3584
bootflash (MB) 8192 200 7992
switch#

Displays a summary of the
virtual services, the status of
the virtual services, and
installed software packages.

show virtual-service list

switch# show virtual-service list *

Virtual Service List:

Name Status Package Name
--
guestshell+ Activated guestshell.ova

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
50

Shells and Scripting
Verifying Virtual Service and Guest Shell Information

DescriptionCommand

Displays details about the
guestshell package (such as
version, signing resources, and
devices).

show guestshell detail

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isan/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.2(0.2)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation
Disk : 250 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Persistently Starting Your Application From the Guest Shell
Your application should have a systemd / systemctl service file that gets installed in
/usr/lib/systemd/system/application_name.service. This service file should have the following
general format:
[Unit]
Description=Put a short description of your application here

[Service]
ExecStart=Put the command to start your application here
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

To run systemd as a specific user, add User=<username> to the [Service] section of your service.Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
51

Shells and Scripting
Persistently Starting Your Application From the Guest Shell

Procedure for Persistently Starting Your Application from the
Guest Shell

Procedure

Step 1 Install your application service file that you created above into
/usr/lib/systemd/system/application_name.service

Step 2 Start your application with systemctl start application_name

Step 3 Verify that your application is running with systemctl status -l application_name

Step 4 Enable your application to be restarted on reload with systemctl enable application_name

Step 5 Verify that your application is running with systemctl status -l application_name

An Example Application in the Guest Shell
The following example demonstrates an application in the Guest Shell:
root@guestshell guestshell]# cat /etc/init.d/hello.sh
#!/bin/bash

OUTPUTFILE=/tmp/hello

rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
[root@guestshell guestshell]#
[root@guestshell guestshell]#
[root@guestshell system]# cat /usr/lib/systemd/system/hello.service
[Unit]
Description=Trivial "hello world" example daemon

[Service]
ExecStart=/etc/init.d/hello.sh &
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target
[root@guestshell system]#
[root@guestshell system]# systemctl start hello
[root@guestshell system]# systemctl enable hello
[root@guestshell system]# systemctl status -l hello
hello.service - Trivial "hello world" example daemon

Loaded: loaded (/usr/lib/systemd/system/hello.service; enabled)
Active: active (running) since Sun 2015-09-27 18:31:51 UTC; 10s ago

Main PID: 355 (hello.sh)
CGroup: /system.slice/hello.service

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
52

Shells and Scripting
Procedure for Persistently Starting Your Application from the Guest Shell

##355 /bin/bash /etc/init.d/hello.sh &
##367 sleep 10

Sep 27 18:31:51 guestshell hello.sh[355]: Executing: /etc/init.d/hello.sh &
[root@guestshell system]#
[root@guestshell guestshell]# exit
exit
[guestshell@guestshell ~]$ exit
logout
switch# reload
This command will reboot the system. (y/n)? [n] y

After reload
[root@guestshell guestshell]# ps -ef | grep hello
root 20 1 0 18:37 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 123 108 0 18:38 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# cat /tmp/hello
Sun Sep 27 18:38:03 UTC 2015
Hello World
Sun Sep 27 18:38:13 UTC 2015
Hello World
Sun Sep 27 18:38:23 UTC 2015
Hello World
Sun Sep 27 18:38:33 UTC 2015
Hello World
Sun Sep 27 18:38:43 UTC 2015
Hello World
[root@guestshell guestshell]#

Running under systemd / systemctl, your application is automatically restarted if it dies (or if you
kill it). The Process ID is originally 226. After killing the application, it is automatically restarted with a
Process ID of 257.
[root@guestshell guestshell]# ps -ef | grep hello
root 226 1 0 19:02 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 254 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# kill -9 226
[root@guestshell guestshell]#
[root@guestshell guestshell]# ps -ef | grep hello
root 257 1 0 19:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 264 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#

Troubleshooting Guest Shell Issues
Unable to Get Into Guest Shell After Downgrade to 7.0(3)I7

If you downgrade from the NX-OS 9.2(1) release to the NX-OS 7.0(3)7 release image (which does not have
user namespace support) while the Guest Shell is in the process of activating or deactivating, you may run
into the following condition where the Guest Shell activates, but you are unable to get into the Guest Shell.
The reason for this issue is that if a reload is issued while the Guest Shell is in transition, the files within the
Guest Shell can't get shifted back into an id range that is usable for NX-OS releases that don't have user
namespace support.
switch# guestshell
Failed to mkdir .ssh for admin
admin RSA add failed

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
53

Shells and Scripting
Troubleshooting Guest Shell Issues

ERROR: Failed to connect with Virtual-service 'guestshell+'
switch#
switch# sh virt list

Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshell.ova

switch# run bash ls -al /isan/vdc_1/virtual-instance/guestshell+/rootfs/
drwxr-xr-x 24 11000 11000 1024 Apr 11 10:44 .
drwxrwxrwx 4 root root 80 Apr 27 20:08 ..
-rw-r--r-- 1 11000 11000 0 Mar 21 16:24 .autorelabel
lrwxrwxrwx 1 11000 11000 7 Mar 21 16:24 bin -> usr/bin

To recover from this issue without losing the contents of the Guest Shell, reload the system with the
previously-running NX-OS 9.2(x) image and let the Guest Shell get to the Activated state before reloading
the systemwith the NX-OS 7.0(3)I7 image. Another option is to disable the Guest Shell while running NX-OS
9.2(x) and re-enable it after reloading with 7.0(3)I7.

If you do not have anything to preserve in the Guest Shell and you just want to recover it, you can destroy
and recreate it without needing to change images.

Unable to Access Files on bootflash from root in the Guest Shell

You may find that you are unable to access files on bootflash from root in the Guest Shell.

From the host:
root@switch# ls -al /bootflash/try.that
-rw-r--r-- 1 root root 0 Apr 27 20:55 /bootflash/try.that
root@switch#

From the Guest Shell:
[root@guestshellbootflash]# ls -al /bootflash/try.that
-rw-r--r-- 1 65534 host-root 0 Apr 27 20:55 /bootflash/try.that
[root@guestshellbootflash]# echo "some text" >> /bootflash/try.that
-bash: /bootflash/try.that: Permission denied
[root@guestshellbootflash]#

This may be due to the fact that, because the user namespace is being used to protect the host system, root in
the Guest Shell is not actually the root of the system.

To recover from this issue, verify that the file permissions and group-id of the files allow for shared files on
bootflash to be accessed as expected. You may need to change the permissions or group-id from the host Bash
session.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
54

Shells and Scripting
Troubleshooting Guest Shell Issues

C H A P T E R 5
Python API

• About the Python API , on page 55
• Using Python, on page 55

About the Python API
Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting and rapid application development
in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all
major platforms from the Python website:

http://www.python.org/

The same site also contains distributions of and pointers to many free third-party Python modules, programs
and tools, and additional documentation.

The Cisco Nexus 3600 devices support Python v2.7.5 in both interactive and non-interactive (script) modes
and is available in the Guest Shell.

The Python scripting capability gives programmatic access to the device's command-line interface (CLI) to
perform various tasks and PowerOn Auto Provisioning (POAP) or Embedded Event Manager (EEM) actions.
Python can also be accessed from the Bash shell.

The Python interpreter is available in the Cisco NX-OS software.

Using Python
This section describes how to write and execute Python scripts.

Cisco Python Package
Cisco NX-OS provides a Cisco Python package that enables access to many core network device modules,
such as interfaces, VLANs, VRFs, ACLs and routes. You can display the details of the Cisco Python package
by entering the help() command. To obtain additional information about the classes and methods in a module,

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
55

you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

FILE
/isan/python/scripts/cisco/__init__.py

PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf

CLASSES
__builtin__.object

cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You need to enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
56

Shells and Scripting
Using the CLI Command APIs

Table 3: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control/special characters.

The interactive Python interpreter prints
control/special characters 'escaped'. A
carriage return is printed as '\n' and gives
results that might be difficult to read. The
clip() API gives results that are more
readable.

Note

cli()

Example:
string = cli (“cli-command”)

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

This API can be useful when searching the
output of show commands.

Note

clid()

Example:
json_string = clid (“cli-command”)

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

Note

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:
>>> cli("conf t ; interface eth4/1 ; shut")

Commands are separated with " ; " as shown in the example. (The ; must be surrounded with single blank
characters.)

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
57

Shells and Scripting
Using the CLI Command APIs

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python from the CLI:

The Python interpreter is designated with the ">>>" or "…" prompt.Note

switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 5 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print intf['interface']
...
mgmt0
Ethernet2/7
Ethernet4/7
loopback0
loopback5
>>>

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:
username: admin
vdc: switch
routing-context vrf: default

Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>

Example 3:
>>> from cli import *
>>> cli("conf ; interface loopback 1")

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
58

Shells and Scripting
Invoking the Python Interpreter from the CLI

''
>>> r = cli('where detail') ; print r
mode:
username: admin
vdc: EOR-1
routing-context vrf: default

>>>

Example 4:
>>> from cli import *
>>> import json
>>> out=json.loads(clid('show version'))
>>> for k in out.keys():
... print "%30s = %s" % (k, out[k])
...

kern_uptm_secs = 6
kick_file_name = bootflash:///n3600-dk9.6.1.2.I1.1.bin

rr_service = None
module_id = Supervisor Module

kick_tmstmp = 10/21/2013 00:06:10
bios_cmpl_time = 08/17/2013
bootflash_size = 20971520

kickstart_ver_str = 6.1(2)I1(2) [build 6.1(2)I1(2)] [gdb]
kick_cmpl_time = 10/20/2013 4:00:00

chassis_id = Nexus3600 C9508 (8 Slot) Chassis
proc_board_id = SAL171211LX

memory = 16077872
manufacturer = Cisco Systems, Inc.

kern_uptm_mins = 26
bios_ver_str = 06.14

cpu_name = Intel(R) Xeon(R) CPU E5-2403
kern_uptm_hrs = 2

rr_usecs = 816550
rr_sys_ver = None
rr_reason = Reset Requested by CLI command reload
rr_ctime = Mon Oct 21 00:10:24 2013

header_str = Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Documents: http://www.cisco.com/en/US/products/ps9372/tsd_products_support_series_home.html
Copyright (c) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained herein are owned by
other third parties and are used and distributed under license.
Some parts of this software are covered under the GNU Public
License. A copy of the license is available at
http://www.gnu.org/licenses/gpl.html.

host_name = switch
mem_type = kB

kern_uptm_days = 0
>>>

Non-interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command line arguments for the Python script are allowed with the Python CLI command.

The Cisco Nexus 3600 device also supports the source CLI command for running Python scripts. The
bootflash:scripts directory is the default script directory for the source CLI command.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
59

Shells and Scripting
Non-interactive Python

The following example shows a script and how to run it:
switch# show file bootflash:deltaCounters.py
#!/isan/bin/python

from cli import *
import sys, time

ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'

out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print 'row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast'
print '==='
print ' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc)
print '==='

i = 0
while (i < count):
time.sleep(delay)
out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print '%-3d %8d %8d %8d %8d %8d %8d' % \
(i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew - rxbc, txucNew - txuc, txmcNew - txmc,

txbcNew - txbc)

switch# python bootflash:deltaCounters.py Ethernet1/1 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===

0 791 1 0 212739 0
===
1 0 0 0 0 26 0
2 0 0 0 0 27 0
3 0 1 0 0 54 0
4 0 1 0 0 55 0
5 0 1 0 0 81 0
switch#

The following example shows how a source command specifies command-line arguments. In the example,
policy-map is an argument to the cgrep python script. The example also shows that a source command can
follow after the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map

policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
60

Shells and Scripting
Non-interactive Python

policy-map type qos classify
policy-map type qos cos-based
policy-map type qos no-drop-2
policy-map type qos pfc-tor-port

Running Scripts with Embedded Event Manager
On Cisco Nexus 3600 devices, embedded event manager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.
switch# show running-config eem

!Command: show running-config eem
!Time: Sun May 1 14:40:07 2011

version 6.1(2)I2(1)
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py
action 2 event-default

• You can search for the action triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Python Integration with Cisco NX-OS Network Interfaces
On Cisco Nexus 3600 devices, Python is integrated with the underlying Cisco NX-OS network interfaces.
You can switch from one virtual routing context to another by setting up a context through the
cisco.vrf.set_global_vrf() API.

The following example shows how to retrieve an HTML document over themanagement interface of a device.
You can also establish a connection to an external entity over the inband interface by switching to a desired
virtual routing context.
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
61

Shells and Scripting
Running Scripts with Embedded Event Manager

>>> print page.read()
Hello Cisco Nexus 3600

>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:

set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other
python libraries).

Arguments:
vrf: VRF name (string) or the VRF ID (int).

Returns: Nothing

>>>

Cisco NX-OS Security with Python
CiscoNX-OS resources are protected by the CiscoNX-OS Sandbox layer of software and by the CLI role-based
access control (RBAC).

All users associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users who are
granted access to Python with a custom role are regarded as non-privileged users. Non-privileged users have
a limited access to Cisco NX-OS resources, such as file system, guest shell, and Bash commands. Privileged
users have greater access to all the resources of Cisco NX-OS.

Examples of Security and User Authority
The following example shows how a privileged user runs commands:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print r.read()
hello from python
>>> r.close()

The following example shows a non-privileged user being denied access:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','r')

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
62

Shells and Scripting
Cisco NX-OS Security with Python

Permission denied. Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: [Errno 13] Permission denied: '/tmp/test'
>>>

RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that
is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is
invoked from Python.

The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'11:28:53.845 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')

!Command: show running-config l3vm
!Time: Sun May 8 11:29:40 2011

version 6.1(2)I2(1)

interface Ethernet1/48
vrf member blue

interface mgmt0
vrf member management

vrf context blue
vrf context management
vrf context myvrf

The following is an example for a non-privileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)

errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'

The following example shows an RBAC configuration:
switch# show user-account
user:admin

this user account has no expiry date
roles:network-admin

user:pyuser
this user account has no expiry date
roles:network-operator python-role

switch# show role name python-role

Example of Running Script with Scheduler
The following example shows a Python script that is running the script with the scheduler feature:
#!/bin/env python
from cli import *

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
63

Shells and Scripting
Example of Running Script with Scheduler

from nxos import *
import os

switchname = cli("show switchname")
try:

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname
print msg
py_syslog(1, msg)
Save this script in bootflash:///scripts

switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature scheduler
switch(config)# scheduler job name testplan
switch(config-job)# python bootflash:///scripts/testplan.py
switch(config-job)# exit
switch(config)# scheduler schedule name testplan
switch(config-schedule)# job name testplan
switch(config-schedule)# time start now repeat 0:0:4
Schedule starts from Mon Mar 14 16:40:03 2011
switch(config-schedule)# end
switch# term mon
2011 Mar 14 16:38:03 switch %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured from vty by admin on
10.19.68.246@pts/2
switch# show scheduler schedule
Schedule Name : testplan

User Name : admin
Schedule Type : Run every 0 Days 0 Hrs 4 Mins
Start Time : Mon Mar 14 16:40:03 2011
Last Execution Time : Yet to be executed

Job Name Last Execution Status

testplan -NA-
==
switch#
switch# 2011 Mar 14 16:40:04 switch %USER-1-SYSTEM_MSG: No user ran
/bootflash/scripts/testplan.py on : switch - nxpython
2011 Mar 14 16:44:04 switch last message repeated 1 time
switch#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
64

Shells and Scripting
Example of Running Script with Scheduler

C H A P T E R 6
Scripting with Tcl

• About Tcl, on page 65
• Running the Tclsh Command, on page 68
• Navigating Cisco NX-OS Modes from the Tclsh Command, on page 69
• Tcl References, on page 70

About Tcl
Tcl (pronounced "tickle") is a scripting language that increases flexibility of CLI commands. You can use Tcl
to extract certain values in the output of a show command, perform switch configurations, run Cisco NX-OS
commands in a loop, or define Embedded Event Manager (EEM) policies in a script.

This section describes how to run Tcl scripts or run Tcl interactively on Cisco NX-OS devices.

Guidelines and Limitations
Following are guidelines and limitations for TCL scripting:

• Tcl is supported on the Cisco Nexus 9508 switch.

• Some processes and show commands can cause a large amount of output. If you are running scripts, and
need to terminate long-running output, use Ctrl+C (not Ctrl+Z) to terminate the command output. If you
use Ctrl+Z, a SIGCONT (signal continuation) message can be generated, which can cause the script to
halt. Scripts that are halted through SIGCONT messages require user intervention to resume operation.

Tclsh Command Help
Command help is not available for Tcl commands. You can still access the help functions of Cisco NX-OS
commands from within an interactive Tcl shell.

This example shows the lack of Tcl command help in an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# puts ?

^
% Invalid command at '^' marker.
switch-tcl# configure ?
<CR>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
65

session Configure the system in a session
terminal Configure the system from terminal input

switch-tcl#

In the preceding example, the Cisco NX-OS command help function is still available but the Tcl puts command
returns an error from the help function.

Note

Tclsh Command History
You can use the arrow keys on your terminal to access commands you previously entered in the interactive
Tcl shell.

The tclsh command history is not saved when you exit the interactive Tcl shell.Note

Tclsh Tab Completion
You can use tab completion for Cisco NX-OS commands when you are running an interactive Tcl shell. Tab
completion is not available for Tcl commands.

Tclsh CLI Command
Although you can directly access Cisco NX-OS commands from within an interactive Tcl shell, you can only
execute Cisco NX-OS commands in a Tcl script if they are prepended with the Tcl cli command.

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli show module 1 | incl Mod
switch-tcl# cli "show module 1 | incl Mod"
switch-tcl# show module 1 | incl Mod

In a Tcl script, you must prepend Cisco NX-OS commands with the Tcl cli command as shown in the following
example:
set x 1
cli show module $x | incl Mod
cli "show module $x | incl Mod"

If you use the following commands in your script, the script fails and the Tcl shell displays an error:
show module $x | incl Mod
"show module $x | incl Mod"

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
66

Shells and Scripting
Tclsh Command History

Tclsh Command Separation
The semicolon (;) is the command separator in both Cisco NX-OS and Tcl. To execute multiple Cisco NX-OS
commands in a Tcl command, you must enclose the Cisco NX-OS commands in quotes ("").

In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli "configure terminal ; interface loopback 10 ; description loop10"
switch-tcl# cli configure terminal ; cli interface loopback 10 ; cli description loop10
switch-tcl# cli configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# cli interface loopback 10
switch(config-if-tcl)# cli description loop10
switch(config-if-tcl)#

In an interactive Tcl shell, you can also execute Cisco NX-OS commands directly without prepending the Tcl
cli command:
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# description loop10
switch(config-if-tcl)#

Tcl Variables
You can use Tcl variables as arguments to the Cisco NX-OS commands. You can also pass arguments into
Tcl scripts. Tcl variables are not persistent.

The following example shows how to use a Tcl variable as an argument to a Cisco NX-OS command:
switch# tclsh
switch-tcl# set x loop10
switch-tcl# cli "configure terminal ; interface loopback 10 ; description $x"
switch(config-if-tcl)#

Tclquit
The tclquit command exits the Tcl shell regardless of which Cisco NX-OS commandmode is currently active.
You can also press Ctrl-C to exit the Tcl shell. The exit and end commands change Cisco NX-OS command
modes. The exit command terminates the Tcl shell only from the EXEC command mode.

Tclsh Security
The Tcl shell is executed in a sandbox to prevent unauthorized access to certain parts of the Cisco NX-OS
system. The system monitors CPU, memory, and file system resources being used by the Tcl shell to detect
events such as infinite loops, excessive memory utilization, and so on.

You configure the initial Tcl environment with the scripting tcl init init-file command.

You can define the looping limits for the Tcl environment with the scripting tcl recursion-limit iterations
command. The default recursion limit is 1000 iterations.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
67

Shells and Scripting
Tclsh Command Separation

Running the Tclsh Command
You can run Tcl commands from either a script or on the command line using the tclsh command.

You cannot create a Tcl script file at the CLI prompt. You can create the script file on a remote device and
copy it to the bootflash: directory on the Cisco NX-OS device.

Note

Procedure

PurposeCommand or Action

Starts a Tcl shell.tclsh [bootflash:filename [argument ...
]]

Step 1

If you run the tclsh command with no
arguments, the shell runs interactively, readingExample:
Tcl commands from standard input and printingswitch# tclsh ?

<CR>
bootflash: The file to run

command results and error messages to the
standard output. You exit from the interactive
Tcl shell by typing tclquit or Ctrl-C.

If you run the tclsh command with arguments,
the first argument is the name of a script file
containing Tcl commands and any additional
arguments are made available to the script as
variables.

Example

The following example shows an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# cli show module $x | incl Mod
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch-tcl# exit
switch#

The following example shows how to run a Tcl script:
switch# show file bootflash:showmodule.tcl
set x 1
while {$x < 19} {
cli show module $x | incl Mod
set x [expr {$x + 1}]
}

switch# tclsh bootflash:showmodule.tcl
Mod Ports Module-Type Model Status

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
68

Shells and Scripting
Running the Tclsh Command

1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num

switch#

Navigating Cisco NX-OS Modes from the Tclsh Command
You can change modes in Cisco NX-OS while you are running an interactive Tcl shell.

Procedure

PurposeCommand or Action

Starts an interactive Tcl shell.tclsh

Example:

Step 1

switch# tclsh
switch-tcl#

Runs a Cisco NX-OS command in the Tcl shell,
changing modes.

configure terminal

Example:

Step 2

The Tcl prompt changes to indicate
the Cisco NX-OS command mode.

Noteswitch-tcl# configure terminal
switch(config-tcl)#

Terminates the Tcl shell, returning to the
starting mode.

tclquit

Example:

Step 3

switch-tcl# tclquit
switch#

Example

The following example shows how to change Cisco NX-OS modes from an interactive Tcl shell:
switch# tclsh
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# ?
description Enter description of maximum 80 characters
inherit Inherit a port-profile
ip Configure IP features
ipv6 Configure IPv6 features
logging Configure logging for interface
no Negate a command or set its defaults
rate-limit Set packet per second rate limit
shutdown Enable/disable an interface
this Shows info about current object (mode's instance)
vrf Configure VRF parameters
end Go to exec mode

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
69

Shells and Scripting
Navigating Cisco NX-OS Modes from the Tclsh Command

exit Exit from command interpreter
pop Pop mode from stack or restore from name
push Push current mode to stack or save it under name
where Shows the cli context you are in

switch(config-if-tcl)# description loop10
switch(config-if-tcl)# tclquit
Exiting Tcl
switch#

Tcl References
The following titles are provided for your reference:

• Mark Harrison (ed), Tcl/Tk Tools, O'Reilly Media, ISBN 1-56592-218-2, 1997

• Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming, Addison-Wesley, Reading, MA,
USA, ISBN 0-201-63474-0, 1998

• John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading,MA, USA, ISBN 0-201-63337-X,
1994.

• Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, Upper Saddle River, NJ, USA,
ISBN 0-13-038560-3, 2003.

• J Adrian Zimmer, Tcl/Tk for Programmers, IEEE Computer Society, distributed by JohnWiley and Sons,
ISBN 0-8186-8515-8, 1998.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
70

Shells and Scripting
Tcl References

C H A P T E R 7
iPXE

This chapter contains the following sections:

• About iPXE, on page 71
• Netboot Requirements, on page 72
• Guidelines and Limitations, on page 72
• Boot Mode Configuration, on page 80
• Verifying the Boot Order Configuration, on page 82

About iPXE
iPXE is an open source network boot firmware. iPXE is based on gPXE, which is an open-source PXE client
firmware and bootloader derived from Etherboot. Standard PXE clients use TFTP to transfer data, whereas
gPXE supports additional protocols.

Here is a list of additional features that iPXE provides over standard PXE:

• Boots from a web server via HTTP, iSCSI SAN, FCoE, etc.,

• Supports both IPv4 and IPv6,

• Netboot supports HTTP/TFTP, IPv4, and IPv6,

• Supports embedded scripts into the image or served by the HTTP/TFTP, etc., and

• Supports stateless address auto-configuration (SLAAC) and stateful IP auto-configuration variants for
DHCPv6. iPXE supports boot URI and parameters for DHCPv6 options. This depends on IPv6 router
advertisement.

In addition, we have disabled some of the existing features from iPXE for security reasons such as:

• Boot support for standard Linux image format such as bzImage+initramfs/initrd, or ISO, etc.,

• Unused network boot options such as FCoE, iSCSI SAN, Wireless, etc., and

• Loading of unsupported NBP (such as syslinux/pxelinux) because these might boot system images that
are not properly code-signed.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
71

Netboot Requirements
The primary requirements are:

• A DHCP server with proper configuration.

• A TFTP/HTTP server.

• Enough space on the device's bootflash because NX-OS downloads the image when the device is PXE
booted.

• IPv4/IPv6 support—for better deployment flexibility

Guidelines and Limitations
PXE has the following configuration guidelines and limitations:

• While auto-booting through iPXE, there is a window of three seconds where you can enter Ctrl+B to
exit out of the PXE boot. The system prompts you with the following options:

Please choose a bootloader shell:
1). GRUB shell
2). PXE shell
Enter your choice:

• HTTP image download vs. TFTP—TFTP is UDP based and it can be problematic if packet loss starts
appearing. TCP is a window-based protocol and handles bandwidth sharing/losses better. As a result,
TCP-based protocols support is more suitable given the sizes of the Cisco Nexus images which are over
250 Mbytes.

• iPXE only allows/boots Cisco signed NBI images. Other standard image format support is disabled for
security reasons.

Notes for iPXE

DHCP server installation

DHCP is not installed in the server by default. You can verify DHCP server installation with the service
dhcpd status command.

[switch etc]# service dhcpd status
dhcpd: unrecognized service /* indicates that dhcp server is not installed */

You can install DHCP with the yum install dhcp command.

Root credentials are required for installing the DHCP server.Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
72

Shells and Scripting
Netboot Requirements

[switch etc]# yum install dhcp
Repository base is listed more than once in the configuration
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package dhcp.x86_64 12:3.0.5-23.el5 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved
===

Package Arch Version Repository
Size
===
Installing:
dhcp x86_64 12:3.0.5-23.el5 workstation 883
k

Transaction Summary
===
Install 1 Package(s)
Upgrade 0 Package(s)

Total download size: 883 k
Is this ok [y/N]: y
Downloading Packages:
dhcp-3.0.5-23.el5.x86_64.rpm | 883 kB 00:00
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : dhcp

1/1
Installed:
dhcp.x86_64 12:3.0.5-23.el5

Complete!
[switch etc]#

Adding a configuration to the DHCP server

After the DHCP server is installed, the configuration file in located at /etc/dhcpd.conf.

The following is an example of the dhcpd.conf file.

Set the amount of time in seconds that a client may keep the IP address
default-lease-time 300;
max-lease-time 7200;
one-lease-per-client true;

#Indicate the preferred interface that your DHCP server listens only to that interface and
to no other . Preferred interface should be added to the DHCPDARGS variable
DHCPDARGS=eth0

#A subnet section is generated for each of the interfaces present on your Linux system
subnet 10.0.00.0 netmask 255.255.255.0 {

The range of IP addresses the server will issue to DHCP enabled PC clients booting up on
the network

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
73

Shells and Scripting
Notes for iPXE

range 10.0.00.2 10.0.00.100;

#Address of the preferred inteface
next-server 10.0.00.4;

#The default gateway to be used
option routers 10.0.00.254;

#The file path where the ipxe boot looks for the image
filename = "http://10.0.00.4/pxe/dummy";

(http://10.0.00.4 points to the httpd service path mentioned in DocumentRoot variable
at /etc/httpd/conf/httpd.conf) .
By default it points to "DocumentRoot "/var/www/html" (Refer the HTTP service section)

option domain-name "cisco.com";
option domain-name-servers 100.00.000.183;

host Nexus {
hardware ethernet e4:c7:22:bd:c4:f9;
fixed-address 10.0.00.42;
filename = "http://10.0.00.4/ipxe/nxos-image.bin";

host Nexus {
hardware ethernet 64:f6:9d:07:52:f7;
fixed-address 10.0.00.8;
filename = "tftp://100.00.000.48/nxos-image.bin";

Managing the DHCP service

After installing the DHCP service, you need to initiate the service.Note

• Verifying the DHCP service

[switch etc]# service dhcpd status
dhcpd is stopped

• Starting the DHCP service

[switch etc]# service dhcpd start
Starting dhcpd: [ok]

• Stopping the DHCP service

[switch etc]# service dhcpd stop
Stopping dhcpd: [ok]

• Restarting the DHCP service

When the DHCP configuration file /etc/dhcpd.conf is updated, you need to restart
the service.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
74

Shells and Scripting
Notes for iPXE

[switch etc]# service dhcpd restart
Starting dhcpd: [ok]

Managing the HTTP server

• HTTP server installation

[switch conf]# yum install httpd

• Starting the HTTP service

[switch conf]# service httpd start
Starting httpd: httpd: Could not reliably determine the server's fully qualified domain
name,
using 100.00.000.127 for ServerName

[OK]

• Stopping the HTTP service

[switch conf]# service httpd stop
Stopping httpd: [OK]

• Restarting the HTTP service

[switch conf]# service httpd restart
Stopping httpd: [FAILED]
Starting httpd: httpd: Could not reliably determine the server's fully qualified domain
name,
using 100.00.000.127 for ServerName

[OK]

• Verifying the HTTP status

[switch conf]# service httpd status
httpd (pid 23032) is running...

The HTTP configuration file is located at /etc/httpd/conf/httpd.conf.Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
75

Shells and Scripting
Notes for iPXE

• DocumentRoot: The directory out of which you will serve your documents.
By default, all requests are taken from this directory, but symbolic links and
aliases may be used to point to other locations.

• DocumentRoot /var/www/html

The DocumentRoot variable contains the path that represents the
http://<ip_add> field in the dhcpd.conf file with the filename variable.

The following is an example:

host Nexus {
hardware ethernet e4:c7:22:bd:c4:f9;
fixed-address 10.0.00.42;
filename = "http://10.0.00.4/ipxe/nxos-image.bin";

The filename path redirects to the location
/var/www/html/ipxe/nxos-image.bin, where the ipxe bootup looks for the
image .

Note

• TFTP server installation

[switch conf]# yum install tftp

The TFTP configuration file located at /etc/xinetd.d/tftp.

The following is an example of a TFTP configuration file:

[switch xinetd.d]# cat tftp
default: off
description: The tftp server serves files using the trivial file transfer \
protocol. The tftp protocol is often used to boot diskless \
workstations, download configuration files to network-aware printers, \
and to start the installation process for some operating systems.
service tftp
{

disable = no
socket_type = dgram
protocol = udp
wait = yes
user = root
server = /usr/sbin/in.tftpd
server_args = -s /tftpboot # Indicates the tftp path
per_source = 11
cps = 100 2
flags = IPv4

}

• Stopping the TFTP service

[switch xinetd.d]# chkconfig tftp off

• Starting the TFTP service

[switch xinetd.d]# chkconfig tftp on

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
76

Shells and Scripting
Notes for iPXE

When you change the TFTP configuration file, you need to restart the TFTP
service.

Note

host Nexus {
hardware ethernet 64:f6:9d:07:52:f7;
fixed-address 10.0.00.8;
filename = "tftp://100.00.000.48/nxos-image.bin";

A prerequisite is that the nxos_image.bin has to be copied to /tftpboot shown in
the above example TFTP path /tftpboot.

Note

• iPXE using HTTP protocol

Nexus# sh int mgmt0
mgmt0 is up
admin state is up,
Hardware: GigabitEthernet, address: e4c7.22bd.c4a6 (bia e4c7.22bd.c4a6)
Internet Address is 10.0.00.42/24
MTU 1500 bytes, BW 100000 Kbit, DLY 10 usec
reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ARPA, medium is broadcast
full-duplex, 100 Mb/s
Auto-Negotiation is turned on
Auto-mdix is turned off
EtherType is 0x0000
1 minute input rate 312 bits/sec, 0 packets/sec
1 minute output rate 24 bits/sec, 0 packets/sec
Rx
5433 input packets 10 unicast packets 5368 multicast packets
55 broadcast packets 405677 bytes

Tx
187 output packets 9 unicast packets 175 multicast packets
3 broadcast packets 45869 bytes

Nexus#

Nexus# ping 199.00.000.48 vrf management
PING 199.00.000.48 (199.00.000.48): 56 data bytes
64 bytes from 199.00.000.48: icmp_seq=0 ttl=61 time=82.075 ms
64 bytes from 199.00.000.48: icmp_seq=1 ttl=61 time=0.937 ms
64 bytes from 199.00.000.48: icmp_seq=2 ttl=61 time=0.861 ms
64 bytes from 199.00.000.48: icmp_seq=3 ttl=61 time=0.948 ms
64 bytes from 199.00.000.48: icmp_seq=4 ttl=61 time=0.961 ms

--- 199.00.000.48 ping statistics ---
5 packets transmitted, 5 packets received, 0.00% packet loss
round-trip min/avg/max = 0.861/17.156/82.075 ms
Nexus# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Nexus(config)# no boot nxos
Nexus(config)# boot order pxe bootflash
Nexus(config)# end

Nexus# copy running-config startup-config
[##] 100%
Copy complete, now saving to disk (please wait)...

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
77

Shells and Scripting
Notes for iPXE

Copy complete.
Nexus# reload
This command will reboot the system. (y/n)? [n] y

CISCO SWITCH Ver 8.32

CISCO SWITCH Ver 8.32
Memory Size (Bytes): 0x0000000080000000 + 0x0000000380000000
Relocated to memory
Time: 9/8/2017 1:3:28
Detected CISCO IOFPGA
Booting from Primary Bios
Code Signing Results: 0x0
Using Upgrade FPGA
FPGA Revison : 0x20
FPGA ID : 0x1168153
FPGA Date : 0x20140317
Reset Cause Register: 0x20
Boot Ctrl Register : 0x60ff
EventLog Register1 : 0xc2004000
EventLog Register2 : 0xfbc77fff
Version 2.16.1240. Copyright (C) 2013 American Megatrends, Inc.
Board type 1
IOFPGA @ 0xe8000000
SLOT_ID @ 0x1b
Standalone chassis
check_bootmode: pxe2grub: Launch pxe
Trying to load ipxe
Loading Application:
/Vendor(429bdb26-48a6-47bd-664c-801204061400)/UnknownMedia(6)/EndEntire
iPXE initialising devices...ok

Cisco iPXE
iPXE 1.0.0+ (3cb3) -- Open Source Network Boot Firmware -- http://ipxe.org
Features: HTTP DNS TFTP NBI Menu
net6: e4:c7:22:bd:c4:a6 using dh8900cc on PCI02:00.3 (open)
[Link:up, TX:0 TXE:0 RX:0 RXE:0]

Configuring (net6 e4:c7:22:bd:c4:a6).................. ok
net0: fe80::2a0:c9ff:fe00:0/64 (inaccessible)
net1: fe80::2a0:c9ff:fe00:1/64 (inaccessible)
net2: fe80::2a0:c9ff:fe00:2/64 (inaccessible)
net3: fe80::2a0:c9ff:fe00:3/64 (inaccessible)
net4: fe80::200:ff:fe00:5/64 (inaccessible)
net5: fe80::200:ff:fe00:7/64 (inaccessible)
net6: 10.0.00.7/255.255.255.0 gw 10.0.00.254
net6: fe80::e6c7:22ff:febd:c4a5/64
net7: fe80::200:ff:fe00:0/64 (inaccessible)
Next server: 10.0.00.4
Filename: http://10.0.00.4/ipxe/nxos-image.bin
http://10.0.00.4/ipxe/nxos-image.bin... ok
http://10.0.00.4/ipxe/nxos_image.bin... 46%
Further device bootsup fine .

• iPXE using TFTP protocol

nexus# sh int mgmt0
mgmt0 is up
admin state is up,
Hardware: GigabitEthernet, address: e4c7.22bd.c4a6 (bia e4c7.22bd.c4a6)
Internet Address is 10.0.00.8/24
MTU 1500 bytes, BW 100000 Kbit, DLY 10 usec
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, medium is broadcast

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
78

Shells and Scripting
Notes for iPXE

full-duplex, 100 Mb/s
Auto-Negotiation is turned on
Auto-mdix is turned off
EtherType is 0x0000
1 minute input rate 312 bits/sec, 0 packets/sec
1 minute output rate 24 bits/sec, 0 packets/sec
Rx
5433 input packets 10 unicast packets 5368 multicast packets
55 broadcast packets 405677 bytes

Tx
187 output packets 9 unicast packets 175 multicast packets
3 broadcast packets 45869 bytes

nexus#
nexus# ping 199.00.000.48 vrf management
PING 199.00.000.48 (199.00.000.48): 56 data bytes
64 bytes from 199.00.000.48: icmp_seq=0 ttl=61 time=82.075 ms
64 bytes from 199.00.000.48: icmp_seq=1 ttl=61 time=0.937 ms
64 bytes from 199.00.000.48: icmp_seq=2 ttl=61 time=0.861 ms
64 bytes from 199.00.000.48: icmp_seq=3 ttl=61 time=0.948 ms
64 bytes from 199.00.000.48: icmp_seq=4 ttl=61 time=0.961 ms

--- 199.00.000.48 ping statistics ---
5 packets transmitted, 5 packets received, 0.00% packet loss
round-trip min/avg/max = 0.861/17.156/82.075 ms

nexus# conf t
Enter configuration commands, one per line. End with CNTL/Z.
nexus(config)# no boot nxos
nexus(config)# boot order pxe bootflash
nexus(config)# end

nexus# copy running-config startup-config
[##] 100%
Copy complete, now saving to disk (please wait)...
Copy complete.

nexus# reload
This command will reboot the system. (y/n)? [n] y

CISCO SWITCH Ver 8.32

CISCO SWITCH Ver 8.32
Memory Size (Bytes): 0x0000000080000000 + 0x0000000380000000
Relocated to memory
Time: 9/8/2017 1:3:28
Detected CISCO IOFPGA
Booting from Primary Bios
Code Signing Results: 0x0
Using Upgrade FPGA
FPGA Revison : 0x20
FPGA ID : 0x1168153
FPGA Date : 0x20140317
Reset Cause Register: 0x20
Boot Ctrl Register : 0x60ff
EventLog Register1 : 0xc2004000
EventLog Register2 : 0xfbc77fff
Version 2.16.1240. Copyright (C) 2013 American Megatrends, Inc.
Board type 1
IOFPGA @ 0xe8000000
SLOT_ID @ 0x1b
Standalone chassis
check_bootmode: pxe2grub: Launch pxe
Trying to load ipxe
Loading Application:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
79

Shells and Scripting
Notes for iPXE

/Vendor(429bdb26-48a6-47bd-664c-801204061400)/UnknownMedia(6)/EndEntire
iPXE initialising devices...ok

Cisco iPXE
iPXE 1.0.0+ (3cb3) -- Open Source Network Boot Firmware -- http://ipxe.org
Features: HTTP DNS TFTP NBI Menu
net6: e4:c7:22:bd:c4:a6 using dh8900cc on PCI02:00.3 (open)
[Link:up, TX:0 TXE:0 RX:0 RXE:0]

Configuring (net6 e4:c7:22:bd:c4:a6).................. ok
net0: fe80::2a0:c9ff:fe00:0/64 (inaccessible)
net1: fe80::2a0:c9ff:fe00:1/64 (inaccessible)
net2: fe80::2a0:c9ff:fe00:2/64 (inaccessible)
net3: fe80::2a0:c9ff:fe00:3/64 (inaccessible)
net4: fe80::200:ff:fe00:5/64 (inaccessible)
net5: fe80::200:ff:fe00:7/64 (inaccessible)
net6: 10.0.00.7/255.255.255.0 gw 10.0.00.254
net6: fe80::e6c7:22ff:febd:c4a5/64
net7: fe80::200:ff:fe00:0/64 (inaccessible)
Next server: 10.0.00.4
filename: tftp://199.00.000.48/nxos-image.bin
tftp://199.00.000.48/nxos-image.bin... ok
tftp://199.00.000.48/nxos_image.bin... 26%

**

• Interrupting the process

Use crtl-B to interrupt the process and reach the iPXE shell.

• The following is an example of booting an image residing on the PXE server using HTTP protocol:

iPXE> dhcp
Configuring (net6 e4:c7:22:bd:c4:a6)................ ok
iPXE>boot http://10.0.0.4/ipxe/nxos-image.bin

• The following is an example of booting an image residing on the PXE server using TFTP protocol:

iPXE> dhcp
iPXE> boot tftp://199.00.00.48/nxos-image.bin

Use exit to exit the iPXE shell.

Boot Mode Configuration
VSH CLI

switch# configure terminal
switch(conf)# boot order bootflash|pxe [bootflash|pxe]
switch(conf)# end

The keyword bootflash indicates it is Grub based booting.Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
80

Shells and Scripting
Boot Mode Configuration

For example, to do a PXE boot mode only, the configuration command is:
switch(conf)# boot order pxe

To boot Grub first, followed by PXE:
switch(conf)# boot order bootflash pxe

To boot PXE first, followed by Grub:
switch(conf)# boot order pxe bootflash

If you never use the boot order command, by default the boot order is Grub.

The following sections describe how you can toggle from Grub and iPXE.Note

Grub CLI

bootmode [-g|-p|-p2g|-g2p]

FunctionKeyword

Grub only-g

PXE only-p

PXE first, followed by Grub if PXE failed-p2g

Grub first, followed by PXE if Grub failed-g2p

The Grub CLI is useful if you want to toggle the boot mode from the serial console without booting a full
Nexus image. It can also be used to get a box out of the continuous PXE boot state.

iPXE CLI

bootmode [-g|--grub] [-p|--pxe] [-a|--pxe2grub] [-b|--grub2pxe]

FunctionKeyword

Grub only– – grub

PXE only– – pxe

PXE first, followed by Grub if PXE failed– – pxe2grub

Grub first, followed by PXE if Grub failed– – grub2pxe

The iPXE CLI is useful if you wish to toggle the boot mode from the serial console without booting a full
Nexus image. It can also be used to get a box out of continuous PXE boot state.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
81

Shells and Scripting
Boot Mode Configuration

Verifying the Boot Order Configuration
To display boot order configuration information, enter the following command:

PurposeCommand

Displays the current boot order from the running
configuration and the boot order value on the next
reload from the startup configuration.

show boot order

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
82

Shells and Scripting
Verifying the Boot Order Configuration

C H A P T E R 8
Kernel Stack

This chapter contains the following sections:

• About Kernel Stack, on page 83
• Guidelines and Limitations, on page 83
• Changing the Port Range, on page 84

About Kernel Stack
Kernel Stack (kstack) uses well known Linux APIs to manage the routes and front panel ports.

Open Containers, like the Guest Shell, are Linux environments that are decoupled from the host software.
The customers may install or modify software within that environment without impacting the host software
packages.

Kernel Stack has the following features:

Guidelines and Limitations
Using the Kernel Stack has the following guidelines and limitations:

• Guest Shell, other open containers, and the host Bash Shell use Kernel Stack (kstack).

• Open containers start in the host default namespace

• Other network namespaces might be accessed by using the setns system call

• The nsenter and ip netns exec utilities can be used to execute within the context of a different
network namespace.

• The PIDs and identify options for the ip netns command do not work without modification because
of the file system device check. A vrfinfo utility is provided to give the network administrator the
same information.

• Open containers may read the interface state from /proc/net/dev or use other normal Linux utilities
such as netstat or ifconfig without modification. This provides counters for packets that have initiated
/ terminated on the switch.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
83

• Open containers may use ethtool –S to get extended statistics from the net devices. This includes packets
switched through the interface.

• Open containers may run packet capture applications like tcpdump to capture packets initiated from or
terminated on the switch.

• There is no support for networking state changes (interface creation/deletion, IP address configuration,
MTU change, etc.) from the Open containers

• IPv4 and IPv6 are supported

• Raw PF_PACKET is supported

• Well-known ports (0-15000) may only be used by one stack (Netstack or kstack) at a time, regardless of
the network namespace.

• There is no IP connectivity between Netstack and kstack applications. This is a host limitation which
also applies to open containers.

• Open containers are not allowed to send packets directly over an Ethernet out-of-band channel (EOBC)
interface to communicate with the linecards or standby Sup.

• From within an open container, direct access to the EOBC interface used for internal communication
with linecards or the standby supervisor. The host bash shell should be used if this access is needed.

• The management interface (mgmt0) is represented as eth1 in the kernel netdevices.

• Use of the VXLAN overlay interface (NVE x) is not supported for applications utilizing the kernel stack.
NX-OS features, including CLI commands, are able to use this interface via netstack.

Changing the Port Range
Netstack and kstack divide the port range between them. The default port ranges are as follows:

• Kstack—15001 to 58000

• Netstack—58001 to 65535

Within this range 63536 to 65535 are reserved for NAT.Note

Procedure

PurposeCommand or Action

This command modifies the port range for
kstack. This command does not modify the
Netstack range.

[no] sockets local-port-range start-port
end-port

Step 1

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
84

Shells and Scripting
Changing the Port Range

Example

The following example sets the kstack port range:
switch# sockets local-port-range 15001 25000

What to do next

After you have entered the command, you need to be aware of the following issues:

• You must reload the switch after entering the command.

• You must leave a minimum of 7000 ports unallocated which are used by Netstack.

• You must specify the start-port as 15001 or the end-port as 65535 to avoid holes in the port range.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
85

Shells and Scripting
Changing the Port Range

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
86

Shells and Scripting
Changing the Port Range

P A R T II
Applications

• Third-Party Applications, on page 89
• Ansible, on page 105
• Puppet Agent, on page 107
• Using Chef Client with Cisco NX-OS, on page 111
• Nexus Application Development - ISO, on page 115
• Nexus Application Development - SDK, on page 119
• NX-SDK, on page 127
• Using Docker with Cisco NX-OS, on page 135

C H A P T E R 9
Third-Party Applications

This chapter contains the following sections:

• About Third-Party Applications, on page 89
• Installing Signed Third-Party RPMs by Importing Keys Automatically, on page 89
• Installing Signed RPM, on page 91
• Persistent Third-Party RPMs, on page 96
• Installing RPM from VSH, on page 97
• Third-Party Applications, on page 101

About Third-Party Applications
The RPMs for the Third-Party Applications are available in the repository at https://devhub.cisco.com/
artifactory/open-nxos/7.0-3-I2-1/x86_64. These applications are installed in the native host by using the yum
command in the Bash shell or through the NX-OS CLI.

When you enter the yum install rpm command, a Cisco YUM plugin gets executed. This plugin copies the
RPM to a hidden location. On switch reload, the system re-installs the RPM.

For configurations in /etc, a Linux process, incrond, monitors artifacts created in the directory and copies
them to a hidden location, which gets copied back to /etc.

Installing Signed Third-Party RPMs by Importing Keys
Automatically

Setup the yum repo to point to the keys and RPM.
root@switch# cat /etc/yum/repos.d/puppet.repo

[puppet]

name=Puppet RPM

baseurl=file:///bootflash/puppet

enabled=1

gpgcheck=1

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
89

https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64
https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64

gpgkey=http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs

metadata_expire=0

cost=500

bash-4.2# yum install puppet-enterprise

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages

groups-repo | 1.1 kB 00:00 ...

localdb | 951 B 00:00 ...

patching | 951 B 00:00 ...

puppet | 951 B 00:00 ...

thirdparty | 951 B 00:00 ...

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos will be installed

--> Finished Dependency Resolution

Dependencies Resolved

==

Package Arch Version Repository Size

==

Installing:

puppet-enterprise x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos puppet 14 M

Transaction Summary

==

Install 1 Package

Total download size: 14 M

Installed size: 46 M

Is this ok [y/N]: y

Retrieving key from file:///bootflash/RPM-GPG-KEY-puppetlabs

Importing GPG key 0x4BD6EC30:

Userid: "Puppet Labs Release Key (Puppet Labs Release Key) <info@puppetlabs.com>"

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
90

Applications
Installing Signed Third-Party RPMs by Importing Keys Automatically

From : /bootflash/RPM-GPG-KEY-puppetlabs

Is this ok [y/N]: y

Downloading Packages:

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Warning! Standby is not ready. This can cause RPM database inconsistency.

If you are certain that standby is not booting up right now, you may proceed.

Do you wish to continue?

Is this ok [y/N]: y

Warning: RPMDB altered outside of yum.

Installing : puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64
1/1

/sbin/ldconfig: /usr/lib/libboost_regex.so.1.49.0 is not a symbolic link

Installed:

puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos

Complete!

Installing Signed RPM

Checking a Signed RPM
Run the following command to check if a given RPM is signed or not.
Run, rpm -K rpm_file_name

Not a signed RPM

bash-4.2# rpm -K bgp-1.0.0-r0.lib32_n3600.rpm

bgp-1.0.0-r0.lib32_n3600.rpm: (sha1) dsa sha1 md5 OK

Signed RPM

bash-4.2#
rpm -K puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm

puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm: RSA sha1 MD5 NOT_OK

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
91

Applications
Installing Signed RPM

bash-4.2#

Signed third-party rpm requires public GPG key to be imported first before the package can be
installed otherwise yum will throw the following error:
bash-4.2#
yum install puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm -q

Setting up Install Process

warning: rpmts_HdrFromFdno: Header V4 RSA/SHA1 signature: NOKEY, key ID 4bd6ec30

Cannot open: puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm. Skipping.

Error: Nothing to do

Installing Signed RPMs by Manually Importing Key
• Copy the GPG keys to /etc rootfs so that they are persisted across reboots.

bash-4.2# mkdir -p /etc/pki/rpm-gpg

bash-4.2# cp -f RPM-GPG-KEY-puppetlabs /etc/pki/rpm-gpg/

• Import the keys using the below command
bash-4.2# rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

bash-4.2#

bash-4.2# rpm -q gpg-pubkey

gpg-pubkey-4bd6ec30-4c37bb40

bash-4.2# rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

bash-4.2#

bash-4.2# rpm -q gpg-pubkey

gpg-pubkey-4bd6ec30-4c37bb40

• Install the signed RPM with yum command
bash-4.2#
yum install puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages

groups-repo | 1.1 kB 00:00 ...

.
localdb | 951 B 00:00 ...

patching | 951 B 00:00 ...

thirdparty | 951 B 00:00 ...

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
92

Applications
Installing Signed RPMs by Manually Importing Key

Setting up Install Process

Examining puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm:
puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64

Marking puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm to be installed

Resolving Dependencies

--> Running transaction check

---> Package puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos will be installed

--> Finished Dependency ResolutionDependencies Resolved

==

Package Arch Version Repository
Size

==

Installing:

puppet-enterprise x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos /puppet-enterprise-
46 M

3.7.1.rc2.6.g6cdc186-1.
pe.nxos.x86_64

Transaction Summary

==

Install 1 Package

Total size: 46 M

Installed size: 46 M

Is this ok [y/N]: y

Downloading Packages:

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Installing : puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64
1/1

Installed:

puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
93

Applications
Installing Signed RPMs by Manually Importing Key

Complete!

bash-4.2#

Installing Signed Third-Party RPMs by Importing Keys Automatically
Setup the yum repo to point to the keys and RPM.
root@switch# cat /etc/yum/repos.d/puppet.repo

[puppet]

name=Puppet RPM

baseurl=file:///bootflash/puppet

enabled=1

gpgcheck=1

gpgkey=http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs

metadata_expire=0

cost=500

bash-4.2# yum install puppet-enterprise

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
protect-packages

groups-repo | 1.1 kB 00:00 ...

localdb | 951 B 00:00 ...

patching | 951 B 00:00 ...

puppet | 951 B 00:00 ...

thirdparty | 951 B 00:00 ...

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos will be installed

--> Finished Dependency Resolution

Dependencies Resolved

==

Package Arch Version Repository Size

==

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
94

Applications
Installing Signed Third-Party RPMs by Importing Keys Automatically

Installing:

puppet-enterprise x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos puppet 14 M

Transaction Summary

==

Install 1 Package

Total download size: 14 M

Installed size: 46 M

Is this ok [y/N]: y

Retrieving key from file:///bootflash/RPM-GPG-KEY-puppetlabs

Importing GPG key 0x4BD6EC30:

Userid: "Puppet Labs Release Key (Puppet Labs Release Key) <info@puppetlabs.com>"

From : /bootflash/RPM-GPG-KEY-puppetlabs

Is this ok [y/N]: y

Downloading Packages:

Running Transaction Check

Running Transaction Test

Transaction Test Succeeded

Running Transaction

Warning! Standby is not ready. This can cause RPM database inconsistency.

If you are certain that standby is not booting up right now, you may proceed.

Do you wish to continue?

Is this ok [y/N]: y

Warning: RPMDB altered outside of yum.

Installing : puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64
1/1

/sbin/ldconfig: /usr/lib/libboost_regex.so.1.49.0 is not a symbolic link

Installed:

puppet-enterprise.x86_64 0:3.7.1.rc2.6.g6cdc186-1.pe.nxos

Complete!

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
95

Applications
Installing Signed Third-Party RPMs by Importing Keys Automatically

Adding Signed RPM into Repo

Procedure

Step 1 Copy signed RPM to repo directory

Step 2 Import the corresponding key for the create repo to succeed

bash-4.2# ls
puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm RPM-GPG-KEY-puppetlabs
bash-4.2#
bash-4.2# rpm --import RPM-GPG-KEY-puppetlabs
bash-4.2# createrepo .
1/1 - puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm
Saving Primary metadata
Saving file lists metadata
Saving other metadata
bash-4.2#

Without importing keys
bash-4.2# ls
puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm RPM-GPG-KEY-puppetlabs
bash-4.2#
bash-4.2# createrepo .
warning: rpmts_HdrFromFdno: Header V4 RSA/SHA1 signature: NOKEY, key ID 4bd6ec30

Error opening package - puppet-enterprise-3.7.1.rc2.6.g6cdc186-1.pe.nxos.x86_64.rpm

Saving Primary metadata
Saving file lists metadata
Saving other metadata

Step 3 Create repo config file under /etc/yum/repos.d pointing to this repo

bash-4.2# cat /etc/yum/repos.d/puppet.repo
[puppet]
name=Puppet RPM
baseurl=file:///bootflash/puppet
enabled=1
gpgcheck=1
gpgkey=file:///bootflash/puppet/RPM-GPG-KEY-puppetlabs
#gpgkey=http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
metadata_expire=0
cost=500

bash-4.2# yum list available puppet-enterprise -q
Available Packages
puppet-enterprise.x86_64 3.7.1.rc2.6.g6cdc186-1.pe.nxos

puppet
bash-4.2#

Persistent Third-Party RPMs
The following is the logic behind persistent third-party RPMs:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
96

Applications
Adding Signed RPM into Repo

• A local yum repository is dedicated to persistent third-party RPMs. The
/etc/yum/repos.d/thirdparty.repo points to/bootflash/.rpmstore/thirdparty.

• Whenever you enter the yum install third-party.rpm command, a copy of the RPM is saved in
//bootflash/.rpmstore/thirdparty.

• During a reboot, all the RPMs in the third-party repository are reinstalled on the switch.

• Any change in the /etc configuration files persists under /bootflash/.rpmstore/config/etc
and they are replayed during boot on /etc.

• Any script created in the /etc directory persists across reloads. For example, a third-party service script
created under /etc/init.d/ brings up the apps during reload.

The rules in iptables are not persistent across reboots when they are modified in
a bash-shell.

To make the modified iptables persistent, seeMaking an Iptable Persistent Across
Reloads, on page 166.

Note

Installing RPM from VSH

Package Addition
NX-OS feature RPMs can also be installed by using the VSH CLIs.

Procedure

PurposeCommand or Action

Displays the packages and versions that already
exist.

show install packagesStep 1

Determine supported URIs.install add ?Step 2

The install add command copies the package
file to a local storage device or network server.

install add rpm-packagenameStep 3

Example

The following example shows how to activate the Chef RPM:
switch# show install packages
switch# install add ?
WORD Package name
bootflash: Enter package uri
ftp: Enter package uri
http: Enter package uri
modflash: Enter package uri

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
97

Applications
Installing RPM from VSH

scp: Enter package uri
sftp: Enter package uri
tftp: Enter package uri
usb1: Enter package uri
usb2: Enter package uri
volatile: Enter package uri
switch# install add
bootflash:chef-12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5.x86_64.rpm
[####################] 100%
Install operation 314 completed successfully at Thu Aug 6 12:58:22 2015

What to do next

When you are ready to activate the package, go to Package Activation.

Adding and activating an RPM package can be accomplished in a single command:
switch#
install add bootflash:chef-12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5.x86_64.rpm
activate

Note

Package Activation

Before you begin

The RPM has to have been previously added.

Procedure

PurposeCommand or Action

Displays the list of packages that were added
and not activated.

show install inactiveStep 1

Activates the package.install activate rpm-packagenameStep 2

Example

The following example shows how to activate a package:
switch# show install inactive
Boot image:

NXOS Image: bootflash:///yumcli6.bin

Inactive Packages:
sysinfo-1.0.0-7.0.3.x86_64

Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages

Available Packages
chef.x86_64 12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5 thirdparty
eigrp.lib32_n3600 1.0.0-r0 groups-rep
o

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
98

Applications
Package Activation

sysinfo.x86_64 1.0.0-7.0.3 patching
switch# install activate chef-12.0-1.el5.x86_64.rpm
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015

Deactivating Packages

Procedure

PurposeCommand or Action

Deactivates the RPM package.install deactivate package-nameStep 1

Example

The following example shows how to deactivate the Chef RPM package:
switch# install deactivate chef

Removing Packages

Before you begin

Deactivate the package before removing it. Only deactivated RPM packages can be removed.

Procedure

PurposeCommand or Action

Removes the RPM package.install remove package-nameStep 1

Example

The following example shows how to remove the Chef RPM package:
switch# install remove chef-12.0-1.el5.x86_64.rpm

Displaying Installed Packages

Procedure

PurposeCommand or Action

Displays a list of the installed packages.show install packagesStep 1

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
99

Applications
Deactivating Packages

Example

The following example shows how to display a list of the installed packages:
switch# show install packages

Displaying Detail Logs

Procedure

PurposeCommand or Action

Displays the detail logs.show tech-support installStep 1

Example

The following example shows how to display the detail logs:
switch# show tech-support install

Upgrading a Package

Procedure

PurposeCommand or Action

Upgrade a package.install add package-name activate upgradeStep 1

Example

The following example show how to upgrade a package:
switch# install add bootflash:bgp-1.0.1-r0.lib32_n3600.rpm activate ?
downgrade Downgrade package
forced Non-interactive
upgrade Upgrade package
switch# install add bootflash:bgp-1.0.1-r0.lib32_n3600.rpm activate upgrade
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015

Downgrading a Package

Procedure

PurposeCommand or Action

Downgrade a package.install add package-name activate downgradeStep 1

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
100

Applications
Displaying Detail Logs

Example

The following example shows how to downgrade a package:
switch# install add bootflash:bgp-1.0.1-r0.lib32_n3600.rpm activate ?
downgrade Downgrade package
forced Non-interactive
upgrade Upgrade package
switch# install add bootflash:bgp-1.0.1-r0.lib32_n3600.rpm activate downgrade
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015

Third-Party Applications

NX-OS
For more information about NX-API REST API object model specifications, see https://developer.cisco.com/
media/dme/index.html

collectd
collectd is a daemon that periodically collects system performance statistics and provides multiple means to
store the values, such as RRD files. Those statistics can then be used to find current performance bottlenecks
(i.e. performance analysis) and predict future system load (that is, capacity planning).

For additional information, see https://collectd.org.

Ganglia
Ganglia is a scalable distributed monitoring system for high-performance computing systems such as clusters
and grids. It is based on a hierarchical design targeted at federations of clusters. It leverages widely used
technologies such as XML for data representation, XDR for compact, portable data transport, and RRDtool
for data storage and visualization. It uses engineered data structures and algorithms to achieve very low
per-node overheads and high concurrency. The implementation is robust, has been ported to an extensive set
of operating systems and processor architectures, and is currently in use on thousands of clusters around the
world. It has been used to link clusters across university campuses and around the world and can scale to
handle clusters with 2000 nodes.

For additional information, see http://ganglia.info.

Iperf
Iperf was developed by NLANR/DAST to measure maximum TCP and UDP bandwidth performance. Iperf
allows the tuning of various parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram
loss.

For additional information, see http://sourceforge.net/projects/iperf/ or http://iperf.sourceforge.net.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
101

Applications
Third-Party Applications

https://developer.cisco.com/media/dme/index.html
https://developer.cisco.com/media/dme/index.html
https://collectd.org
http://ganglia.info
http://sourceforge.net/projects/iperf/
http://iperf.sourceforge.net

LLDP
The link layer discover prototocol (LLDP) is an industry standard protocol designed to supplant proprietary
link layer protocols such as EDP or CDP. The goal of LLDP is to provide an inter-vendor compatiblemechanism
to deliver link layer notifications to adjacent network devices.

For more information, see https://vincentbernat.github.io/lldpd/index.html.

Nagios
Nagios is open source software that monitors network services (through ICMP, SNMP, SSH, FTP, HTTP
etc), host resources (CPU load, disk usage, system logs, etc.), and alert services for servers, switches,
applications, and services through the Nagios remote plugin executor (NRPE) and through SSH or SSL tunnels.

For more information, see https://www.nagios.org/.

OpenSSH
OpenSSH is an open-source version of the SSH connectivity tools that encrypts all traffic (including passwords)
to effectively eliminate eavesdropping, connection hijacking, and other attacks. OpenSSH provides secure
tunneling capabilities and several authentication methods, and supports all SSH protocol versions.

For more information, see http://www.openssh.com.

Quagga
Quagga is a network routing software suite that implements various routing protocols. Quagga daemons are
configured through a network accessible CLI called a "vty".

Only Quagga BGP has been validated.Note

For more information, see http://www.nongnu.org/quagga/.

Splunk
Splunk is a web based data collection, analysis, and monitoring tool that has a search, visualization and
pre-packaged content for use-cases. The raw data is sent to the Splunk server using the Splunk Universal
Forwarder. Universal Forwarders provide reliable, secure data collection from remote sources and forward
that data into the Splunk Enterprise for indexing and consolidation. They can scale to tens of thousands of
remote systems, collecting terabytes of data with minimal impact on performance.

For additional information, see http://www.splunk.com/en_us/download/universal-forwarder.html.

tcollector
tcollector is a client-side process that gathers data from local collectors and pushes the data to Open Time
Series Database (OpenTSDB).

tcollector has the following features:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
102

Applications
LLDP

https://vincentbernat.github.io/lldpd/index.html
https://www.nagios.org/
http://www.openssh.com
http://www.nongnu.org/quagga/
http://www.splunk.com/en_us/download/universal-forwarder.html

• Runs data collectors and collates the data,

• Manages connections to the time series database (TSD),

• Eliminates the need to embed TSD code in collectors,

• De-duplicates repeated values, and

• Handles wire protocol work.

For additional information, see http://opentsdb.net/docs/build/html/user_guide/utilities/tcollector.html.

tcpdump
Tcpdump is a CLI application that prints out a description of the contents of packets on a network interface
that match the boolean expression; the description is preceded by a time stamp, printed, by default, as hours,
minutes, seconds, and fractions of a second since midnight. It can also be run with the -w flag, which causes
it to save the packet data to a file for later analysis, and/or with the -r flag, which causes it to read from a saved
packet file rather than to read packets from a network interface. It can also be run with the -V flag, which
causes it to read a list of saved packet files. In all cases, only packets that match expression will be processed
by tcpdump.

For more information, see http://www.tcpdump.org/manpages/tcpdump.1.html.

Tshark
TShark is a network protocol analyzer on the CLI. It lets you capture packet data from a live network, or read
packets from a previously saved capture file, You can either print a decoded form of those packets to the
standard output or write the packets to a file. TShark's native capture file format is the pcap format, which is
also the format used by tcpdump and various other tools. Tshark can be used within the Guest Shell 2.1 after
removing the cap_net_admin file capability.
setcap
cap_net_raw=ep /sbin/dumpcap

This command must be run within the Guest Shell.Note

For more information, see https://www.wireshark.org/docs/man-pages/tshark.html.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
103

Applications
tcpdump

http://opentsdb.net/docs/build/html/user_guide/utilities/tcollector.html
http://www.tcpdump.org/manpages/tcpdump.1.html
https://www.wireshark.org/docs/man-pages/tshark.html

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
104

Applications
Tshark

C H A P T E R 10
Ansible

• Prerequisites, on page 105
• About Ansible, on page 105
• Cisco Ansible Module, on page 105

Prerequisites
Go to https://docs.ansible.com/ansible/intro_installation.html for installation requirements for supported
control environments.

About Ansible
Ansible is an open-source IT automation engine that automates cloud provisioning, configurationmanagement,
application deployment, intraservice orchestration, and other IT needs.

Ansible uses small programs that are called Ansible modules to make API calls to your nodes, and apply
configurations that are defined in playbooks.

By default, Ansible represents what machines it manages using a simple INI file that puts all your managed
machines in groups of your own choosing.

More information can be found from Ansible:

https://www.ansible.com/Ansible

https://docs.ansible.com/Ansible Automation Solutions. Includes installation
instructions, playbook instructions and examples,
module lists, and so on.

Cisco Ansible Module
There are multiple Cisco NX-OS-supported modules and playbooks for Ansible, as per the following table
of links:

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
105

https://docs.ansible.com/ansible/intro_installation.html
https://www.ansible.com/
https://docs.ansible.com/
https://developer.cisco.com/docs/nx-os/#getting-started

Repo for ansible nxos playbooksAnsible NX-OS playbook examples

nxos network modulesAnsible NX-OS network modules

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
106

Applications
Cisco Ansible Module

https://github.com/datacenter/Ansible-NXOS
http://docs.ansible.com/ansible/latest/list_of_network_modules.html#nxos

C H A P T E R 11
Puppet Agent

This chapter includes the following sections:

• About Puppet, on page 107
• Prerequisites, on page 107
• Puppet Agent NX-OS Environment, on page 108
• ciscopuppet Module, on page 108

About Puppet
The Puppet software package, developed by Puppet Labs, is an open source automation toolset for managing
servers and other resources. The Puppet software accomplishes server and resource management by enforcing
device states, such as configuration settings.

Puppet components include a puppet agent which runs on the managed device (node) and a Puppet Master
(server). The Puppet Master typically runs on a separate dedicated server and serves multiple devices. The
operation of the puppet agent involves periodically connecting to the Puppet Master, which in turn compiles
and sends a configuration manifest to the agent. The agent reconciles this manifest with the current state of
the node and updates state that is based on differences.

A puppet manifest is a collection of property definitions for setting the state on the device. The details for
checking and setting these property states are abstracted so that a manifest can be used for more than one
operating system or platform. Manifests are commonly used for defining configuration settings, but they also
can be used to install software packages, copy files, and start services.

More information can be found from Puppet Labs:

https://puppetlabs.comPuppet Labs

https://puppet.com/products/faqPuppet Labs FAQ

https://puppet.com/docsPuppet Labs Documentation

Prerequisites
The following are prerequisites for the Puppet Agent:

• You must have a Cisco device and operating system software release that supports the installation.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
107

http://puppetlabs.com/
https://puppet.com/products/faq
https://puppet.com/docs

• Cisco Nexus 3500 Series switch

• Cisco Nexus 3100 Series switch.

• Cisco Nexus 3000 Series switch.

• Cisco NX-OS release 7.0(3)I2(1) or later.

• You must have the required disk storage available on the device for virtual services installation and
deployment of Puppet Agent.

• A minimum of 450MB free disk space on bootflash.

• You must have Puppet Master server with Puppet 4.0 or later.

• You must have Puppet Agent 4.0 or later.

Puppet Agent NX-OS Environment
The Puppet Agent software must be installed on a Cisco Nexus platform in the Guest Shell (the Linux container
environment running CentOS). TheGuest Shell provides a secure, open execution environment that is decoupled
from the host.

Starting with the CiscoNX-OSRelease 9.2(1), the Bash-shell (nativeWindRiver Linux environment underlying
NX-OS) install of Puppet Agent is no longer supported.

The following provides information about agent-software download, installation, and setup:

https://github.com/cisco/
cisco-network-puppet-module/blob/develop/docs/
README-agent-install.md

Puppet Agent: Installation & Setup on Cisco Nexus
switches (Manual Setup)

ciscopuppet Module
The ciscopuppet module is a Cisco developed open-source software module. It interfaces between the abstract
resources configuration in a puppet manifest and the specific implementation details of the Cisco Nexus
NX-OS operating system and platform. This module is installed on the Puppet Master and is required for
puppet agent operation on Cisco Nexus switches.

The ciscopuppet module is available on Puppet Forge.

The following provide additional information about the ciscopuppet module installation procedures:

https://forge.puppetlabs.com/puppetlabs/ciscopuppetciscopuppet Module location

(Puppet Forge)

https://github.com/cisco/cisco-network-puppet-module/tree/
master#resource-by-tech

Resource Type Catalog

https://github.com/cisco/cisco-network-puppet-module/tree/masterciscopuppet Module: Source Code
Repository

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
108

Applications
Puppet Agent NX-OS Environment

https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md
https://forge.puppetlabs.com/puppetlabs/ciscopuppet
https://github.com/cisco/cisco-network-puppet-module/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-puppet-module/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-puppet-module/tree/master

Cisco Puppet Module::README.mdciscopuppetModule: Setup&Usage

https://docs.puppetlabs.com/puppet/latest/reference/modules_installing.htmlPuppet Labs: Installing Modules

https://github.com/cisco/cisco-network-puppet-module/tree/master/
examples

Puppet NX-OS Manifest Examples

Configuration Management ToolsNX-OS developer landing page.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
109

Applications
ciscopuppet Module

https://github.com/cisco/cisco-network-puppet-module/tree/master#setup
https://docs.puppetlabs.com/puppet/latest/reference/modules_installing.html
https://github.com/cisco/cisco-network-puppet-module/tree/master/examples
https://github.com/cisco/cisco-network-puppet-module/tree/master/examples
https://developer.cisco.com/site/nx-os/docs/automation/configuration-management/index.gsp

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
110

Applications
ciscopuppet Module

C H A P T E R 12
Using Chef Client with Cisco NX-OS

This chapter includes the following sections:

• About Chef, on page 111
• Prerequisites, on page 111
• Chef Client NX-OS Environment, on page 112
• cisco-cookbook, on page 112

About Chef
Chef is an open-source software package that is developed by Chef Software, Inc. The software package is a
systems and cloud infrastructure automation framework that deploys servers and applications to any physical,
virtual, or cloud location, no matter the size of the infrastructure. Each organization consists of one or more
workstations, a single server, and every node that the chef-client has configured and is maintaining. Cookbooks
and recipes are used to tell the chef-client how each node should be configured. The chef-client, which is
installed on every node, does the actual configuration.

A Chef cookbook is the fundamental unit of configuration and policy distribution. A cookbook defines a
scenario and contains everything that is required to support that scenario, including libraries, recipes, files,
and more. A Chef recipe is a collection of property definitions for setting state on the device. The details for
checking and setting these property states are abstracted away so that a recipe may be used for more than one
operating system or platform. While recipes are commonly used for defining configuration settings, they also
can be used to install software packages, copy files, start services, and more.

The following references provide more information from Chef:

LinkTopic

https://www.chef.ioChef home

https://docs.chef.io/chef_overview.htmlChef overview

https://docs.chef.io/Chef documentation (all)

Prerequisites
The following are prerequisites for Chef:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
111

https://www.chef.io
https://docs.chef.io/chef_overview.html
https://docs.chef.io/

• You must have a Cisco device and operating system software release that supports the installation:

• Cisco Nexus 3500 Series switch

• Cisco Nexus 3100 Series switch

• Cisco Nexus 3000 Series switch

• Cisco NX-OS Release 7.0(3)I2(1) or higher

• You must have the required disk storage available on the device for Chef deployment:

• A minimum of 500 MB free disk space on bootflash

• You need a Chef server with Chef 12.4.1 or higher.

• You need Chef Client 12.4.1 or higher.

Chef Client NX-OS Environment
The chef-client software must be installed on a Cisco Nexus platform in the Guest Shell (the Linux container
environment running CentOS). This software provides a secure, open execution environment that is decoupled
from the host.

Starting with the CiscoNX-OSRelease 9.2(1), the Bash-shell (nativeWindRiver Linux environment underlying
NX-OS) install of chef-client is no longer supported.

The following documents provide step-by-step guidance about agent-software download, installation, and
setup:

LinkTopic

cisco-cookbook::README-install-agent.mdChef Client: Installation and setup on Cisco Nexus
platform (manual setup)

cisco-cookbook::README-chef-provisioning.mdChef Client: Installation and setup on Cisco Nexus
platform (automated installation using the Chef
provisioner)

cisco-cookbook
cisco-cookbook is a Cisco-developed open-source interface between the abstract resources configuration in
a Chef recipe and the specific implementation details of the Cisco NX-OS and platforms. This cookbook is
installed on the Chef Server and is required for proper Chef Client operation on Cisco Nexus devices.

The cisco-cookbook can be found on Chef Supermarket.

The following documents providemore detail for cisco-cookbook and generic cookbook installation procedures:

LinkTopic

https://supermarket.chef.io/cookbooks/cisco-cookbookcisco-cookbook location

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
112

Applications
Chef Client NX-OS Environment

https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-agent-install.md
https://github.com/cisco/cisco-network-chef-cookbook/blob/develop/docs/README-chef-provisioning.md
https://supermarket.chef.io/cookbooks/cisco-cookbook

LinkTopic

https://github.com/cisco/
cisco-network-chef-cookbook/tree/
master#resource-by-tech

Resource Type Catalog

https://github.com/cisco/
cisco-network-chef-cookbook/tree/master

cisco-cookbook: Source Code Repository

https://github.com/cisco/
cisco-network-chef-cookbook/blob/master/
README.md#setup

cisco-cookbook: Setup and usage

https://supermarket.chef.ioChef Supermarket

https://github.com/cisco/
cisco-network-chef-cookbook/tree/master/recipes

Chef NX-OS Manifest Examples

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
113

Applications
cisco-cookbook

https://github.com/cisco/cisco-network-chef-cookbook/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-chef-cookbook/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-chef-cookbook/tree/master#resource-by-tech
https://github.com/cisco/cisco-network-chef-cookbook/tree/master
https://github.com/cisco/cisco-network-chef-cookbook/tree/master
https://github.com/cisco/cisco-network-chef-cookbook/blob/master/README.md#setup
https://github.com/cisco/cisco-network-chef-cookbook/blob/master/README.md#setup
https://github.com/cisco/cisco-network-chef-cookbook/blob/master/README.md#setup
https://supermarket.chef.io
https://github.com/cisco/cisco-network-chef-cookbook/tree/master/recipes
https://github.com/cisco/cisco-network-chef-cookbook/tree/master/recipes

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
114

Applications
cisco-cookbook

C H A P T E R 13
Nexus Application Development - ISO

This chapter contains the following sections:

• About ISO, on page 115
• Installing the ISO, on page 115
• Using the ISO to Build Applications, on page 116
• Using RPM to Package an Application, on page 117

About ISO
The ISO image is a bootableWind River 5 environment that includes the necessary tools, libraries, and headers
to build and RPM-package third-party applications to run natively on a Cisco Nexus switch.

The content is not exhaustive, and it might be required that the user download and build any dependencies
needed for any particular application.

Some applications are ready to be downloaded and used from the Cisco devhub website and do not require
building.

Note

Installing the ISO
The ISO image is available for download at: http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/
x86_64/satori-vm-intel-xeon-core.iso.

The ISO is intended to be installed as a virtual machine. Use instructions from your virtualization vendor to
install the ISO.

Procedure

Step 1 (Optional) VMware-based installation.

The ISO image installation on a VMWare virtual machine requires the virtual disk to be configured as SATA
and not SCSI.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
115

http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/x86_64/satori-vm-intel-xeon-core.iso
http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/x86_64/satori-vm-intel-xeon-core.iso

Step 2 (Optional) QEMU-based installation.

Enter the following commands:
bash$ qemu-img create satori.img 10G
bash$ qemu-system-x86_64 -cdrom ./satori-vm-intel-xeon-core.iso -hda ./satori.img -m 8192

Once the ISO starts to boot, a menu is displayed. Choose the Graphics Console Install option. This installs
to the virtual HD. Once the install is complete, the virtual machine must be rebooted.

What to do next

To login to the system, enter root as the login and root as the password.

Using the ISO to Build Applications Most of the build procedures that work with the SDK, and Linux in
general, also apply to the ISO environment. However, there is no shell environment script to run. The default
paths should be fine to use the toolsinstalled. The source code for applications needs to be obtained through
the usual mechanisms such as a source tar file or git repository.

Build the source code:
bash$ tar --xvzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure --prefix=/path/to/example_lib_install
bash$ make

bash$ make install

Using the ISO to Build Applications
Most of the build procedures that work with the SDK, and Linux in general, also apply to the ISO environment.
However, there is no shell environment script to run. The default paths should be fine to use the tools installed.
The source code for applications needs to be obtained through the usual mechanisms such as a source tar file
or git repository.

Procedure

Build the source code.
a) tar –xvzf example-lib.tgz
b) mkdir example-lib-install
c) cd example-lib/
d) ./configure –prefix=path_to_example-lib-install
e) make
f) make install

The steps are normal Linux.

Example:

The following example shows how to build the source code:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
116

Applications
Using the ISO to Build Applications

bash$ tar –xvzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure –prefix=<path_to_example-lib-install>
bash$ make
bach$ make install

Using RPM to Package an Application
If the application successfully builds using "make", then it can be packaged into an RPM.

RPM and spec files

The RPM package format is designed to package up all files (binaries, libraries, configurations, documents,
etc) that are needed for a complete install of the given application. The process of creating an RPM file is
therefore somewhat non-trivial. To aid in the RPM build process, a .spec file is used that controls everything
about the build process.

Note

Many third-party applications are available on the internet in the form of source code packaged into tarballs.
In many cases, these tarballs will include a .spec file to help with RPM build process. Unfortunately, many
of these .spec files are not updated as frequently as the source code itself. Even worse, sometimes there is no
spec file at all. In these cases the spec file may need editing or even creating from scratch so that RPMs can
be built.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
117

Applications
Using RPM to Package an Application

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
118

Applications
Using RPM to Package an Application

C H A P T E R 14
Nexus Application Development - SDK

This chapter contains the following sections:

• About the Cisco SDK, on page 119
• Installing the SDK, on page 119
• Procedure for Installation and Environment Initialization, on page 120
• Using the SDK to Build Applications, on page 121
• Using RPM to Package an Application, on page 122
• Creating an RPM Build Environment, on page 123
• Using General RPM Build Procedure, on page 123
• Example to Build RPM for collectd with No Optional Plug-Ins, on page 124
• Example to Build RPM for collectd with Optional Curl Plug-In, on page 125

About the Cisco SDK
The Cisco SDK is a development kit based on Yocto 1.2. It contains all of the tools needed to build applications
for execution on a Cisco Nexus switch running the NX-OS Release 7.0(3)I2(1). The basic components are
the C cross-compiler, linker, libraries, and header files that are commonly used in many applications. The list
is not exhaustive, and it might be required that the you download and build any dependencies needed for any
particular application. Note that some applications are ready to be downloaded and used from the Cisco devhub
website and do not require building. The SDK can be used to build RPM packages which may be directly
installed on a switch.

Installing the SDK
The following lists the system requirements:

• The SDK can run on most modern 64-bit x86_64 Linux systems. It has been verified on CentOS 7 and
Ubuntu 14.04. Install and run the SDK under the Bash shell.

• The SDK includes binaries for both 32-bit and 64-bit architectures, so it must be run on an x86_64 Linux
system that also has 32-bit libraries installed.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
119

Procedure

Check if the 32-bit libraries are installed:

Example:
bash$ ls /lib/ld-linux.so.2

If this file exists, then 32-bit libraries should be installed already. Otherwise, install 32-bit libraries as follows:

• For CentOS 7:
bash$ sudo yum install glibc.i686

• For Ubuntu 14.04:
bash$ sudo apt-get install gcc-multilib

Procedure for Installation and Environment Initialization
The SDK is available for download at: http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/x86_
64/wrlinux-5.0.1.13-eglibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh

This file is a self-extracting archive that installs the SDK into a directory of your choice. You are prompted
for a path to an SDK installation directory.

bash$./wrlinux-5.0.1.13-eglibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh
Enter target directory for SDK (default: /opt/windriver/wrlinux/5.0-n9000):
/path/to/sdk_install_directory
You are about to install the SDK to "/path/to/sdk_install_directory". ProceedY/n?Y
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.
bash$

Use the source environment-setup-x86_64-wrs-linux command to add the SDK-specific paths to your shell
environment. This must be done for each shell you intend to use with the SDK. This is the key to setting up
the SDK in order to use the correct versions of the build tools and libraries.

Procedure

Step 1 Browse to the installation directory.
Step 2 Enter the following command at the Bash prompt:

bash$ source environment-setup-x86_64-wrs-linux

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
120

Applications
Procedure for Installation and Environment Initialization

http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/x86_64/wrlinux-5.0.1.13-eglibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh
http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/x86_64/wrlinux-5.0.1.13-eglibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh

Using the SDK to Build Applications
Many of the common Linux build processes work for this scenario. Use the techniques that are best suited
for your situation.

The source code for an application package can be retrieved in various ways. For example, you can get the
source code either in tar file form or by downloading from a git repository where the package resides.

The following are examples of some of the most common cases.

(Optional) Verify that the application package builds using standard configure/make/make install.

bash$ tar --xvzf example-app.tgz
bash$ mkdir example-lib-install
bash$ cd example-app/
bash$./configure --prefix=/path/to/example-app-install
bash$ make
bash$ make install

Sometimes it is necessary to pass extra options to the ./configure script, for example to specify which
optional components and dependencies are needed. Passing extra options depends entirely on the application
being built.

Example - Build Ganglia and its dependencies

In this example, we build ganglia, along with the third-party libraries that it requires - libexpat, libapr, and
libconfuse.

libexpat

bash$ wget 'http://downloads.sourceforge.net/project/expat/expat/2.1.0/expat-2.1.0.tar.gz'
bash$ mkdir expat-install
bash$ tar xvzf expat-2.1.0.tar.gz
bash$ cd expat-2.1.0
bash$./configure --prefix=/home/sdk-user/expat-install
bash$ make
bash$ make install
bash$ cd ..

libapr

bash$ wget 'http://www.eu.apache.org/dist/apr/apr-1.5.2.tar.gz'
bash$ mkdir apr-install
bash$ tar xvzf apr-1.5.2.tar.gz
bash$ cd apr-1.5.2
bash$./configure --prefix=/home/sdk-user/apr-install
bash$ make
bash$ make install
bash$ cd ..

libconfuse

confuse requires the extra --enable-shared option to ./configure, otherwise it builds a statically linked
library instead of the required shared library.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
121

Applications
Using the SDK to Build Applications

bash$ wget 'http://savannah.nongnu.org/download/confuse/confuse-2.7.tar.gz'
bash$ mkdir confuse-install
bash$ tar xvzf confuse-2.7.tar.gz
bash$ cd confuse-2.7
bash$./configure --prefix=/home/sdk-user/confuse-install --enable-shared
bash$ make
bash$ make install
bash$ cd ..

ganglia

The locations to all the required libraries are passed to ./configure.Note

bash$ wget
'http://downloads.sourceforge.net/project/ganglia/ganglia%20monitoring%20core/3.7.2/ganglia-3.7.2.tar.gz'
bash$ mkdir ganglia-install
bash$ tar xvzf ganglia-3.7.2.tar.gz
bash$ cd ganglia-3.7.2
bash$./configure --with-libexpat=/home/sdk-user/expat-install
--with-libapr=/home/sdk-user/apr-install/bin/apr-1-config
--with-libconfuse=/home/sdk-user/confuse-install --prefix=/home/sdk-user/ganglia-install
bash$ make
bash$ make install
bash$ cd ..

Using RPM to Package an Application
If the application successfully builds using "make", then it can be packaged into an RPM.

RPM and spec files

The RPM package format is designed to package up all files (binaries, libraries, configurations, documents,
etc) that are needed for a complete install of the given application. The process of creating an RPM file is
therefore somewhat non-trivial. To aid in the RPM build process, a .spec file is used that controls everything
about the build process.

Note

Many third-party applications are available on the internet in the form of source code packaged into tarballs.
In many cases, these tarballs will include a .spec file to help with RPM build process. Unfortunately, many
of these .spec files are not updated as frequently as the source code itself. Even worse, sometimes there is no
spec file at all. In these cases the spec file may need editing or even creating from scratch so that RPMs can
be built.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
122

Applications
Using RPM to Package an Application

Creating an RPM Build Environment
Before using the SDK to build RPMs, an RPM build directory structure must be created, and some RPM
macros set.

Procedure

Step 1 Create the directory structure:
bash$ mkdir rpmbuild
bash$ cd rpmbuild
bash$ mkdir BUILD RPMS SOURCES SPECS SRPMS

Step 2 Set the topdir macro to point to the directory structure created above:
bash$ echo "_topdir ${PWD}" > ~/.rpmmacros

This step assumes that the current user does not already have a .rpmmacros file that is already set
up. If it is inconvenient to alter an existing .rpmmacros file, then the following may be added to all
rpmbuild command lines:

Note

--define "_topdir ${PWD}"

Step 3 Refresh the RPM DB:
bash$ rm /path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm/__db.*
bash$ rpm --rebuilddb

The rpm and rpmbuild tools in the SDK have been modified to use
/path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm as the RPM
database instead of the normal /var/lib/rpm. This modification prevents any conflicts with the
RPM database for the host when not using the SDK and removes the need for root access. After
SDK installation, the SDK RPM database must be rebuilt through this procedure.

Note

Using General RPM Build Procedure
General RPM Build procedure is as follows:
bash$ wget --no-check-certificate --directory-prefix=SOURCES http://<URL of example-app
tarball>
bash$ # determine location of spec file in tarball:
bash$ tar tf SOURCES/example-app.tar.bz2 | grep '.spec$'
bash$ tar xkvf SOURCES/example-app.tar.bz2 example-app/example-app.spec
bash$ mv example-app/example-app.spec SPECS/
bash$ rm -rf example-app
bash$ rpmbuild -v --bb SPECS/example-app.spec

The result is a binary RPM in RPMS/ that can be copied to the switch and installed. Installation and
configuration of applications can vary. Refer to the application documents for those instructions.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
123

Applications
Creating an RPM Build Environment

This rpmbuild and installation on the switch is required for every software package that is required to support
the application. If a software dependency is required that is not already included in the SDK, the source code
must be obtained and the dependencies built. On the build machine, the package can be built manually for
verification of dependencies. The following example is the most common procedure:
bash$ tar xkzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure --prefix=/path/to/example-lib-install
bash$ make
bash$ make install

These commands place the build files (binaries, headers, libraries, and so on) into the installation directory.
From here, you can use standard compiler and linker flags to pick up the location to these new dependencies.
Any runtime code, such as libraries, are required to be installed on the switch also, so packaging required
runtime code into an RPM is required.

There are many support libraries already in RPM form on the Cisco devhub website.Note

Example to Build RPM for collectd with No Optional Plug-Ins
Download source tarball and extract spec file:
bash$ wget --no-check-certificate --directory-prefix=SOURCES
https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec
bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0

There are four spec files in this tarball. The Red Hat spec file is the most comprehensive and is the only one
that contains the correct collectd version. We will use it as an example.

This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a Nexus switch, you
will use the /usr/sbin/chkconfig instead. Edit the following edited in the spec file:

bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec

collectd has numerous optional plug-ins. This spec file enables many plug-ins by default. Many plug-ins have
external dependencies, so options to disable these plug-ins must be passed to the rpmbuild command line.
Instead of typing out one long command line, we can manage the options in a Bash array as follows:
bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
124

Applications
Example to Build RPM for collectd with No Optional Plug-Ins

> done
bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")

It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec

You can then find the resulting RPMs for collectd in the RPMS directory.

These RPM files can now be copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm

Example to Build RPM for collectd with Optional Curl Plug-In
The collectd curl plug-in has libcurl as a dependency.

In order to satisfy this link dependency during the RPM build process, it is necessary to download and build
curl under the SDK:
bash$ wget --no-check-certificate http://curl.haxx.se/download/curl-7.24.0.tar.gz
bash$ tar xkvf curl-7.24.0.tar.gz
bash$ cd curl-7.24.0
bash$./configure --without-ssl --prefix /path/to/curl-install
bash$ make
bash$ make install
bash$ cd ..

The curl binaries and libraries are installed to /path/to/curl-install. This directory will be created
if it does not already exist, so you must have write permissions for the current user. Next, download the source
tarball and extract the spec file. This step is exactly the same as in the collectd example for no plugins.

Note

bash$ wget --no-check-certificate --directory-prefix=SOURCES
https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec
bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0

There are four spec files in this tarball. The Red Hat spec file is the most comprehensive, and it is the only
one to contain the correct collectd version. We will use that one as an example.

Note

This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a Cisco Nexus
switch, you must use/usr/sbin/chkconfig instead, so the following can be edited in the spec file:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
125

Applications
Example to Build RPM for collectd with Optional Curl Plug-In

bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec

Here a deviation from the previous example is encountered. The collectd rpmbuild process needs to know the
location of libcurl. Edit the collectd spec file to add the following.

Find the string%configure in SPECS/collectd.spec. This line and those following it define the options
that rpmbuild will pass to the ./configure script.

Add the following option:
--with-libcurl=/path/to/curl-install/bin/curl-config \

Next a Bash array is built again to contain the rpmbuild command options. Note the following differences:

• curl is removed from the list of plug-ins not to be built
• The addition of --with curl=force

bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=("--with")
bash$ rpmbuild_opts+=("curl=force")bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")

It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec

The resulting RPMs in the RPMs directory will now also include collectd-curl. These RPM files can now be
copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm
bash$ rpm --noparentdirs -i /bootflash/collectd-curl-5.5.0-1.ia32e.rpm

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
126

Applications
Example to Build RPM for collectd with Optional Curl Plug-In

C H A P T E R 15
NX-SDK

• About the NX-SDK, on page 127
• Install the NX-SDK, on page 128
• Building and Packaging C++ Applications, on page 128
• Installing and Running Custom Applications, on page 131

About the NX-SDK
The Cisco NX-OS SDK (NX-SDK) is a C++ abstraction/plugin library layer that streamlines access to
infrastructure for automation and custom native application creation, such as generating custom:

• CLIs.

• Syslogs.

• Event and Error managers.

• Inter-application communication.

• High availability (HA).

• Route manager.

The NX-SDK also supports Python bindings.

For Cisco Nexus NX-OS 7.0(3)I6(1) and earlier versions, the NX-SDK is not supported on Cisco Nexus 3000
switches.

Note

Requirements

The NX-SDK has the following requirements:

• Docker

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
127

Install the NX-SDK
Procedure

Step 1 Note The Cisco SDK is required for applications started in VSH.

The Cisco SDK is optional for applications started in Bash.

(Optional) Build the Cisco SDK RPM to persist on switch reloads and from standby mode.
a) Pull the Docker image for Ubuntu 14.04+ or Centos 6.7+ from https://hub.docker.com/r/dockercisco/

nxsdk.
b) Source for a 32-bit environment:

Example:
export ENXOS_SDK_ROOT=/enxos-sdk
cd $ENXOS_SDK_Root
source environment-setup-x86-linux

Step 2 Clone the NX-SDK toolkit from https://github.com/CiscoDevNet/NX-SDK.git.

Example:
git clone https://github.com/CiscoDevNet/NX-SDK.git

What to do next

The following references to the API can be found in $PWD/nxsdk and includes the following:

• The NX-SDK public C++ classes and APIs,

• Example applications, and

• Example Python applications.

Building and Packaging C++ Applications
The following instructions describes how to build and package your custom C++ NX-OS application.

Procedure

Step 1 Build your application files..
a) Building a C++ application requires adding your source files to the Makefile

Example:

The example below uses the customCliApp.cpp file from /examples

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
128

Applications
Install the NX-SDK

https://hub.docker.com/r/dockercisco/nxsdk
https://hub.docker.com/r/dockercisco/nxsdk
https://github.com/CiscoDevNet/NX-SDK.git

...
##Directory Structure
...
EXNXSDK_BIN:= customCliApp
...

b) Build the C++ application using themake command.

Example:
$PWD/nxsdk# make clean

$PWD/nxsdk# make all

Step 2 (Optional) Package your application.

Auto-generate RPM package

Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a
given application persists on switch reloads or system switchovers. Use the following to create a custom
specification file for your application.

RPM packaging is required to be done within the provided ENXOS Docker image.Note

a) Use the rpm_gen.py script to auto-generate RPM package for a custom application.

Example:

Specify the -h option of the script to display the usages of the script.
/NX-SDK# python scripts/rpm_gen.py -h

b) By default, NXSDK_ROOT is set to /NX-SDK. If NX-SDK is installed in another location other than the
default, then you must set NXSDK_ROOT env to the appropriate location for the script to run correctly.

Example:
export NXSDK_ROOT=<absolute-path-to-NX-SDK>

Example of Auto-generate RPM package for C++ App examples/customCliApp.cpp

/NX-SDK/scripts# python rpm_gen.py CustomCliApp
###

Generating rpm package...

Executing(%prep): /bin/sh -e /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ exit 0
Executing(%build): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ exit 0
Executing(%install): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ /bin/rm -rf
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root

+ /bin/mkdlr -p
/enxos-sdk/sysrOOts/x86_64-wrIinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root//isan/bin

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
129

Applications
Building and Packaging C++ Applications

https://github.com/CiscoDevNet/NX-SDK/tree/master/scripts

+ cp -R /NX-SDK/bin /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/..
/../../var/tmp/customCliApp-root//isan/bin
+ exit 0
Processing files: customCliApp-1.0-7.03.I6.1.x86_64
Requires: libc.so.6 libc.so.6(GLIBC 2.0) 3.0) Libc.so.6(GLIBC_2.1.3) libdl.so.2 libgcc_s.so.1
libgcc_s.so.1(GCC_3.0) libm.so.6 libnxsdk.so libstdc++.so.6 libstdc++.so.6 (CXXAB1 1.3)
libstdc++.so.6(GLIBCXX 3.4) libstdc++.so.6(GLIBCXX_3.4.14) rt1d(GNU HASH)
Checking for unpackaged file(s):
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/check-files
/enos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root
Wrote:
/enxos-sdk/sysrootS/X86_64-wrlinuxsdk-linux/usr/src/rpm/SRPMS/customCliApp-1.0-7.0.3.I6.1.src-rpm

Wrote:
/enxos-sdk/sysrootS/X86_64-wrlinuxsdk-linux/usr/src/rpm/RPMS/x86_64/customCliApp-1.0-7.0.3.I6.1.x86_64.rpm
Executing($clean): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ / bin/rm -rf
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root

RPM package has been built
###

SPEC file: /NX-SDK/rpm/SPECS/customCliApp.spec
RPM file : /NX-SDK/rpm/RPMS/customCliApp-1.0-7.0.3.I6.1.x86_64.rpm

Manually-generate RPM Package

Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a
given application persists on switch reloads or system switchovers. Use the following steps to create a custom
specification file (*.spec) for your application.

a) Export the Cisco SDK RPM source to $RPM_ROOT.

Example:

export RPM_ROOT=$ENXOS_SDK_ROOT/sysroots/x86_64-wrlinuxsdk-linux/usr/src/rpm

b) Enter the $RPM_ROOT directory.

Example:

ls $RPM_ROOT (BUILD RPMS SOURCES SPECS SRPMS)

c) Create/edit your application-specific *.spec file.

Refer to the customCliApp.spec file in the /rpm/SPECS directory for an example specification
file.

We recommend installing application files to /isan/bin/nxsdk on the switch as per the
example customCliApp.spec file.

Note

Example:

vi $RPM_ROOT/SPECS/<application>.spec

d) Build your RPM package.

Example:

rpm -ba $RPM_ROOT/SPECS/<application>.spec

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
130

Applications
Building and Packaging C++ Applications

A successful build will generate an RPM file in $RPMS_ROOT/RPMS/x86_64/

Installing and Running Custom Applications
You can install applications by copying binaries to the switch, or installing unpacking the binaries from the
RPM package.

Only custom applications that are installed from RPM packages can persist on switch reload or system
switchovers. We recommend reserving copying binaries to the switch for simple testing purposes.

Note

To run NX-SDK apps inside the swtich (on box), you must have the Cisco SDK build environment that is
installed.

The Cisco SDK is required to start applications in VSH: VSH requires that all applications be installed through
RPMs, which requires that being built in the Cisco SDK.

The Cisco SDK is not required for Python application.

The Cisco SDK is not required for C++ application, but is still recommended: Using g++ to build applications
and then copying the built files to the switch may pose stability risks as g++ is not supported.

Note

To install or run custom applications on the switch, use this procedure:

Before you begin

The switch must have the NX-SDK enabled before running any custom application. Run feature nxsdk on
the switch.

Procedure

Step 1 Install your application using either VSH or Bash.

To install your application using VSH, perform the following:

a) Add the RPM package to the installer.

Example:
switch(config)# install add bootflash:<app-rpm-package>.rpm

b) After installation, check if the RPM is listed as inactive.

Example:
switch(config)# show install inactive

c) Activate the RPM package.

Example:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
131

Applications
Installing and Running Custom Applications

switch(config)# install activate <app-rpm-package>

d) After activation, check if the RPM is listed as active.

Example:
switch(config)# show install active

To install your application using Bash, run the following commands:
switch(config)# run bash sudo su
bash# yum install /bootflash/<app-rpm-package>.rpm

Step 2 Start your application.

C++ applications can run from VSH or Bash.

• To run a C++ application in VSH, run the nxsdk command:
switch(config)# nxsdk service-name /<install directory>/<application>

If the application is installed in /isan/bin/nxsdk, the full file path is not required. You can use
the nxsdk service-name app-name form of the command.

Note

• To run a C++ application in Bash, start Bash then start the application.
switch(config)# run bash sudo su
bash# <app-full-path> &

Python applications can run from VSH or Bash.

• To run a Python application from VSH, run the nxsdk command:
switch(config)# nxsdk service-name <app-full-path>

The Python application must be made executable to start from VSH:

• Run chmod +x app-full-path

• Add #!/isan/bin/nxpython to the first link of your Python application.

Note

• To run a Python application from Bash,
switch(config)# run bash sudo su
bash# /isan/bin/nxsdk <app-full-path>

By default, NX-SDK uses /isan/bin/nxsdk to run Python applications in Bash, but you
can specify a different install directory if needed.

Note

Step 3 Run show nxsdk internal service to verify that your application is running

Example:
switch(config)# show nxsdk internal service

switch(config)# show nxsdk internal service

NXSDK total services (Max Allowed) : 2 (32)
NXSDK Default App Path : /isan/bin/nxsdk
NXSDK Supported Versions : 1.0

Service-name Base App Started(PID) Version RPM Package
------------------------- --------------- ------------ ---------- --------------------

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
132

Applications
Installing and Running Custom Applications

/isan/bin/capp1 nxsdk_app2 VSH(25270) 1.0
capp1-1.0-7.0.3.I6.1.x86_64
/isan/bin/TestApp.py nxsdk_app3 BASH(27823) - -

Step 4 Stop you application.

You can stop your application in the following ways:

• To stop all NX-SDK applications, run no feature nxsdk.

• To stop a specific application in VSH, run no nxsdk service-name /install directory/application

• To stop a specific application in Bash, run application stop-event-loop

Step 5 Uninstall your application.

To uninstall the RPM from the switch using VSH, perform the following:

a) Deactivate the active RPM package.

Example:
switch# install deactive <app-rpm-package>

b) Verify that the package is deactivated.

Example:
switch# show install inactive

c) Remove the RPM package.

Example:
switch# install remove <app-rpm-package>

To uninstall the RPM from the switch using Bash, run yum remove app-full-path

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
133

Applications
Installing and Running Custom Applications

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
134

Applications
Installing and Running Custom Applications

C H A P T E R 16
Using Docker with Cisco NX-OS

This chapter contains the following topics:

• About Docker with Cisco NX-OS, on page 135
• Guidelines and Limitations, on page 135
• Prerequisites for Setting Up Docker Containers Within Cisco NX-OS, on page 136
• Starting the Docker Daemon, on page 136
• Configure Docker to Start Automatically, on page 137
• Starting Docker Containers: Host Networking Model, on page 138
• Starting Docker Containers: Bridged Networking Model, on page 139
• Mounting the bootflash and volatile Partitions in the Docker Container, on page 140
• Enabling Docker Daemon Persistence on Enhanced ISSU Switchover, on page 140
• Resizing the Docker Storage Backend, on page 141
• Stopping the Docker Daemon, on page 143
• Docker Container Security, on page 144
• Docker Troubleshooting, on page 145

About Docker with Cisco NX-OS
Docker provides a way to run applications securely isolated in a container, packaged with all its dependencies
and libraries. See https://docs.docker.com/ for more information on Docker.

Beginning with Release 9.2(1), support is now added for using Docker within Cisco NX-OS on a switch.

The version of Docker that is included on the switch is 1.13.1. The Docker daemon is not running by default.
You must start it manually or set it up to automatically restart when the switch boots up.

This section describes how to enable and use Docker in the specific context of the Cisco Nexus switch
environment. Refer to the Docker documentation at https://docs.docker.com/ for details on general Docker
usage and functionality.

Guidelines and Limitations
Following are the guidelines and limitations for using Docker on Cisco NX-OS on a switch:

• Docker functionality is supported on the Cisco Nexus 3000 series switches with at least 8 GB of system
RAM.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
135

https://docs.docker.com/
https://docs.docker.com/

Prerequisites for Setting Up Docker Containers Within Cisco
NX-OS

Following are the prerequisites for using Docker on Cisco NX-OS on a switch:

• Enable the host Bash shell. To use Docker on Cisco NX-OS on a switch, you must be the root user on
the host Bash shell:
switch# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature bash-shell

• If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy

environment variables must be set up in /etc/sysconfig/docker. For example:
export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

• Verify that the switch clock is set correctly, or you might see the following error message:
x509: certificate has expired or is not yet valid

• Verify that the domain name and name servers are configured appropriately for the network and that it
is reflected in the/etc/resolv.conf file:
switch# conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context management
switch(config-vrf)# ip domain-name ?
WORD Enter the default domain (Max Size 64)

switch(config-vrf)# ip name-server ?
A.B.C.D Enter an IPv4 address
A:B::C:D Enter an IPv6 address

root@switch# cat /etc/resolv.conf
domain cisco.com #bleed
nameserver 171.70.168.183 #bleed
root@switch#

Starting the Docker Daemon
When you start the Docker daemon for the first time, a fixed-size backend storage space is carved out in a
file called dockerpart on the bootflash, which is then mounted to /var/lib/docker. If necessary, you can
adjust the default size of this space by editing /etc/sysconfig/docker before you start the Docker daemon
for the first time. You can also resize this storage space if necessary as described later on.

To start the Docker daemon:

Procedure

Step 1 Load Bash and become superuser.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
136

Applications
Prerequisites for Setting Up Docker Containers Within Cisco NX-OS

switch# run bash sudo su -

Step 2 Start the Docker daemon.
root@switch# service docker start

Step 3 Check the status.
root@switch# service docker status
dockerd (pid 3597) is running...
root@switch#

Once you start the Docker daemon, do not delete or tamper with the dockerpart file on the bootflash
since it is critical to the docker functionality.
switch# dir bootflash:dockerpart
2000000000 Mar 14 12:50:14 2018 dockerpart

Note

Configure Docker to Start Automatically
You can configure the Docker daemon to always start up automatically when the switch boots up.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 3 Use the chkconfig utility to check the Docker service settings.
root@switch# chkconfig --list | grep docker
docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off
root@switch#

Step 4 To remove the configuration so that Docker does not start up automatically:
root@switch# chkconfig --del docker
root@switch# chkconfig --list | grep docker
root@switch#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
137

Applications
Configure Docker to Start Automatically

Starting Docker Containers: Host Networking Model
If you want Docker containers to have access to all the host network interfaces, including data port and
management, start the Docker containers with the --network host option. The user in the container can
switch between the different network namespaces at /var/run/netns (corresponding to different VRFs
configured in Cisco NX-OS) using the ip netns exec <net_namespace> <cmd>.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker container.

Following is an example of starting an Alpine Docker container on the switch and viewing all the network
interfaces. The container is launched into the management network namespace by default.
root@switch# docker run --name=alpinerun -v /var/run/netns:/var/run/netns:ro,rslave --rm
--network host --cap-add SYS_ADMIN -it alpine
/ # apk --update add iproute2
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/6) Installing libelf (0.8.13-r3)
(2/6) Installing libmnl (1.0.4-r0)
(3/6) Installing jansson (2.10-r0)
(4/6) Installing libnftnl-libs (1.0.8-r1)
(5/6) Installing iptables (1.6.1-r1)
(6/6) Installing iproute2 (4.13.0-r0)
Executing iproute2-4.13.0-r0.post-install
Executing busybox-1.27.2-r7.trigger
OK: 7 MiB in 17 packages
/ #
/ # ip netns list
management
default
/ #
/ # ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
link/ipip 0.0.0.0 brd 0.0.0.0
3: gre0@NONE: <NOARP> mtu 1476 qdisc noop state DOWN group default
link/gre 0.0.0.0 brd 0.0.0.0
...
/ #
/ # ip netns exec default ip address
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/16 scope host lo
valid_lft forever preferred_lft forever
2: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default
link/ether 42:0d:9b:3c:d4:62 brd ff:ff:ff:ff:ff:ff

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
138

Applications
Starting Docker Containers: Host Networking Model

3: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default
link/ipip 0.0.0.0 brd 0.0.0.0
...

Starting Docker Containers: Bridged Networking Model
If you want Docker containers to only have external network connectivity (typically through the management
interface) and you don't necessarily care about visibility into a specific data port or other Cisco Nexus switch
interface, you can start the Docker container with the default Docker bridged networking model. This is more
secure than the host networking model described in the previous section since it also provides network
namespace isolation.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Start the Docker container.

Following is an example of starting an Alpine Docker container on the switch and installing the iproute2
package.
root@switch# docker run -it --rm alpine
/ # apk --update add iproute2
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz
(1/6) Installing libelf (0.8.13-r3)
(2/6) Installing libmnl (1.0.4-r0)
(3/6) Installing jansson (2.10-r0)
(4/6) Installing libnftnl-libs (1.0.8-r1)
(5/6) Installing iptables (1.6.1-r1)
(6/6) Installing iproute2 (4.13.0-r0)
Executing iproute2-4.13.0-r0.post-install
Executing busybox-1.27.2-r7.trigger
OK: 7 MiB in 17 packages
/ #
/ # ip netns list
/ #

Step 3 Determine if you want to set up user namespace isolation.

For containers using the bridged networking model, you can also set up user namespace isolation to further
improve security. See Securing Docker Containers With User namespace Isolation, on page 144 for more
information.

You can use standard Docker port options to expose a service from within the container, such as sshd. For
example:
root@switch# docker run -d -p 18877:22 --name sshd_container sshd_ubuntu

This maps port 22 from within the container to port 18877 on the switch. The service can now be accessed
externally through port 18877, as shown in the following example:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
139

Applications
Starting Docker Containers: Bridged Networking Model

root@ubuntu-vm# ssh root@ip_address -p 18887

Mounting the bootflash and volatile Partitions in the Docker
Container

You can make the bootflash and volatile partitions visible in the Docker container by passing in the -v
/bootflash:/bootflash and -v /volatile:/volatile options in the run command for the Docker container.
This is useful if the application in the container needs access to files shared with the host, such as copying a
new NX-OS system image to bootflash.

This -v command option allows for any directory to bemounted into the container andmay result in information
leaking or other accesses that may impact the operation of the NX-OS system. Limit this to resources such
as /bootflash and /volatile that are already accessible using NX-OS CLI.

Note

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Pass in the -v /bootflash:/bootflash and -v /volatile:/volatile options in the run command for the
Docker container.
root@switch# docker run -v /bootflash:/bootflash -v /volatile:/volatile -it --rm alpine
/# ls /
bin etc media root srv usr
bootflash home mnt run sys var
dev lib proc sbin tmp volatile
/ #

Enabling Docker Daemon Persistence on Enhanced ISSU
Switchover

You can have both the Docker daemon and any running containers persist on an Enhanced ISSU switchover.
This is possible since the bootflash on which the backend Docker storage resides is the same and shared
between both Active and Standby supervisors.

The Docker containers are disrupted (restarted) during the switchover, so they will not be running continuously.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
140

Applications
Mounting the bootflash and volatile Partitions in the Docker Container

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Before starting the switchover, use the chkconfig utility to make the Docker service persistent.
root@switch# chkconfig --add docker
root@n9k-2#

Step 3 Start any containers using the --restart unless-stopped option so that they will be restarted automatically
after the switchover.

The following example starts an Alpine container and configures it to always restart unless it is explicitly
stopped or Docker is restarted:
root@switch# docker run -dit --restart unless-stopped alpine
root@n9k-2#

The Docker containers are disrupted (restarted) during the switchover, so they will not be running continuously.

Resizing the Docker Storage Backend
After starting or using the Docker daemon, you can grow the size of the Docker backend storage space
according to your needs.

Procedure

Step 1 Disable the Guest Shell.

If you do not disable the Guest Shell, it may interfere with the resize.
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n] y
switch# 2018 Mar 15 17:16:55 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating
virtual service 'guestshell+'
2018 Mar 15 17:16:57 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'

Step 2 Load Bash and become superuser.
switch# run bash sudo su -

Step 3 Get information on the current amount of storage space available.
root@switch# df -kh /var/lib/docker
Filesystem Size Used Avail Use% Mounted on
/dev/loop12 1.9G 7.6M 1.8G 1% /var/lib/docker

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
141

Applications
Resizing the Docker Storage Backend

root@n9k-2#

Step 4 Stop the Docker daemon.
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

Step 5 Get information on the current size of the Docker backend storage space (/bootflash/dockerpart).
root@switch# ls -l /bootflash/dockerpart
-rw-r--r-- 1 root root 2000000000 Mar 15 16:53 /bootflash/dockerpart
root@n9k-2#

Step 6 Resize the Docker backend storage space.

For example, the following command increases the size by 500 megabytes:
root@switch# truncate -s +500MB /bootflash/dockerpart
root@n9k-2#

Step 7 Get updated information on the size of the Docker backend storage space to verify that the resizing process
was completed successfully.

For example, the following output confirms that the size of the Docker backend storage was successfully
increased by 500 megabytes:
root@switch# ls -l /bootflash/dockerpart
-rw-r--r-- 1 root root 2500000000 Mar 15 16:54 /bootflash/dockerpart
root@n9k-2#

Step 8 Check the size of the filesystem on /bootflash/dockerpart.
root@switch# e2fsck -f /bootflash/dockerpart
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/bootflash/dockerpart: 528/122160 files (0.6% non-contiguous), 17794/488281 blocks

Step 9 Resize the filesystem on /bootflash/dockerpart.
root@switch# /sbin/resize2fs /bootflash/dockerpart
resize2fs 1.42.9 (28-Dec-2013)
Resizing the filesystem on /bootflash/dockerpart to 610351 (4k) blocks.
The filesystem on /bootflash/dockerpart is now 610351 blocks long.

Step 10 Check the size of the filesystem on /bootflash/dockerpart again to confirm that the filesystem was
successfully resized.
root@switch# e2fsck -f /bootflash/dockerpart
e2fsck 1.42.9 (28-Dec-2013)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/bootflash/dockerpart: 528/154736 files (0.6% non-contiguous), 19838/610351 blocks

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
142

Applications
Resizing the Docker Storage Backend

Step 11 Start the Docker daemon again.
root@switch# service docker start
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...
done.
Starting dockerd with args '--debug=true':

Step 12 Verify the new amount of storage space available.
root@switch# df -kh /var/lib/docker
Filesystem Size Used Avail Use% Mounted on
/dev/loop12 2.3G 7.6M 2.3G 1% /var/lib/docker

Step 13 Exit out of Bash shell.
root@switch# exit
logout
switch#

Step 14 Enable the Guest Shell, if necessary.
switch# guestshell enable

switch# 2018 Mar 15 17:12:53 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual
service 'guestshell+'
switch# 2018 Mar 15 17:13:18 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully
activated virtual service 'guestshell+'

Stopping the Docker Daemon
If you no longer wish to use Docker, follow the procedures in this topic to stop the Docker daemon.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Stop the Docker daemon.
root@switch# service docker stop
Stopping dockerd: dockerd shutdown

Step 3 Verify that the Docker daemon is stopped.
root@switch# service docker status
dockerd is stopped
root@switch#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
143

Applications
Stopping the Docker Daemon

You can also delete the dockerpart file on the bootflash at this point, if necessary:
switch# delete bootflash:dockerpart
Do you want to delete "/dockerpart" ? (yes/no/abort) y
switch#

Note

Docker Container Security
Following are the Docker container security recommendations:

• Run in a separate user namespace if possible.

• Run in a separate network namespace if possible.

• Use cgroups to limit resources. An existing cgroup (ext_ser) is created to limit hosted applications to
what the platform team has deemed reasonable for extra software running on the switch. Docker allows
use of this and limiting per-container resources.

• Do not add unnecessary POSIX capabilities.

Securing Docker Containers With User namespace Isolation
For containers using the bridged networking model, you can also set up user namespace isolation to further
improve security. See https://docs.docker.com/engine/security/userns-remap/ for more information.

Procedure

Step 1 Determine if a dockremap group already exists on your system.

A dockremap user must already be set up on your system by default. If the dockremap group doesn't already
exist, follow these steps to create it.

a) Enter the following command to create the dockremap group:
root@switch# groupadd dockremap -r

b) Create the dockremap user, unless it already exists:
root@switch# useradd dockremap -r -g dockremap

c) Verify that the dockremap group and the dockremap user were created successfully:
root@switch# id dockremap
uid=999(dockremap) gid=498(dockremap) groups=498(dockremap)
root@switch#

Step 2 Add the desired re-mapped ID and range to the /etc/subuid and /etc/subgid.

For example:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
144

Applications
Docker Container Security

https://docs.docker.com/engine/security/userns-remap/

root@switch# echo "dockremap:123000:65536" >> /etc/subuid
root@switch# echo "dockremap:123000:65536" >> /etc/subgid

Step 3 Using a text editor, add the --userns-remap=default option to the other_args field in the
/etc/sysconfig/docker file.

For example:
other_args="–debug=true --userns-remap=default"

Step 4 Restart the Docker daemon, or start it if it is not already running, using service docker [re]start.

For example:
root@switch# service docker [re]start

Refer to the Docker documentation at https://docs.docker.com/engine/security/userns-remap/ for more
information on configuring and using containers with user namespace isolation.

Moving the cgroup Partition
The cgroup partition for third-party services is ext_ser, which limits CPU usage to 25% per core. Cisco
recommends that you run your Docker container under this ext_ser partition.

If the Docker container is run without the --cgroup-parent=/ext_ser/ option, it can get up to the full 100%
host CPU access, which can interfere with the regular operation of Cisco NX-OS.

Procedure

Step 1 Load Bash and become superuser.
switch# run bash sudo su -

Step 2 Run the Docker container under the ext_ser partition.

For example:
root@switch# docker run --name=alpinerun -v /var/run/netns:/var/run/netns:ro,rslave --rm
--network host --cgroup-parent=/ext_ser/ --cap-add SYS_ADMIN -it alpine
/ #

Docker Troubleshooting
These topics describe issues that can arise with Docker containers and provides possible resolutions.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
145

Applications
Moving the cgroup Partition

https://docs.docker.com/engine/security/userns-remap/

Docker Fails to Start
Problem: Docker fails to start, showing an error message similar to the following:
switch# run bash
bash-4.3$ service docker start
Free bootflash: 39099 MB, total bootflash: 51771 MB
Carving docker bootflash storage: 2000 MB
2000+0 records in
2000+0 records out
2000000000 bytes (2.0 GB) copied, 22.3039 s, 89.7 MB/s
losetup: /dev/loop18: failed to set up loop device: Permission denied
mke2fs 1.42.9 (28-Dec-2013)
mkfs.ext4: Device size reported to be zero. Invalid partition specified, or

partition table wasn't reread after running fdisk, due to
a modified partition being busy and in use. You may need to reboot
to re-read your partition table.

Failed to create docker volume

Possible Cause: You might be running Bash as an admin user instead of as a root user.

Solution: Determine if you are running Bash as an admin user instead of as a root user:
bash-4.3$ whoami
admin

Exit out of Bash and run Bash as root user:

bash-4.3$ exit
switch# run bash sudo su -

Docker Fails to Start Due to Insufficient Storage
Problem:Docker fails to start, showing an error message similar to the following, due to insufficient bootflash
storage:
root@switch# service docker start
Free bootflash: 790 MB, total bootflash: 3471 MB
Need at least 2000 MB free bootflash space for docker storage

Possible Cause: You might not have enough free bootflash storage.

Solution: Free up space or adjust the variable_dockerstrg values in /etc/sysconfig/docker as needed,
then restart the Docker daemon:
root@switch# cat /etc/sysconfig/docker
Replace the below with your own docker storage backend boundary value (in MB)
if desired.
boundary_dockerstrg=5000

Replace the below with your own docker storage backend values (in MB) if
desired. The smaller value applies to platforms with less than
$boundary_dockerstrg total bootflash space, the larger value for more than
$boundary_dockerstrg of total bootflash space.
small_dockerstrg=300
large_dockerstrg=2000

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
146

Applications
Docker Fails to Start

Failure to Pull Images from Docker Hub (509 Certificate Expiration Error
Message)

Problem: The system fails to pull images from the Docker hub with an error message similar to the following:
root@switch# docker pull alpine
Using default tag: latest
Error response from daemon: Get https://registry-1.docker.io/v2/: x509: certificate has
expired or is not yet valid

Possible Cause: The system clock might not be set correctly.

Solution: Determine if the clock is set correctly or not:
root@n9k-2# sh clock
15:57:48.963 EST Thu Apr 25 2002
Time source is Hardware Calendar

Reset the clock, if necessary:
root@n9k-2# clock set hh:mm:ss { day month | month day } year

For example:
root@n9k-2# clock set 14:12:00 10 feb 2018

Failure to Pull Images from Docker Hub (Client Timeout Error Message)
Problem: The system fails to pull images from the Docker hub with an error message similar to the following:
root@switch# docker pull alpine
Using default tag: latest
Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: request canceled
while waiting for connection (Client.Timeout exceeded while awaiting headers)

Possible Cause: The proxies or DNS settings might not be set correctly.

Solution: Check the proxy settings and fix them, if necessary, then restart the Docker daemon:
root@switch# cat /etc/sysconfig/docker | grep proxy
#export http_proxy=http://proxy.esl.cisco.com:8080
#export https_proxy=http://proxy.esl.cisco.com:8080
root@switch# service docker [re]start

Check the DNS settings and fix them, if necessary, then restart the Docker daemon:
root@switch# cat /etc/resolv.conf
domain cisco.com #bleed
nameserver 171.70.168.183 #bleed
root@switch# # conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context management
switch(config-vrf)# ip domain-name ?
WORD Enter the default domain (Max Size 64)

switch(config-vrf)# ip name-server ?
A.B.C.D Enter an IPv4 address

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
147

Applications
Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message)

A:B::C:D Enter an IPv6 address
root@switch# service docker [re]start

Docker Daemon or Containers Not Running On Switch Reload or Switchover
Problem: The Docker daemon or containers do not run after you have performed a switch reload or switchover.

Possible Cause: The Docker daemon might not be configured to persist on a switch reload or switchover.

Solution: Verify that the Docker daemon is configured to persist on a switch reload or switchover using the
chkconfig command, then start the necessary Docker containers using the --restart unless-stopped option.
For example, to start an Alpine container:
root@switch# chkconfig --add docker
root@switch#
root@switch# chkconfig --list | grep docker
docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off
root@switch# docker run -dit --restart unless-stopped alpine

Resizing of Docker Storage Backend Fails
Problem: An attempt to resize the Docker backend storage failed.

Possible Cause: You might not have Guest Shell disabled.

Solution: Use the following command to determine if Guest Shell is disabled:
root@switch# losetup -a | grep dockerpart
root@n9k-2#

The command should not display any output if Guest Shell is disabled.

Enter the following command to disable the Guest Shell, if necessary:
switch# guestshell disable

If you still cannot resize the Docker backend storage, you can delete /bootflash/dockerpart, then adjust
the [small_]large_dockerstrg in /etc/sysconfig/docker, then start Docker again to get a fresh Docker
partition with the size that you want.

Docker Container Doesn't Receive Incoming Traffic On a Port
Problem: The Docker container doesn't receive incoming traffic on a port.

Possible Cause: The Docker container might be using a netstack port instead of a kstack port.

Solution: Verify that any ephemeral ports that are used by Docker containers are within the kstack range.
Otherwise any incoming packets can get sent to netstack for servicing and dropped.
switch# show socket local-port-range
Kstack local port range (15001 - 58000)
Netstack local port range (58001 - 63535) and nat port range (63536 - 65535)
switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# sockets local-port-range <start_port> <end_port>
switch# run bash sudo su -

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
148

Applications
Docker Daemon or Containers Not Running On Switch Reload or Switchover

root@switch# cat /proc/sys/net/ipv4/ip_local_port_range
15001 58000
root@switch#

Unable to See Data Port And/Or Management Interfaces in Docker Container
Problem: You are unable to see the data port or management interfaces in the Docker container.

Solution:

• Verify that the Docker container is started in the host network namespace with all host namespaces
mapped in using the -v /var/run/netns:/var/run/netns:ro,rslave --network host options.

• Once in the container, you will be in the management network namespace by default. You can use the
ip netns utility to move to the default (init) network namespace, which has the data port interfaces.
The ip netns utility might need to be installed in the container using yum, apk, or something similar.

General Troubleshooting Tips
Problem: You have other issues with Docker containers that were not resolved using other troubleshooting
processes.

Solution:

• Look for dockerd debug output in /var/log/docker for any clues as to what is wrong.

• Verify that your switch has 8 GB or more of RAM. Docker functionality is not supported on any switch
that has less than 8 GB of RAM.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
149

Applications
Unable to See Data Port And/Or Management Interfaces in Docker Container

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
150

Applications
General Troubleshooting Tips

P A R T III
NX-API

• NX-API CLI, on page 153
• NX-API REST, on page 177
• NX-API Developer Sandbox, on page 179

C H A P T E R 17
NX-API CLI

• About NX-API CLI, on page 153
• Using NX-API CLI, on page 154
• XML and JSON Supported Commands, on page 168

About NX-API CLI
On Cisco Nexus devices, command-line interfaces (CLIs) are run only on the device. NX-API CLI improves
the accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You
can use this extension to the existing Cisco Nexus CLI system on the Cisco Nexus 3000 Series devices.
NX-API CLI supports show commands, configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

The NX-API CLI also supports JSON/CLI Execution in Cisco Nexus 3500 Series devices.

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all of its children processes, are
under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage
exceeds the cgroup limitations, the Nginx process is restarted and restored.

For the 7.x release, the Nginx process continues to run even after NX-API is disabled using the “no feature
NXAPI” command. This is required for other management-related processes. In the 6.x release, all processes
were killed when you ran the “no feature NXAPI” command, so this is a change in behavior in the 7.x release.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
153

Message Format

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

Security
NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API CLI
The commands, command type, and output type for the Cisco Nexus 3000 Series devices are entered using
NX-API by encoding the CLIs into the body of a HTTP/HTTPs POST. The response to the request is returned
in XML or JSON output format.

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 167.Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
154

NX-API
Message Format

You must enable NX-API with the feature manager CLI command on the device. By default, NX-API is
disabled.

The following example shows how to configure and launch the NX-API CLI:

• Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 192.0.20.123/24
switch(config)# vrf context managment
switch(config)# ip route 10.0.113.1/0 1.2.3.1

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
155

NX-API
Using NX-API CLI

}

Response:
{

"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

Escalate Privileges to Root on NX-API
For NX-API, the privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an admin user can escalate privileges to root.

• Escalation to root is password protected.

The following examples show how an admin escalates privileges to root and how to verify the escalation.
Note that after becoming root, the whoami command shows you as admin; however, the admin account has
all the root privileges.

First example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
156

NX-API
Escalate Privileges to Root on NX-API

</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 4: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP/HTTPS.no nxapi {http | https}

Displays port and certificate information.show nxapi

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
157

NX-API
NX-API Management Commands

DescriptionNX-API Management Command

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Enables a certificate.nxapi certificate enable

Starting with Cisco NX-OS Release 9.2(1), weak ciphers are
disabled by default. Running this command changes the default
behavior and enables the weak ciphers for NGINX. The no form
of the command changes it to the default (by default, the weak
ciphers are disabled).

nxapi ssl-ciphers weak

Starting with Cisco NX-OS Release 9.2(1), TLS1.0 is disabled
by default. Running this command enables the TLS versions
specified in the string, including the TLS1.0 that was disabled
by default, if necessary. The no form of the command changes
it to the default (by default, only TLS1.1 and TLS1.2 will be
enabled).

nxapi ssl-protocols {TLSv1.0 TLSv1.1
TLSv1.2}

Specifies the default VRF, management VRF, or named VRF.nxapi use-vrf vrf

Implements any access restrictions and can be run in management
VRF.

You must enable feature bash-shell and then run the
command from Bash Shell. For more information on
Bash Shell, see the chapter on Bash.

Note

Iptables is a command-line firewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

For more information about making iptables persistent
across reloads when they are modified in a bash-shell,
see Making an Iptable Persistent Across Reloads, on
page 166.

Note

ip netns exec management iptables

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
158

NX-API
NX-API Management Commands

You must configure the certificate and key before enabling the certificate.Note

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

Working With Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Request Elements
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Table 5: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
159

NX-API
Working With Interactive Commands Using NX-API

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_array

CLI show commands that expect structured output. Only for
show commands. Similar to cli_show, but with
cli_show_array, data is returned as a list of one element, or
an array, within square brackets [].

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the current
user's authority.

• The pipe operation is supported in the output when
the message type is ASCII. If the output is in XML
format, the pipe operation is not supported.

• A maximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
160

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Do not chunk output.0

Chunk output.1

Note • Only show commands support chunking. When a
series of show commands are entered, only the first
command is chunked and returned.

• For the XML output message format (XML is the
default.), special characters, such as < or >, are
converted to form a valid XML message (< is
converted into < > is converted into >).

You can use XML SAX to parse the chunked
output.

When chunking is enabled, themessage format is limited
to XML. JSON output format is not supported when
chunking is enabled.

Note

chunk

Valid only for configuration CLIs, not for show commands.
Specifies the configuration rollback options. Specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores and continues with other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

The rollback element is available in the cli_conf mode
when the input request format is XML or JSON.

Note

rollback

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
161

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated with
" ; ". (The ; must be surrounded with single blank
characters.)

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

show version ; show interface brief ; show
vlan

cli_show

interface Eth4/1 ; no shut ; switchportcli_conf

cd /bootflash;mkdir new_dirbash

input

The available output message formats are the following:

Specifies output in XML format.xml

Specifies output in JSON format.json

output_format

When chunking is enabled, the message format is limited to XML. JSON output format is not supported when
chunking is enabled.

Note

When JSON-RPC is the input request format, use the NX-API elements that are listed in the following table
to specify a CLI command:

Table 6: NX-API Request Elements for JSON-RPC Format

DescriptionNX-API Request Element

A string specifying the version of the JSON-RPC protocol.

Version must be 2.0.

jsonrpc

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
162

NX-API
NX-API Request Elements

DescriptionNX-API Request Element

A string containing the name of the method to be invoked.

NX-API supports either:

• cli ̶ show or configuration commands

• cli_ascii ̶ show or configuration commands; output without
formatting

• cli_array ̶ only for show commands; similar to cli, but with
cli_array, data is returned as a list of one element, or an array,
within square brackets, [].

method

A structured value that holds the parameter values used during the
invocation of a method.

It must contain the following:

• cmd ̶ CLI command

• version ̶ NX-API request version identifier

params

Valid only for configuration CLIs, not for show commands.
Configuration rollback options. You can specify one of the
following options.

• Stop-on-error—Stops at the first CLI that fails.

• Continue-on-error—Ignores the failed CLI and continues with
other CLIs.

• Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

rollback

An optional identifier established by the client that must contain a
string, number, or null value, if it is specified. The value should
not be null and numbers contain no fractional parts. If a user does
not specify the id parameter, the server assumes that the request is
simply a notification, resulting in a no response, for example, id :
1

id

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 7: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
163

NX-API
NX-API Response Elements

DescriptionNX-API Response Element

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Restricting Access to NX-API
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured NXAPI to use a
specific VRF. For information about configuring ACLs, see the Cisco Nexus 9000 Series NX-OS Security
Configuration Guide:

https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/
products-installation-and-configuration-guides-list.html

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,
on page 164.

Updating an iptable
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF has been configured for
NX-API communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP
and HTTPS access to an existing iptable.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
164

NX-API
Restricting Access to NX-API

https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/switches/nexus-9000-series-switches/products-installation-and-configuration-guides-list.html

Procedure

Step 1 To create a rule that blocks HTTP access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

Step 2 To create a rule that blocks HTTPS access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

Step 3 To verify the applied rules:
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 4 To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j
DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 5 To remove and verify previously applied rules:

This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
165

NX-API
Updating an iptable

What to do next

The rules in iptables are not persistent across reloads when they are modified in a bash-shell. To make the
rules persistent, see Making an Iptable Persistent Across Reloads, on page 166.

Making an Iptable Persistent Across Reloads
The rules in iptables are not persistent across reloads when they are modified in a bash-shell. This section
explains how to make a modified iptable persistent across a reload.

Before you begin

You have modified an iptable.

Procedure

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

Step 2 Create the /etc/sys/iptables file where your iptables changes will be saved:
bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables

Step 3 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables
echo "iptables init script executed" > /etc/iptables_init.log

}
case "$1" in
start)
start_script

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
166

NX-API
Making an Iptable Persistent Across Reloads

;;
stop)
;;

restart)
sleep 1
$0 start
;;

*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

Step 4 Set the appropriate permissions to the startup script:
bash-4.3# chmod 777 /etc/init.d/iptables_int

Step 5 Set the iptables_int startup script to on with the chkconfig utility:
bash-4.3# chkconfig iptables_init on

The iptables_init startup script will now execute each time that you perform a reload, making the iptable rules
persistent.

Table of NX-API Response Codes
The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 8: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Input Bash command error.400BASH_CMD_ERR

Chunking only allowed to one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

Input CLI command error.400CLI_CMD_ERR

Request message is invalid.400IN_MSG_ERR

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
167

NX-API
Table of NX-API Response Codes

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Backend processing error.500BACKEND_ERR

Error creating a checkpoint.500CREATE_CHECKPOINT_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error.500LIBXML_NS_ERR

System internal LIBXML parse error.500LIBXML_PARSE_ERR

System internal LIBXML path context error.500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

Request is rejected because the server is busy.500SERVER_BUSY_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to large amount of
output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe operation not supported.501PIPE_OUTPUT_NOT_SUPPORTED_ERR

Pipe XML is not allowed in input.501PIPE_XML_NOT_ALLOWED_IN_INPUT

Response has large amount of output. JSON not
supported.

501RESP_BIG_JSON_NOT_ALLOWED_ERR

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Undefined.600ERR_UNDEFINED

XML and JSON Supported Commands
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
168

NX-API
XML and JSON Supported Commands

• XML
• JSON
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read

Converting the standard NX-OS output to JSON, JSON Pretty, or XML format occurs on the NX-OS CLI by
"piping" the output to a JSON or XML interpreter. For example, you can issue the show ip access command
with the logical pipe (|) and specify JSON, JSON Pretty, or XML, and the NX-OS command output will be
properly structured and encoded in that format. This feature enables programmatic parsing of the data and
supports streaming data from the switch through software streaming telemetry. Most commands in Cisco
NX-OS support JSON, JSON Pretty, and XML output.

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard designed for human-readable data and is an alternative to
XML. JSONwas originally designed from JavaScript, but it is language-independent data format. JSON Pretty
format is also supported.

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

• Ordered List :: Array
• Unordered List (Name/Value pair) :: Objects

JSON /XML output for a show command can also be accessed via sandbox.

CLI Execution
BLR-VXLAN-NPT-CR-179# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SPARSHA-SAVBU-F10", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco WS-C2960
S-48TS-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "BLR-VXLAN-NPT-CR-178(FOC1745R01W)", "intf_id": "Ethernet1/1", "ttl": "166
", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

Examples of XML and JSON Output
This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
169

NX-API
About JSON (JavaScript Object Notation)

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers configured on the switch in XML format:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
170

NX-API
Examples of XML and JSON Output

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display ACL statistics in XML format.
switch-1(config-acl)# show ip access-lists acl-test1 | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:1.0:aclmgr" xmlns:nf="urn:ietf:p
arams:xml:ns:netconf:base:1.0">
<nf:data>
<show>
<__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
<ip_ipv6_mac>ip</ip_ipv6_mac>
<access-lists>
<__XML__OPT_Cmd_show_acl_name>
<name>acl-test1</name>
<__XML__OPT_Cmd_show_acl_capture>
<__XML__OPT_Cmd_show_acl_expanded>
<__XML__OPT_Cmd_show_acl___readonly__>
<__readonly__>
<TABLE_ip_ipv6_mac>
<ROW_ip_ipv6_mac>
<op_ip_ipv6_mac>ip</op_ip_ipv6_mac>
<show_summary>0</show_summary>
<acl_name>acl-test1</acl_name>
<statistics>enable</statistics>
<frag_opt_permit_deny>permit-all</frag_opt_permit_deny>
<TABLE_seqno>
<ROW_seqno>
<seqno>10</seqno>
<permitdeny>permit</permitdeny>
<ip>ip</ip>
<src_ip_prefix>192.0.2.1/24</src_ip_prefix>
<dest_any>any</dest_any>
</ROW_seqno>
</TABLE_seqno>
</ROW_ip_ipv6_mac>
</TABLE_ip_ipv6_mac>
</__readonly__>
</__XML__OPT_Cmd_show_acl___readonly__>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
171

NX-API
Examples of XML and JSON Output

</__XML__OPT_Cmd_show_acl_expanded>
</__XML__OPT_Cmd_show_acl_capture>
</__XML__OPT_Cmd_show_acl_name>
</access-lists>
</__XML__OPT_Cmd_show_acl_ip_ipv6_mac>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1(config-acl)#

This example shows how to display ACL statistics in JSON format.
switch-1(config-acl)# show ip access-lists acl-test1 | json
{"TABLE_ip_ipv6_mac": {"ROW_ip_ipv6_mac": {"op_ip_ipv6_mac": "ip", "show_summar
y": "0", "acl_name": "acl-test1", "statistics": "enable", "frag_opt_permit_deny
": "permit-all", "TABLE_seqno": {"ROW_seqno": {"seqno": "10", "permitdeny": "pe
rmit", "ip": "ip", "src_ip_prefix": "192.0.2.1/24", "dest_any": "any"}}}}}
switch-1(config-acl)#

The following example shows how to display the switch's redundancy status in JSON format.
switch-1# show system redundancy status | json
{"rdn_mode_admin": "HA", "rdn_mode_oper": "None", "this_sup": "(sup-1)", "this_
sup_rdn_state": "Active, SC not present", "this_sup_sup_state": "Active", "this
_sup_internal_state": "Active with no standby", "other_sup": "(sup-1)", "other_
sup_rdn_state": "Not present"}
nxosv2#
switch-1#

The following example shows how to display the IP route summary in XML format.
switch-1# show ip route summary | xml
<?xml version="1.0" encoding="ISO-8859-1"?> <nf:rpc-reply
xmlns="http://www.cisco.com/nxos:1.0:urib" xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">

<nf:data>
<show>
<ip>
<route>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip>
<__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
<__XML__OPT_Cmd_urib_show_ip_route_command_topology>
<__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
<__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
<__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
<__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
<__XML__OPT_Cmd_urib_show_ip_route_command_summary>
<__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
<__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
<__readonly__>
<TABLE_vrf>
<ROW_vrf>
<vrf-name-out>default</vrf-name-out>
<TABLE_addrf>
<ROW_addrf>
<addrf>ipv4</addrf>
<TABLE_summary>
<ROW_summary>
<routes>938</routes>
<paths>1453</paths>
<TABLE_unicast>
<ROW_unicast>
<clientnameuni>am</clientnameuni>
<best-paths>2</best-paths>
</ROW_unicast>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
172

NX-API
Examples of XML and JSON Output

<ROW_unicast>
<clientnameuni>local</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>direct</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>broadcast</clientnameuni>
<best-paths>203</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>ospf-10</clientnameuni>
<best-paths>1038</best-paths>
</ROW_unicast>
</TABLE_unicast>
<TABLE_route_count>
<ROW_route_count>
<mask_len>8</mask_len>
<count>1</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>24</mask_len>
<count>600</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>31</mask_len>
<count>13</count>
</ROW_route_count>
<ROW_route_count>
<mask_len>32</mask_len>
<count>324</count>
</ROW_route_count>
</TABLE_route_count>
</ROW_summary>
</TABLE_summary>
</ROW_addrf>
</TABLE_addrf>
</ROW_vrf>
</TABLE_vrf>
</__readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command___readonly__>
</__XML__OPT_Cmd_urib_show_ip_route_command_vrf>
</__XML__OPT_Cmd_urib_show_ip_route_command_summary>
</__XML__OPT_Cmd_urib_show_ip_route_command_protocol>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip-addr>
</__XML__OPT_Cmd_urib_show_ip_route_command_rpf>
</__XML__OPT_Cmd_urib_show_ip_route_command_l3vm-info>
</__XML__OPT_Cmd_urib_show_ip_route_command_topology>
</__XML__OPT_Cmd_urib_show_ip_route_command_unicast>
</__XML__OPT_Cmd_urib_show_ip_route_command_ip>
</route>
</ip>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch-1#

The following example shows how to display the IP route summary in JSON format.
switch-1# show ip route summary | json
{"TABLE_vrf": {"ROW_vrf": {"vrf-name-out": "default", "TABLE_addrf": {"ROW_addrf": {"addrf":
"ipv4", "TABLE_summary": {"ROW_summary": {"routes": "938", "paths": "

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
173

NX-API
Examples of XML and JSON Output

1453", "TABLE_unicast": {"ROW_unicast": [{"clientnameuni": "am", "best-paths": "2"},
{"clientnameuni": "local", "best-paths": "105"}, {"clientnameuni": "direct",
"best-paths": "105"}, {"clientnameuni": "broadcast", "best-paths": "203"}, {"clientnameuni":
"ospf-10", "best-paths": "1038"}]}, "TABLE_route_count": {"ROW_route_
count": [{"mask_len": "8", "count": "1"}, {"mask_len": "24", "count": "600"}, {"mask_len":
"31", "count": "13"}, {"mask_len": "32", "count": "324"}]}}}}}}}}
switch-1#

The following example shows how to display the IP route summary in JSON Pretty format.
switch-1# show ip route summary | json-pretty
{

"TABLE_vrf": {
"ROW_vrf": {

"vrf-name-out": "default",
"TABLE_addrf": {

"ROW_addrf": {
"addrf": "ipv4",
"TABLE_summary": {

"ROW_summary": {
"routes": "938",
"paths": "1453",
"TABLE_unicast": {

"ROW_unicast": [
{

"clientnameuni": "am",
"best-paths": "2"

},
{

"clientnameuni": "local",
"best-paths": "105"

},
{

"clientnameuni": "direct",
"best-paths": "105"

},
{

"clientnameuni": "broadcast",
"best-paths": "203"

},
{

"clientnameuni": "ospf-10",
"best-paths": "1038"

}
]

},
"TABLE_route_count": {

"ROW_route_count": [
{

"mask_len": "8",
"count": "1"

},
{

"mask_len": "24",
"count": "600"

},
{

"mask_len": "31",
"count": "13"

},
{

"mask_len": "32",
"count": "324"

}
]

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
174

NX-API
Examples of XML and JSON Output

}
}

}
}

}
}

}
}
switch-1#

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
175

NX-API
Examples of XML and JSON Output

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
176

NX-API
Examples of XML and JSON Output

C H A P T E R 18
NX-API REST

• About NX-API REST, on page 177

About NX-API REST
NX-API REST

On Cisco Nexus devices, configuration is performed using command-line interfaces (CLIs) that run only on
the device. NX-API REST improves the accessibility of the Nexus configuration by providing HTTP/HTTPS
APIs that:

• Make specific CLIs available outside of the switch.

• Enable configurations that would require issuing many CLI commands by combining configuration
actions in relatively few HTTP/HTTPS operations.

NX-API REST supports show commands, basic and advanced switch configurations, and Linux Bash.

NX-API REST uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.
The NX-API REST backend uses the Nginx HTTP server. The Nginx process,and all of its children processes,
are under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx resource usage
exceeds the cgroup limitations, the Nginx process is restarted and restored.

For more information about the NX-API REST SDK, see https://developer.cisco.com/site/nx-api/documents/
n3k-n9k-api-ref/.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
177

https://developer.cisco.com/site/nx-api/documents/n3k-n9k-api-ref/
https://developer.cisco.com/site/nx-api/documents/n3k-n9k-api-ref/

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
178

NX-API
About NX-API REST

C H A P T E R 19
NX-API Developer Sandbox

• NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2), on page 179
• NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later, on page 185

NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)

About the NX-API Developer Sandbox
The NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OS CLI commands
into equivalent XML or JSON payloads, and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request, and Response— as shown
in the figure.

Figure 1: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API
REST, and a command type, such as XML or JSON. The available command type options vary depending
on the selected message format.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
179

When you type or paste one or more CLI commands into the Command pane, the web form converts the
commands into an API payload, checking for configuration errors, and displays the resulting payload in the
Request pane. If you then choose to post the payload directly from the Sandbox to the switch, using the POST
button in the Command pane, the Response pane displays the API response.

Conversely, when you type an NX-API REST designated name (DN) and payload into the Command pane
and select the nx-api restMessage format and the model Command type, Developer Sandbox checks
the payload for configuration errors, then the Response pane displays the equivalent CLIs.

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking POST in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.

Configuring the Message Format and Command Type
The Message Format and Command Type are configured in the upper right corner of the Command pane
(the top pane). ForMessage Format, choose the format of the API protocol that you want to use. The Developer
Sandbox supports the following API protocols:

Table 9: NX-OS API Protocols

DescriptionProtocol

A standard lightweight remote procedure call (RPC) protocol that can be used to deliver
NX-OSCLI commands in a JSONpayload. The JSON-RPC 2.0 specification is outlined
by jsonrpc.org.

json-rpc

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML payload.

xml

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
a JSON payload.

json

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. For more information about the Cisco Nexus 3000 and 9000 Series NX-API
REST SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

nx-api rest

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

nx yang

When the Message Format has been chosen, a set of Command Type options are presented just below the
Message Format control. The Command Type setting can constrain the input CLI and can determine the
Request and Response format. The options vary depending on the Message Format selection. For each
Message Format, the following table describes the Command Type options:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
180

NX-API
Guidelines and Limitations

http://www.jsonrpc.org
https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Table 10: Command Types

Command typeMessage format

• cli — show or configuration commands

• cli-ascii — show or configuration commands, output without
formatting

json-rpc

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

xml

• cli_show — show commands. If the command does not support
XML output, an error message will be returned.

• cli_show_ascii — show commands, output without formatting

• cli_conf — configuration commands. Interactive configuration
commands are not supported.

• bash— bash commands.Most non-interactive bash commands are
supported.

The bash shell must be enabled in the switch.Note

json

• cli — configuration commands

• model — DN and corresponding payload.

nx-api rest

• json — JSON structure is used for payload

• xml — XML structure is used for payload

nx yang

Output Chunking

In order to handle large show command output, some NX-API message formats support output chunking for
show commands. In this case, an Enable chunk mode checkbox appears below the Command Type control
along with a session ID (SID) type-in box.

When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate
command response. In order to retrieve the next chunk of the response message, you must send an NX-API
request with SID set to the session ID of the previous response message.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
181

NX-API
Configuring the Message Format and Command Type

Using the Developer Sandbox

Using the Developer Sandbox to Convert CLI Commands to Payloads

Online help is available by clicking Quick Start in the upper right corner of the Sandbox window.

Additional details, such as response codes and security methods, can be found in the NX-API CLI chapter.

Only configuration commands are supported.

Tip

Procedure

Step 1 Configure the Message Format and Command Type for the API protocol you want to use.

For detailed instructions, see Configuring the Message Format and Command Type, on page 180.

Step 2 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top
pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
182

NX-API
Using the Developer Sandbox

Step 3 Click the Convert at the bottom of the top pane.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
183

NX-API
Using the Developer Sandbox to Convert CLI Commands to Payloads

Step 4 When a valid payload is present in the Request pane, you can click POST to send the payload as an API call
to the switch.

The response from the switch appears in the Response pane.

Clicking POST commits the command to the switch, which can result in a configuration or state
change.

Warning

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
184

NX-API
Using the Developer Sandbox to Convert CLI Commands to Payloads

Step 5 You can copy the contents of the Request or Response pane to the clipboard by clicking Copy in the pane.
Step 6 You can obtain a Python implementation of the request on the clipboard by clicking Python in the Request

pane.

NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

About the NX-API Developer Sandbox
The Cisco NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OSCLI commands
into equivalent XML or JSON payloads and converts NX-API REST payloads into their CLI equivalents.

The web form is a single screen with three panes—Command (top pane), Request (middle pane), and Response
(bottom pane) — as shown in the figure below. The designated name (DN) field is located between the
Command and Request panes (seen in the figure below located between the POST and Send options).

The Request pane also has a series of tabs. Each tab represents a different language: Python, Python3, Java,
JavaScript, and Go-Lang. Each tab enables you to view the request in the respective language. For example,
after converting CLI commands into an XML or JSON payload, click the Python tab to view the request in
Python, which you can use to create scripts.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
185

NX-API
NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later

Figure 2: NX-API Developer Sandbox with Example Request and Output Response

Controls in the Command pane enable you to choose a supported API, such as NX-API REST, an input type,
such as model (payload) or CLI, and a message format, such as XML or JSON. The available options vary
depending on the chosen method.

When you choose the NXAPI-REST (DME) method, type or paste one or more CLI commands into the
Command pane,and clickConvert, the web form converts the commands into a RESTAPI payload, checking
for configuration errors, and displays the resulting payload in the Request pane. If you then choose to post
the payload directly from the sandbox to the switch (by choosing the POST option and clicking SEND), the
Response pane displays the API response. For more information, see Using the Developer Sandbox to Convert
CLI Commands to REST Payloads, on page 189

Conversely, the Cisco NX-API Developer Sandbox checks the payload for configuration errors then displays
the equivalent CLis in the Response pane. For more information, see Using the Developer Sandbox to Convert
from REST Payloads to CLI Commands, on page 192

Guidelines and Limitations
Following are the guidelines and limitations for the Developer Sandbox:

• Clicking Send in the Sandbox commits the command to the switch, which can result in a configuration
or state change.

• Some feature configuration commands are not available until their associated feature has been enabled.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
186

NX-API
Guidelines and Limitations

• Using Sandbox to convert with DN is supported only for finding the DN of a CLI config. Any other
workflow, for example, using DME to convert DN for CLI configuration commands is not supported.

• The Command pane (the top pane) supports a maximum of 10,000 individual lines of input.

Configuring the Message Format and Input Type
The Method, Message format, and Input type are configured in the upper right corner of the Command
pane (the top pane). For Method, choose the format of the API protocol that you want to use. The Cisco
NX-API Developer Sandbox supports the following API protocols:

Table 11: NX-OS API Protocols

DescriptionProtocol

Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in
an XML or a JSON payload.

NXAPI-CLI

Cisco NX-API proprietary protocol for manipulating and reading managed objects
(MOs) and their properties in the internal NX-OS data management engine (DME)
model. The NXAPI-REST (DME) protocol displays a drop-down list that enables you
to choose from the following methods:

• POST

• GET

• PUT

• DELETE

For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST
SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/.

NXAPI-REST
(DME)

The YANG ("Yet Another Next Generation") data modeling language for configuration
and state data.

The RESTCONF (Yang) protocol displays a drop-down list that enables you to choose
from the following methods:

• POST

• GET

• PUT

• PATCH

• DELETE

RESTCONF (Yang)

When you choose the Method, a set of Message format or Input type options are displayed in a drop-down
list. The Message format can constrain the input CLI and determine the Request and Response format. The
options vary depending on the Method you choose.

The following table describes the Input/Command type options for each Message format:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
187

NX-API
Configuring the Message Format and Input Type

https://developer.cisco.com/site/cisco-nexus-nx-api-references/

Table 12: Command Types

Input/Command typeMessage formatMethod

• cli — show or configuration commands

• cli-ascii — show or configuration commands,
output without formatting

• cli-array — show commands. Similar to cli, but
with cli_array, data is returned as a list of one
element, or an array, within square brackets, [].

json-rpcNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

xmlNXAPI-CLI

• cli_show — show commands. If the command
does not support XML output, an error message
will be returned.

• cli_show_array — show commands. Similar to
cli_show, but with cli_show_array, data is
returned as a list of one element, or an array,
within square brackets [].

• cli_show_ascii — show commands, output
without formatting

• cli_conf— configuration commands. Interactive
configuration commands are not supported.

• bash — bash commands. Most non-interactive
bash commands are supported.

The bash shell must be enabled in the
switch.

Note

jsonNXAPI-CLI

• cli — CLI to model conversion

• model — Model to CLI conversion.

NXAPI-REST (DME)

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
188

NX-API
Configuring the Message Format and Input Type

Input/Command typeMessage formatMethod

• json — JSON
structure is used for
payload

• xml — XML
structure is used for
payload

RESTCONF (Yang)

Output Chunking

In order to handle large show command output, some NX-API message formats support output chunking for
show commands. In this case, an Enable chunk mode check box appears below theCommand Type control
along with a session ID (SID) type-in box.

When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate
command response. In order to retrieve the next chunk of the response message, you must send an NX-API
request with SID set to the session ID of the previous response message.

Using the Developer Sandbox
You can use the Cisco NX-API Developer Sandbox to make multiple conversions, including the following:

Using the Developer Sandbox to Convert CLI Commands to REST Payloads

• Online help is available by clicking the help icons (?) next to the field names located in the upper-right
corner of the Cisco NX-API Developer Sandbox window.

• For additional details, such as response codes and security methods, see the NX-API CLI chapter.

• Only configuration commands are supported.

Tip

The Cisco NX-API Developer Sandbox enables you to convert CLI commands to REST payloads.

Procedure

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

The Input type drop-down list appears.

Step 2 Click the Input type drop-down list and choose cli.
Step 3 Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top

pane.

You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at
the bottom of the top pane.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
189

NX-API
Using the Developer Sandbox

Step 4 Click Convert.

If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are
present, a descriptive error message appears in the Response pane.

Step 5 (Optional) To send a valid payload as an API call to the switch, click Send.

The response from the switch appears in the Response pane.

Clicking Send commits the command to the switch, which can result in a configuration or state
change.

Warning

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
190

NX-API
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

Step 6 (Optional) To obtain the DN for an MO in the payload:

a. From the Request pane, choose POST.

b. Click the Convert drop-down list and choose Convert (with DN).

The payload appears with with a dn field that contains the DN that corresponds to each MO in the payload.

Step 7 (Optional) To overwrite the current configuration with a new configuration:

a. Click the Convert drop-down list and choose Convert (for Replace). The Request pane displays a
payload with a status field set to replace.

b. From the Request pane, choose POST.

c. Click Send.

The current configuration is replaced with the posted configuration. For example, if you start with the following
configuration:

interface eth1/2
description test
mtu 1501

Then use Convert (for Replace) to POST the following configuration:

interface eth1/2
description testForcr

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
191

NX-API
Using the Developer Sandbox to Convert CLI Commands to REST Payloads

The mtu configuration is removed and only the new description (testForcr) is present under the interface.
This change is confirmed when entering show running-config .

Step 8 (Optional) To copy the contents of a pane, such as the Request or Response pane, click Copy. The contents
o the respective pane is copied to the clipboard.

Step 9 (Optional) To convert the request into an of the formats listed below, click on the appropriate tab in the
Request pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
TheCiscoNX-APIDeveloper Sandbox enables you to convert REST payloads to correspondingCLI commands.
This option is only available for the NXAPI-REST (DME) method.

• Online help is available by clicking help icons (?) next to the Cisco NX-API Developer Sandbox field
names. Click a help icon get information about the respective field.

For additional details, such as response codes and security methods, see the chapter NX-API CLI.

• The top-right corner of the Cisco NX-API Developer Sandbox contains links for additional information.
The links that appear depend on the Method you choose. The links that appear for the NXAPI-REST
(DME) method:

• NX-API References—Enables you to access additional NX-API documentation.

• DME Documentation—Enables you to access the NX-API DME Model Reference page.

• Model Browser—Enables you to access Visore, the Model Browser. Note that you might have to
manually enter the IP address for your switch to access the Visore page:

https://management-ip-address/visore.html.

Tip

Procedure

Step 1 Click the Method drop-down list and choose NXAPI-REST (DME).

Example:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
192

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Step 2 Click the Input Type drop-down list and choose model.
Step 3 Enter the designated name (DN) that corresponds to the payload in the field above the Request pane.
Step 4 Enter the payload in the Command pane.
Step 5 Click Convert.

Example:

For this example, the DN is /api/mo/sys.json and the NX-API REST payload is:
{
"topSystem": {
"attributes": {
"name": "REST2CLI"

}
}

}

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
193

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

When you click on theConvert button, the CLI equivalent appears in theCLI pane as shown in the following
image.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
194

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
195

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

The Cisco NX-API Developer Sandbox cannot convert all payloads into equivalent CLIs, even if
the sandbox converted the CLIs to NX-API REST payloads. The following is a list of possible
sources of error that can prevent a payload from completely converting to CLI commands:

Table 13: Sources of REST2CLI Errors

ResultPayload Issue

The Error pane will return an error related to
the attribute.

Example:

CLI

Error unknown attribute
'fakeattribute' in element
'l1PhysIf'

The payload contains an attribute that does not
exist in the MO.

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"interfaceEntity": {
"children": [
{
"l1PhysIf": {
"attributes": {
"id": "eth1/1",
"fakeattribute":

"totallyFake"
}

}
}

]
}

}
]

}
}

The Error Pane will return an error related to
the unsupported MO.

Example:

CLI

Error The entire subtree of
"sys/dhcp" is not converted.

The payload includes MOs that aren't yet
supported for conversion:

Example:
api/mo/sys.json
{
"topSystem": {
"children": [
{
"dhcpEntity": {
"children": [
{
"dhcpInst": {
"attributes": {
"SnoopingEnabled": "yes"

}
}

}
]

}
}

]
}

}

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
196

NX-API
Using the Developer Sandbox to Convert from REST Payloads to CLI Commands

Using the Developer Sandbox to Convert from RESTCONF to json or XML

• Online help is available by clicking the help icon (?) in the upper-right corner of the Cisco NX-API
Developer Sandbox window.

• Click on the Yang Documentation link in the upper right corner of the Sandbox window to go to the
Model Driven Programmability with Yang page.

• Click on theYang Models link in the upper right corner of the Sandbox window to access the YangModels
GitHub site.

Tip

Procedure

Step 1 Click the Method drop-down list and choose RESTCONF (Yang).

Example:

Step 2 Click Message format and choose either json or xml.
Step 3 Enter a command in the text entry box in the top pane.
Step 4 Choose a message format.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
197

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Step 5 Click Convert.

Example:

For this example, the command is logging level netstack 6 and the message format is json:

Example:

For this example, the command is logging level netstack 6 and the message format is xml:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
198

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Step 6 You can also convert the request into the following formats by clicking on the appropriate tab in the Request
pane:

• Python

• Python3

• Java

• JavaScript

• Go-Lang

The Java-generated script does not work if you choose the PATCH option from the drop-down
menu in the area above the Request tab. This is a known limitation with Java and is expected
behavior.

Note

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
199

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
200

NX-API
Using the Developer Sandbox to Convert from RESTCONF to json or XML

P A R T IV
Model-Driven Programmability

• Managing Components, on page 203
• Converting CLI Commands to Network Configuration Format, on page 209

C H A P T E R 20
Managing Components

• About the Component RPM Packages, on page 203
• Preparing For Installation, on page 205
• Downloading Components from the Cisco Artifactory, on page 206
• Installing RPM Packages, on page 207

About the Component RPM Packages

Beginning with Cisco Nexus NX-OS 7.0(3)I6(2), the NX-OS Programmable Interface Base Component RPM
packages (agents, the Cisco native model, most of the other required models, and infrastructure) are included
in the NX-OS image. As a result, nearly all the required software is installed automatically when the image
is loaded. This situation means that there is no need to download and install the bulk of the software from the
Cisco Artifactory. The exception is the OpenConfig model, which is required. You must explicitly download
the OpenConfig models from the Cisco Artifactory.

But, for Cisco Nexus NX-OS 7.0(3)I6(1) and earlier releases, if you need to upgrade, the following sections
describing downloading and installing the packages are required.

Note

NX-OS Programmable Interface Component RPM packages may be downloaded from the Cisco Artifactory.
There are two types of component RPM packages that are needed:

• Base Components (required)

• Common Model Components (OpenConfig models must be explicitly downloaded and installed)

Base Components

The Base Components comprise the following required RPM packages:

• mtx-infra — Infrastructure

• mtx-device —Cisco native model

At least one of the following agent packages must be installed in order to have access to the modeled NX-OS
interface:

• mtx-netconf-agent —NETCONF agent

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
203

• mtx-restconf-agent —RESTCONF agent

• mtx-grpc-agent — gRPC agent

Common Model Components

Common Model component RPMs support OpenConfig models. To use the OpenConfig models, you must
download and install the OpenConfig RPMs. For convenience, there is a single combined package of all
supported OpenConfig models, mtx-openconfig-all.

While the single combined package is recommended, an alternative is to download and install RPMs of selected
models and their dependencies among the supported models listed in the following table. The
mtx-openconfig-all RPM is not compatible with the individual model RPMs. You must uninstall the
former before installing the latter, and you must unistall the latter before installing the former.

DependenciesPackage NameModel

Ver

Model RevModel Name

mtx-openconfig-interfacesmtx-openconfig-acl1.0.02017-05-26openconfig-acl

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-bgp-policy4.0.12017-07-30openconfig-bgp-policy

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-if-aggregate2.0.02017-07-14openconfig-if-aggregate

mtx-openconfig-interfacesmtx-openconfig-if-ethernet2.0.02017-07-14openconfig-if-ethernet

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-vlan

mtx-openconfig-if-ip1.0.22016-05-26openconfig-if-ip

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-if-ip

mtx-openconfig-interfaces

mtx-openconfig-vlan

mtx-openconfig-if-ip-ext2.3.02018-01-05openconfig-if-ip-ext

-mtx-openconfig-interfaces2.0.02017-07-14openconfig-interfaces

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
204

Model-Driven Programmability
About the Component RPM Packages

DependenciesPackage NameModel

Ver

Model RevModel Name

mtx-openconfig-bgp-policy

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-vlan

mtx-openconfig-network-instance0.8.12017-08-24openconfig-network-instance

mtx-openconfig-routing-policymtx-openconfig-network-instance-policy0.1.02017-02-15openconfig-network-instance-policy

mtx-openconfig-interfaces

mtx-openconfig-routing-policy

mtx-openconfig-ospf-policy0.1.12017-08-24openconfig-ospf-policy

-mtx-openconfig-platform0.8.02018-01-16openconfig-platform

mtx-openconfig-platformmtx-openconfig-platform-linecard0.1.02017-08-03openconfig-platform-linecard

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-platform

mtx-openconfig-platform-port0.3.02018-01-20openconfig-platform-port

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-platform

mtx-openconfig-platform-transceiver0.4.12018-01-22openconfig-platform-transceiver

mtx-openconfig-interfacesmtx-openconfig-relay-agent0.1.02016-05-16openconfig-relay-agent

-mtx-openconfig-routing-policy2.0.12016-05-12openconfig-routing-policy

mtx-openconfig-interfacesmtx-openconfig-spanning-tree0.2.02017-07-14openconfig-spanning-tree

-mtx-openconfig-system0.3.02017-09-18openconfig-system

mtx-openconfig-if-aggregate

mtx-openconfig-if-ethernet

mtx-openconfig-interfaces

mtx-openconfig-vlan2.0.02017-07-14openconfig-vlan

Preparing For Installation
This section contains installation preparation and other useful information for managing NX-OS Programmable
Interface components.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
205

Model-Driven Programmability
Preparing For Installation

Opening the Bash Shell on the Device

RPM installation on the switch is performed in the Bash shell. Make sure that feature bash is configured on
the device.
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# feature bash-shell
Switch(config)# end
Switch# run bash sudo su
bash-4.2#

To return to the device CLI prompt from Bash, type exit or Ctrl-D.

Verify Device Readiness

You can use the following CLI show commands to confirm the readiness of the device before installation of
an RPM.

• show module— Indicates whether all modules are up.
Switch# show module

• show system redundancy status— Indicates whether the standby device is up and running and in HA
mode. If a standby sync is in progress, the RPM installation may fail.
Switch# show system redundancy status

If the line cards have failed to come up, enter the createrepo /rpms command in the Bash shell.
bash-4.2# createrepo /rpms

Downloading Components from the Cisco Artifactory
The NX-OS Programmable Interface Component RPMs can be downloaded from the Cisco Artifactory at the
following URL. The RPMs are organized by NX-OS release-specific directories. Ensure that you are
downloading the RPMs from the correct NX-OS release directory.

https://devhub.cisco.com/artifactory/open-nxos-agents

The NX-OS Programmable Interface Component RPMs adhere to the following naming convention:

<package>-<version>-<NX-OS release>.<architecture>.rpm

Select and download the desired NX-OS Programmable Interface Component RPM packages to the device
for installation as described in the following sections.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
206

Model-Driven Programmability
Downloading Components from the Cisco Artifactory

https://devhub.cisco.com/artifactory/open-nxos-agents

Installing RPM Packages

Installing the Programmable Interface Base And Common Model Component
RPM Packages

Before you begin

• From the Cisco Artifactory, download the following packages:

• mtx-infra

• mtx-device

• mtx-netconf-agent/mtx-restconf-agent/mtx-grpc-agent (at least one)

• mtx-openconfig-all (alternatively, selected individual models)

• Using the CLI commands in Verify Device Readiness, on page 206, confirm that all line cards in the
Active and Standby devices are up and ready.

Procedure

Step 1 Copy the downloaded RPMs to the device.

Example:

Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-infra-2.0.0.0-9.2.1.lib32_n9000.rpm bootflash:
vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-device-2.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-netconf-agent-2.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management
Switch# copy scp://jdoe@192.0.20.123/myrpms/mtx-openconfig-all-1.0.0.0-9.2.1.lib32_n9000.rpm
bootflash: vrf management

Step 2 From the Bash shell, install the RPMs.

Example:

bash-4.2# cd /bootflash
bash-4.2# yum install mtx-infra-2.0.0.0-9.2.1.lib32_n9000.rpm
mtx-device-2.0.0.0-9.2.1.lib32_n9000.rpm mtx-netconf-agent-2.0.0.0-9.2.1.lib32_n9000.rpm
mtx-openconfig-all-1.0.0.0-9.2.1.lib32_n9000.rpm

Step 3 From the Bash shell, verify the installation.

Example:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
207

Model-Driven Programmability
Installing RPM Packages

bash-4.2# yum list installed | grep mtx

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
208

Model-Driven Programmability
Installing the Programmable Interface Base And Common Model Component RPM Packages

C H A P T E R 21
Converting CLI Commands to Network
Configuration Format

• Information About XMLIN, on page 209
• Licensing Requirements for XMLIN, on page 209
• Installing and Using the XMLIN Tool, on page 210
• Converting Show Command Output to XML, on page 210
• Configuration Examples for XMLIN, on page 211

Information About XMLIN
The XMLIN tool converts CLI commands to the Network Configuration (NETCONF) protocol format.
NETCONF is a network management protocol that provides mechanisms to install, manipulate, and delete
the configuration of network devices. It uses XML-based encoding for configuration data and protocol
messages. The NX-OS implementation of the NETCONF protocol supports the following protocol operations:
<get>, <edit-config>, <close-session>, <kill-session>, and <exec-command>.

The XMLIN tool converts show, EXEC, and configuration commands to corresponding NETCONF <get>,
<exec-command>, and <edit-config> requests. You can enter multiple configuration commands into a single
NETCONF <edit-config> instance.

The XMLIN tool also converts the output of show commands to XML format.

Licensing Requirements for XMLIN
Table 14: XMLIN Licensing Requirements

License RequirementProduct

XMLIN requires no license. Any feature not included in a license package is bundled with
the Cisco NX-OS system images and is provided at no extra charge to you. For a complete
explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Cisco
NX-OS

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
209

Installing and Using the XMLIN Tool
You can install the XMLIN tool and then use it to convert configuration commands to NETCONF format.

Before you begin

The XMLIN tool can generate NETCONF instances of commands even if the corresponding feature sets or
required hardware capabilities are not available on the device. But, you might still need to install some feature
sets before entering the xmlin command.

Procedure

PurposeCommand or Action

switch# xmlinStep 1

Enters global configuration mode.switch(xmlin)# configure terminalStep 2

Converts configuration commands to
NETCONF format.

Configuration commandsStep 3

Generates the corresponding <edit-config>
request.

(Optional) switch(config)(xmlin)# endStep 4

Enter the end command to finish the
current XML configuration before
you generate an XML instance for a
show command.

Note

Converts show commands to NETCONF
format.

(Optional) switch(config-if-verify)(xmlin)#
show commands

Step 5

Returns to EXEC mode.(Optional) switch(config-if-verify)(xmlin)# exitStep 6

Converting Show Command Output to XML
You can convert the output of show commands to XML.

Before you begin

Make sure that all features for the commands you want to convert are installed and enabled on the device.
Otherwise, the commands fail.

You can use the terminal verify-only command to verify that a feature is enabled without entering it on the
device.

Make sure that all required hardware for the commands you want to convert are present on the device.
Otherwise, the commands fail.

Make sure that the XMLIN tool is installed.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
210

Model-Driven Programmability
Installing and Using the XMLIN Tool

Procedure

PurposeCommand or Action

Enters global configuration mode.switch# show-command | xmlinStep 1

You cannot use this command with
configuration commands.

Note

Configuration Examples for XMLIN
The following example shows how the XMLIN tool is installed on the device and used to convert a set of
configuration commands to an <edit-config> instance.

switch# xmlin
**
Loading the xmlin tool. Please be patient.
**
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright ©) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
% Success
switch(config-if-verify)(xmlin)# cdp enable
% Success
switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec"
xmlns:m1="http://www.cisco.com/nxos:6.2.2.:configure__if-eth-base" message-id="1">
<nf:edit-config>

<nf:target>
<nf:running/>

</nf:target>
<nf:config>
<m:configure>
<m:terminal>
<interface>

<__XML__PARAM__interface>
<__XML__value>Ethernet2/1</__XML__value>
<m1:cdp>
<m1:enable/>

</m1:cdp>
</__XML__PARAM__interface>
</interface>
</m:terminal>
</m:configure>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
211

Model-Driven Programmability
Configuration Examples for XMLIN

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

The following example shows how to enter the end command to finish the current XML configuration before
you generate an XML instance for a show command.

switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
switch(config-if-verify)(xmlin)# show interface ethernet 2/1
**
Please type "end" to finish and output the current XML document before building a new one.
**
% Command not successful

switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec" message-id="1">

<nf:edit-config>
<nf:target>

<nf:running/>
</nf:target>
<nf:config>

<m:configure>
<m:terminal>

<interface>
<__XML__PARAM__interface>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__interface>

</interface>
</m:terminal>
</m:configure>

</nf:config>
</nf:edit-config>

</nf:rpc>
]]>]]>

switch(xmlin)# show interface ethernet 2/1
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager" message-id="1">
<nf:get>
<nf:filter type="subtree">
<show>
<interface>
<__XML__PARAM__ifeth>

<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__ifeth>

</interface>
</show>

</nf:filter>
</nf:get>

</nf:rpc>
]]>]]>
switch(xmlin)# exit
switch#

The following example shows how you can convert the output of the show interface brief command to XML.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
212

Model-Driven Programmability
Configuration Examples for XMLIN

switch# show interface brief | xmlin
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager"

message-id="1">
<nf:get>
<nf:filter type="subtree">

<show>
<interface>

<brief/>
</interface>

</show>
</nf:filter>

</nf:get>
</nf:rpc>
]]>]]>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
213

Model-Driven Programmability
Configuration Examples for XMLIN

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
214

Model-Driven Programmability
Configuration Examples for XMLIN

P A R T V
XML Management Interface

• XML Management Interface, on page 217

C H A P T E R 22
XML Management Interface

This section contains the following topics:

• About the XML Management Interface, on page 217
• Licensing Requirements for the XML Management Interface, on page 218
• Prerequisites to Using the XML Management Interface, on page 219
• Using the XML Management Interface, on page 219
• Information About Example XML Instances, on page 231
• Additional References, on page 237

About the XML Management Interface

About the XML Management Interface
You can use the XMLmanagement interface to configure a device. The interface uses the XML-based Network
Configuration Protocol (NETCONF), which allows you to manage devices and communicate over the interface
with an XML management tool or program. The Cisco NX-OS implementation of NETCONF requires you
to use a Secure Shell (SSH) session for communication with the device.

NETCONF is implemented with an XML Schema (XSD) that allows you to enclose device configuration
elements within a remote procedure call (RPC) message. From within an RPC message, you select one of the
NETCONF operations that matches the type of command that you want the device to execute. You can
configure the entire set of CLI commands on the device with NETCONF. For information about using
NETCONF, see the Creating NETCONF XML Instances, on page 221 and RFC 4741.

For more information about using NETCONF over SSH, see RFC 4742.

This section includes the following topics:

• NETCONF Layers, on page 217
• SSH xmlagent, on page 218

NETCONF Layers
The following are the NETCONF layers:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
217

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

Table 15: NETCONF Layers

ExampleLayer

SSHv2Transport protocol

<rpc>, <rpc-reply>RPC

<get-config>, <edit-config>Operations

show or configuration commandContent

The following is a description of the four NETCONF layers:

• SSH transport protocol—Provides a secure, encrypted connection between a client and the server.
• RPC tag—Introduces a configuration command from the requestor and the corresponding reply from the
XML server.

• NETCONF operation tag—Indicates the type of configuration command.
• Content—Indicates the XML representation of the feature that you want to configure.

SSH xmlagent
The device software provides an SSH service that is called xmlagent that supports NETCONF over SSH
Version 2.

The xmlagent service is referred to as the XML server in the Cisco NX-OS software.Note

NETCONF over SSH starts with the exchange of a hello message between the client and the XML server.
After the initial exchange, the client sends XML requests, which the server responds to with XML responses.
The client and server terminate requests and responses with the character sequence >. Because this character
sequence is not valid in XML, the client and the server can interpret when the messages end, which keeps
communication in sync.

The XML schemas that define XML configuration instances that you can use are described in the Creating
NETCONF XML Instances, on page 221 section.

Licensing Requirements for the XML Management Interface
ProductProduct

The XML management interface requires no license.
Any feature not included in a license package is
bundled with the Cisco NX-OS image and is provided
at no extra charge to you. For a complete explanation
of the Cisco NX-OS licensing scheme, see the Cisco
NX-OS Licensing Guide.

Cisco NX-OS

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
218

XML Management Interface
SSH xmlagent

Prerequisites to Using the XML Management Interface
The XML management interface has the following prerequisites:

• You must install SSHv2 on the client PC.
• You must install an XML management tool that supports NETCONF over SSH on the client PC.
• You must set the appropriate options for the XML server on the device.

Using the XML Management Interface
This section describes how to manually configure and use the XML management interface. Use the XML
management interface with the default settings on the device.

Configuring SSH and the XML Server Options
By default, the SSH server is enabled on the device. If you disable SSH, you must enable it before you start
an SSH session on the client PC.

You can configure XML server options to control the number of concurrent sessions and the timeout for active
sessions. You can also enable XML document validation and terminate XML sessions.

The XML server timeout applies only to active sessions.Note

For more information about configuring SSH, see the Cisco NX-OS security configuration guide for your
platform.

For more information about the XML commands, see the Cisco NX-OS system management configuration
guide for your platform.

Starting an SSH Session
You can start an SSHv2 session on the client PC with a command similar to the following:

ssh2 username@ip-address -s xmlagent

Enter the login username, the IP address of the device, and the service to connect to. The xmlagent service is
referred to as the XML server in the device software.

The SSH command syntax can differ from the SSH software on the client PC.Note

If you do not receive a hello message from the XML server, verify the following conditions:

• The SSH server is enabled on the device.
• The XML server max-sessions option is adequate to support the number of SSH connections to the
device.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
219

XML Management Interface
Prerequisites to Using the XML Management Interface

• The active XML server sessions on the device are not all in use.

Sending the Hello Message
When you start an SSH session to the XML server, the server responds immediately with a hello message
that informs the client of the server’s capabilities. You must advertise your capabilities to the server with a
hello message before the server processes any other requests. The XML server supports only base capabilities
and expects support only for the base capabilities from the client.

The following are sample hello messages from the server and the client.

You must end all XML documents with]]>]]> to support synchronization in NETCONF over SSH.Note

Hello Message from the server

<?xml version="1.0"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
</capabilities>
<session-id>25241</session-id>

</hello>]]>]]>

Hello Message from the Client

<?xml version="1.0"?>
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:capabilities>
<nc:capability>urn:ietf:params:xml:ns:netconf:base:1.0</nc:capability>
</nc:capabilities>

</nc:hello>]]>]]>

Obtaining the XSD Files

Procedure

Step 1 From your browser, navigate to the Cisco software download site at the following URL:

http://software.cisco.com/download/navigator.html

The Download Software page opens.

Step 2 In the Select a Product list, choose Switches > Data Center Switches > platform > model.
Step 3 If you are not already logged in as a registered Cisco user, you are prompted to log in now.
Step 4 From the Select a Software Type list, choose NX-OS XML Schema Definition.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
220

XML Management Interface
Sending the Hello Message

http://software.cisco.com/download/navigator.html

Step 5 Find the desired release and click Download.

Step 6 If you are requested, follow the instructions to apply for eligibility to download strong encryption software
images.

The Cisco End User License Agreement opens.

Step 7 Click Agree and follow the instructions to download the file to your PC.

Sending an XML Document to the XML Server
To send an XML document to the XML server through an SSH session that you opened in a command shell,
you can copy the XML text from an editor and paste it into the SSH session. Although typically you use an
automated method to send XML documents to the XML server, you can verify the SSH connection to the
XML server with this method.

Follow these guidelines for this method:

• Verify that the XML server sent the hello message immediately after you started the SSH session by
looking for the hello message text in the command shell output.

• Send the client hello message before you send any XML requests. Because the XML server sends the
hello response immediately, no additional response is sent after you send the client hello message.

• Always terminate the XML document with the character sequence]]>]]>.

Creating NETCONF XML Instances
You can create NETCONF XML instances by enclosing XML device elements within an RPC tag and
NETCONF operation tags. The XML device elements are defined in feature-based XML schema definition
(XSD) files, which enclose available CLI commands in an XML format.

The following are the tags that are used in the NETCONF XML request in a framework context. Tag lines
are marked with the following letter codes:

• X —XML declaration
• R—RPC request tag
• N—NETCONF operation tags
• D—Device tags

NETCONF XML Framework Context

X <?xml version="1.0"?>
R <nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
R xmlns="http://www.cisco.com/nxos:1.0:nfcli”>
N <nc:get>
N <nc:filter type="subtree">
D <show>
D <xml>
D <server>
D <status/>
D </server>
D </xml>
D </show>
N </nc:filter>
N </nc:get>
R </nc:rpc>]]>]]>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
221

XML Management Interface
Sending an XML Document to the XML Server

You must use your own XML editor or XML management interface tool to create XML instances.Note

RPC Request Tag rpc
All NETCONF XML instances must begin with the RPC request tag <rpc>. The example RPC Request Tag
<rpc> shows the <rpc> element with its requiredmessage-id attribute. The message-id attribute is replicated
in the <rpc-reply> and can be used to correlate requests and replies. The <rpc> node also contains the following
XML namespace declarations:

• NETCONF namespace declaration—The <rpc> and NETCONF tags that are defined in the
"urn:ietf:params:xml:ns:netconf:base:1.0" namespace, are present in the netconf.xsd schema file.

• Device namespace declaration—Device tags encapsulated by the <rpc> and NETCONF tags are defined
in other namespaces. Device namespaces are feature-oriented. Cisco NX-OS feature tags are defined in
different namespaces. RPC Request Tag <rpc> is an example that uses the nfcli feature. It declares that
the device namespace is "xmlns=http://www.cisco.com/nxos:1.0:nfcli". nfcli.xsd contains this namespace
definition. For more information, see section on Obtaining the XSD Files.

RPC Tag Request

<nc:rpc message-id="315" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
...
</nc:rpc>]]>]]>

Configuration Request

The following is an example of a configuration request.
<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>

</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>

</description>
</__XML__MODE_if-eth-base>

</__XML__MODE_if-ethernet>
</ethernet>

</interface>
</__XML__MODE__exec_configure>

</configure>
</nc:config>

</nc:edit-config>
</nc:rpc>]]>]]>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
222

XML Management Interface
RPC Request Tag rpc

__XML__MODE tags are used internally by the NETCONF agent. Some tags are present only as children of
a certain __XML__MODE. By examining the schema file, you can find the correct mode tag that leads to the
tags representing the CLI command in XML.

NETCONF Operations Tags
NETCONF provides the following configuration operations:

Table 16: NETCONF Operations in Cisco NX-OS

ExampleDescriptionNETCONF Operation

NETCONFClose Session Instance,
on page 231

Closes the current XML server
session.

close-session

NETCONF Commit Instance -
Candidate Configuration
Capability, on page 236

Sets the running configuration to
the current contents of the
candidate configuration.

commit

NETCONF Confirmed-commit
Instance , on page 236

Provides parameters to commit the
configuration for a specified time.
If this operation is not followed by
a commit operation within the
confirm-timeout period, the
configuration is reverted to the state
before the confirmed-commit
operation.

confirmed-commit

NETCONF copy-config Instance,
on page 232

Copies the content of source
configuration datastore to the target
datastore.

copy-config

—Operation not supported.delete-config

NETCONF edit-config Instance,
on page 232

NETCONF rollback-on-error
Instance , on page 236

Configures features in the running
configuration of the device. You
use this operation for configuration
commands.

edit-config

Creating NETCONF XML
Instances, on page 221

Receives configuration information
from the device. You use this
operation for show commands. The
source of the data is the running
configuration.

get

NETCONF get-config Instance, on
page 234

Retrieves all or part of a
configuration

get-config

NETCONF Kill-session Instance,
on page 232

Closes the specified XML server
session. You cannot close your own
session. See the close-session
NETCONF operation.

kill-session

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
223

XML Management Interface
NETCONF Operations Tags

ExampleDescriptionNETCONF Operation

NETCONFLock Instance, on page
234

Allows the client to lock the
configuration system of a device.

lock

NETCONF unlock Instance, on
page 235

Releases the configuration lock that
the session issued.

unlock

NETCONF validate Capability
Instance , on page 237

Checks a candidate configuration
for syntactical and semantic errors
before applying the configuration
to the device.

validate

Device Tags
The XML device elements represent the available CLI commands in XML format. The feature-specific schema
files contain the XML tags for CLI commands of that particular feature. See the Obtaining the XSD Files, on
page 220 section.

Using this schema, it is possible to build an XML instance. In the following examples, the relevant portions
of the nfcli.xsd schema file that was used to build Creating NETCONFXML Instances, on page 221 is shown.

The following example shows XML device tags.

show xml Device Tags

<xs:element name="show" type="show_type_Cmd_show_xml"/>
<xs:complexType name="show_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>to display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="xml" minOccurs="1" type="xml_type_Cmd_show_xml"/>
<xs:element name="debug" minOccurs="1" type="debug_type_Cmd_show_debug"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="xpath-filter" type="xs:string"/>
<xs:attribute name="uses-namespace" type="nxos:bool_true"/>
</xs:complexType>

The following example shows the server status device tags.

server status Device Tags

<xs:complexType name="xml_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="server" minOccurs="1" type="server_type_Cmd_show_xml"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="server_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent server</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
224

XML Management Interface
Device Tags

<xs:element name="status" minOccurs="1" type="status_type_Cmd_show_xml"/>
<xs:element name="logging" minOccurs="1" type="logging_type_Cmd_show_logging_facility"/>
</xs:choice>
</xs:sequence>
</xs:complexType>

The following example shows the device tag response.

Device Tag Response

<xs:complexType name="status_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="__XML__OPT_Cmd_show_xml___readonly__" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:group ref="og_Cmd_show_xml___readonly__" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:group name="og_Cmd_show_xml___readonly__">
<xs:sequence>
<xs:element name="__readonly__" minOccurs="1" type="__readonly___type_Cmd_show_xml"/>
</xs:sequence>
</xs:group>
<xs:complexType name="__readonly___type_Cmd_show_xml">
<xs:sequence>
<xs:group ref="bg_Cmd_show_xml_operational_status" maxOccurs="1"/>
<xs:group ref="bg_Cmd_show_xml_maximum_sessions_configured" maxOccurs="1"/>
<xs:group ref="og_Cmd_show_xml_TABLE_sessions" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

“__XML__OPT_Cmd_show_xml___readonly__” is optional. This tag represents the response. For more
information on responses, see the RPC Response Tag, on page 230 section.

Note

You can use the | XML option to find the tags you can use to execute a <get>. The following is an example
of the | XML option.

XML Example

Switch#> show xml server status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:nfcli">
<nf:data>
<show>
<xml>
<server>
<status>
<__XML__OPT_Cmd_show_xml___readonly__>
<__readonly__>
<operational_status>
<o_status>enabled</o_status>
</operational_status>
<maximum_sessions_configured>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
225

XML Management Interface
Device Tags

<max_session>8</max_session>
</maximum_sessions_configured>
</__readonly__>
</__XML__OPT_Cmd_show_xml___readonly__>
</status>
</server>
</xml>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

From this response, you can see that the namespace defining tag to execute operations on this component is
http://www.cisco.com/nxos:1.0:nfcli and the nfcli.xsd file can be used to build requests for this feature.

You can enclose the NETCONF operation tags and the device tags within the RPC tag. The </rpc> end-tag
is followed by the XML termination character sequence.

Extended NETCONF Operations
Cisco NX-OS supports an <rpc> operation named <exec-command>. The operation allows client applications
to send CLI configuration and show commands and to receive responses to those commands as XML tags.

The following is an example of the tags that are used to configure an interface. Tag lines are marked with the
following letter codes:

• X —XML declaration
• R—RPC request tag
• EO—Extended operation

Configuration CLI Commands Sent Through <exec-command>

X <?xml version="1.0"?>
R <nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
EO <nxos:exec-command>
EO <nxos:cmd>conf t ; interface ethernet 2/1 </nxos:cmd>
EO <nxos:cmd>channel-group 2000 ; no shut; </nxos:cmd>
EO </nxos:exec-command>
R </nf:rpc>]]>]]>

The following is the response to the operation:

Response to CLI Commands Sent Through <exec-command>

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:ok/>
</nf:rpc-reply>
]]>]]>

The following example shows how the show CLI commands that are sent through the <exec-command> can
be used to retrieve data.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
226

XML Management Interface
Extended NETCONF Operations

show CLI Commands Sent Through <exec-command>

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show interface brief</nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>

The following is the response to the operation.

Response to the show CLI commands Sent Through <exec-command>

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0"
xmlns:mod="http://www.cisco.com/nxos:1.0:if_manager" message-id="110">
<nf:data>
<mod:show>
<mod:interface>
<mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
<mod:__readonly__>
<mod:TABLE_interface>
<mod:ROW_interface>
<mod:interface>mgmt0</mod:interface>
<mod:state>up</mod:state>
<mod:ip_addr>172.23.152.20</mod:ip_addr>
<mod:speed>1000</mod:speed>
<mod:mtu>1500</mod:mtu>
</mod:ROW_interface>
<mod:ROW_interface>
<mod:interface>Ethernet2/1</mod:interface>
<mod:vlan>--</mod:vlan>
<mod:type>eth</mod:type>
<mod:portmode>routed</mod:portmode>
<mod:state>down</mod:state>
<mod:state_rsn_desc>Administratively down</mod:state_rsn_desc>
<mod:speed>auto</mod:speed>
<mod:ratemode>D</mod:ratemode>
</mod:ROW_interface>
</mod:TABLE_interface>
</mod:__readonly__>
</mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
</mod:interface>
</mod:show>
</nf:data>
</nf:rpc-reply>
]]>]]>

The following table provides a detailed explanation of the operation tags:

Table 17: Tags

DescriptionTag

Executes a CLI command.<exec-command>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
227

XML Management Interface
Extended NETCONF Operations

DescriptionTag

Contains the CLI command. A command can be a
show or configuration command. Separate multiple
configuration commands by using a semicolon “;”.
Multiple show commands are not supported. You can
send multiple configuration commands in different
<cmd> tags as part of the same request. For more
information, see the Example in Configuration CLI
Commands Sent Through <exec-command>.

<cmd>

Replies to configuration commands that are sent through the <cmd> tag are as follows:

• <nf:ok>: All configure commands are executed successfully.
• <nf:rpc-error>: Some commands have failed. The operation stops on the first error, and the <nf:rpc-error>
subtree provides more information on what configuration failed. Notice that any configuration that is
executed before the failed command would have been applied to the running configuration.

The following example shows a failed configuration:

Failed Configuration

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nxos:exec-command>
<nxos:cmd>configure terminal ; interface ethernet2/1 </nxos:cmd>
<nxos:cmd>ip address 1.1.1.2/24 </nxos:cmd>
<nxos:cmd>no channel-group 2000 ; no shut; </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Ethernet2/1: not part of port-channel 2000
</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

Because of a command execution, the interface IP address is set, but the administrative state is not modified
(the no shut command is not executed). The reason the administrative state is not modified is because the no
port-channel 2000 command results in an error.

The <rpc-reply> results from a show command that is sent through the <cmd> tag that contains the XML
output of the show command.

You cannot combine configuration and show commands on the same <exec-command> instance. The following
example shows a configuration and show command that are combined in the same instance.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
228

XML Management Interface
Extended NETCONF Operations

Combination of Configuration and show Commands

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>conf t ; interface ethernet 2/1 ; ip address 1.1.1.4/24 ; show xml
server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: cannot mix config and show in exec-command. Config cmds
before the show were executed.
Cmd:show xml server status</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

The show command must be sent in its own <exec-command> instance as shown in the following example:

Show CLI Commands Sent Through <exec-command>

<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show xml server status ; show xml server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: show cmds in exec-command shouldn't be followed by anything
</nf:error-message>
<nf:error-info>
<nf:bad-element><cmd></nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>

NETCONF Replies
For every XML request sent by the client, the XML server sends an XML response enclosed in the RPC
response tag <rpc-reply>.

This section contains the following topics:

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
229

XML Management Interface
NETCONF Replies

• RPC Response Tag, on page 230
• Interpreting Tags Encapsulated in the Data Tag, on page 230

RPC Response Tag
The following example shows the RPC response tag <rpc-reply>.

RPC Response Elements

<nc:rpc-reply message-id=”315” xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
<ok/>
</nc:rpc-reply>]]>]]>

The elements <ok>, <data>, and <rpc-error> can appear in the RPC response. The following table describes
the RPC response elements that can appear in the <rpc-reply> tag.

Table 18: RPC Response Elements

DescriptionElement

The RPC request completed successfully. This
element is used when no data is returned in the
response.

<ok>

The RPC request completed successfully. The data
associated with the RPC request is enclosed in the
<data> element.

<data>

The RPC request failed. Error information is enclosed
in the <rpc-error> element.

<rpc-error>

Interpreting Tags Encapsulated in the Data Tag
The device tags encapsulated by the <data> tag contain the request followed by the response. A client application
can safely ignore all tags before the <readonly> tag. The following is an example:

RPC-reply data

<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nf:data>
<show>
<interface>
<__XML__OPT_Cmd_show_interface_brief___readonly__>
<__readonly__>
<TABLE_interface>
<ROW_interface>
<interface>mgmt0</interface>
<state>up</state>
<ip_addr>xx.xx.xx.xx</ip_addr>
<speed>1000</speed>
<mtu>1500</mtu>
</ROW_interface>
<ROW_interface>
<interface>Ethernet2/1</interface>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
230

XML Management Interface
RPC Response Tag

<vlan>--</vlan>
<type>eth</type>
<portmode>routed</portmode>
<state>down</state>
<state_rsn_desc>Administratively down</state_rsn_desc>
<speed>auto</speed>
<ratemode>D</ratemode>
</ROW_interface>
</TABLE_interface>
</__readonly__>
</__XML__OPT_Cmd_show_interface_brief___readonly__>
</interface>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>

<__XML__OPT.*> and <__XML__BLK.*> appear in responses and are sometimes used in requests. These
tags are used by the NETCONF agent and are present in responses after the <__readonly__> tag. They are
necessary in requests and should be added according to the schema file to reach the XML tag that represents
the CLI command.

Information About Example XML Instances

Example XML Instances
This section provides the examples of the following XML instances:

• NETCONF Close Session Instance, on page 231
• NETCONF Kill-session Instance, on page 232
• NETCONF copy-config Instance, on page 232
• NETCONF edit-config Instance, on page 232
• NETCONF get-config Instance, on page 234
• NETCONF Lock Instance, on page 234
• NETCONF unlock Instance, on page 235
• NETCONF Commit Instance - Candidate Configuration Capability, on page 236
• NETCONF Confirmed-commit Instance , on page 236
• NETCONF rollback-on-error Instance , on page 236
• NETCONF validate Capability Instance , on page 237

NETCONF Close Session Instance
The following example shows the close-session request, followed by the close-session response.

Close-session Request

<?xml version="1.0"?>
<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:close-session/>
</nc:rpc>]]>]]>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
231

XML Management Interface
Information About Example XML Instances

Close-session Response

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>

NETCONF Kill-session Instance
The following example shows the kill-session request followed by the kill-session response.

Kill-session Request

<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>

Kill-session Request

<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>

NETCONF copy-config Instance
The following example shows the copy-config request followed by the copy-config response.

Copy-config Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<running/>
</target>
<source>
<url>https://user@example.com:passphrase/cfg/new.txt</url>
</source>
</copy-config>
</rpc>

Copy-config Response

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF edit-config Instance
The following example shows the use of NETCONF edit-config.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
232

XML Management Interface
NETCONF Kill-session Instance

Edit-config Request

<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>
</description>
</__XML__MODE_if-eth-base>
</__XML__MODE_if-ethernet>
</ethernet>
</interface>
</__XML__MODE__exec_configure>
</configure>
</nc:config>
</nc:edit-config>
</nc:rpc>]]>]]>

Edit-config Response

<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager" message-id="16">
<nc:ok/>
</nc:rpc-reply>]]>]]>

The operation attribute in edit-config identifies the point in configuration where the specified operation is
performed. If the operation attribute is not specified, the configuration is merged into the existing configuration
data store. Operation attribute can have the following values:

• create
• merge
• delete

The following example shows how to delete the configuration of interface Ethernet 0/0 from the running
configuration.

Edit-config: Delete Operation Request

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
233

XML Management Interface
NETCONF edit-config Instance

<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Response to edit-config: Delete Operation

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF get-config Instance
The following example shows the use of NETCONF get-config.

Get-config Request to Retrieve the Entire Subtree

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type="subtree">
<top xmlns="http://example.com/schema/1.2/config">
<users/>
</top>
</filter>
</get-config>
</rpc>]]>]]>

Get-config Response with Results of the Query

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>
<company-info>
<dept>1</dept>
<id>1</id>
</company-info>
</user>
<!-- additional <user> elements appear here... -->
</users>
</top>
</data>
</rpc-reply>]]>]]>

NETCONF Lock Instance
The following example shows the use of NETCONF lock operation.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
234

XML Management Interface
NETCONF get-config Instance

The following examples show the lock request, a success response, and a response to an unsuccessful attempt.

Lock Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>]]>]]>

Response to Successful Acquisition of Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/> <!-- lock succeeded -->
</rpc-reply>]]>]]>

Response to Unsuccessful Attempt to Acquire the Lock

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error> <!-- lock failed -->
<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message>
Lock failed, lock is already held
</error-message>
<error-info>
<session-id>454</session-id>
<!-- lock is held by NETCONF session 454 -->
</error-info>
</rpc-error>
</rpc-reply>]]>]]>

NETCONF unlock Instance
The following example shows the use of the NETCONF unlock operation.

unlock request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

response to unlock request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
235

XML Management Interface
NETCONF unlock Instance

<ok/>
</rpc-reply>

NETCONF Commit Instance - Candidate Configuration Capability
The following example shows the commit operation and the commit reply:

Commit Operation

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

Commit Reply

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

NETCONF Confirmed-commit Instance
The following example shows the confirmed-commit operation and the confirmed-commit reply.

Confirmed Commit Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>
</commit>
</rpc>]]>]]>

Confirmed Commit Response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF rollback-on-error Instance
The following example shows the use of NETCONF rollback on error capability. The string
urn:ietf:params:netconf:capability:rollback-on-error:1.0 identifies the capability.

The following example shows how to configure rollback on error and the response to this request.

Rollback-on-error capability

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
236

XML Management Interface
NETCONF Commit Instance - Candidate Configuration Capability

</target>
<error-option>rollback-on-error</error-option>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>100000</mtu>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>

Rollback-on-error response

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

NETCONF validate Capability Instance
The following example shows the use of the NETCONF validate capability. The string
urn:ietf:params:netconf:capability:validate:1.0 identifies the capability.

Validate request

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<validate>
<source>
<candidate/>
</source>
</validate>
</rpc>]]>]]>

Response to validate request

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>

Additional References
This section provides additional information that is related to implementing the XML management interface.

Standards

TitleStandards

—No new or modified standards are supported by this
feature. Support for existing standards has not been
modified by this feature.

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
237

XML Management Interface
NETCONF validate Capability Instance

RFCs

TitleRFCs

NETCONF Configuration ProtocolRFC 4741

Using the NETCONF Configuration Protocol over
Secure Shell (SSH)

RFC 4742

Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
238

XML Management Interface
Additional References

http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc4742

	Cisco Nexus 3600 NX-OS Programmability Guide, Release 9.2(x)
	Contents
	Preface
	Audience
	Document Conventions
	Related Documentation for Cisco Nexus 3600 Platform Switches
	Documentation Feedback
	Communications, Services, and Additional Information

	New and Changed Information
	New and Changed Information

	Overview
	Programmability Overview
	Standard Network Manageability Features
	Advanced Automation Feature
	Power On Auto Provisioning Support

	Programmability Support
	NX-API Support
	Python Scripting
	Bash
	Perl Modules

	Shells and Scripting
	Bash
	About Bash
	Guidelines and Limitations
	Accessing Bash
	Escalate Privileges to Root
	Examples of Bash Commands
	Displaying System Statistics
	Running Bash from CLI
	Running Python from Bash

	Managing RPMs
	Installing RPMs from Bash
	Upgrading RPMs
	Downgrading an RPM
	Erasing an RPM

	Persistently Daemonizing an SDK- or ISO-built Third Party Process
	Persistently Starting Your Application from the Native Bash Shell
	An Example Application in the Native Bash Shell

	Guest Shell
	About the Guest Shell
	Guidelines and Limitations
	Accessing the Guest Shell
	Resources Used for the Guest Shell
	Capabilities in the Guest Shell
	NX-OS CLI in the Guest Shell
	Network Access in Guest Shell
	Access to Bootflash in Guest Shell
	Python in Guest Shell
	Python 3 in Guest Shell 2.x (Centos 7)
	Installing RPMs in the Guest Shell

	Security Posture for Guest Shell
	Kernel Vulnerability Patches
	ASLR and X-Space Support
	Namespace Isolation
	Root-User Restrictions
	Resource Management

	Guest File System Access Restrictions
	Managing the Guest Shell
	Disabling the Guest Shell
	Destroying the Guest Shell
	Enabling the Guest Shell
	Replicating the Guest Shell
	Exporting Guest Shell rootfs
	Importing Guest Shell rootfs
	Importing YAML File
	show guestshell Command

	Verifying Virtual Service and Guest Shell Information
	Persistently Starting Your Application From the Guest Shell
	Procedure for Persistently Starting Your Application from the Guest Shell
	An Example Application in the Guest Shell
	Troubleshooting Guest Shell Issues

	Python API
	About the Python API
	Using Python
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-interactive Python
	Running Scripts with Embedded Event Manager
	Python Integration with Cisco NX-OS Network Interfaces
	Cisco NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Scheduler

	Scripting with Tcl
	About Tcl
	Guidelines and Limitations
	Tclsh Command Help
	Tclsh Command History
	Tclsh Tab Completion
	Tclsh CLI Command
	Tclsh Command Separation
	Tcl Variables
	Tclquit
	Tclsh Security

	Running the Tclsh Command
	Navigating Cisco NX-OS Modes from the Tclsh Command
	Tcl References

	iPXE
	About iPXE
	Netboot Requirements
	Guidelines and Limitations
	Notes for iPXE

	Boot Mode Configuration
	Verifying the Boot Order Configuration

	Kernel Stack
	About Kernel Stack
	Guidelines and Limitations
	Changing the Port Range

	Applications
	Third-Party Applications
	About Third-Party Applications
	Installing Signed Third-Party RPMs by Importing Keys Automatically
	Installing Signed RPM
	Checking a Signed RPM
	Installing Signed RPMs by Manually Importing Key
	Installing Signed Third-Party RPMs by Importing Keys Automatically
	Adding Signed RPM into Repo

	Persistent Third-Party RPMs
	Installing RPM from VSH
	Package Addition
	Package Activation
	Deactivating Packages
	Removing Packages
	Displaying Installed Packages
	Displaying Detail Logs
	Upgrading a Package
	Downgrading a Package

	Third-Party Applications
	NX-OS
	collectd
	Ganglia
	Iperf
	LLDP
	Nagios
	OpenSSH
	Quagga
	Splunk
	tcollector
	tcpdump
	Tshark

	Ansible
	Prerequisites
	About Ansible
	Cisco Ansible Module

	Puppet Agent
	About Puppet
	Prerequisites
	Puppet Agent NX-OS Environment
	ciscopuppet Module

	Using Chef Client with Cisco NX-OS
	About Chef
	Prerequisites
	Chef Client NX-OS Environment
	cisco-cookbook

	Nexus Application Development - ISO
	About ISO
	Installing the ISO
	Using the ISO to Build Applications
	Using RPM to Package an Application

	Nexus Application Development - SDK
	About the Cisco SDK
	Installing the SDK
	Procedure for Installation and Environment Initialization
	Using the SDK to Build Applications
	Using RPM to Package an Application
	Creating an RPM Build Environment
	Using General RPM Build Procedure
	Example to Build RPM for collectd with No Optional Plug-Ins
	Example to Build RPM for collectd with Optional Curl Plug-In

	NX-SDK
	About the NX-SDK
	Install the NX-SDK
	Building and Packaging C++ Applications
	Installing and Running Custom Applications

	Using Docker with Cisco NX-OS
	About Docker with Cisco NX-OS
	Guidelines and Limitations
	Prerequisites for Setting Up Docker Containers Within Cisco NX-OS
	Starting the Docker Daemon
	Configure Docker to Start Automatically
	Starting Docker Containers: Host Networking Model
	Starting Docker Containers: Bridged Networking Model
	Mounting the bootflash and volatile Partitions in the Docker Container
	Enabling Docker Daemon Persistence on Enhanced ISSU Switchover
	Resizing the Docker Storage Backend
	Stopping the Docker Daemon
	Docker Container Security
	Securing Docker Containers With User namespace Isolation
	Moving the cgroup Partition

	Docker Troubleshooting
	Docker Fails to Start
	Docker Fails to Start Due to Insufficient Storage
	Failure to Pull Images from Docker Hub (509 Certificate Expiration Error Message)
	Failure to Pull Images from Docker Hub (Client Timeout Error Message)
	Docker Daemon or Containers Not Running On Switch Reload or Switchover
	Resizing of Docker Storage Backend Fails
	Docker Container Doesn't Receive Incoming Traffic On a Port
	Unable to See Data Port And/Or Management Interfaces in Docker Container
	General Troubleshooting Tips

	NX-API
	NX-API CLI
	About NX-API CLI
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Table of NX-API Response Codes

	XML and JSON Supported Commands
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

	NX-API REST
	About NX-API REST

	NX-API Developer Sandbox
	NX-API Developer Sandbox: NX-OS Releases Prior to 9.2(2)
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Command Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to Payloads

	NX-API Developer Sandbox: NX-OS Release 9.2(2) and Later
	About the NX-API Developer Sandbox
	Guidelines and Limitations
	Configuring the Message Format and Input Type
	Using the Developer Sandbox
	Using the Developer Sandbox to Convert CLI Commands to REST Payloads
	Using the Developer Sandbox to Convert from REST Payloads to CLI Commands
	Using the Developer Sandbox to Convert from RESTCONF to json or XML

	Model-Driven Programmability
	Managing Components
	About the Component RPM Packages
	Preparing For Installation
	Downloading Components from the Cisco Artifactory
	Installing RPM Packages
	Installing the Programmable Interface Base And Common Model Component RPM Packages

	Converting CLI Commands to Network Configuration Format
	Information About XMLIN
	Licensing Requirements for XMLIN
	Installing and Using the XMLIN Tool
	Converting Show Command Output to XML
	Configuration Examples for XMLIN

	XML Management Interface
	XML Management Interface
	About the XML Management Interface
	About the XML Management Interface
	NETCONF Layers
	SSH xmlagent

	Licensing Requirements for the XML Management Interface
	Prerequisites to Using the XML Management Interface
	Using the XML Management Interface
	Configuring SSH and the XML Server Options
	Starting an SSH Session
	Sending the Hello Message
	Obtaining the XSD Files
	Sending an XML Document to the XML Server
	Creating NETCONF XML Instances
	RPC Request Tag rpc
	NETCONF Operations Tags
	Device Tags

	Extended NETCONF Operations
	NETCONF Replies
	RPC Response Tag
	Interpreting Tags Encapsulated in the Data Tag

	Information About Example XML Instances
	Example XML Instances
	NETCONF Close Session Instance
	NETCONF Kill-session Instance
	NETCONF copy-config Instance
	NETCONF edit-config Instance
	NETCONF get-config Instance
	NETCONF Lock Instance
	NETCONF unlock Instance
	NETCONF Commit Instance - Candidate Configuration Capability
	NETCONF Confirmed-commit Instance
	NETCONF rollback-on-error Instance
	NETCONF validate Capability Instance

	Additional References

