
Connection Settings

This chapter describes how to configure connection settings for connections that go through the ASA, or for
management connections that go to the ASA.

• What Are Connection Settings?, on page 1
• Configure Connection Settings, on page 2
• Monitoring Connections, on page 28
• History for Connection Settings, on page 29

What Are Connection Settings?
Connection settings comprise a variety of features related to managing traffic connections, such as a TCP
flow through the ASA. Some features are named components that you would configure to supply specific
services.

Connection settings include the following:

• Global timeouts for various protocols—All global timeouts have default values, so you need to change
them only if you are experiencing premature connection loss.

• Connection timeouts per traffic class—You can override the global timeouts for specific types of traffic
using service policies. All traffic class timeouts have default values, so you do not have to set them.

• Connection limits and TCP Intercept—By default, there are no limits on how many connections can
go through (or to) the ASA. You can set limits on particular traffic classes using service policy rules to
protect servers from denial of service (DoS) attacks. Particularly, you can set limits on embryonic
connections (those that have not finished the TCP handshake), which protects against SYN flooding
attacks. When embryonic limits are exceeded, the TCP Intercept component gets involved to proxy
connections and ensure that attacks are throttled.

• Dead Connection Detection (DCD)—If you have persistent connections that are valid but often idle,
so that they get closed because they exceed idle timeout settings, you can enable Dead Connection
Detection to identify idle but valid connections and keep them alive (by resetting their idle timers).
Whenever idle times are exceeded, DCD probes both sides of the connection to see if both sides agree
the connection is valid. The show service-policy command output includes counters to show the amount
of activity from DCD. You can use the show conn detail command to get information about the initiator
and responder and how often each has sent probes.

• TCP sequence randomization—Each TCP connection has two initial sequence numbers (ISN): one
generated by the client and one generated by the server. By default, the ASA randomizes the ISN of the

Connection Settings
1

TCP SYN passing in both the inbound and outbound directions. Randomization prevents an attacker
from predicting the next ISN for a new connection and potentially hijacking the new session. However,
TCP sequence randomization effectively breaks TCP SACK (Selective Acknowledgement), as the
sequence numbers the client sees are different from what the server sees. You can disable randomization
per traffic class if desired.

• TCP Normalization—The TCP Normalizer protects against abnormal packets. You can configure how
some types of packet abnormalities are handled by traffic class.

• TCP State Bypass—You can bypass TCP state checking if you use asymmetrical routing in your network.

• SCTP State Bypass—You can bypass StreamControl Transmission Protocol (SCTP) stateful inspection
if you do not want SCTP protocol validation.

• Flow offloading—You can identify select traffic to be offloaded to a super fast path, where the flows
are switched in the NIC itself. Offloading can help you improve performance for data-intensive applications
such as large file transfers.

• IPsec flow offload—After the initial setup of an IPsec site-to-site VPN or remote access VPN security
association (SA), IPsec connections are offloaded to the field-programmable gate array (FPGA) in the
device, which should improve device performance. This feature is enabled by default on platforms that
support it.

Configure Connection Settings
Connection limits, timeouts, TCPNormalization, TCP sequence randomization, and decrementing time-to-live
(TTL) have default values that are appropriate for most networks. You need to configure these connection
settings only if you have unusual requirements, your network has specific types of configuration, or if you
are experiencing unusual connection loss due to premature idle timeouts.

Other connection-related features are not enabled. You would configure these services on specific traffic
classes only, and not as a general service. These features include the following: TCP Intercept, TCP State
Bypass, Dead Connection Detection (DCD), SCTP state bypass, flow offload.

The following general procedure covers the gamut of possible connection setting configurations. Pick and
choose which to implement based on your needs.

Procedure

Step 1 Configure Global Timeouts, on page 3. These settings change the default idle timeouts for various protocols
for all traffic that passes through the device. If you are having problems with connections being reset due to
premature timeouts, first try changing the global timeouts.

Step 2 Protect Servers from a SYN Flood DoS Attack (TCP Intercept), on page 5. Use this procedure to configure
TCP Intercept.

Step 3 Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer), on page 7, if you want to alter
the default TCP Normalization behavior for specific traffic classes.

Step 4 Bypass TCP State Checks for Asymetrical Routing (TCP State Bypass), on page 11, if you have this type of
routing environment.

Step 5 Disable TCP Sequence Randomization, on page 14, if the default randomization is scrambling data for certain
connections.

Connection Settings
2

Connection Settings
Configure Connection Settings

Step 6 Offload Large Flows, on page 16, if you need to improve performance in a computing intensive data center.
Step 7 Configure Connection Settings for Specific Traffic Classes (All Services), on page 22. This is a catch-all

procedure for connection settings. These settings can override the global defaults for specific traffic classes
using service policy rules. You also use these rules to customize TCP Normalizer, change TCP sequence
randomization, decrement time-to-live on packets, and implement other optional features.

Step 8 Configure TCP Options, on page 27, if you need to force resets or change some other standard TCP behavior.

Configure Global Timeouts
You can set the global idle timeout durations for the connection and translation slots of various protocols. If
the slot has not been used for the idle time specified, the resource is returned to the free pool.

Changing the global timeout sets a new default timeout, which in some cases can be overridden for particular
traffic flows through service policies.

Procedure

Use the timeout command to set global timeouts.

All timeout values are in the format hh:mm:ss, with a maximum duration of 1193:0:0 in most cases. Use the
clear configure timeout command to reset all timeouts to their default values. If you want to simply reset
one timer to the default, enter the timeout command for that setting with the default value.

Use 0 for the value to disable a timer.

You can configure the following global timeouts.

• timeout conn hh:mm:ss—The idle time after which a connection closes, between 0:5:0 and 1193:0:0.
The default is 1 hour (1:0:0).

• timeout half-closed hh:mm:ss—The idle time until a TCP half-closed connection closes. A connection
is considered half-closed if both the FIN and FIN-ACK have been seen. If only the FIN has been seen,
the regular conn timeout applies. The minimum is 30 seconds. The default is 10 minutes.

• timeout udp hh:mm:ss—The idle time until a UDP connection closes. This duration must be at least 1
minute. The default is 2 minutes.

• timeout icmp hh:mm:ss—The idle time for ICMP, between 0:0:2 and 1193:0:0. The default is 2 seconds
(0:0:2).

• timeout icmp-error hh:mm:ss—The idle time before the ASA removes an ICMP connection after
receiving an ICMP echo-reply packet, between 0:0:0 and 0:1:0 or the timeout icmp value, whichever is
lower. The default is 0 (disabled). When this timeout is disabled, and you enable ICMP inspection, then
the ASA removes the ICMP connection as soon as an echo-reply is received; thus any ICMP errors that
are generated for the (now closed) connection are dropped. This timeout delays the removal of ICMP
connections so you can receive important ICMP errors.

• timeout sunrpc hh:mm:ss—The idle time until a SunRPC slot is freed. This duration must be at least 1
minute. The default is 10 minutes.

• timeout H323 hh:mm:ss—The idle time after which H.245 (TCP) and H.323 (UDP) media connections
close, between 0:0:0 and 1193:0:0. The default is 5 minutes (0:5:0). Because the same connection flag

Connection Settings
3

Connection Settings
Configure Global Timeouts

is set on both H.245 and H.323 media connections, the H.245 (TCP) connection shares the idle timeout
with the H.323 (RTP and RTCP) media connection.

• timeout h225 hh:mm:ss—The idle time until an H.225 signaling connection closes. The H.225 default
timeout is 1 hour (1:0:0). To close a connection immediately after all calls are cleared, a value of 1 second
(0:0:1) is recommended.

• timeout mgcp hh:mm:ss—The idle time after which an MGCP media connection is removed, between
0:0:0 and 1193:0:0. The default is 5 minutes (0:5:0)

• timeout mgcp-pat hh:mm:ss—The absolute interval after which an MGCP PAT translation is removed,
between 0:0:0 and 1193:0:0. The default is 5 minutes (0:5:0). The minimum time is 30 seconds.

• timeout sctp hh:mm:ss—The idle time until a StreamControl Transmission Protocol (SCTP) connection
closes, between 0:1:0 and 1193:0:0. The default is 2 minutes (0:2:0).

• timeout sip hh:mm:ss—The idle time until a SIP signaling port connection closes, between 0:5:0 and
1193:0:0. The default is 30 minutes (0:30:0).

• timeout sip_media hh:mm:ss—The idle time until an SIP media port connection closes. This duration
must be at least 1 minute. The default is 2 minutes. The SIP media timer is used for SIP RTP/RTCP with
SIP UDP media packets, instead of the UDP inactivity timeout.

• timeout sip-provisional-media hh:mm:ss—The timeout value for SIP provisional media connections,
between 0:1:0 and 0:30:0. The default is 2 minutes.

• timeout sip-invite hh:mm:ss—The idle time after which pinholes for PROVISIONAL responses and
media xlates will be closed, between 0:1:0 and 00:30:0. The default is 3 minutes (0:3:0).

• timeout sip-disconnect hh:mm:ss—The idle time after which a SIP session is deleted if the 200 OK is
not received for a CANCEL or a BYE message, between 0:0:1 and 00:10:0. The default is 2 minutes
(0:2:0).

• timeout uath hh:mm:ss {absolute | inactivity}—The duration before the authentication and authorization
cache times out and the user has to reauthenticate the next connection, between 0:0:0 and 1193:0:0. The
default is 5 minutes (0:5:0). The default timer is absolute; you can set the timeout to occur after a period
of inactivity by entering the inactivity keyword. The uauth duration must be shorter than the xlate
duration. Set to 0 to disable caching. Do not use 0 if passive FTP is used for the connection or if the
virtual http command is used for web authentication.

• timeout xlate hh:mm:ss—The idle time until a translation slot is freed. This duration must be at least 1
minute. The default is 3 hours.

• timeout pat-xlate hh:mm:ss—The idle time until a PAT translation slot is freed, between 0:0:30 and
0:5:0. The default is 30 seconds. You may want to increase the timeout if upstream routers reject new
connections using a freed PAT port because the previous connection might still be open on the upstream
device.

• timeout tcp-proxy-reassembly hh:mm:ss—The idle timeout after which buffered packets waiting for
reassembly are dropped, between 0:0:10 and 1193:0:0. The default is 1 minute (0:1:0).

• timeout floating-conn hh:mm:ss—When multiple routes exist to a network with different metrics, the
ASA uses the one with the best metric at the time of connection creation. If a better route becomes
available, then this timeout lets connections be closed so a connection can be reestablished to use the
better route. The default is 0 (the connection never times out). To make it possible to use better routes,
set the timeout to a value between 0:0:30 and 1193:0:0.

Connection Settings
4

Connection Settings
Configure Global Timeouts

• timeout conn-holddown hh:mm:ss—How long the system should maintain a connection when the route
used by the connection no longer exists or is inactive. If the route does not become active within this
holddown period, the connection is freed. The purpose of the connection holddown timer is to reduce
the effect of route flapping, where routes might come up and go down quickly. You can reduce the
holddown timer to make route convergence happen more quickly. The default is 15 seconds, the range
is 00:00:00 to 00:00:15.

• timeout igp stale-route hh:mm:ss—How long to keep a stale route before removing it from the router
information base. These routes are for interior gateway protocols such as OSPF. The default is 70 seconds
(00:01:10), the range is 00:00:10 to 00:01:40.

Protect Servers from a SYN Flood DoS Attack (TCP Intercept)
A SYN-flooding denial of service (DoS) attack occurs when an attacker sends a series of SYN packets to a
host. These packets usually originate from spoofed IP addresses. The constant flood of SYN packets keeps
the server SYN queue full, which prevents it from servicing connection requests from legitimate users.

You can limit the number of embryonic connections to help prevent SYN flooding attacks. An embryonic
connection is a connection request that has not finished the necessary handshake between source and destination.

When the embryonic connection threshold of a connection is crossed, the ASA acts as a proxy for the server
and generates a SYN-ACK response to the client SYN request using the SYN cookie method, so that the
connection is not added to the SYN queue of the targeted host. The SYN cookie is the initial sequence number
returned in the SYN-ACK that is constructed from MSS, time stamp, and a mathematical hash of other items
to essentially create a secret. If the ASA receives an ACK back from the client with the correct sequence
number and within the valid time window, it can then authenticate that the client is real and allow the connection
to the server. The component that performs the proxy is called TCP Intercept.

The end-to-end process for protecting a server from a SYN flood attack involves setting connection limits,
enabling TCP Intercept statistics, and then monitoring the results.

Before you begin

• Ensure that you set the embryonic connection limit lower than the TCP SYN backlog queue on the server
that you want to protect. Otherwise, valid clients can no longer access the server during a SYN attack.
To determine reasonable values for embryonic limits, carefully analyze the capacity of the server, the
network, and server usage.

• Depending on the number of CPU cores on your ASA model, the maximum concurrent and embryonic
connections can exceed the configured numbers due to the way each core manages connections. In the
worst case scenario, the ASA allows up to n-1 extra connections and embryonic connections, where n
is the number of cores. For example, if your model has 4 cores, if you configure 6 concurrent connections
and 4 embryonic connections, you could have an additional 3 of each type. To determine the number of
cores for your model, enter the show cpu core command.

Procedure

Step 1 Create an L3/L4 class map to identify the servers you are protecting. Use an access-list match.

Connection Settings
5

Connection Settings
Protect Servers from a SYN Flood DoS Attack (TCP Intercept)

class-map name
match parameter

Example:

hostname(config)# access-list servers extended permit tcp any host 10.1.1.5 eq http
hostname(config)# access-list servers extended permit tcp any host 10.1.1.6 eq http
hostname(config)# class-map protected-servers
hostname(config-cmap)# match access-list servers

Step 2 Add or edit a policy map that sets the actions to take with the class map traffic, and identify the class map.

policy-map name
class name

Example:

hostname(config)# policy-map global_policy
hostname(config-pmap)# class protected-servers

In the default configuration, the global_policy policy map is assigned globally to all interfaces. If you want
to edit the global_policy, enter global_policy as the policy name. For the class map, specify the class you
created earlier in this procedure.

Step 3 Set the embryonic connection limits.

• set connection embryonic-conn-max n—The maximum number of simultaneous embryonic TCP
connections allowed, from 0 and 2000000. The default is 0, which allows unlimited connections.

• set connection per-client-embryonic-max n—Themaximum number of simultaneous embryonic TCP
connections allowed per client, from 0 and 2000000. The default is 0, which allows unlimited connections.

• set connection syn-cookie-mss n—The servermaximum segment size (MSS) for SYN-cookie generation
for embryonic connections upon reaching the embryonic connections limit, from 48 to 65535 . The default
is 1380. This setting is meaningful only if you configure set connection embryonic-conn-max or
per-client-embryonic-max.

Example:

hostname(config-pmap-c)# set connection embryonic-conn-max 1000
hostname(config-pmap-c)# set connection per-client-embryonic-max 50

Step 4 If you are editing an existing service policy (such as the default global policy called global_policy), you can
skip this step. Otherwise, activate the policy map on one or more interfaces.

service-policy policymap_name {global | interface interface_name}

Example:

hostname(config)# service-policy global_policy global

Connection Settings
6

Connection Settings
Protect Servers from a SYN Flood DoS Attack (TCP Intercept)

The global keyword applies the policy map to all interfaces, and interface applies the policy to one interface.
Only one global policy is allowed. You can override the global policy on an interface by applying a service
policy to that interface. You can only apply one policy map to each interface.

Step 5 Configure threat detection statistics for attacks intercepted by TCP Intercept.

threat-detection statistics tcp-intercept [rate-interval minutes] [burst-rate attacks_per_sec] [average-rate
attacks_per_sec]

Where:

• rate-interval minutes sets the size of the history monitoring window, between 1 and 1440 minutes. The
default is 30 minutes. During this interval, the ASA samples the number of attacks 30 times.

• burst-rate attacks_per_sec sets the threshold for syslogmessage generation, between 25 and 2147483647.
The default is 400 per second. When the burst rate is exceeded, syslog message 733104 is generated.

• average-rate attacks_per_sec sets the average rate threshold for syslog message generation, between
25 and 2147483647. The default is 200 per second. When the average rate is exceeded, syslog message
733105 is generated.

Example:

hostname(config)# threat-detection statistics tcp-intercept

Step 6 Monitor the results with the following commands:

• show threat-detection statistics top tcp-intercept [all | detail]—View the top 10 protected servers
under attack. The all keyword shows the history data of all the traced servers. The detail keyword shows
history sampling data. The ASA samples the number of attacks 30 times during the rate interval, so for
the default 30 minute period, statistics are collected every 60 seconds.

• clear threat-detection statistics tcp-intercept—Erases TCP Intercept statistics.

Example:

hostname(config)# show threat-detection statistics top tcp-intercept
Top 10 protected servers under attack (sorted by average rate)
Monitoring window size: 30 mins Sampling interval: 30 secs
<Rank> <Server IP:Port> <Interface> <Ave Rate> <Cur Rate> <Total> <Source IP (Last Attack
Time)>
--
1 10.1.1.5:80 inside 1249 9503 2249245 <various> Last: 10.0.0.3 (0 secs ago)
2 10.1.1.6:80 inside 10 10 6080 10.0.0.200 (0 secs ago)

Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer)
The TCPNormalizer identifies abnormal packets that the ASA can act on when they are detected; for example,
the ASA can allow, drop, or clear the packets. TCP normalization helps protect the ASA from attacks. TCP
normalization is always enabled, but you can customize how some features behave.

The default configuration includes the following settings:

Connection Settings
7

Connection Settings
Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer)

no check-retransmission
no checksum-verification
exceed-mss allow
queue-limit 0 timeout 4
reserved-bits allow
syn-data allow
synack-data drop
invalid-ack drop
seq-past-window drop
tcp-options range 6 7 clear
tcp-options range 9 18 clear
tcp-options range 20 255 clear
tcp-options md5 allow
tcp-options mss allow
tcp-options selective-ack allow
tcp-options timestamp allow
tcp-options window-scale allow
ttl-evasion-protection
urgent-flag clear
window-variation allow-connection

To customize the TCP normalizer, first define the settings using a TCP map. Then, you can apply the map to
selected traffic classes using service policies.

Procedure

Step 1 Create a TCPmap to specify the TCP normalization criteria that you want to look for: tcp-map tcp-map-name

Step 2 Configure the TCP map criteria by entering one or more of the following commands. The defaults are used
for any commands you do not enter. Use the no form of a command to disable the setting.

• check-retransmission—Prevent inconsistent TCP retransmission. This command is disabled by default.

• checksum-verification—Verify the TCP checksum, dropping packets that fail verification. This command
is disabled by default.

• exceed-mss {allow | drop}—Allow or drop packets whose data length exceeds the TCP maximum
segment size. The default is to allow the packets.

• invalid-ack {allow | drop}—Allow or drop packets with an invalid ACK. The default is to drop the
packet, with the exception of WAAS connections, where they are allowed. You might see invalid ACKs
in the following instances:

• In the TCP connection SYN-ACK-received status, if the ACK number of a received TCP packet is
not exactly the same as the sequence number of the next TCP packet sending out, it is an invalid
ACK.

• Whenever the ACK number of a received TCP packet is greater than the sequence number of the
next TCP packet sending out, it is an invalid ACK.

• queue-limit pkt_num [timeout seconds]—Set the maximum number of out-of-order packets that can be
buffered and put in order for a TCP connection, between 1 and 250 packets. The default is 0, which
means this setting is disabled and the default system queue limit is used depending on the type of traffic:

• Connections for application inspection (the inspect command), and TCP check-retransmission (the
TCP map check-retransmission command) have a queue limit of 3 packets. If the ASA receives

Connection Settings
8

Connection Settings
Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer)

a TCP packet with a different window size, then the queue limit is dynamically changed to match
the advertised setting.

• For other TCP connections, out-of-order packets are passed through untouched.

If you set the queue-limit command to be 1 or above, then the number of out-of-order packets allowed
for all TCP traffic matches this setting. For example, for application inspection and TCP
check-retransmission traffic, any advertised settings from TCP packets are ignored in favor of the
queue-limit setting. For other TCP traffic, out-of-order packets are now buffered and put in order instead
of passed through untouched.

The timeout seconds argument sets the maximum amount of time that out-of-order packets can remain
in the buffer, between 1 and 20 seconds; if they are not put in order and passed on within the timeout
period, then they are dropped. The default is 4 seconds. You cannot change the timeout for any traffic
if the pkt_num argument is set to 0; you need to set the limit to be 1 or above for the timeout keyword
to take effect.

• reserved-bits {allow | clear | drop}—Set the action for reserved bits in the TCP header. You can allow
the packet (without changing the bits), clear the bits and allow the packet, or drop the packet.

• seq-past-window {allow | drop}—Set the action for packets that have past-window sequence numbers,
namely the sequence number of a received TCP packet is greater than the right edge of the TCP receiving
window. You can allow the packets only if the queue-limit command is set to 0 (disabled). The default
is to drop the packets.

• synack-data {allow | drop}—Allow or drop TCP SYNACK packets that contain data. The default is
to drop the packet.

• syn-data {allow | drop}—Allow or drop SYN packets with data. The default is to allow the packet.

• tcp-options {md5 | mss | selective-ack | timestamp | window-scale | range lower upper} action—Set
the action for packets with TCP options. These options are named: md5, mss, selective-ack (selective
acknowledgment mechanism), timestamp, and window-scale (window scale mechanism). For other
options, you specify them by number on the range keyword, where the range limits are 6-7, 9-18, and
20-255. To target a single option by number, enter the same number for the lower and upper range. You
can enter the command multiple times in a map to define your complete policy. Note that if a TCP
connection is inspected, all options are cleared except the MSS and selective-acknowledgment (SACK)
options, regardless of your configuration. Following are the possible actions:

• allow [multiple]—Allow packets that contain a single option of this type. This is the default for all
of the named options. If you want to allow packets even if they contain more than one instance of
the option, add the multiple keyword. (The multiple keyword is not available with range.)

• maximum limit—Formss only. Set themaximum segment size to the indicated limit, from 68-65535.
The default TCP MSS is defined on the sysopt connection tcpmss command.

• clear—Remove the options of this type from the header and allow the packet. This is the default
for all of the numbered options. Note that clearing the timestamp option disables PAWS and RTT.

• drop—Drop packets that contain this option. This action is available for md5 and range only.

• ttl-evasion-protection—Have the maximum TTL for a connection be determined by the TTL in the
initial packet. The TTL for subsequent packets can decrease, but it cannot increase. The system will reset
the TTL to the lowest previously-seen TTL for that connection. This protects against TTL evasion attacks.

Connection Settings
9

Connection Settings
Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer)

TTL evasion protection is enabled by default, so you would only need to enter the no form of this
command.

For example, an attacker can send a packet that passes policy with a very short TTL. When the TTL goes
to zero, a router between the ASA and the endpoint drops the packet. It is at this point that the attacker
can send amalicious packet with a long TTL that appears to the ASA to be a retransmission and is passed.
To the endpoint host, however, it is the first packet that has been received by the attacker. In this case,
an attacker is able to succeed without security preventing the attack.

• urgent-flag {allow | clear}—Set the action for packets with the URG flag. You can allow the packet,
or clear the flag and allow the packet. The default is to clear the flag.

The URG flag is used to indicate that the packet contains information that is of higher priority than other
data within the stream. The TCP RFC is vague about the exact interpretation of the URG flag, therefore
end systems handle urgent offsets in different ways, which may make the end system vulnerable to
attacks.

• window-variation {allow | drop}—Allow or drop a connection that has changed its window size
unexpectedly. The default is to allow the connection.

The window size mechanism allows TCP to advertise a large window and to subsequently advertise a
much smaller window without having accepted too much data. From the TCP specification, “shrinking
the window” is strongly discouraged. When this condition is detected, the connection can be dropped.

Step 3 Apply the TCP map to a traffic class using a service policy.
a) Define the traffic class with an L3/L4 class map and add the map to a policy map.

class-map name
match parameter
policy-map name
class name

Example:

hostname(config)# class-map normalization
hostname(config-cmap)# match any
hostname(config)# policy-map global_policy
hostname(config-pmap)# class normalization

In the default configuration, the global_policy policy map is assigned globally to all interfaces. If you
want to edit the global_policy, enter global_policy as the policy name. For information on matching
statements for class maps, see Create a Layer 3/4 Class Map for Through Traffic.

b) Apply the TCP map: set connection advanced-options tcp-map-name

Example:

hostname(config-pmap-c)# set connection advanced-options tcp_map1

c) If you are editing an existing service policy (such as the default global policy called global_policy), you
are done. Otherwise, activate the policy map on one or more interfaces.

service-policy policymap_name {global | interface interface_name}

Example:

Connection Settings
10

Connection Settings
Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer)

asa-922-firewall-config_chapter11.pdf#nameddest=unique_273

hostname(config)# service-policy global_policy global

The global keyword applies the policy map to all interfaces, and interface applies the policy to one
interface. Only one global policy is allowed. You can override the global policy on an interface by applying
a service policy to that interface. You can only apply one policy map to each interface.

Examples

For example, to allow urgent flag and urgent offset packets for all traffic sent to the range of TCP
ports between the well known FTP data port and the Telnet port, enter the following commands:

hostname(config)# tcp-map tmap
hostname(config-tcp-map)# urgent-flag allow
hostname(config-tcp-map)# class-map urg-class
hostname(config-cmap)# match port tcp range ftp-data telnet
hostname(config-cmap)# policy-map pmap
hostname(config-pmap)# class urg-class
hostname(config-pmap-c)# set connection advanced-options tmap
hostname(config-pmap-c)# service-policy pmap global

Bypass TCP State Checks for Asymetrical Routing (TCP State Bypass)
If you have an asymetrical routing environment in your network, where the outbound and inbound flow for
a given connection can go through two different ASA devices, you need to implement TCP State Bypass on
the affected traffic.

However, TCP State Bypass weakens the security of your network, so you should apply bypass on very
specific, limited traffic classes.

The following topics explain the problem and solution in more detail.

The Asymetrical Routing Problem
By default, all traffic that goes through the ASA is inspected using the Adaptive Security Algorithm and is
either allowed through or dropped based on the security policy. The ASAmaximizes the firewall performance
by checking the state of each packet (new connection or established connection) and assigning it to either the
session management path (a new connection SYN packet), the fast path (an established connection), or the
control plane path (advanced inspection).

TCP packets that match existing connections in the fast path can pass through the ASA without rechecking
every aspect of the security policy. This feature maximizes performance. However, the method of establishing
the session in the fast path using the SYN packet, and the checks that occur in the fast path (such as TCP
sequence number), can stand in the way of asymmetrical routing solutions: both the outbound and inbound
flow of a connection must pass through the same ASA device.

For example, a new connection goes to Security Appliance 1. The SYN packet goes through the session
management path, and an entry for the connection is added to the fast path table. If subsequent packets of this
connection go through Security Appliance 1, then the packets match the entry in the fast path, and are passed
through. But if subsequent packets go to Security Appliance 2, where there was not a SYN packet that went

Connection Settings
11

Connection Settings
Bypass TCP State Checks for Asymetrical Routing (TCP State Bypass)

through the session management path, then there is no entry in the fast path for the connection, and the packets
are dropped. The following figure shows an asymmetric routing example where the outbound traffic goes
through a different ASA than the inbound traffic:

Figure 1: Asymmetric Routing

If you have asymmetric routing configured on upstream routers, and traffic alternates between two ASA
devices, then you can configure TCP state bypass for specific traffic. TCP state bypass alters the way sessions
are established in the fast path and disables the fast path checks. This feature treats TCP traffic much as it
treats a UDP connection: when a non-SYN packet matching the specified networks enters the ASA device,
and there is not a fast path entry, then the packet goes through the session management path to establish the
connection in the fast path. Once in the fast path, the traffic bypasses the fast path checks.

Guidelines and Limitations for TCP State Bypass

TCP State Bypass Unsupported Features

The following features are not supported when you use TCP state bypass:

• Application inspection—Inspection requires both inbound and outbound traffic to go through the same
ASA, so inspection is not applied to TCP state bypass traffic.

• AAA authenticated sessions—When a user authenticates with one ASA, traffic returning via the other
ASA will be denied because the user did not authenticate with that ASA.

• TCP Intercept, maximum embryonic connection limit, TCP sequence number randomization—TheASA
does not keep track of the state of the connection, so these features are not applied.

• TCP normalization—The TCP normalizer is disabled.

• Stateful failover.

Connection Settings
12

Connection Settings
Guidelines and Limitations for TCP State Bypass

TCP State Bypass NAT Guidelines

Because the translation session is established separately for each ASA, be sure to configure static NAT on
both devices for TCP state bypass traffic. If you use dynamic NAT, the address chosen for the session on
Device 1 will differ from the address chosen for the session on Device 2.

Configure TCP State Bypass
To bypass TCP state checking in asymetrical routing environments, carefully define a traffic class that applies
to the affected hosts or networks only, then enable TCP State Bypass on the traffic class using a service policy.
Because bypass reduces the security of the network, limit its application as much as possible.

Before you begin

If there is no traffic on a given connection for 2 minutes, the connection times out. You can override this
default using the set connection timeout idle command for the TCP state bypass traffic class. Normal TCP
connections timeout by default after 60 minutes.

Procedure

Step 1 Create an L3/L4 class map to identify the hosts that require TCP State Bypass. Use an access-list match to
identify the source and destination hosts.

class-map name
match parameter

Example:

hostname(config)# access-list bypass extended permit tcp host 10.1.1.1 host 10.2.2.2
hostname(config)# class-map bypass-class
hostname(config-cmap)# match access-list bypass

Step 2 Add or edit a policy map that sets the actions to take with the class map traffic, and identify the class map.

policy-map name
class name

Example:

hostname(config)# policy-map global_policy
hostname(config-pmap)# class bypass-class

In the default configuration, the global_policy policy map is assigned globally to all interfaces. If you want
to edit the global_policy, enter global_policy as the policy name. For the class map, specify the class you
created earlier in this procedure.

Step 3 Enable TCP State Bypass on the class: set connection advanced-options tcp-state-bypass

Step 4 If you are editing an existing service policy (such as the default global policy called global_policy), you are
done. Otherwise, activate the policy map on one or more interfaces.

service-policy policymap_name {global | interface interface_name}

Connection Settings
13

Connection Settings
Configure TCP State Bypass

Example:

hostname(config)# service-policy global_policy global

The global keyword applies the policy map to all interfaces, and interface applies the policy to one interface.
Only one global policy is allowed. You can override the global policy on an interface by applying a service
policy to that interface. You can only apply one policy map to each interface.

Example

The following is a sample configuration for TCP state bypass:

hostname(config)# access-list tcp_bypass extended permit tcp 10.1.1.0 255.255.255.224 any

hostname(config)# class-map tcp_bypass
hostname(config-cmap)# description "TCP traffic that bypasses stateful firewall"
hostname(config-cmap)# match access-list tcp_bypass

hostname(config-cmap)# policy-map tcp_bypass_policy
hostname(config-pmap)# class tcp_bypass
hostname(config-pmap-c)# set connection advanced-options tcp-state-bypass

hostname(config-pmap-c)# service-policy tcp_bypass_policy interface outside

Disable TCP Sequence Randomization
Each TCP connection has two ISNs: one generated by the client and one generated by the server. The ASA
randomizes the ISN of the TCP SYN passing in both the inbound and outbound directions.

Randomizing the ISN of the protected host prevents an attacker from predicting the next ISN for a new
connection and potentially hijacking the new session. However, TCP sequence randomization effectively
breaks TCP SACK (Selective Acknowledgement), as the sequence numbers the client sees are different from
what the server sees.

You can disable TCP initial sequence number randomization if necessary, for example, because data is getting
scrambled. For example:

• If another in-line firewall is also randomizing the initial sequence numbers, there is no need for both
firewalls to be performing this action, even though this action does not affect the traffic.

• If you use eBGPmulti-hop through the ASA, and the eBGP peers are usingMD5. Randomization breaks
the MD5 checksum.

• You use a WAAS device that requires the ASA not to randomize the sequence numbers of connections.

• You enable hardware bypass for the ISA 3000, and TCP connections are dropped when the ISA 3000 is
no longer part of the data path.

Connection Settings
14

Connection Settings
Disable TCP Sequence Randomization

We do not recommend disabling TCP sequence randomization when using clustering. There is a small chance
that some TCP sessions won't be established, because the SYN/ACK packet might be dropped.

Note

Procedure

Step 1 Create an L3/L4 class map to identify the traffic whose TCP sequence numbers should not be randomized.
The class match should be for TCP traffic; you can identify specific hosts (with an ACL), do a TCP port
match, or simply match any traffic.

class-map name
match parameter

Example:

hostname(config)# access-list preserve-sq-no extended permit tcp any host 10.2.2.2
hostname(config)# class-map no-tcp-random
hostname(config-cmap)# match access-list preserve-sq-no

Step 2 Add or edit a policy map that sets the actions to take with the class map traffic, and identify the class map.

policy-map name
class name

Example:

hostname(config)# policy-map global_policy
hostname(config-pmap)# class no-tcp-random

In the default configuration, the global_policy policy map is assigned globally to all interfaces. If you want
to edit the global_policy, enter global_policy as the policy name. For the class map, specify the class you
created earlier in this procedure.

Step 3 Disable TCP sequence number randomization on the class:

set connection random-sequence-number disable

If you later decide to turn it back on, replace “disable “with enable.

Step 4 If you are editing an existing service policy (such as the default global policy called global_policy), you are
done. Otherwise, activate the policy map on one or more interfaces.

service-policy policymap_name {global | interface interface_name}

Example:

hostname(config)# service-policy global_policy global

Connection Settings
15

Connection Settings
Disable TCP Sequence Randomization

The global keyword applies the policy map to all interfaces, and interface applies the policy to one interface.
Only one global policy is allowed. You can override the global policy on an interface by applying a service
policy to that interface. You can only apply one policy map to each interface.

Offload Large Flows
If you deploy the ASA on supported devices in a data center, you can identify select traffic to be offloaded
to a super fast path, where traffic is switched in the NIC itself. Offloading can help you improve performance
for data-intensive applications such as large file transfers.

• High Performance Computing (HPC) Research sites, where the ASA is deployed between storage and
high compute stations. When one research site backs up using FTP file transfer or file sync over NFS,
the large amount of data traffic affects all contexts on the ASA. Offloading FTP file transfer and file
sync over NFS reduces the impact on other traffic.

• High Frequency Trading (HFT), where the ASA is deployed between workstations and the Exchange,
mainly for compliance purposes. Security is usually not a concern, but latency is a major concern.

Before being offloaded, the ASA first applies normal security processing, such as access rules and inspection,
during connection establishment. The ASA also does session tear-down. But once a connection is established,
if it is eligible to be offloaded, further processing happens in the NIC rather than the ASA.

Offloaded flows continue to receive limited stateful inspection, such as basic TCP flag and option checking,
and checksum verification if you configure it. The system can selectively escalate packets to the firewall
system for further processing if necessary.

To identify flows that can be offloaded, you create a service policy rule that applies the flow offloading service.
A matching flow is then offloaded if it meets the following conditions:

• IPv4 addresses only.

• TCP, UDP, GRE only.

• Standard or 802.1Q tagged Ethernet frames only.

• (Transparent mode only.) Multicast flows for bridge groups that contain two and only two interfaces.

Reverse flows for offloaded flows are also offloaded.

Flow Offload Limitations
Not all flows can be offloaded. Even after offload, a flow can be removed from being offloaded under certain
conditions. Following are some of the limitations:

Device Limitations

The feature is supported on the following devices:

• Firepower 4100/9300 running FXOS 1.1.3 or higher.

• Secure Firewall 3100

Flows that cannot be offloaded

The following types of flows cannot be offloaded.

Connection Settings
16

Connection Settings
Offload Large Flows

• Any flows that do not use IPv4 addressing, such as IPv6 addressing.

• Flows for any protocol other than TCP, UDP, and GRE.

PPTP GRE connections cannot be offloaded.Note

• Flows that require inspection. In some cases, such as FTP, the secondary data channel can be
offloaded although the control channel cannot be offloaded.

• IPsec and TLS/DTLS VPN connections that terminate on the device.

• Multicast flows in routed mode.

• Multicast flows in transparent mode for bridge groups that have three or more interfaces.

• TCP Intercept flows.

• TCP state bypass flows. You cannot configure flow offload and TCP state bypass on the same
traffic.

• AAA cut-through proxy flows.

• Vpath, VXLAN related flows.

• Flows tagged with security groups.

• Reverse flows that are forwarded from a different cluster node, in the case of asymmetric flows in
a cluster.

• Centralized flows in a cluster, if the flow owner is not the control unit.

Additional Limitations

• Flow offload and Dead Connection Detection (DCD) are not compatible. Do not configure DCD
on connections that can be offloaded.

• If more than one flow that matches flow offload conditions are queued to be offloaded at the same
time to the same location on the hardware, only the first flow is offloaded. The other flows are
processed normally. This is called a collision. Use the show flow-offload flow command in the CLI
to display statistics for this situation.

• Although offloaded flows pass through FXOS interfaces, statistics for these flows do not appear on
the logical device interface. Thus, logical device interface counters and packet rates do not reflect
offloaded flows.

Conditions for reversing offload

After a flow is offloaded, packets within the flow are returned to the ASA for further processing if they
meet the following conditions:

• They include TCP options other than Timestamp.

• They are fragmented.

• They are subject to Equal-Cost Multi-Path (ECMP) routing, and ingress packets move from one
interface to another.

Connection Settings
17

Connection Settings
Flow Offload Limitations

Configure Flow Offload
To configure flow offload, you must enable the service and then create service policies to identify the traffic
that is eligible for offloading. Enabling or disabling the service requires a reboot. However, adding or editing
service policies does not require a reboot.

Procedure

Step 1 Enable the flow offload service.

flow-offload enable

Example:

ciscoasa(config)# flow-offload enable

Step 2 Create the service policy rule that identifies traffic that is eligible for offload.
a) Create an L3/L4 class map to identify the traffic that is eligible for flow offload. Matching by access-list

or port would be the most typical options.

class-map name
match parameter

Example:

hostname(config)# access-list offload permit tcp 10.1.1.0 255.255.255.224 any
hostname(config)# class-map flow_offload
hostname(config-cmap)# match access-list offload

b) Add or edit a policy map that sets the actions to take with the class map traffic, and identify the class map.

policy-map name
class name

Example:

hostname(config)# policy-map offload_policy
hostname(config-pmap)# class flow_offload

In the default configuration, the global_policy policy map is assigned globally to all interfaces. If you
want to edit the global_policy, enter global_policy as the policy name. For the class map, specify the class
you created earlier in this procedure.

c) Enable flow offload on the class: set connection advanced-options flow-offload
d) If you are editing an existing service policy (such as the default global policy called global_policy), you

are done. Otherwise, activate the policy map on one or more interfaces.

service-policy policymap_name {global | interface interface_name}

Example:

Connection Settings
18

Connection Settings
Configure Flow Offload

hostname(config)# service-policy offload_policy interface outside

The global keyword applies the policy map to all interfaces, and interface applies the policy to one
interface. Only one global policy is allowed. You can override the global policy on an interface by applying
a service policy to that interface. You can only apply one policy map to each interface.

Example

The following example classifies all TCP traffic from the 10.1.1.0 255.255.255.224 subnet as eligible
for offload and attaches the policy to the outside interface.

hostname(config)# access-list offload permit tcp 10.1.1.0 255.255.255.224 any
hostname(config)# class-map flow_offload
hostname(config-cmap)# match access-list offload
hostname(config)# policy-map offload_policy
hostname(config-pmap)# class flow_offload
hostname(config-pmap-c)# set connection advanced-options flow-offload
hostname(config)# service-policy offload_policy interface outside

IPsec Flow Offload
You can configure supporting device models to use IPsec flow offload. After the initial setup of an IPsec
site-to-site VPN or remote access VPN security association (SA), IPsec connections are offloaded to the
field-programmable gate array (FPGA) in the device, which should improve device performance. On the
Secure Firewall 1200 series, IPsec connections are offloaded to theMarvell Cryptographic Accelerator (CPT)
to improve device performance.

Offloaded operations specifically relate to the pre-decryption and decryption processing on ingress, and the
pre-encryption and encryption processing on egress. The system software handles the inner flow to apply
your security policies.

IPsec flow offload is enabled by default, and applies to the following device types:

• Secure Firewall 1200

• Secure Firewall 3100

• Secure Firewall 4200

IPsec flow offload is also used when the device's VTI loopback interface is enabled.

Limitations for IPsec Flow Offload

The following IPsec flows are not offloaded:

• IKEv1 tunnels. Only IKEv2 tunnels will be offloaded. IKEv2 supports stronger ciphers.

• Flows that have volume-based rekeying configured.

• Flows that have compression configured.

Connection Settings
19

Connection Settings
IPsec Flow Offload

• Transport mode flows. Only tunnel mode flows will be offloaded.

• AH format. Only ESP/NAT-T format will be supported.

• Flows that have post-fragmentation configured.

• Flows that have anti-replay window size other than 64bit and anti-replay is not disabled.

• Flows that have firewall filter enabled.

Configure IPsec Flow Offload
IPsec flow offload is enabled by default on hardware platforms that support the feature. However, egress
optimization is not enabled by default, so you need to configure it if you want the feature.

Before you begin

IPsec flow offload is configured globally. You cannot configure it for selected traffic flows.

Use the no form of these commands to disable the features.

To see the current configuration state, use the show flow-offload ipsec info command.

Procedure

Step 1 Enable IPsec flow offload.

flow-offload-ipsec

Step 2 Enable egress optimization to optimize the data path to enhance performance for single tunnel flows.

flow-offload-ipsec egress-optimization

The configuration for egress optimization is separate from flow offload. However, even if enabled, it is
effective only if you also enable IPsec flow offload. Egress optimization is not enabled by default.

DTLS Crypto Acceleration
The ASA, with the help of the FPGA and the Nitrox V crypto accelerator, supports DTLS cryptographic
acceleration for the following models:

• Secure Firewall 3100

• Secure Firewall 4200

This feature improves the throughput of the DTLS-encrypted and DTLS-decrypted traffic. Both IPv4 and
IPv6 traffic are supported.

The ASA also performs optimization of the egress-encrypted packets to improve latency. The data path is
optimized to enhance performance for single tunnel flows.

Both features are enabled by default and work only for DTLS 1.2.

Connection Settings
20

Connection Settings
Configure IPsec Flow Offload

Configure DTLS Crypto Acceleration
By default, DTLS crypto acceleration is enabled. You can disable it if desired.

The ASA will not perform DTLS crypto acceleration under the following conditions:

• The flows use DTLS 1.0 or packet compression.

• The DTLS keys are rekeyed.

• Clustering or multiple context mode.

Procedure

Step 1 Disable DTLS crypto acceleration on the device.
no flow-offload-dtls

Example:

ciscoasa(config)# no flow-offload-dtls

To re-enable it, use the flow-offload-dtls command.

Step 2 Disable optimization of egress-encrypted packets and improve latency.
no flow-offload-dtls egress-optimization

Example:

ciscoasa(config)# flow-offload-dtls egress-optimization

To re-enable it, use the flow-offload-dtls egress-optimization command.

Monitoring DTLS Crypto Acceleration
Use the following CLI commands on the threat defense device to verify and monitor DTLS crypto acceleration
and optimization of egress-encrypted packets.

• To verify the status of DTLS crypto acceleration and optimization of egress-encrypted packets, use the
following command:

ciscoasa# show flow-offload-dtls info
DTLS offload : Enabled
Egress Optimization: Enabled

• To view the DTLS crypto acceleration statistics, use the following command:

ciscoasa# show flow-offload-dtls statistics
Packet stats of Pipe 0

Rx Packet count : 975638666
Tx Packet count : 975638666

Connection Settings
21

Connection Settings
Configure DTLS Crypto Acceleration

Error Packet count : 0
Drop Packet count : 0

CAM stats of Pipe 0

Option ID Table CAM Hit Count : 1145314723
Option ID Table CAM Miss Count : 0
Tunnel Table CAM Hit Count : 0
Tunnel Table CAM Miss Count : 0
6-Tuple CAM Hit Count : 975638666
6-Tuple CAM Miss Count : 169676057
NOTE: The counters displayed are cumulative counters
for all offload applications and indicates the total packets
offloaded

• To view the device's Nitrox V crypto accelerator statistics, use the following command:

ciscoasa# show crypto accelerator statistics

Crypto Accelerator Status

<snip>
[Offloaded SSL Input statistics, Pipe 0]

Input packets: 290593023
Input bytes: 147049729714
Decrypted packets: 290593023
Decrypted bytes: 147049729714

[Offloaded SSL Output statistics, Pipe 0]
Output packets: 254271808
Output bytes: 136352952720
Encrypted packets: 254271808
Encrypted bytes: 136352952720

.

.

.

Configure Connection Settings for Specific Traffic Classes (All Services)
You can configure different connection settings for specific traffic classes using service policies. Use service
policies to:

• Customize connection limits and timeouts used to protect against DoS and SYN-flooding attacks.

• Implement Dead Connection Detection so that valid but idle connections remain alive.

• Disable TCP sequence number randomization in cases where you do not need it.

• Customize how the TCP Normalizer protects against abnormal TCP packets.

• Implement TCP State Bypass for traffic subject to asymetrical routing. Bypass traffic is not subject to
inspection.

• Implement Stream Control Transmission Protocol (SCTP) State Bypass to turn off SCTP stateful
inspection.

• Implement flow offload to improve performance on supported hardware platforms.

• Decrement time-to-live (TTL) on packets so that the ASA will show up on trace route output.

Connection Settings
22

Connection Settings
Configure Connection Settings for Specific Traffic Classes (All Services)

If you decrement time to live, packets with a TTL of 1 will be dropped, but a
connection will be opened for the session on the assumption that the connection
might contain packets with a greater TTL. Note that some packets, such as OSPF
hello packets, are sent with TTL = 1, so decrementing time to live can have
unexpected consequences for transparent mode ASA devices. The decrement
time-to-live settings does not impact the OSPF process when ASA is operating
in a routed mode.

Note

You can configure any combination of these settings for a given traffic class, except for TCP State Bypass
and TCP Normalizer customization, which are mutually exclusive.

This procedure shows a service policy for traffic that goes through the ASA. You can also configure the
connection maximum and embryonic connection maximum for management (to the box) traffic.

Tip

Before you begin

If you want to customize the TCP Normalizer, create the required TCP Map before proceeding.

The set connection command (for connection limits and sequence randomization) and set connection timeout
commands are described here separately for each parameter. However, you can enter the commands on one
line, and if you enter them separately, they are shown in the configuration as one command.

Procedure

Step 1 Create an L3/L4 class map to identify the traffic for which you want to customize connection settings.

class-map name
match parameter

Example:

hostname(config)# class-map CONNS
hostname(config-cmap)# match any

For information on matching statements, see Create a Layer 3/4 Class Map for Through Traffic.

Step 2 Add or edit a policy map that sets the actions to take with the class map traffic, and identify the class map.

policy-map name
class name

Example:

hostname(config)# policy-map global_policy
hostname(config-pmap)# class CONNS

Connection Settings
23

Connection Settings
Configure Connection Settings for Specific Traffic Classes (All Services)

asa-922-firewall-config_chapter11.pdf#nameddest=unique_273

In the default configuration, the global_policy policy map is assigned globally to all interfaces. If you want
to edit the global_policy, enter global_policy as the policy name. For the class map, specify the class you
created earlier in this procedure.

Step 3 Set connection limits and TCP sequence number randomization. (TCP Intercept.)

By default, there are no connection limits. If you implement limits, the systemmust start tracking them, which
can increase CPU and memory usage and result in operational problems for systems under heavy load,
especially in a cluster.

• set connection conn-max n—(TCP, UDP, SCTP.) The maximum number of simultaneous connections
that are allowed, between 0 and 2000000, for the entire class. The default is 0, which allows unlimited
connections. For TCP connections, this applies to established connections only.

• If two servers are configured to allow simultaneous connections, the connection limit is applied to
each configured server separately.

• Because the limit is applied to a class, one attack host can consume all the connections and leave
none for the rest of the hosts that are matched to the class.

• set connection per-client-max n—(TCP, UDP, SCTP.) The maximum number of simultaneous
connections allowed per client, between 0 and 2000000. The default is 0, which allows unlimited
connections. This argument restricts the maximum number of simultaneous connections that are allowed
for each host that is matched to the class. For TCP connections, this includes established, half-open, and
half-closed connections.

• set connection embryonic-conn-max n—The maximum number of simultaneous embryonic TCP
connections allowed, between 0 and 2000000. The default is 0, which allows unlimited connections. By
setting a non-zero limit, you enable TCP Intercept, which protects inside systems from a DoS attack
perpetrated by flooding an interface with TCP SYN packets. Also set the per-client options to protect
against SYN flooding.

• set connection per-client-embryonic-max n—The maximum number of simultaneous embryonic TCP
connections allowed per client, between 0 and 2000000. The default is 0, which allows unlimited
connections.

• set connection syn-cookie-mss n—The servermaximum segment size (MSS) for SYN-cookie generation
for embryonic connections upon reaching the embryonic connections limit, from 48 to 65535 . The default
is 1380. This setting is meaningful only if you configure set connection embryonic-conn-max or
per-client-embryonic-max.

• set connection random-sequence-number {enable | disable}—Whether to enable or disable TCP
sequence number randomization. Randomization is enabled by default.

Example:

hostname(config-pmap-c)# set connection conn-max 256 random-sequence-number disable

Step 4 Set connection timeouts and Dead Connection Detection (DCD).

The defaults described below assume you have not changed the global defaults for these behaviors using the
timeout command; the global defaults override the ones described here. Enter 0 to disable the timer, so that
a connection never times out.

Connection Settings
24

Connection Settings
Configure Connection Settings for Specific Traffic Classes (All Services)

• set connection timeout embryonic hh:mm:ss—The timeout period until a TCP embryonic (half-open)
connection is closed, between 0:0:5 and 1193:00:00. The default is 0:0:30.

• set connection timeout idle hh:mm:ss [reset]—The idle timeout period after which an established
connection of any protocol closes, between 0:0:1 and 1193:0:0. The default is 1:0:0. For TCP traffic, the
reset keyword sends a reset to TCP endpoints when the connection times out.

The default udp idle timeout is 2 minutes. The default icmp idle timeout is 2 seconds. The default esp
and ha idle timeout is 30 seconds. For all other protocols, the default idle timeout is 2 minutes.

• set connection timeout half-closed hh:mm:ss—The idle timeout period until a half-closed connection
is closed, between 0:5:0 (for 9.1(1) and earlier) or 0:0:30 (for 9.1(2) and later) and 1193:0:0. The default
is 0:10:0. Half-closed connections are not affected by DCD. Also, the ASA does not send a reset when
taking down half-closed connections.

• set connection timeout dcd [retry-interval [max_retries]]—Enable Dead Connection Detection (DCD).
Before expiring an idle connection, the ASA probes the end hosts to determine if the connection is valid.
If both hosts respond, the connection is preserved, otherwise the connection is freed. When operating in
transparent firewall mode, youmust configure static routes for the endpoints. You cannot configure DCD
on connections that are also offloaded, so ensure DCD and flow offload traffic classes do not overlap.
Use the show conn detail command to track how many DCD probes have been sent by the initiator and
responder.

The retry-interval sets the time duration in hh:mm:ss format to wait after each unresponsive DCD probe
before sending another probe, between 0:0:1 and 24:0:0. The default is 0:0:15. The max-retries sets the
number of consecutive failed retries for DCD before declaring the connection as dead. The minimum
value is 1 and the maximum value is 255. The default is 5.

For systems that are operating in a cluster or high-availability configuration, we recommend that you do
not set the interval to less than one minute (0:1:0). If the connection needs to be moved between systems,
the changes required take longer than 30 seconds, and the connection might be deleted before the change
is accomplished.

Example:

hostname(config-pmap-c)# set connection timeout idle 2:0:0 embryonic 0:40:0
half-closed 0:20:0 dcd

Step 5 Decrement time-to-live (TTL) on packets that match the class: set connection decrement-ttl

This command, along with the icmp unreachable command, is required to allow a traceroute through the
ASA that shows the ASA as one of the hops.

Example:

hostname(config)# class-map global-policy
hostname(config-cmap)# match any
hostname(config-cmap)# exit
hostname(config)# policy-map global_policy
hostname(config-pmap)# class global-policy
hostname(config-pmap-c)# set connection decrement-ttl
hostname(config-pmap-c)# exit
hostname(config)# icmp unreachable rate-limit 50 burst-size 6

Step 6 Set advanced connection options.

Connection Settings
25

Connection Settings
Configure Connection Settings for Specific Traffic Classes (All Services)

Advanced options are special purpose configurations that are not needed under normal circumstances. You
configure them with the set connection advanced-options command.

• set connection advanced-options tcp_map_name—Customize TCP Normalizer behavior by applying
a TCP map. For detailed information, see Customize Abnormal TCP Packet Handling (TCP Maps, TCP
Normalizer), on page 7.

• set connection advanced-options tcp-state-bypass—Implement TCP State Bypass. For detailed
information, see Bypass TCP State Checks for Asymetrical Routing (TCP State Bypass), on page 11.

• set connection advanced-options sctp-state-bypass—Implement SCTP State Bypass to turn off SCTP
stateful inspection. For more information, see SCTP Stateful Inspection.

• set connection advanced-options flow-offload—(ASA on the Firepower 4100/9300 chassis, FXOS
1.1.3 or later, only.) Implement flow offloading. Eligible traffic is offloaded to a super fast path, where
the flows are switched in the NIC itself. You must also enter the flow-offload enable command, which
is not part of the service policy.

Example:

hostname(config-pmap-c)# set connection advanced-options tcp_map1

Step 7 If you are editing an existing service policy (such as the default global policy called global_policy), you are
done. Otherwise, activate the policy map on one or more interfaces.

service-policy policymap_name {global | interface interface_name}

Example:

hostname(config)# service-policy global_policy global

The global keyword applies the policy map to all interfaces, and interface applies the policy to one interface.
Only one global policy is allowed. You can override the global policy on an interface by applying a service
policy to that interface. You can only apply one policy map to each interface.

Example

The following example sets the connection limits and timeouts for all traffic:

hostname(config)# class-map CONNS
hostname(config-cmap)# match any
hostname(config-cmap)# policy-map CONNS
hostname(config-pmap)# class CONNS
hostname(config-pmap-c)# set connection conn-max 1000 embryonic-conn-max 3000
hostname(config-pmap-c)# set connection timeout idle 2:0:0 embryonic 0:40:0
half-closed 0:20:0 dcd
hostname(config-pmap-c)# service-policy CONNS interface outside

You can enter set connection commands with multiple parameters or you can enter each parameter
as a separate command. The ASA combines the commands into one line in the running configuration.
For example, if you entered the following two commands in class configuration mode:

Connection Settings
26

Connection Settings
Configure Connection Settings for Specific Traffic Classes (All Services)

asa-922-firewall-config_chapter15.pdf#nameddest=unique_380

hostname(config-pmap-c)# set connection conn-max 600
hostname(config-pmap-c)# set connection embryonic-conn-max 50

The output of the show running-config policy-map command would display the result of the two
commands in a single, combined command:

set connection conn-max 600 embryonic-conn-max 50

Configure TCP Options
You can configure options to control some aspects of TCP behavior. The defaults for these settings are
appropriate for most networks.

Procedure

Step 1 (CLI). Configure TCP reset behavior.

service { resetinbound [interface interface_name] | resetoutbound [interface interface_name
] | resetoutside }

• resetinbound. Sends TCP resets for all inbound TCP sessions that attempt to transit the ASA and are
denied by the ASA based on access lists or AAA settings. The ASA also sends resets for packets that
are allowed by an access list or AAA, but do not belong to an existing connection and are denied by the
stateful firewall. Traffic between same security level interfaces is also affected. When this option is not
enabled, the ASA silently discards denied packets. If you do not specify an interface, then this setting
applies to all interfaces.

• resetoutbound. Sends TCP resets for all outbound TCP sessions that attempt to transit the ASA and are
denied by the ASA based on access lists or AAA settings. The ASA also sends resets for packets that
are allowed by an access list or AAA, but do not belong to an existing connection and are denied by the
stateful firewall. Traffic between same security level interfaces is also affected. When this option is not
enabled, the ASA silently discards denied packets. This option is enabled by default. You might want to
disable outbound resets to reduce the CPU load during traffic storms, for example.

• resetoutside. Enables resets for TCP packets that terminate at the least secure interface and are denied
by the ASA based on access lists or AAA settings. The ASA also sends resets for packets that are allowed
by an access list or AAA, but do not belong to an existing connection and are denied by the stateful
firewall. When this option is not enabled, the ASA silently discards the packets of denied packets.

We recommend that you use the this option with interface PAT. This option allows the ASA to terminate
the IDENT from an external SMTP or FTP server. Actively resetting these connections avoids the
30-second timeout delay.

Step 2 Set TCP MSS to ensure that the maximum TCP segment size for through traffic does not exceed the value
you set and that the maximum is not less than a specified size.

sysopt connection tcpmss [minimum] bytes

Without minimum keyword. Sets the maximum TCP segment size in bytes, between 48 and any maximum
number. The default value is 1380 bytes. You can disable this feature by setting bytes to 0.

Connection Settings
27

Connection Settings
Configure TCP Options

minimum. Overrides the maximum segment size to be no less than the specified bytes, between 48 and 65535
bytes. This feature is disabled by default (set to 0).

Step 3 Set TCP connection time wait.

sysopt connection timewait

Use this command to force each TCP connection to linger in a shortened TIME_WAIT state of at least 15
seconds after the final normal TCP close-down sequence. You might want to use this feature if an end host
application default TCP terminating sequence is a simultaneous close.

Step 4 Set the maximum number of TCP unprocessed segments.

sysopt connection tcp-max-unprocessed-seg segments

Sets the maximum number of TCP unprocessed segments, from 6 to 24. The default is 6. If you find that SIP
phones are not connecting to the call manager, you can try increasing the maximum number of unprocessed
TCP segments.

Monitoring Connections
You can use the following commands to monitor connections:

• show conn [detail]

Shows connection information. Detailed information uses flags to indicate special connection
characteristics. For example, the “b” flag indicates traffic subject to TCP State Bypass.

When you use the detail keyword, you can see information about Dead Connection Detection (DCD)
probing, which shows how often the connection was probed by the initiator and responder. For example,
the connection details for a DCD-enabled connection would look like the following:

TCP dmz: 10.5.4.11/5555 inside: 10.5.4.10/40299,
flags UO , idle 1s, uptime 32m10s, timeout 1m0s, bytes 11828,

cluster sent/rcvd bytes 0/0, owners (0,255)
Traffic received at interface dmz

Locally received: 0 (0 byte/s)
Traffic received at interface inside

Locally received: 11828 (6 byte/s)
Initiator: 10.5.4.10, Responder: 10.5.4.11
DCD probes sent: Initiator 5, Responder 5

• show flow-offload {info [detail] | cpu | flow [count | detail] | statistics}

Shows information about the flow offloading, including general status information, CPU usage for
offloading, offloaded flow counts and details, and offloaded flow statistics.

• show service-policy

Shows service policy statistics, including Dead Connection Detection (DCD) statistics.

• show threat-detection statistics top tcp-intercept [all | detail]

View the top 10 protected servers under attack. The all keyword shows the history data of all the traced
servers. The detail keyword shows history sampling data. The ASA samples the number of attacks 30
times during the rate interval, so for the default 30 minute period, statistics are collected every 60 seconds.

Connection Settings
28

Connection Settings
Monitoring Connections

In the ASA configuration, embryonic connections—connection requests that have not yet completed the
three-way handshake process—are closed quickly and not synchronized between the active and standby
devices. This design ensures HA system efficiency and security. For this reason, there might be a difference
in the number of connections on both ASAs, which is to be expected.

Note

History for Connection Settings
DescriptionPlatform ReleasesFeature Name

This feature was introduced. The following command was introduced:
set connection advanced-options tcp-state-bypass.

8.2(1)TCP state bypass

The idle timeout was changed to apply to all protocols, not just TCP.

The following command was modified: set connection timeout

8.2(2)Connection timeout for all protocols

When multiple static routes exist to a network with different metrics,
the ASA uses the one with the best metric at the time of connection
creation. If a better route becomes available, then this timeout lets
connections be closed so a connection can be reestablished to use the
better route. The default is 0 (the connection never times out). To take
advantage of this feature, change the timeout to a new value.

We modified the following command: timeout floating-conn.

8.2(5)/8.4(2)Timeout for connections using a backup
static route

When a PAT xlate times out (by default after 30 seconds), and the ASA
reuses the port for a new translation, some upstream routers might
reject the new connection because the previous connection might still
be open on the upstream device. The PAT xlate timeout is now
configurable, to a value between 30 seconds and 5 minutes.

We introduced the following command: timeout pat-xlate.

This feature is not available in 8.5(1) or 8.6(1).

8.4(3)Configurable timeout for PAT xlate

The maximum number of connections for service policy rules was
increased from 65535 to 2000000.

We modified the following commands: set connection conn-max, set
connection embryonic-conn-max, set connection
per-client-embryonic-max, set connection per-client-max.

9.0(1)Increased maximum connection limits
for service policy rules

The half-closed timeout minimum value for both the global timeout
and connection timeout was lowered from 5 minutes to 30 seconds to
provide better DoS protection.

We modified the following commands: set connection timeout
half-closed, timeout half-closed.

9.1(2)Decreased the half-closed timeout
minimum value to 30 seconds

Connection Settings
29

Connection Settings
History for Connection Settings

DescriptionPlatform ReleasesFeature Name

You can now configure how long the system should maintain a
connection when the route used by the connection no longer exists or
is inactive. If the route does not become active within this holddown
period, the connection is freed. You can reduce the holddown timer to
make route convergence happenmore quickly. However, the 15 second
default is appropriate for most networks to prevent route flapping.

We added the following command: timeout conn-holddown.

9.4(3)

9.6(2)

Connection holddown timeout for route
convergence.

You can set an idle timeout for SCTP connections. You can also enable
SCTP state bypass to turn off SCTP stateful inspection on a class of
traffic.

We added or modified the following commands: timeout sctp, set
connection advanced-options sctp-state-bypass.

9.5(2)SCTP idle timeout and SCTP state
bypass

You can identify flows that should be offloaded from the ASA and
switched directly in the NIC (on the Firepower 9300). This provides
improved performance for large data flows in data centers.

This feature requires FXOS 1.1.3.

We added or modified the following commands: clear flow-offload,
flow-offload enable, set-connection advanced-options flow-offload,
show conn detail, show flow-offload.

9.5(2.1)Flow offload for the ASA on the
Firepower 9300.

You can identify flows that should be offloaded from the ASA and
switched directly in the NIC for the Firepower 4100 series.

This feature requires FXOS 1.1.4.

There are no new commands or ASDM screens for this feature.

9.6(1)Flow offload support for the ASA on
the Firepower 4100 series.

You can now offload multicast connections to be switched directly in
the NIC on transparent mode Firepower 4100 and 9300 series devices.
Multicast offload is available for bridge groups that contain two and
only two interfaces.

There are no new commands or ASDM screens for this feature.

9.6(2)Flow offload support for multicast
connections in transparent mode.

Connection Settings
30

Connection Settings
History for Connection Settings

DescriptionPlatform ReleasesFeature Name

You can now specify actions for the TCP MSS and MD5 options in a
packet’s TCP header when configuring a TCP map. In addition, the
default handling of theMSS, timestamp, window-size, and selective-ack
options has changed. Previously, these options were allowed, even if
there were more than one option of a given type in the header. Now,
packets are dropped by default if they contain more than one option
of a given type. For example, previously a packet with 2 timestamp
options would be allowed, now it will be dropped.

You can configure a TCP map to allow multiple options of the same
type for MD5, MSS, selective-ack, timestamp, and window-size. For
the MD5 option, the previous default was to clear the option, whereas
the default now is to allow it. You can also drop packets that contain
the MD5 option. For the MSS option, you can set the maximum
segment size in the TCP map (per traffic class). The default for all
other TCP options remains the same: they are cleared.

We modified the following command: timeout igp stale-route.

9.6(2)Changes in TCP option handling.

You can now configure the timeout for removing stale routes for interior
gateway protocols such as OSPF.

We added the following command: timeout igp stale-route.

9.7(1)Stale route timeout for interior gateway
protocols

You can now set the idle time before the ASA removes an ICMP
connection after receiving an ICMP echo-reply packet. When this
timeout is disabled (the default), and you enable ICMP inspection, then
the ASA removes the ICMP connection as soon as an echo-reply is
received; thus any ICMP errors that are generated for the (now closed)
connection are dropped. This timeout delays the removal of ICMP
connections so you can receive important ICMP errors.

We added the following command: timeout icmp-error

9.8(1)Global timeout for ICMP errors

The default idle timeout for TCP state bypass connections is now 2
minutes instead of 1 hour.

9.10(1)Default idle timeout for TCP state
bypass

If you enable Dead Connection Detection (DCD), you can use the show
conn detail command to get information about the initiator and
responder. Dead Connection Detection allows you to maintain an
inactive connection, and the show conn output tells you how often the
endpoints have been probed. In addition, DCD is now supported in a
cluster.

New/Modified commands: show conn (output only).

9.13(1)Initiator and responder information for
Dead ConnectionDetection (DCD), and
DCD support in a cluster.

You can configure a service policy to set the server maximum segment
size (MSS) for SYN-cookie generation for embryonic connections
upon reaching the embryonic connections limit. This is meaningful for
service policies where you are also setting embryonic connection
maximums.

New or changed commands: set connection syn-cookie-mss.

9.16(1)Configure the maximum segment size
(MSS) for embryonic connections.

Connection Settings
31

Connection Settings
History for Connection Settings

DescriptionPlatform ReleasesFeature Name

On the Secure Firewall 3100, IPsec flows are offloaded by default.
After the initial setup of an IPsec site-to-site VPN or remote access
VPN security association (SA), IPsec connections are offloaded to the
field-programmable gate array (FPGA) in the device, which should
improve device performance.

We added the following commands: clear flow-offload-ipsec,
flow-offload-ipsec, show flow-offload-ipsec

9.18(1)IPsec flow offload.

Cisco Secure Firewall 4200 and 3100 series support DTLS
cryptographic acceleration. The hardware performs DTLS encryption
and decryption, and improves the throughput of the DTLS-encrypted
and DTLS-decrypted traffic. The hardware also performs optimization
of the egress-encrypted packets to improve latency.

New/Modified commands: flow-offload-dtls, flow-offload-dtls
egress-optimization

9.22(1)DTLS Crypto Acceleration

Connection Settings
32

Connection Settings
History for Connection Settings

	Connection Settings
	What Are Connection Settings?
	Configure Connection Settings
	Configure Global Timeouts
	Protect Servers from a SYN Flood DoS Attack (TCP Intercept)
	Customize Abnormal TCP Packet Handling (TCP Maps, TCP Normalizer)
	Bypass TCP State Checks for Asymetrical Routing (TCP State Bypass)
	The Asymetrical Routing Problem
	Guidelines and Limitations for TCP State Bypass
	Configure TCP State Bypass

	Disable TCP Sequence Randomization
	Offload Large Flows
	Flow Offload Limitations
	Configure Flow Offload

	IPsec Flow Offload
	Configure IPsec Flow Offload

	DTLS Crypto Acceleration
	Configure DTLS Crypto Acceleration
	Monitoring DTLS Crypto Acceleration

	Configure Connection Settings for Specific Traffic Classes (All Services)
	Configure TCP Options

	Monitoring Connections
	History for Connection Settings

