
Deploy the ASA Virtual Using KVM

You can deploy the ASA virtual on any server class x86 CPU device that is capable of running the Kernel-based
Virtual Machine (KVM).

The minimum memory requirement for the ASA virtual is 2GB. If your current ASA virtual runs with less
than 2GB of memory, you cannot upgrade to 9.13(1)+ from an earlier version without increasing the memory
of your ASA virtual machine. You can also redeploy a new ASA virtual machine with the latest version.

Important

• Guidelines and Limitations, on page 1
• Overview, on page 4
• Prerequisites, on page 5
• Prepare the Day 0 Configuration File, on page 6
• Prepare the Virtual Bridge XML Files, on page 8
• Deploy the ASA Virtual, on page 9
• Performance Tuning, on page 10
• CPU Usage and Reporting, on page 20

Guidelines and Limitations
The specific hardware used for ASA virtual deployments can vary, depending on the number of instances
deployed and usage requirements. Each virtual appliance you create requires a minimum resource
allocation—memory, number of CPUs, and disk space—on the host machine.

The ASA virtual deploys with a disk storage size of 8GB. It is not possible to change the resource allocation
of the disk space.

Important

Starting from ASA Virtual Version 9.16.x, when you are downgrading from ASAv100, whose device
configuration is 16 vCPU and 32GB RAM, to ASAv10, then you must configure the device with 1 vCPU and
4GB RAM.

Note

Review the following guidelines and limitations before you deploy the ASA virtual.

Deploy the ASA Virtual Using KVM
1

ASA Virtual on KVM System Requirements

Make sure to conform to the specifications below to ensure optimal performance. The ASA virtual has the
following requirements:

• The host CPU must be a server class x86-based Intel or AMD CPU with virtualization extension.

For example, ASA virtual performance test labs use as minimum the following: Cisco Unified Computing
System™ (Cisco UCS®) C series M4 server with the Intel® Xeon® CPU E5-2690v4 processors running
at 2.6GHz.

Recommended vNICs

The following vNICs are recommended in order of optimum performance.

• i40e in PCI passthrough—Dedicates the server's physical NIC to the VM and transfers packet data
between the NIC and the VM via DMA (DirectMemory Access). No CPU cycles are required for moving
packets.

• i40evf/ixgbe-vf—Effectively the same as above (DMAs packets between the NIC and the VM) but allows
the NIC to be shared across multiple VMs. SR-IOV is generally preferred because it has more deployment
flexibility. See

• virtio—This is a para-virtualized network driver that supports 10Gbps operation but also requires CPU
cycles.

ASA virtual instance running on KVM system might encounter data connectivity issues with the SR-IOV
interface using the vNIC driver i40e version 2.17.4. We recommend you upgrade this vNIC version to other
versions as a workaround to fix this issue.

Note

Performance Optimizations

To achieve the best performance out of the ASA virtual, you can make adjustments to the both the VM and
the host. See Performance Tuning, on page 10 for more information.

• NUMA—You can improve performance of the ASA virtual by isolating the CPU resources of the guest
VM to a single non-uniform memory access (NUMA) node. See NUMA Guidelines, on page 11 for
more information.

• Receive Side Scaling—The ASA virtual supports Receive Side Scaling (RSS), which is a technology
utilized by network adapters to distribute network receive traffic to multiple processor cores. SeeMultiple
RX Queues for Receive Side Scaling (RSS), on page 13 for more information.

• VPN Optimization—See VPN Optimization, on page 15 for additional considerations for optimizing
VPN performance with the ASA virtual.

Clustering

Starting from version 9.17, clustering is supported on ASA virtual instances deployed on KVM. See ASA
Cluster for the ASAv for more information.

Deploy the ASA Virtual Using KVM
2

Deploy the ASA Virtual Using KVM
Guidelines and Limitations

https://www.cisco.com/c/en/us/td/docs/security/asa/asa917/configuration/general/asa-917-general-config/ha-cluster-asav.html
https://www.cisco.com/c/en/us/td/docs/security/asa/asa917/configuration/general/asa-917-general-config/ha-cluster-asav.html

CPU Pinning

CPU pinning is required for the ASA virtual to function in a KVM environment; see Enable CPU Pinning,
on page 10.

Failover for High Availability Guidelines

For failover deployments, make sure that the standby unit has the same license entitlement; for example, both
units should have the 2Gbps entitlement.

When creating a high availability pair using ASA virtual, it is necessary to add the data interfaces to each
ASA virtual in the same order. If the exact same interfaces are added to each ASA virtual, but in different
order, errors may be presented at the ASA virtual console. Failover functionality may also be affected.

Important

ASA Virtual on Proxmox VE

Proxmox Virtual Environment (VE) is an open-source server virtualization platform that can manage KVM
virtual machines. Proxmox VE also provides a web-based management interface.

When you deploy the ASA virtual on Proxmox VE, you need to configure the VM to have an emulated serial
port. Without the serial port, the ASA virtual will go into a loop during the bootup process. All management
tasks can be done using the Proxmox VE web-based management interface.

For advanced users who are used to the comfort of the Unix shell or Windows Powershell, Proxmox VE
provides a command line interface to manage all the components of your virtual environment. This command
line interface has intelligent tab completion and full documentation in the form of UNIX man pages.

Note

To have the ASA virtual boot properly the VM needs to have a serial device configured:

1. In the main management center, select the ASA virtual machine in the left navigation tree.

2. Power off the virtual machine.

3. Choose Hardware > Add > Network Device and add a serial port.

4. Power on the virtual machine.

5. Access the ASA virtual machine using Xterm.js.

See the Proxmox Serial Terminal page for information on how to setup and activate the terminal on the
guest/server.

IPv6 Support

For creating vNICs with IPv6 support configuration on KVM, you must create an XML file for each interface
that consists of IPv6 configuration parameters. You can install vNICs with the IPV6 network protocol
configurations by running these XML files using the command virsh net-create <<interface configuration
XML file name>>.

For each interface, you can create the following XML file:

• Management interface - mgmt-vnic.xml

Deploy the ASA Virtual Using KVM
3

Deploy the ASA Virtual Using KVM
Guidelines and Limitations

https://pve.proxmox.com/wiki/Serial_Terminal

• Diagnostic interface - diag-vnic.xml

• Inside interface - inside-vnic.xml

• Outside interface - outside-vnic.xml

Example:

To create an XML file for Management interface with IPv6 configuration.
<network>

<name>mgmt-vnic</name>
<bridge name='mgmt-vnic' stp='on' delay='0' />
<ip family='ipv6' address='2001:db8::a111:b220:0:abcd' prefix='96'/>

</network>

Similarly, you must create XML file for other interfaces.

You can verify the virtual network adapters installed on KVM by running the following command.
virsh net-list

brctl show

Overview
The following figure shows a sample network topology with ASA virtual and KVM. The procedures described
in this chapter are based on the sample topology. The ASA virtual acts as the firewall between the inside and
outside networks. A separate management network is also configured.

Figure 1: Sample ASA Virtual Deployment Using KVM

Deploy the ASA Virtual Using KVM
4

Deploy the ASA Virtual Using KVM
Overview

Prerequisites
• Download the ASA virtual qcow2 file from Cisco.com and put it on your Linux host:

http://www.cisco.com/go/asa-software

A Cisco.com login and Cisco service contract are required.Note

• For the purpose of the sample deployment in this document, we are assuming you are using Ubuntu 18.04
LTS. Install the following packages on top of the Ubuntu 18.04 LTS host:

• qemu-kvm

• libvirt-bin

• bridge-utils

• virt-manager

• virtinst

• virsh tools

• genisoimage

• Performance is affected by the host and its configuration. You can maximize the throughput of the ASA
virtual onKVMby tuning your host. For generic host-tuning concepts, see NFVDelivers Packet Processing
Performance with Intel.

• Useful optimizations for Ubuntu 18.04 include the following:

• macvtap—High performance Linux bridge; you can use macvtap instead of a Linux bridge. Note
that you must configure specific settings to use macvtap instead of the Linux bridge.

• Transparent Huge Pages—Increases memory page size and is on by default in Ubuntu 18.04.

Hyperthread disabled—Reduces two vCPUs to one single core.

• txqueuelength—Increases the default txqueuelength to 4000 packets and reduces drop rate.

• pinning—Pins qemu and vhost processes to specific CPU cores; under certain conditions, pinning
is a significant boost to performance.

• For information on optimizing a RHEL-based distribution, see Red Hat Enterprise Linux 7 Virtualization
Tuning and Optimization Guide.

• For ASA software and ASA virtual hypervisor compatibility, see Cisco Secure Firewall ASA
Compatibility.

Deploy the ASA Virtual Using KVM
5

Deploy the ASA Virtual Using KVM
Prerequisites

http://software.cisco.com/download/navigator.html?mdfid=279513386
https://www.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/virtualization_tuning_and_optimization_guide/Red_Hat_Enterprise_Linux-7-Virtualization_Tuning_and_Optimization_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/virtualization_tuning_and_optimization_guide/Red_Hat_Enterprise_Linux-7-Virtualization_Tuning_and_Optimization_Guide-en-US.pdf
https://www.cisco.com/c/en/us/td/docs/security/asa/compatibility/asamatrx.html#id_65990
https://www.cisco.com/c/en/us/td/docs/security/asa/compatibility/asamatrx.html#id_65990

Prepare the Day 0 Configuration File
You can prepare a Day 0 configuration file before you launch the ASA virtual. This file is a text file that
contains the ASA virtual configuration applied when the ASA virtual is launched. This initial configuration
is placed into a text file named “day0-config” in a working directory you chose, and is manipulated into a
day0.iso file that is mounted and read on first boot. At the minimum, the Day 0 configuration file must contain
commands to activate the management interface and set up the SSH server for public key authentication, but
it can also contain a complete ASA configuration.

The day0.iso file (either your custom day0.iso or the default day0.iso) must be available during first boot:

• To automatically license the ASA virtual during initial deployment, place the Smart Licensing Identity
(ID) Token that you downloaded from the Cisco Smart Software Manager in a text file named ‘idtoken’
in the same directory as the Day 0 configuration file.

• If you want to access and configure the ASA virtual from the serial port on the hypervisor instead of
the virtual VGA console, you should include the console serial setting in the Day 0 configuration file to
use the serial port on first boot.

• If you want to deploy the ASA virtual in transparent mode, you must use a known running ASA config
file in transparent mode as the Day 0 configuration file. This does not apply to a Day 0 configuration
file for a routed firewall.

We are using Linux in this example, but there are similar utilities for Windows.Note

Procedure

Step 1 Enter the CLI configuration for the ASA virtual in a text file called “day0-config.” Add interface configurations for the
three interfaces and any other configuration you want.

The fist line should begin with the ASA version. The day0-config should be a valid ASA configuration. The best way to
generate the day0-config is to copy the relevant parts of a running config from an existing ASA or ASA virtual. The order
of the lines in the day0-config is important and should match the order seen in an existing show running-config command
output.

Example:
ASA Version
!
interface management0/0
ipv6 enable
ipv6 address 2001:db8::a111:b220:0:abcd/96
nameif management
security-level 100
no shut

interface gigabitethernet0/0
ipv6 enable
ipv6 address 2001:db8::a111:b221:0:abcd/96
nameif inside
security-level 100

Deploy the ASA Virtual Using KVM
6

Deploy the ASA Virtual Using KVM
Prepare the Day 0 Configuration File

no shut

interface gigabitethernet1/0
ipv6 enable
ipv6 address 2001:db8::a111:b222:0:abcd/96
nameif outside
security-level 100
no shut

crypto key generate rsa general-keys modulus 4096
ssh ::/0 inside
ssh timeout 60
ssh version 2
aaa authentication ssh console LOCAL

dns domain-lookup management
dns server-group DefaultDNS
name-server 2001:4860:4860::8888

Step 2 (Optional) For automated licensing during initial ASA virtual deployment, make sure the following information is in the
day0-config file:

• Management interface IP address

• (Optional) HTTP proxy to use for Smart Licensing

• A route command that enables connectivity to the HTTP proxy (if specified) or to tools.cisco.com

• A DNS server that resolves tools.cisco.com to an IP address

• Smart Licensing configuration specifying the ASA virtual license you are requesting

• (Optional) A unique host name to make the ASA virtual easier to find in CSSM

Step 3 (Optional) Download the Smart License identity token file issued by the Cisco Smart SoftwareManager to your computer,
copy the ID token from the download file, and put it a text file named ‘idtoken’ that only contains the ID token.

Step 4 Generate the virtual CD-ROM by converting the text file to an ISO file:

Example:
stack@user-ubuntu:-/KvmAsa$ sudo genisoimage -r -o day0.iso day0-config idtoken
I: input-charset not specified, using utf-8 (detected in locale settings)
Total translation table size: 0
Total rockridge attributes bytes: 252
Total directory bytes: 0
Path table size (byptes): 10
Max brk space used 0
176 extents written (0 MB)
stack@user-ubuntu:-/KvmAsa$

The Identity Token automatically registers the ASA virtual with the Smart Licensing server.

Step 5 Repeat Steps 1 through 5 to create separate default configuration files with the appropriate IP addresses for each ASA
virtual you want to deploy.

Deploy the ASA Virtual Using KVM
7

Deploy the ASA Virtual Using KVM
Prepare the Day 0 Configuration File

Prepare the Virtual Bridge XML Files
You need to set up virtual networks that connect the ASA virtual guests to the KVM host and that connect
the guests to each other.

This procedure does not establish connectivity to the external world outside the KVM host.Note

Prepare the virtual bridge XML files on the KVM host. For the sample virtual network topology described in
Prepare the Day 0 Configuration File, on page 6, you need the following three virtual bridge files: virbr1.xml,
virbr2.xml, and virbr3.xml (you must use these three filenames; for example, virbr0 is not allowed because
it already exists). Each file has the information needed to set up the virtual bridges. You must give the virtual
bridge a name and a unique MAC address. Providing an IP address is optional.

Procedure

Step 1 Create three virtual network bridge XML files. For example, virbr1.xml, virbr2.xml, and virbr3.xml:

Example:

<network>
<name>virbr1</name>
<bridge name='virbr1' stp='on' delay='0' />
<mac address='52:54:00:05:6e:00' />
<ip address='192.168.1.10' netmask='255.255.255.0' />
</network>

Example:

<network>
<name>virbr2</name>
<bridge name='virbr2' stp='on' delay='0' />
<mac address='52:54:00:05:6e:01' />
<ip address='10.1.1.10' netmask='255.255.255.0' />
</network>

Example:

<network>
<name>virbr3</name>
<bridge name='virbr3' stp='on' delay='0' />
<mac address='52:54:00:05:6e:02' />
<ip address='198.51.100.10' netmask='255.255.255.0' />
</network>

Step 2 Create a script that contains the following (in our example, we name the script virt_network_setup.sh):
virsh net-create virbr1.xml
virsh net-create virbr2.xml
virsh net-create virbr3.xml

Step 3 Run this script to set up the virtual network. The script brings up the virtual networks. The networks stay up as long as
the KVM host is running.

Deploy the ASA Virtual Using KVM
8

Deploy the ASA Virtual Using KVM
Prepare the Virtual Bridge XML Files

stack@user-ubuntu:-/KvmAsa$ virt_network_setup.sh

If you reload the Linux host, you must rerun the virt_network_setup.sh script. It does not persist over
reboots.

Note

Step 4 Verify that the virtual networks were created:

stack@user-ubuntu:-/KvmAsa$ brctl show
bridge name bridge id STP enabled Interfaces
virbr0 8000.0000000000000 yes
virbr1 8000.5254000056eed yes virb1-nic
virbr2 8000.5254000056eee yes virb2-nic
virbr3 8000.5254000056eec yes virb3-nic
stack@user-ubuntu:-/KvmAsa$

Step 5 Display the IP address assigned to the virbr1 bridge. This is the IP address that you assigned in the XML file.

stack@user-ubuntu:-/KvmAsa$ ip address show virbr1
S: virbr1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
link/ether 52:54:00:05:6e:00 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.10/24 brd 192.168.1.255 scope global virbr1
valid_lft forever preferred_lft forever

Deploy the ASA Virtual
Use a virt-install based deployment script to launch the ASA virtual.

Procedure

Step 1 Create a virt-install script called “virt_install_asav.sh.”

The name of the ASA virtual machine must be unique across all other VMs on this KVM host.

The ASA virtual supports up to 10 networks. This example uses three networks. The order of the network bridge clauses
is important. The first one listed is always the management interface of the ASA virtual (Management 0/0), the second
one listed is GigabitEthernet 0/0 of the ASA virtual, and the third one listed is GigabitEthernet 0/1 of the ASA virtual,
and so on up through GigabitEthernet 0/8. The virtual NIC must be Virtio.

Example:
virt-install \
--connect=qemu:///system \
--network network=default,model=virtio \
--network network=default,model=virtio \
--network network=default,model=virtio \
--name=asav \
--cpu host \
--arch=x86_64 \
--machine=pc-1.0 \
--vcpus=1 \
--ram=2048 \
--os-type=linux \
--virt-type=kvm \

Deploy the ASA Virtual Using KVM
9

Deploy the ASA Virtual Using KVM
Deploy the ASA Virtual

--import \
--disk path=/home/kvmperf/Images/desmo.qcow2,format=qcow2,device=disk,bus=virtio,cache=none \
--disk path=/home/kvmperf/asav_day0.iso,format=iso,device=cdrom \
--console pty,target_type=virtio \
--serial tcp,host=127.0.0.1:4554,mode=bind,protocol=telnet

Step 2 Run the virt_install script:

Example:

stack@user-ubuntu:-/KvmAsa$./virt_install_asav.sh

Starting install...
Creating domain...

A window appears displaying the console of the VM. You can see that the VM is booting. It takes a few minutes for the
VM to boot. Once the VM stops booting you can issue CLI commands from the console screen.

Performance Tuning

Increasing Performance on KVM Configurations
You can increase the performance for an ASA virtual in the KVM environment by changing settings on the
KVM host. These settings are independent of the configuration settings on the host server. This option is
available in Red Hat Enterprise Linux 7.0 KVM.

You can improve performance on KVM configurations by enabling CPU pinning.

Enable CPU Pinning
ASA virtual requires that you use the KVM CPU affinity option to increase the performance of the ASA
virtual in KVM environments. Processor affinity, or CPU pinning, enables the binding and unbinding of a
process or a thread to a central processing unit (CPU) or a range of CPUs, so that the process or thread will
execute only on the designated CPU or CPUs rather than any CPU.

Configure host aggregates to deploy instances that use CPU pinning on different hosts from instances that do
not, to avoid unpinned instances using the resourcing requirements of pinned instances.

Do not deploy instances with NUMA topology on the same hosts as instances that do not have NUMA
topology.

Attention

To use this option, configure CPU pinning on the KVM host.

Procedure

Step 1 In the KVM host environment, verify the host topology to find out how many vCPUs are available for pinning:

Example:
virsh nodeinfo

Deploy the ASA Virtual Using KVM
10

Deploy the ASA Virtual Using KVM
Performance Tuning

Step 2 Verify the available vCPU numbers:

Example:
virsh capabilities

Step 3 Pin the vCPUs to sets of processor cores:

Example:
virsh vcpupin <vm-name> <vcpu-number> <host-core-number>

The virsh vcpupin command must be executed for each vCPU on your ASA virtual. The following example shows the
KVM commands needed if you have an ASA virtual configuration with four vCPUs and the host has eight cores:
virsh vcpupin asav 0 2
virsh vcpupin asav 1 3
virsh vcpupin asav 2 4
virsh vcpupin asav 3 5

The host core number can be any number from 0 to 7. For more information, see the KVM documentation.

When configuring CPU pinning, carefully consider the CPU topology of the host server. If using a server
configured with multiple cores, do not configure CPU pinning across multiple sockets.

The downside of improving performance on KVM configuration is that it requires dedicated system resources.

Note

NUMA Guidelines
Non-UniformMemory Access (NUMA) is a sharedmemory architecture that describes the placement of main
memory modules with respect to processors in a multiprocessor system. When a processor accesses memory
that does not lie within its own node (remote memory), data must be transferred over the NUMA connection
at a rate that is slower than it would be when accessing local memory.

The x86 server architecture consists of multiple sockets and multiple cores within a socket. Each CPU socket
along with its memory and I/O is referred to as a NUMA node. To efficiently read packets from memory,
guest applications and associated peripherals (such as the NIC) should reside within the same node.

For optimum ASA virtual performance:

• The ASA virtual machine must run on a single numa node. If a single ASA virtual is deployed so that is
runs across 2 sockets, the perfomance will be significantly degraded.

• An 8-core ASA virtual (Figure 2: 8-Core ASA Virtual NUMA Architecture Example, on page 12)
requires that each socket on the host CPU have a minimum of 8 cores per socket. Consideration must be
given to other VMs running on the server.

• A 16-core ASA virtual (Figure 3: 16-Core ASA Virtual NUMA Architecture Example, on page 12)
requires that each socket on the host CPU have a minimum of 16 cores per socket. Consideration must
be given to other VMs running on the server.

• The NIC should be on same NUMA node as ASA virtual machine.

The following figure shows a server with two CPU sockets with each CPU having 18 cores. The 8-core ASA
virtual requires that each socket on the host CPU have a minimum of 8 cores.

Deploy the ASA Virtual Using KVM
11

Deploy the ASA Virtual Using KVM
NUMA Guidelines

Figure 2: 8-Core ASA Virtual NUMA Architecture Example

The following figure shows a server with two CPU sockets with each CPU having 18 cores. The 16-core ASA
virtual requires that each socket on the host CPU have a minimum of 16 cores.

Figure 3: 16-Core ASA Virtual NUMA Architecture Example

NUMA Optimization

Optimally, the ASA virtual machine should run on the same numa node that the NICs are running on. To do
this:

Deploy the ASA Virtual Using KVM
12

Deploy the ASA Virtual Using KVM
NUMA Guidelines

1. Determine which node the NICs are on by using "lstopo" to show a diagram of the nodes. Locate the NICs
and take note to which node they are attached.

2. At the KVM Host, use virsh list to find the ASA virtual.

3. Edit the VM by: virsh edit <VM Number>.

4. Align ASA virtual on the chosen node. The following examples assume 18-core nodes.

Align onto Node 0:

<vcpu placement='static' cpuset='0-17'>16</vcpu>
<numatune>

<memory mode='strict' nodeset='0'/>
</numatune>

Align onto Node 1:

<vcpu placement='static' cpuset='18-35'>16</vcpu>
<numatune>

<memory mode='strict' nodeset='1'/>
</numatune>

5. Save the .xml change and power cycle the ASA virtual machine.

6. To ensure your VM is running on the desired node, perform a ps aux | grep <name of your ASAv VM>

to get the process ID.

7. Run sudo numastat -c <ASAv VM Process ID> to see if the ASA virtual machine is properly aligned.

More information about using NUMA tuning with KVM can be found in the RedHat document 9.3. libvirt
NUMA Tuning.

Multiple RX Queues for Receive Side Scaling (RSS)
The ASA virtual supports Receive Side Scaling (RSS), which is a technology utilized by network adapters
to distribute network receive traffic in parallel to multiple processor cores. For maximum throughput, each
vCPU (core) must have its own NIC RX queue. Note that a typical RA VPN deployment might use a single
inside/outside pair of interfaces.

You need ASA virtual Version 9.13(1) or greater to use multiple RX queues. For KVM, the libvirt version
needs to be a minimum of 1.0.6.

Important

For an 8-core VM with an inside/outside pair of interfaces, each interface will have 4 RX queues, as shown
in Figure 4: 8-Core ASA Virtual RSS RX Queues, on page 14.

Deploy the ASA Virtual Using KVM
13

Deploy the ASA Virtual Using KVM
Multiple RX Queues for Receive Side Scaling (RSS)

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-numa-numa_and_libvirt

Figure 4: 8-Core ASA Virtual RSS RX Queues

For a 16-core VM with an inside/outside pair of interfaces, each interface will have 8 RX queues, as shown
in Figure 5: 16-Core ASA Virtual RSS RX Queues, on page 14.

Figure 5: 16-Core ASA Virtual RSS RX Queues

The following table presents the ASA virtual's vNICs for KVM and the number of supported RX queues. See
Recommended vNICs, on page 2 for descriptions of the supported vNICs.

Deploy the ASA Virtual Using KVM
14

Deploy the ASA Virtual Using KVM
Multiple RX Queues for Receive Side Scaling (RSS)

Table 1: KVM Recommended NICs/vNICs

PerformanceNumber of RX
Queues

Driver TechnologyvNIC DriverNIC Card

PCI Passthrough and SR-IOV modes
for the x710 offer the best
performance. SR-IOV is typically
preferred for virtual deployments
because the NIC can be shared across
multiple VMs.

8 maximumPCI Passthroughi40ex710

8SR-IOVi40evf

The x520 NIC performs 10 to 30%
lower than the x710. PCI Passthrough
and SR-IOVmodes for the x520 offer
similar performance. SR-IOV is
typically preferred for virtual
deployments because the NIC can be
shared across multiple VMs.

6PCI Passthroughixgbex520

2SR-IOVixgbe-vf

Not recommended for ASAv100.

For other deployments, see Enable
Multiqueue Support for Virtio on
KVM, on page 15.

8 maximumPara-virtualizedvirtioN/A

Enable Multiqueue Support for Virtio on KVM

The following example shows to configure the number of Virtio NIC RX queues to 4 using virsh to edit the
libvirt xml:

<interface type='bridge'>
<mac address='52:54:00:43:6e:3f'/>
<source bridge='clients'/>
<model type='virtio'/>
<driver name='vhost' queues='4'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
</interface>

The libvirt version needs to be a minimum of 1.0.6 to support multiple RX queues.Important

VPN Optimization
These are some additional considerations for optimizing VPN performance with the ASA virtual.

• IPSec has higher throughput than DTLS.

• Cipher - GCM has about 2x the throughput of CBC.

Deploy the ASA Virtual Using KVM
15

Deploy the ASA Virtual Using KVM
VPN Optimization

SR-IOV Interface Provisioning
SR-IOV allows multiple VMs to share a single PCIe network adapter inside a host. SR-IOV defines these
functions:

• Physical function (PF)—PFs are full PCIe functions that include the SR-IOV capabilities. These appear
as regular static NICs on the host server.

• Virtual function (VF)—VFs are lightweight PCIe functions that help in data transfer. A VF is derived
from, and managed through, a PF.

VFs are capable of providing up to 10 Gbps connectivity to ASA virtual machine within a virtualized operating
system framework. This section explains how to configure VFs in a KVM environment. SR-IOV support on
the ASA virtual is explained in ASA Virtual and SR-IOV Interface Provisioning.

Requirements for SR-IOV Interface Provisioning
If you have a physical NIC that supports SR-IOV, you can attach SR-IOV-enabled VFs, or Virtual NICs
(vNICs), to the ASA virtual instance. SR-IOV also requires support in the BIOS as well as in the operating
system instance or hypervisor that is running on the hardware. The following is a list of general guidelines
for SR-IOV interface provisioning for the ASA virtual running in a KVM environment:

• You need an SR-IOV-capable physical NIC in the host server; see Guidelines and Limitations for SR-IOV
Interfaces.

• You need virtualization enabled in the BIOS on your host server. See your vendor documentation for
details.

• You need IOMMUglobal support for SR-IOV enabled in the BIOS on your host server. See your hardware
vendor documentation for details.

• ASA virtual on KVMusing the SR-IOV interface supports mixing of interface types. You can use SR-IOV
or VMXNET3 for the management interface and SR-IOV for the data interface.

Modify the KVM Host BIOS and Host OS
This section shows various setup and configuration steps for provisioning SR-IOV interfaces on a KVM
system. The information in this section was created from devices in a specific lab environment, using Ubuntu
14.04 on a Cisco UCS C Series server with an Intel Ethernet Server Adapter X520 - DA2.

Before you begin

• Make sure you have an SR-IOV-compatible network interface card (NIC) installed.

• Make sure that the Intel Virtualization Technology (VT-x) and VT-d features are enabled.

Some system manufacturers disable these extensions by default. We recommend
that you verify the process with the vendor documentation because different
systems have different methods to access and change BIOS settings.

Note

• Make sure all Linux KVM modules, libraries, user tools, and utilities have been installed during the
operation system installation; see Prerequisites, on page 5.

Deploy the ASA Virtual Using KVM
16

Deploy the ASA Virtual Using KVM
SR-IOV Interface Provisioning

asa-virtual-919-gsg_chapter1.pdf#nameddest=unique_21
asa-virtual-919-gsg_chapter1.pdf#nameddest=unique_22
asa-virtual-919-gsg_chapter1.pdf#nameddest=unique_22

• Make sure that the physical interface is in the UP state. Verify with ifconfig <ethname>.

Procedure

Step 1 Log in to your system using the “root” user account and password.
Step 2 Verify that Intel VT-d is enabled.

Example:
kvmuser@kvm-host:/$ dmesg | grep -e DMAR -e IOMMU
[0.000000] ACPI: DMAR 0x000000006F9A4C68 000140 (v01 Cisco0 CiscoUCS 00000001 INTL 20091013)
[0.000000] DMAR: IOMMU enabled

The last line indicates that VT-d is enabled.

Step 3 Activate Intel VT-d in the kernel by appending the intel_iommu=on parameter to the GRUB_CMDLINE_LINUX entry
in the /etc/default/grub configuration file.

Example:
vi /etc/default/grub
...
GRUB_CMDLINE_LINUX="nofb splash=quiet console=tty0 ... intel_iommu=on"
...

If you are using an AMD processor, append amd_iommu=on to the boot parameters instead.Note

Step 4 Reboot the server for the iommu change to take effect.

Example:
> shutdown -r now

Step 5 Create VFs by writing an appropriate value to the sriov_numvfs parameter via the sysfs interface using the following
format:
#echo n > /sys/class/net/device name/device/sriov_numvfs

To ensure that the desired number of VFs are created each time the server is power-cycled, you append the above command
to the rc.local file, which is located in the /etc/rc.d/ directory. The Linux OS executes the rc.local script at the end of the
boot process.

For example, the following shows the creation of one VF per port. The interfaces for your particular setup will vary.

Example:
echo '1' > /sys/class/net/eth4/device/sriov_numvfs
echo '1' > /sys/class/net/eth5/device/sriov_numvfs
echo '1' > /sys/class/net/eth6/device/sriov_numvfs
echo '1' > /sys/class/net/eth7/device/sriov_numvfs

Step 6 Reboot the server.

Example:
> shutdown -r now

Step 7 Verify that the VFs have been created using lspci.

Example:

Deploy the ASA Virtual Using KVM
17

Deploy the ASA Virtual Using KVM
Modify the KVM Host BIOS and Host OS

> lspci | grep -i "Virtual Function"
kvmuser@kvm-racetrack:~$ lspci | grep -i "Virtual Function"
0a:10.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 01)
0a:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 01)
0a:10.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 01)
0a:10.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 01)

You will see additional interfaces using the ifconfig command.Note

Assign PCI Devices to the ASA Virtual
Once you create VFs, you can add them to the ASA virtual just as you would add any PCI device. The following
example explains how to add an Ethernet VF controller to an ASA virtual using the graphical virt-manager
tool.

Procedure

Step 1 Open the ASA virtual click the Add Hardware button to add a new device to the virtual machine.

Figure 6: Add Hardware

Step 2 Click PCI Host Device from the Hardware list in the left pane.

The list of PCI devices, including VFs, appears in the center pane.

Deploy the ASA Virtual Using KVM
18

Deploy the ASA Virtual Using KVM
Assign PCI Devices to the ASA Virtual

Figure 7: List of Virtual Functions

Step 3 Select one of the available Virtual Functions and click Finish.

The PCI Device shows up in the Hardware List; note the description of the device as Ethernet Controller Virtual Function.

Deploy the ASA Virtual Using KVM
19

Deploy the ASA Virtual Using KVM
Assign PCI Devices to the ASA Virtual

Figure 8: Virtual Function added

What to do next

• Use the show interface command from the ASA virtual command line to verify newly configured
interfaces.

• Use the interface configuration mode on the ASA virtual to configure and enable the interface for
transmitting and receiving traffic; see the Basic Interface Configuration chapter of the Cisco Secure
Firewall ASA Series General Operations CLI Configuration Guide for more information.

CPU Usage and Reporting
The CPU Utilization report summarizes the percentage of the CPU used within the time specified. Typically,
the Core operates on approximately 30 to 40 percent of total CPU capacity during nonpeak hours and
approximately 60 to 70 percent capacity during peak hours.

Beginningwith 9.13(1), anyASAVirtual license now can be used on any supportedASAVirtual vCPU/memory
configuration. This allows ASA Virtual customers to run on a wide variety of VM resource footprints.

Important

Deploy the ASA Virtual Using KVM
20

Deploy the ASA Virtual Using KVM
CPU Usage and Reporting

https://www.cisco.com/c/en/us/support/security/asa-5500-series-next-generation-firewalls/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/security/asa-5500-series-next-generation-firewalls/products-installation-and-configuration-guides-list.html

vCPU Usage in the ASA Virtual
The ASA virtual vCPU usage shows the amount of vCPUs used for the data path, control point, and external
processes.

The vSphere reported vCPU usage includes the ASA virtual usage as described plus:

• ASA virtual idle time

• %SYS overhead used for the ASA virtual machine

• Overhead of moving packets between vSwitches, vNICs, and pNICs. This overhead can be quite
significant.

CPU Usage Example
The show cpu usage command can be used to display CPU utilization statistics.

Example

Ciscoasa#show cpu usage

CPU utilization for 5 seconds = 1%; 1 minute: 2%; 5 minutes: 1%

The following is an example in which the reported vCPU usage is substantially different:

• ASA Virtual reports: 40%

• DP: 35%

• External Processes: 5%

• ASA (as ASA Virtual reports): 40%

• ASA idle polling: 10%

• Overhead: 45%

The overhead is used to perform hypervisor functions and to move packets between NICs and vNICs using
the vSwitch.

KVM CPU Usage Reporting
The
virsh cpu-stats domain --total start count

command provides the CPU statistical information on the specified guest virtual machine. By default, it shows
the statistics for all CPUs, as well as a total. The --total option will only display the total statistics. The
--count option will only display statistics for count CPUs.

Tools like OProfile, top etc. give the total CPU usage of a particular KVMVMwhich includes the CPU usage
of both the hypervisor as well as VM. Similarly, tools like XenMon which are specific to Xen VMM gives
total CPU usage of Xen hypervisor i.e Dom 0 but don’t separate it into hypervisor usage per VM.

Deploy the ASA Virtual Using KVM
21

Deploy the ASA Virtual Using KVM
vCPU Usage in the ASA Virtual

Apart from this, certain tools exist in cloud computing frameworks like OpenNebula which only provides
coarse grained information of percentage of Virtual CPU used by a VM.

ASA Virtual and KVM Graphs
There are differences in the CPU % numbers between the ASA Virtual and KVM:

• The KVM graph numbers are always higher than the ASA Virtual numbers.

• KVM calls it %CPU usage; the ASA Virtual calls it %CPU utilization.

The terms “%CPU utilization” and “%CPU usage” mean different things:

• CPU utilization provides statistics for physical CPUs.

• CPU usage provides statistics for logical CPUs, which is based on CPU hyperthreading. But because
only one vCPU is used, hyperthreading is not turned on.

KVM calculates the CPU % usage as follows:

Amount of actively used virtual CPUs, specified as a percentage of the total available CPUs

This calculation is the host view of the CPU usage, not the guest operating system view, and is the average
CPU utilization over all available virtual CPUs in the virtual machine.

For example, if a virtual machine with one virtual CPU is running on a host that has four physical CPUs and
the CPU usage is 100%, the virtual machine is using one physical CPU completely. The virtual CPU usage
calculation is Usage in MHz / number of virtual CPUs x core frequency

Deploy the ASA Virtual Using KVM
22

Deploy the ASA Virtual Using KVM
ASA Virtual and KVM Graphs

	Deploy the ASA Virtual Using KVM
	Guidelines and Limitations
	Overview
	Prerequisites
	Prepare the Day 0 Configuration File
	Prepare the Virtual Bridge XML Files
	Deploy the ASA Virtual
	Performance Tuning
	Increasing Performance on KVM Configurations
	Enable CPU Pinning

	NUMA Guidelines
	Multiple RX Queues for Receive Side Scaling (RSS)
	VPN Optimization
	SR-IOV Interface Provisioning
	Requirements for SR-IOV Interface Provisioning
	Modify the KVM Host BIOS and Host OS
	Assign PCI Devices to the ASA Virtual

	CPU Usage and Reporting
	vCPU Usage in the ASA Virtual
	CPU Usage Example
	KVM CPU Usage Reporting
	ASA Virtual and KVM Graphs

