cisco.

Cisco Catalyst IR8340 Rugged Series Router Software Configuration Guide, Cisco IOS XE Release 17.12.x

First Published: 2023-08-21

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2023 Cisco Systems, Inc. All rights reserved.

CONTENTS

	Full Cisco Trademarks with Software License ?
CHAPTER 1	Overview 1
	Introduction 1
	Accessing the CLI Using a Router Console 2
	Using the Console Interface 5
	Initial Bootup Security 6
	Enforce Changing Default Password 6
	Telnet and HTTP 7
	Accessing the CLI from a Remote Console 8
	Preparing to Connect to the Router Console 8
	Setting Up the IR8340 to Run SSH 9
	Using Telnet to Access a Console Interface 10
	CLI Session Management 11
	Information About CLI Session Management 11
	Changing the CLI Session Timeout 11
	Locking a CLI Session 11
	Communications, Services, and Additional Information 12
	Cisco Bug Search Tool 12
	Documentation Feedback 12
CHAPTER 2	Using Cisco IOS XE Software 13
	Understanding Command Modes 13
	Keyboard Shortcuts 15
	Using the no and default Forms of Commands 15
	Using the History Buffer to Recall Commands 16

I

	Managing Configuration Files 16	
	Saving Configuration Changes 16	
	Filtering Output from the show and more Commands 17	
	Finding Support Information for Platforms and Cisco Software Images 1	8
	Using Cisco Feature Navigator 18	
	Getting Help 18	
	Finding Command Options: Example 19	
	Using Software Advisor 24	
	Using Software Release Notes 24	
CHAPTER 3	Basic Router Configuration 25	
	IR8340 Interface Naming 25	
	Basic Configuration 26	
	Configuring Global Parameters 31	
	Configuring the Gigabit Ethernet Interface 32	
	Support for sub-interface on GigabitEthernet0/0/0 33	
	Configuring a Loopback Interface 33	
	Configuring CPU Allocation 34	
	Enabling Cisco Discovery Protocol 35	
	Configuring Command-Line Access 35	
	Configuring Static Routes 37	
	Configuring Dynamic Routes 39	
	Configuring Routing Information Protocol 39	
	Configuring Enhanced Interior Gateway Routing Protocol 40	
	Modular QoS (MQC) 40	
CHAPTER 4	- Configuring Secure Shell 41	
	Information About Secure Shell 41	
	Prerequisites for Configuring Secure Shell 41	
	Restrictions for Configuring Secure Shell 41	
	SSH And Router Access 42	

SSH Servers, Integrated Clients, and Supported Versions 42

SSH Configuration Guidelines 43

How to Configure Secure Shell 43

	Setting Up the IR8340 to Run SSH 43
	Configuring the SSH Server 44
	Monitoring the SSH Configuration and Status 45
	Configuring the Router for Local Authentication and Authorization 46
	Information about Secure Copy 47
	Prerequisites for Secure Copy 47
	Restrictions for Configuring Secure Copy 48
	Configuring Secure Copy 48
	Additional References 49
CHAPTER 5	Installing the Software 51
	Installing the Software 51
	Cisco Software Licensing 51
	Consolidated Packages 51
	Network-Essentials 52
	Network-Advantage 52
	Related Documentation 52
	Installing the Cisco IOS XE Release 52
	ROMMON Images 53
	File Systems 53
	Option to Enable or Disable USB Access 54
	Autogenerated File Directories and Files 55
	Flash Storage 56
	Related Documentation 56
CHAPTER 6	Software Maintenance Upgrade (SMU) 57
	Software Maintenance Upgrade (SMU) 57
	SMU Workflow and Basic Requirements 58
	SMU Example 58
	Installing a Patch Image 58
	Uninstalling the Patch Image 60
	Uninstalling the Patch Image Using Rollback 60
	Uninstalling the Patch Image Using Deactivate, Commit, and Remove 62

I

CHAPTER 7	Smart Licensing Using Policy (SLP) 65
	SLP Overview 65
	License Enforcement Types 65
	SLP Architecture 66
	Product Instance 66
	Cisco Smart Software Manager (CSSM) 66
	Cisco Smart Licensing Utility (CSLU) 67
	Customer Topologies 67
	License Installation Procedure - Full Offline Access Topology 68
	Procedure to Register Product Instance in CSSM 68
	Importing the ACK file from CSSM to your Device 71
	Removing the Device from CSSM 72
	License Installation Procedure - CSLU has No Access to CSSM 73
	Procedure when devices are connected to the CSLU 74
	Exporting the AuthRequest File to CSSM 77
	Uploading the Authorization Request Code file into CSLU 82
	License Installation Process in the Router 84
	HSEC Installation 85
CHAPTER 8	Configuring Ethernet Switch Ports 87
	Configuring VLANs 87
	Creating a VLAN 88
	Configuring LAN Ports for Layer 2 Switching 89
	Layer 2 LAN Port Modes 89
	Default Layer 2 LAN Interface Configuration 90
	Configuring LAN Interfaces for Layer 2 Switching 91
	Configuring Private VLANs 91
	Information About Private VLANs 91
	Primary and Secondary VLANs in Private VLANs 92
	Private VLAN Ports 92
	Guidelines and Limitations for Private VLANs 92
	Configuring a Private VLAN 93
	Configuring a VLAN as a Private VLAN 93

I

Associating Secondary VLANs with a Primary Private VLAN 95 Configuring a Layer 2 Interface as a Private VLAN Host Port 96 Configuring a Layer 2 Interface as a Private VLAN Promiscuous Port 97 Configuring Voice VLANs 99 Limitations and Restrictions 99 How to Configure Voice VLANs 99 Configuring Cisco IP Phone Voice Traffic 99 Removing Voice VLAN 100 Monitoring Voice VLAN 101 Configuring VXLAN Tunneling 101 IEEE 802.1x Protocol 102 Configuring IEEE 802.1X Port-Based Authentication 102 Enabling AAA Authorization for VLAN Assignment 103 Enabling IEEE 802.1X Authentication and Authorization 103 Spanning Tree Protocol Overview 106 Default STP Configuration 107 Enabling STP 107 Configuring Optional STP Features 109 Enabling PortFast 109 Configuring PortFast BPDU Filtering 110 Enabling BPDU Guard 111 Enabling UplinkFast **112** Enabling BackboneFast 113 MAC Table Manipulation 114 Creating a Static Entry in the MAC Address Table 114 MAC Address-Based Traffic Blocking 115 Configuring and Verifying the Aging Timer 115 MAC Learning on a Vlan 116 Assigning IP Addresses to Switch Virtual Interfaces 117 SVI Supported Features 118 IGMP Snooping for IPv4 119 IGMP Filtering and Throttling 120 Default IGMP Filtering and Throttling Configuration 120 Configuring IGMP Profiles 121

Applying IGMP Profiles 121 Setting the Maximum Number of IGMP Groups 122 Configuring the IGMP Throttling Action 123 MLD Snooping 124 MLD Snooping Configuration Guidelines 124 Default MLD Snooping Configuration 124 Enabling or Disabling MLD Snooping on a VLAN 125 Configuring UniDirectional Link Detection 126 Enabling UDLD Globally 126 Enabling UDLD on an Interface 127 Configuring the Switched Port Analyzer 128 SPAN and RSPAN 128 Creating a Local SPAN Session 128 Creating a Local SPAN with Incoming Traffic Allowed on Destination 131 Specifying VLANs to Filter 132 Verifying the SPAN Session 134 Removing a SPAN Session 135 Configuring a VLAN as an RSPAN VLAN 135 Creating an RSPAN Source Session 136 Specifying VLANs to Filter on RSPAN Source Session 138 Creating an RSPAN Destination Session and Configuring Incoming Traffic **139** EtherChannel Overview 141 Channel Groups and Port-Channel Interfaces 142 Port Aggregation Protocol 142 Link Aggregation Control Protocol 142 Configuring Layer 2 EtherChannels 142 Configuring EtherChannel Load-Balancing 144 Configuring the PAgP Learn Method and Priority 145 Configuring the LACP Port Channel Min-Links Feature 146 Configuring LACP Fast Rate Timer 147 Modular Quality of Service Command-Line Interface 148 Creating a Traffic Class 149 Creating a Traffic Policy 151 Configuring Class-Based Packet Marking 154

	Attaching a Traffic Policy to an Interface 159	
	Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps	160
CHAPTER 9	Configuring Switchport Blocking 165	
	About Switchport Blocking 165	
	Configuring Switchport Blocking 165	
CHAPTER 10	Configuring Storm Control 169	
	Information About Storm Control 169	
	Configuring Storm Control 170	
CHAPTER 11	Configuring MAC Address Notification 173	
	MAC Address Notification 173	
	Configuring MAC Address Notification 173	
CHAPTER 12	Configuring Q-in-Q and Layer 2 Protocol Tunneling 175	
	Information About Q-in-Q Tunnels 175	
	Information About Layer 2 Protocol Tunneling 176	
	Configuring VLAN Mapping for Selective Q-in-Q on a 802.1Q Tunnel Port 176	
	Enabling the Layer 2 Protocol Tunnel 178	
	Configuring Thresholds for Layer 2 Protocol Tunnel Ports 179	
	Verifying the Q-in-Q Configuration 180	
	VLAN Translation One-to-One Mapping 180	
CHAPTER 13	Power over Ethernet 181	
	Power over Ethernet 181	
	Device Detection and Power Allocation 182	
	Configuring Power Over Ethernet 182	
	Configuring Universal PoE 183	
	PoE Debug Commands 184	
CHAPTER 14	Configuring the T1/E1 Network Interface Module 185	
	Information About T1/E1 Network Interface Module 185	

I

I

	Configuring T1/E1 Network Interface Module 185
	Configuring the Card Type 185
	Changing the Card Type 186
	Configuring the T1/E1 Network Interface Module for Data Support 187
	Example of T1/E1 Network Interface Module Configuration 190
CHAPTER 15	Configuring the Serial Network Interface Module 193
	About the Asynchronous/Synchronous Serial Network Interface Module 19
	Configuring the Serial Interface to Sync or Async Mode 193
	Configuring Synchronous Serial Ports 194
	Checking DCE and DTE Cable Type 194
	Specifying Synchronous Serial Encapsulation 194
	DCE and DTE Configuration for HDLC Encapsulation 195
	DCE and DTE Configuration for PPP (CHAP) Encapsulation 196
	DCE and DTE Configuration for PPP (PAP) Encapsulation 197
	DCE and DTE Configuration for Frame Relay Encapsulation 198
	Serial Synchronous Show and Debug Commands 200
	Configuring Asynchronous Serial Ports 201
	Specifying Asynchronous Serial Encapsulation 201
CHAPTER 16	Cellular Pluggable Interface Module Configuration Guide 203
CHAPTER 17	
	SCADA Overview 205
	Role of the IR8340 205
	Key Terms 206
	Protocol Translation Application 206
	Prerequisites 207
	Guidelines and Limitations 208
	Default Settings 208
	Configuring Protocol Translation 208
	Enabling the IR8340 Serial Port and SCADA Encapsulation 208
	EXAMPLE 209

I

I

Prerequisites 209	
Configuring the T101 Protocol Stack 210	
EXAMPLE 212	
Configuring the T104 Protocol Stack 212	
EXAMPLE 214	
Configuration Example 215	
Configuring the DNP3 Protocol Stacks 217	
Configuring DNP3 Serial 217	
EXAMPLE 218	
Configuring DNP3 IP 219	
EXAMPLE 220	
Starting and Stopping the Protocol Translation Engine	221
EXAMPLE 221	
Verifying Configuration 222	
Debug Commands 223	

CHAPTER 18 Raw Socket Transport 225

I

I

Information About Raw Socket Transport 225
TCP Transport 226
UDP Transport 226
Serial Data Processing 227
VRF-Aware Raw Socket 227
Prerequisites 228
Guidelines and Limitations 228
Default Settings 228
Configuring Raw Socket Transport 228
Enabling Raw Socket Transport on the Serial Interface 228
Configuring Common Raw Socket Line Options 229
Configuring Raw Socket TCP 230
Configuring the Raw Socket TCP Server 230
Configuring the Raw Socket TCP Client 232
Configuring a Raw Socket UDP Peer-to-Peer Connection 233
Verifying Configuration 234
Configuration Example 235

	Raw Socket TCP 235
	Raw Socket UDP 236
	Raw Socket VRF 237
	Show Line Details for Configuring Raw-TCP/UDP 238
	Raw-Socket Show and Debug Commands 239
	Raw Socket Show and Debug Commands 200
CHAPTER 19	Configuring MODBUS TCP 241
	Understanding MODBUS TCP 241
	MODBUS and Security 241
	Multiple Request Messages 242
	Configuring the Router as the MODBUS TCP Server 243
	Defaults 243
	Enabling MODBUS TCP on the Switch 243
	MODBUS TCP Registers 243
	System Information Registers 244
	Port Information Registers 245
	Interpreting the Port State 254
CHAPTER 20	
	Information About VLAN Access Control Lists 255
	VLAN Maps 255
	Configuring VACLs 255
	Defining a VLAN Access Map 256
	Configuring a Match Clause in a VLAN Access Map Sequence 256
	Configuring an Action Clause in a VLAN Access Map Sequence 257
	Applying a VLAN Access Map 257
	Verifying VLAN Access Map Configuration 257
	Debugging VACLs 257
CHAPTER 21	- Configuring MACsec 259
	MACsec Encryption Overview 259
	Limitations and Restrictions 259
	Media Access Control Security and MACsec Key Agreement 260
	Configuring MACsec Encryption 261

I

	Configuring MKA and MACsec 261
	Configuring an MKA Policy 261
	Configuring MACsec MKA using PSK 262
	Configuring MACsec MKA on an Interface using PSK 263
	Example: Sample Configuration of Switch-to-Switch MACsec 264
	Example: Sample Configuration of Switch-to-Host MACsec 265
	Verifying the Configuration 266
CHAPTER 22	WAN MACSEC and MKA Support Enhancements 271
	MACsec and MKA Overview 271
	Benefits of WAN MACsec and MKA Support Enhancements 272
	Best Practices for Implementing WAN MACsec and MKA Support Enhancements 272
	MKA Policy Inheritance 273
	Key Lifetime and Hitless Key Rollover 273
	Encryption Algorithms for Protocol Packets 273
	Access Control Option for Smoother Migration 274
	Extensible Authentication Protocol over LAN Destination Address 274
	Replay Protection Window Size 275
	How to Configure WAN MACsec and MKA Support Enhancements 275
	Configuring MKA 275
	Configuring MKA Pre-Shared Key 277
	Configuring an Option to Change the EAPoL Ethernet Type 278
	Sample Configuration for Point-to-Point WAN MACsec 278
	Example: Port Based WAN MACsec 278
	Example: VLAN Based WAN MACsec 279
	Sample Show Command Output for Port Based WAN MACsec 280
	Sample Show Command Output for VLAN Based WAN MACsec 282
CHAPTER 23	Configuring IPv6 First Hop Security 285
	IPv6 First Hop Security Overview 285
	Overview of DHCPv6 Guard 285
	Restrictions of DHCPv6 Guard 285

I

Limitations and Restrictions of IPv6 RA Guard **286**

	Configuring an IPv6 DHCP Guard Policy 286
	Attaching an IPv6 DHCP Guard Policy to an Interface or a VLAN 287
	Configuring an IPv6 Router Advertisement Guard Policy 288
	Attaching an IPv6 Router Advertisement Guard Policy to an Interface or a VLAN 290
CHAPTER 24	Configuring IP Device Tracking 293
	Information About IP Device Tracking 293
	Overview of SISF-Based Device Tracking 294
	Options to Enable SISF-Based Device Tracking 294
	Manually Enabling SISF-Based Device Tracking 294
	Programmatically Enabling SISF-Based Device Tracking 295
	How to Configure SISF-Based Device Tracking 295
	Manually Enabling SISF-Based Device Tracking 295
	Applying the Default Device Tracking Policy to a Target 295
	Creating a Custom Device Tracking Policy with Custom Settings 296
	Attaching a Device Tracking Policy to an Interface 300

Attaching a Device Tracking Policy to a VLAN 301

Configuring a Multi-Switch Network to Stop Creating Binding Entries from a Trunk Port **302** Enabling SISF Syslogs **303**

Example: DHCP Snooping Auto Enabling DT PROGRAMMATIC Policy 303

CHAPTER 25 Configuring Security for VPNs with IPsec 305

Information About Configuring Security for VPNs with IPsec 305 Supported Standards 305 Supported Encapsulation **307** IPsec Functionality Overview 307 IKEv1 Transform Sets 308 IKEv2 Transform Sets 308 How to Configure IPsec VPNs 308 Creating Crypto Access Lists 308 Configuring Transform Sets for IKEv1 and IKEv2 Proposals 309 Configuring Transform Sets for IKEv1 310 Configuring Transform Sets for IKEv2 311 Creating Crypto Map Sets 313

	Creating Static Crypto Maps 313
	Creating Dynamic Crypto Maps 315
	Creating Crypto Map Entries to Establish Manual SAs 319
	Applying Crypto Map Sets to Interfaces 321
CHAPTER 26	Configuring High-availability Seamless Redundancy (HSR) 323
	Information About HSR 323
	Loop Avoidance 324
	HSR RedBox Modes of Operation 325
	HSR-SAN Mode 325
	HSR-SAN Interfaces 326
	Configuring an HSR Ring 326
	Configuring Interface Sub-Mode 326
	Clearing All Node Table and VDAN Table Dynamic Entries 327
	Verifying Configuration 327
CHAPTER 27	Configuring Parallel Redundancy Protocol (PRP) 329
	Information About PRP 329
	PRP Channels 330
	Creating a PRP Channel and Group 330
	Clearing All Node Table and VDAN Table Dynamic Entries 332
	Disabling the PRP Channel and Group 332
	PRP Mode LED 333
	Verifying Configuration 333
CHAPTER 28	Configuring Resilient Ethernet Protocol (REP) 335
CHAPTER 29	System Messages 337
	Information About Process Management 337
	How to Find Error Message Details 337
CHAPTER 30	
	Environmental Monitoring 343

Environmental Monitoring and Reporting Functions 343 Environmental Monitoring Functions 344 Environmental Reporting Functions 345 Additional References 345 Technical Assistance 346

CHAPTER 31 IOx Application Hosting 347

Application Hosting 347 Information About Application Hosting 347 Need for Application Hosting 347 IOx Overview 348 Cisco Application Hosting Overview 348 IOXMAN 348 Application Hosting on the IR8340 Router **349** Application Hosting on Layer 2 and Layer 3 Interfaces 349 VirtualPortGroup 350 **vNIC** 350 How to Configure Application Hosting 351 Enabling IOx 351 Configuring Application Hosting to Layer 2 Interfaces 352 Configuring a VirtualPortGroup to a Layer 3 Data Port 353 Configuring Docker Run Time Options 355 Installing and Uninstalling Apps 356 Overriding the App Resource Configuration 357 Verifying the Application Hosting Configuration 358 IOx Configuration with ERSPAN 360 Configuration Examples for Application Hosting 361 Example: Enabling IOx 361 Example: Configuring a VirtualPortGroup to a Layer 3 Data Port 361 Example: Installing and Uninstalling Apps 361 Example: Overriding the App Resource Configuration 361 Signed Application Support 362 362 Cisco Cyber Vision

CHAPTER 32

ROM Monitor Overview 363

ROM Monitor Overview 363
Access ROM Monitor Mode 364
Checking the Current ROMMON Version 364
Commonly Used ROM Monitor Commands 365
Examples 366
Changing the ROM Monitor Prompt 366
Displaying the Configuration Register Setting 366
Environment Variable Settings 367
Frequently Used Environmental Variables 367
Displaying Environment Variable Settings 367
Entering Environment Variable Settings 368
Saving Environment Variable Settings 368
Exiting ROM Monitor Mode 368
Configuration Example 369
Upgrading the ROMmon for a Router 369

CHAPTER 33 Process Health Monitoring 371

Monitoring Control Plane Resources 371

Avoiding Problems Through Regular Monitoring 371 Cisco IOS Process Resources 371 Overall Control Plane Resources 381 Monitoring Hardware Using Alarms 383 Router Design and Monitoring Hardware 383 BootFlash Disk Monitoring 383 Approaches for Monitoring Hardware Alarms 383

Viewing the Console or Syslog for Alarm Messages 383

Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP **384**

CHAPTER 34 Troubleshooting 385

Troubleshooting 385

Understanding Diagnostic Mode 385

Before Contacting Cisco or Your Reseller 386
show interfaces Troubleshooting Command 386
Software Upgrade Methods 386
Change the Configuration Register 387
Configuring the Configuration Register for Autoboot 388
Reset the Router 389
Recovering a Lost Password 390
Reset the Configuration Register Value 390
Configuring a Console Port Transport Map 391
Viewing Console Port, SSH, and Telnet Handling Configurations 393
Using the factory reset Commands 394

Overview

- Introduction, on page 1
- Accessing the CLI Using a Router Console, on page 2
- Initial Bootup Security, on page 6
- Accessing the CLI from a Remote Console, on page 8
- CLI Session Management, on page 11
- Communications, Services, and Additional Information, on page 12

Introduction

The Cisco Catalyst IR8340 Rugged Series Router is Cisco's first industrial-grade fully integrated routing and switching platform. IR8340 is designed to provide outstanding flexibility and adaptability to address the latest needs of the network evolution.

The terms *IR8340* and *router* are used throughout this document in text and CLI examples to refer to the Cisco Catalyst IR8340 Rugged Series Router, unless otherwise noted.

Note The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

The IR8340 Router features 2 Pluggable Interface Module (PIM) slots, 2 single-wide IRM-NIM slots, 1 timing module slot, plus 12 onboard LAN ports and 2 WAN ports, and supports the following:

- 150W/250W PSU, Low Voltage DC and High Voltage AC/DC options
- Timing and SyncE support-IRIG-B (Analog & Digital), GNSS, and PTP

Note For more information about timing related configuration, see *Timing and Synchronization Configuration Guide, Cisco IOS XE 17 (Cisco Catalyst IR8340 Rugged Series Router).*

- LTE PIM modules
- Network Interface Modules (NIMs)
- mSATA module
- 2 x 1G Combo WAN ports
- 4 x 1G Copper LAN Ports
- 4 x 1G Combo LAN ports
- 4 x 1G SFP LAN Ports
- PoE/PoE+/UPoE (up to 120w) support on LAN port 1-4
- 2 x IN and 1 x OUT Alarm ports (RJ45)

Accessing the CLI Using a Router Console

Cisco IR8340 routers have an RJ45 RS232 serial console port located on the router front panel. The default baud rate is 9600. You can use an RJ45 Roll Over console cable that is available in the market.

On a device fresh from the factory, you are greeted with a System Configuration Dialog. If the router was ordered for the use of Cisco PnP connect services, in the case of centralized provisioning, the router skips the initial dialog. The following is an example, and names and IP addresses are shown as examples.


```
Note Autoinstall will terminate if any input is detected on console.
```

--- System Configuration Dialog ---Would you like to enter the initial configuration dialog? [yes/no]: WARNING: ** NOTICE ** This is the final IOS XE release to provide support for the H.323 protocol. Consider switching to SIP for multimedia applications before upgrading to 17.7.1. *Jan 27 23:51:55.579: %TAMPER_ALARM-0-TAMPER_ALARM_ASSERT: Tamper alarm slot (Tamper alarm slot 2) asserted *Jan 27 23:51:55.579: %TAMPER_ALARM-0-TAMPER_ALARM_ASSERT: Tamper alarm slot (Tamper alarm slot 3) asserted Autoinstall trying DHCPv6 on GigabitEthernet0/0/0,GigabitEthernet0/0/1 Autoinstall trying DHCPv4 on GigabitEthernet0/0/0,GigabitEthernet0/0/1 AUTO IP is starting!!!! start Autoip process

Acquired IPv4 address 192.168.0.202 on Interface GigabitEthernet0/0/0 Received following DHCPv4 options: dns-server-ip : 192.168.0.2 si-addr : 192.168.0.2 hostname : Router stop Autoip process Press RETURN to get started! *Jan 27 23:53:08.903: %SYS-5-USERLOG NOTICE: Message from tty0(user id:): Device in day0 workflow, some non user-configured options may be enabled by default *Jan 27 23:53:08.920: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 OK to enter CLI now... pnp-discovery can be monitored without entering enable mode Entering enable mode will stop pnp-discovery *Jan 27 23:53:08.921: %PNP-6-HTTP CONNECTING: PnP Discovery trying to connect to PnP server (https://devicehelper.cisco.com.:443/pnp/HELLO) *Jan 27 23:53:09.788: AUTOINSTALL: Obtain siaddr 192.168.0.2 (as config server) *Jan 27 23:53:09.788: AUTOINSTALL: Setting hostname Router from DHCP reply *Jan 27 23:53:10.899: %LINK-5-CHANGED: Interface GigabitEthernet0/0/1, changed state to administratively down *Jan 27 23:53:11.899: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/1, changed state to down *Jan 27 23:53:29.880: %PNP-6-HTTP CONNECTED: PnP Discovery connected to PnP server (https://devicehelper.cisco.com.:443/pnp/HELLO) *Jan 27 23:53:29.883: %PNP-6-PNP PROFILE CREATED: PnP profile (pnp cco profile) created (1/3) by (pid=656, pname=PnP Agent Discovery, time=23:53:29 UTC Wed Jan 27 2021) *Jan 27 23:53:30.893: %PNP-6-PNP_SUDI_UPDATE: Device SUDI [PID:IR8340-K9,SN:FD02523J7GF] identified *Jan 27 23:53:30.893: %PNP-6-PNP RELOAD INFO ENCODED: Reload reason (PnP Service Info 2408-Unknown reason) encoded (1/3) by (pid=656, pname=PnP Agent Discovery) *Jan 27 23:53:30.894: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:53:35.635: %PNP-6-PNP RELOAD INFO STOPPED: Reload reason (PnP Service Info 2408-Unknown reason) stopped by (profile=pnp cco profile, host=devicehelper.cisco.com., port=443) *Jan 27 23:53:56.755: %PNP-6-PNP BACKOFF NOW: PnP Backoff now for (60) seconds requested (1/3) by (profile=pnp_cco_profile, host=devicehelper.cisco.com., port=443) *Jan 27 23:54:07.900: %PNP-3-PNP CCO PROFILE UNCONFIGURED: CCO Server profile (pnp cco profile) unconfigured (1/10) by (pid=656, pname=PnP Agent Discovery, time=23:54:07 UTC Wed Jan 27 2021) *Jan 27 23:54:07.900: %PNP-6-PNP PROFILE_DELETED: PnP profile (pnp_cco_profile) deleted (1/3) by (pid=656, pname=PnP Agent Discovery, time=23:54:07 UTC Wed Jan 27 2021) *Jan 27 23:54:07.901: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:54:07.909: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:54:13.907: %PNP-3-PNP DOMAIN NAME NOT FOUND: Domain name not found (4/10) on (GigabitEthernet0/0/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:13 UTC Wed Jan 27 2021) *Jan 27 23:54:13.907: %PNP-3-PNP DOMAIN NAME NOT FOUND: Domain name not found (5/10) on (WPAN0/1/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:13 UTC Wed Jan 27 2021) *Jan 27 23:54:29.911: %PNP-3-PNP DOMAIN_NAME_NOT_FOUND: Domain name not found (6/10) on (GigabitEthernet0/0/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:29 UTC Wed Jan 27 2021) *Jan 27 23:54:29.911: %PNP-3-PNP DOMAIN NAME NOT FOUND: Domain name not found (7/10) on (WPAN0/1/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:29 UTC Wed Jan 27 2021)

*Jan 27 23:54:37.911: %PNP-3-PNP DOMAIN NAME NOT FOUND: Domain name not found (8/10) on (GigabitEthernet0/0/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:37 UTC Wed Jan 27 2021) *Jan 27 23:54:37.911: %PNP-3-PNP DOMAIN NAME NOT FOUND: Domain name not found (9/10) on (WPAN0/1/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:37 UTC Wed Jan 27 2021) *Jan 27 23:54:53.914: %PNP-3-PNP DOMAIN NAME NOT FOUND: Domain name not found (10/10) on (GigabitEthernet0/0/0) by (pid=656, pname=PnP Agent Discovery, time=23:54:53 UTC Wed Jan 27 2021) *Jan 27 23:55:20.100: %PNP-6-PNP CCO SERVER IP RESOLVED: CCO server (devicehelper.cisco.com.) resolved to ip (18.205.166.131) by (pid=656, pname=PnP Agent Discovery, time=23:55:20 UTC Wed Jan 27 2021) *Jan 27 23:55:20.100: %PNP-6-PNP PROFILE CREATED: PnP profile (pnp cco profile) created (2/3) by (pid=656, pname=PnP Agent Discovery, time=23:55:20 UTC Wed Jan 27 2021) *Jan 27 23:55:21.107: %PNP-6-PNP RELOAD INFO ENCODED: Reload reason (PnP Service Info 2408-Unknown reason) encoded (2/3) by (pid=656, pname=PnP Agent Discovery) *Jan 27 23:55:21.108: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:55:32.751: %PNP-6-PNP BACKOFF NOW: PnP Backoff now for (60) seconds requested (2/3) by (profile=pnp cco profile, host=devicehelper.cisco.com., port=443) Autoinstall trying DHCPv6 on GigabitEthernet0/0/0 *Jan 27 23:55:43.108: %PNP-3-PNP CCO PROFILE UNCONFIGURED: CCO Server profile (pnp cco profile) unconfigured (2/10) by (pid=656, pname=PnP Agent Discovery, time=23:55:43 UTC Wed Jan 27 2021) *Jan 27 23:55:43.108: %PNP-6-PNP PROFILE DELETED: PnP profile (pnp cco profile) deleted (2/3) by (pid=656, pname=PnP Agent Discovery, time=23:55:43 UTC Wed Jan 27 2021) *Jan 27 23:55:43.109: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:55:43.113: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 Autoinstall trying DHCPv6 on GigabitEthernet0/0/0 *Jan 27 23:56:55.316: %PNP-6-PNP PROFILE CREATED: PnP profile (pnp cco profile) created (3/3) by (pid=656, pname=PnP Agent Discovery, time=23:56:55 UTC Wed Jan 27 2021) *Jan 27 23:56:56.323: %PNP-6-PNP RELOAD INFO ENCODED: Reload reason (PnP Service Info 2408-Unknown reason) encoded (3/3) by (pid=656, pname=PnP Agent Discovery) *Jan 27 23:56:56.324: %SYS-5-CONFIG_P: Configured programmatically by process PnP Agent Discovery from console as vtv0 Autoinstall trying DHCPv6 on GigabitEthernet0/0/0 *Jan 27 23:57:09.810: AUTOINSTALL: script execution not successful for Gi0/0/0. *Jan 27 23:57:10.829: %SYS-5-CONFIG P: Configured programmatically by process DHCP Autoinstall from console as vty0 *Jan 27 23:58:10.003: %PNP-6-PNP BACKOFF NOW: PnP Backoff now for (60) seconds requested (3/3) by (profile=pnp cco profile, host=devicehelper.cisco.com., port=443) *Jan 27 23:58:21.323: %PNP-3-PNP CCO PROFILE UNCONFIGURED: CCO Server profile (pnp cco profile) unconfigured (3/10) by (pid=656, pname=PnP Agent Discovery, time=23:58:21 UTC Wed Jan 27 2021) *Jan 27 23:58:21.323: %PNP-6-PNP_PROFILE_DELETED: PnP profile (pnp_cco_profile) deleted (3/3) by (pid=656, pname=PnP Agent Discovery, time=23:58:21 UTC Wed Jan 27 2021) *Jan 27 23:58:21.324: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:58:21.327: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent Discovery from console as vty0 *Jan 27 23:59:34.507: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent

Discovery from console as vty0

```
*Jan 27 23:59:59.507: %PNP-3-PNP CCO PROFILE UNCONFIGURED: CCO Server profile
(pnp cco profile) unconfigured (4/10) by (pid=656, pname=PnP Agent Discovery, time=23:59:59
UTC Wed Jan 27 2021)
*Jan 27 23:59:59.508: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vtv0
*Jan 27 23:59:59.511: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vty0
*Jan 28 00:01:12.715: %SYS-5-CONFIG_P: Configured programmatically by process PnP Agent
Discovery from console as vty0
*Jan 28 00:02:22.715: %PNP-3-PNP CCO PROFILE UNCONFIGURED: CCO Server profile
(pnp cco profile) unconfigured (5/10) by (pid=656, pname=PnP Agent Discovery, time=00:02:22
UTC Thu Jan 28 2021)
*Jan 28 00:02:22.716: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vty0
*Jan 28 00:02:22.719: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vty0
Router>en
Router#sh ip in
*Jan 28 00:02:42.724: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as console
*Jan 28 00:02:42.724: %PNP-6-PNP_SAVING_TECH_SUMMARY: Saving PnP tech summary
(/pnp-tech/pnp-tech-discovery-summary)... Please wait. Do not interrupt.t b
*Jan 28 00:02:42.877: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vty0
*Jan 28 00:02:42.924: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vty0
*Jan 28 00:02:43.394: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vty0
*Jan 28 00:02:43.494: %PNP-6-PNP TECH SUMMARY SAVED OK: PnP tech summary
(/pnp-tech/pnp-tech-discovery-summary) saved successfully (elapsed time: 1 seconds).
*Jan 28 00:02:43.494: %PNP-6-PNP DISCOVERY STOPPED: PnP Discovery stopped (Config Wizard)
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0/0 192.168.0.202 YES DHCP up up
GigabitEthernet0/0/1 unassigned YES unset administratively down down
WPAN0/1/0 unassigned YES unset up up
Router#
```

The device now has a basic configuration that you can build upon.

Using the Console Interface

Procedure

Step 1 Enter the following command:

Router > **enable**

Step 2 (Go to Step 3 if the enable password has not been configured.) At the password prompt, enter your system password:

Password: enablepass

When your password is accepted, the privileged EXEC mode prompt is displayed.

Router#

You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.

Step 3 To exit the console session, enter the **quit** command:

Router# quit

Initial Bootup Security

This section contains the following:

Enforce Changing Default Password

When the device is first booted after factory reset or fresh from the factory, the following prompt is received on the console:

Would you like to enter the initial configuration dialog? [yes/no]:

In previous documentation, Cisco recommended using the **enable secret** command instead of the **enable password** command because this offers an improved encryption algorithm.

The initial dialog forces setting a new enable password, and also using the **enable secret** command instead. The following is an example:

```
Would you like to enter the initial configuration dialog? [yes/no]: no
Autoinstall trying DHCP on GigabitEthernet0/0/0
Autoinstall trying DHCPv6 on GigabitEthernet0/0/0
The enable secret is a password used to protect
access to privileged EXEC and configuration modes.
This password, after entered, becomes encrypted in
the configuration.
_____
                   _____
secret should be of minimum 10 characters with
at least 1 upper case, 1 lower case, 1 digit and
should not contain [cisco]
Enter enable secret: ********
Confirm enable secret: ********
The following configuration command script was created:
enable secret 9 $9$rDzH3rLqjlFhek$G9UDZE7moWqsKJEZfJAH2yO.SPhKZeKJsEe./CPEzl.
1
end
[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.
Enter your selection [2]: 2
Building configuration...
[OK]
Use the enabled mode 'configure' command to modify this configuration.
```

```
*Feb 12 00:14:14.305: %LINK-5-CHANGED: Interface GigabitEthernet0/0/0, changed state to
```

Press RETURN to get started!

```
administratively down
*Feb 12 00:14:14.308: %LINK-5-CHANGED: Interface GigabitEthernet0/0/1, changed state to
administratively down
*Feb 12 00:14:15.306: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/0,
changed state to down
Router>
*Feb 12 00:14:15.653: %PKI-6-TRUSTPOINT CREATE: Trustpoint: SLA-TrustPoint created succesfully
*Feb 12 00:14:15.657: %PKI-6-CONFIGAUTOSAVE: Running configuration saved to NVRAM[OK]
Router>
Router>en
Password:
*Feb 12 00:14:18.878: %SYS-6-PRIVCFG ENCRYPT SUCCESS: Successfully encrypted private config
 file
*Feb 12 00:14:18.910: %CALL HOME-6-CALL HOME ENABLED: Call-home is enabled by Smart Agent
for Licensing.
Router#sh run | inc sec
*Feb 12 00:14:26.299: %SYS-5-CONFIG P: Configured programmatically by process PnP Agent
Discovery from console as vtyOret
enable secret 9 $9$rDzH3rLqjlFhek$G9UDZE7moWqsKJEZfJAH2yO.SPhKZeKJsEe./CPEzl.
Router#
```

After the enable secret is prompted during the first login, and the admin enters a password, the admin entered password will be always masked. If the admin enters a weak password, they will be prompted again to enter strong password (i.e. the standard mix of upper/lower case characters, special characters, numbers etc.). The prompting will continue until the admin enters a strong password. The admin will be prompted to enter the strong secret password twice for confirming that admin is sure that it is the secret that they want to configure.

Telnet and HTTP

When the device is first booted after factory reset or fresh from the factory, by default the following takes place:

- Disable telnet
- Disable http server. HTTP client works.
- Enable SSH
- Enable https server

Examples

From a freshly booted device, below configurations for HTTPS and SSH are enabled.

```
ip http server
ip http authentication local
ip http secure-server
.
.
line vty 0 4
login
transport input ssh
line vty 5 14
login
transport input ssh
```

To enable Telnet, use the **line vty** command.

```
Rl>enable
Rl#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```

```
R1 (config) #line vty 0
R1 (config-line) #password Pass123
R1 (config-line) #login
R1 (config-line) #logging synchronous
R1 (config-line) #exec-timeout 40
R1 (config-line) #motd-banner
R1 (config-line) #exit
R1 (config) #
R1 (config) #
R1 (config) #enable password Password
R1 (config) #exit
```

To test the Telnet connectivity, from a client PC, type **telnet 192.168.10.1** and press **Enter**, then enter the telnet password. Execute the **enable** command and press **Enter**, then type the router password.

```
Packet Tracer PC Command Line 1.0
PC>telnet 192.168.10.1
Trying 192.168.10.1 ...Open
User Access Verification
Password:
R1>enable
Password:
R1#
```

Now you are remotely connected to router R1 and you can execute all router commands through Telnet command line interface.

Accessing the CLI from a Remote Console

The remote console of the IR8340 can be accessed through Telnet or SSH. Telnet is disabled by default, and the more secure SSH should be used. For details on SSH access see the SSH chapter.

The following topics describe the procedure to access the CLI from a remote console:

Preparing to Connect to the Router Console

See the Cisco IOS-XE Device hardening guide at https://www.cisco.com/c/en/us/support/docs/ip/access-lists/ 13608-21.html for details.

Configuring the diagnostic and wait banners is optional, but recommended. The banners are especially useful as indicators to users about the status of their Telnet or SSH attempts.

To access the router remotely using Telnet from a TCP/IP network, configure the router to support virtual terminal lines using the **line vty** global configuration command. Configure the virtual terminal lines to require users to log in and specify a password.

See the Cisco IOS Terminal Services Command Reference document for more information about the line **vty global** configuration command.

To prevent disabling login on a line, specify a password with the **password** command when you configure the **login** command.

If you are using authentication, authorization, and accounting (AAA), configure the **login authentication** command. To prevent disabling login on a line for AAA authentication when you configure a list with the login authentication command, you must also configure that list using the **aaa authentication login** global configuration command.

For more information about AAA services, see the Cisco IOS XE Security Configuration Guide: Secure Connectivity and the Cisco IOS Security Command Reference documents. For more information about the **login line-configuration** command, see the Cisco IOS Terminal Services Command Reference document.

In addition, before you make a Telnet connection to the router, you must have a valid hostname for the router or have an IP address configured on the router. For more information about the requirements for connecting to the router using Telnet, information about customizing your Telnet services, and using Telnet key sequences, see the Cisco IOS Configuration Fundamentals Configuration Guide.

Setting Up the IR8340 to Run SSH

Follow the procedure given below to set up your device to run SSH:

Before you begin

Configure user authentication for local or remote access. This step is required.

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 2	hostname hostname	Configures a hostname and IP domain name for your device.	
	Example:		
	Router(config)# hostname your_hostname	Note Follow this procedure only if you are configuring the device as an SSH server.	
Step 3	ip domain-name domain_name	Configures a host domain for your device.	
	Example:		
	Router(config)# ip domain-name your_domain_name		
Step 4	crypto key generate rsa modulus size	Enables the SSH server for local and remote	
	Example:	authentication on the device and generates an RSA key pair. Generating an RSA key pair for	
	Router(config)# crypto key generate rsa modulus 2048		
	modulus 2046	We recommend that a minimum modulus size of 2048 bits.	
		When you generate RSA keys, you are prompted to enter a modulus length. A longer modulus length might be more secure, but it takes longer to generate and to use.	
		Note Follow this procedure only if you are configuring the device as an SSH server.	

	Command or Action	Purpose
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Using Telnet to Access a Console Interface

Procedure

Step 1 From your terminal or PC, enter one of the following commands:

- connect host [port] [keyword]
- telnet host [port] [keyword]

Here, *host* is the router hostname or IP address, *port* is a decimal port number (23 is the default), and *keyword* is a supported keyword. For more information about these commands, see the Cisco IOS Terminal Services Command Reference document.

The following example shows how to use the **telnet** command to connect to a router named **router**:

```
unix_host% telnet router
Trying 172.20.52.40...
Connected to 172.20.52.40.
Escape character is '^]'.
unix host% connect
```

Step 2 Enter your login password:

```
User Access Verification
Password: mypassword
```

Note If no password has been configured, press **Return**.

Step 3 From user EXEC mode, enter the **enable** command:

Router> enable

- Step 4 At the password prompt, enter your system password: Password: enablepass
- **Step 5** When the **enable** password is accepted, the privileged EXEC mode prompt is displayed:

Router#

- **Step 6** You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.
- Step 7To exit the Telnet session, use the exit or logout command.Router# logout

CLI Session Management

An inactivity timeout is configurable and can be enforced. Session locking provides protection from two users overwriting changes that the other has made. To prevent an internal process from using all the available capacity, some spare capacity is reserved for CLI session access. For example, this allows a user to remotely access a router.

Information About CLI Session Management

An inactivity timeout is configurable and can be enforced. Session locking provides protection from two users overwriting changes that each other has made. To prevent an internal process from using all the available capacity, some spare capacity is reserved for CLI session access. For example, this allows a user to remotely access the router.

Changing the CLI Session Timeout

Procedure

Step 1	configure terminal
	Enters global configuration mode
Step 2	line console 0
Step 3	session-timeout minutes
	The value of <i>minutes</i> sets the amount of time that the CLI waits before timing out. Setting the CLI session timeout increases the security of a CLI session. Specify a value of 0 for <i>minutes</i> to disable session timeout.
Step 4	show line console 0 Verifies the value to which the session timeout has been set, which is shown as the value for "Idle Session".

Locking a CLI Session

Before you begin

To configure a temporary password on a CLI session, use the **lock** command in EXEC mode. Before you can use the **lock** command, you need to configure the line using the **lockable** command. In this example the line is configured as **lockable**, and then the **lock** command is used and a temporary password is assigned.

Procedure

Step 1 Router# configure terminal

Enters global configuration mode.

Step 2Enter the line upon which you want to be able to use the lock command.Router (config) # line console 0

Step 3 Router (config) # lockable Enables the line to be locked.

Step 4 Router(config) # exit

Step 5 Router# lock

The system prompts you for a password, which you must enter twice.

```
Password: <password>
Again: <password>
Locked
```

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit Cisco DevNet.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, which maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect information about your products and software.

Documentation Feedback

To provide feedback about Cisco technical documentation, use the feedback form available in the right pane of every online document.

Using Cisco IOS XE Software

- Understanding Command Modes, on page 13
- Keyboard Shortcuts, on page 15
- Using the no and default Forms of Commands, on page 15
- Using the History Buffer to Recall Commands, on page 16
- Managing Configuration Files, on page 16
- Saving Configuration Changes, on page 16
- Filtering Output from the show and more Commands, on page 17
- Finding Support Information for Platforms and Cisco Software Images, on page 18

Understanding Command Modes

The command modes available in Cisco IOS XE are the same as those available in traditional Cisco IOS. Use the CLI to access Cisco IOS XE software. Because the CLI is divided into many different modes, the commands available to you at any given time depend on the mode that you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, you must enter privileged EXEC mode, normally by using a password. From privileged EXEC mode, you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, **show** commands show important status information, and **clear** commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

ROM monitor mode is a separate mode used when the Cisco IOS XE software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode.

The following table describes how to access and exit various common command modes of the Cisco IOS XE software. It also shows examples of the prompts displayed for each mode.

Command Mode	Access Method	Prompt	Exit Method
User EXEC	Log in.	Router>	Use the logout command.
Privileged EXEC	From user EXEC mode, use the enable command.	Router#	To return to user EXEC mode, use the disable command.
Global configuration	From privileged EXEC mode, use the configure terminal command.	Router(config)#	To return to privileged EXEC mode from global configuration mode, use the exit or end command.
Interface configuration	From global configuration mode, specify an interface using an interface command.	Router(config-if)#	To return to global configuration mode, use the exit command.
	command.		To return to privileged EXEC mode, use the end command.
Diagnostic	 The router boots up or accesses diagnostic mode in the following scenarios: In some cases, diagnostic mode will be reached when the Cisco IOS process or processes fail. In most scenarios, however, the router will reload. A user-configured access policy is configured using the transport-map command that directs a user into diagnostic mode. 	Router(diag)#	If failure of the Cisco IOS process is the reason for entering diagnostic mode, the Cisco IOS problem must be resolved and the router rebooted to get out of diagnostic mode. If the router is in diagnostic mode because of a transport-map configuration, access the router through another port or by using a method that is configured to connect to the Cisco IOS CLI.
	• A break signal (Ctrl-C, Ctrl-Shift-6, or the send break command) is entered and the router is configured to go to diagnostic mode when the break signal is received.		

Table 1: Accessing and Exiting Command Modes

Command Mode	Access Method	Prompt	Exit Method
ROM monitor	From privileged EXEC mode, use the reload EXEC command. Press the Break key during the first 60 seconds while the system is booting.	rommon#>	To exit ROM monitor mode, manually boot a valid image or perform a reset with autoboot set so that a valid image is loaded.

Keyboard Shortcuts

Commands are not case sensitive. You can abbreviate commands and parameters if the abbreviations contain enough letters to be different from any other currently available commands or parameters.

The following table lists the keyboard shortcuts for entering and editing commands.

Key Name	Purpose
Ctrl-B or the Left Arrow key	Move the cursor back one character.
Ctrl-F or the Right Arrow key	Move the cursor forward one character.
Ctrl-A	Move the cursor to the beginning of the command line.
Ctrl-E	Move the cursor to the end of the command line.
Esc B	Move the cursor back one word.
Esc F	Move the cursor forward one word.

Using the no and default Forms of Commands

Almost every configuration command has a **no** form. In general, use the **no** form to disable a function. Use the command without the **no** keyword to re-enable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the **no ip routing** command; to re-enable IP routing, use the **ip routing** command. The Cisco IOS software command reference publications provide the complete syntax for the configuration commands and describe what the **no** form of a command does.

Many CLI commands also have a **default** form. By issuing the *<command>* **default** command-name, you can configure the command to its default setting. The Cisco IOS software command reference publications describe the function from a **default** form of the command when the **default** form performs a different function than the plain and **no** forms of the command. To see what default commands are available on your system, enter **default** ? in the appropriate command mode.

Using the History Buffer to Recall Commands

The history buffer stores the last 20 commands you entered. History substitution allows you to access these commands without retyping them, by using special abbreviated commands.

The following table lists the history substitution commands.

Table 3: History Substitution Commands

Command	Purpose
Ctrl-P or the Up Arrow key ¹	Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.
Ctrl-N or the Down Arrow key ¹	Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the Up Arrow key.
Router# show history	While in EXEC mode, lists the last few commands you entered.

¹ The arrow keys function only on ANSI-compatible terminals such as VT100s.

Managing Configuration Files

The startup configuration file is stored in the nvram: file system and the running configuration files are stored in the system: file system. This configuration file storage setup is also used on several other Cisco router platforms.

IOS XE provides encryption of the configuration file. Encryption is discussed in length in the IOS XE hardening device guide which can be found here:https://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html

As a matter of routine maintenance on any Cisco router, users should back up the startup configuration file by copying the startup configuration file from NVRAM to one of the router's other file systems and, additionally, to a network server. Backing up the startup configuration file provides an easy method of recovering the startup configuration file if the startup configuration file in NVRAM becomes unusable for any reason.

The copy command can be used to back up startup configuration files.

For more detailed information on managing configuration files, see the "Managing Configuration Files" section in the Cisco IOS XE Configuration Fundamentals Configuration Guide.

Saving Configuration Changes

Use the **copy running-config startup-config** command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloads or a power outage occurs. For example:

```
Router# copy running-config startup-config
Destination filename [startup-config]?
```


Note It may take a few minutes to save the configuration.

This task saves the configuration to the NVRAM.

Filtering Output from the show and more Commands

You can search and filter the output of **show** and **more** commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a **show** or **more** command followed by the "pipe" character (|); one of the keywords **begin**, **include**, or **exclude**; and a regular expression on which you want to search or filter (the expression is case sensitive):

show command | {append | begin | exclude | include | redirect | section | tee} regular-expression

The output matches certain lines of information in the configuration file.

Example

In this example, a modifier of the **show interface** command (**include protocol**) is used to provide only the output lines in which the expression **protocol** is displayed:

```
Router# show interface | include protocol
GigabitEthernet0/0/0 is up, line protocol is up
1401 unknown protocol drops
GigabitEthernet0/0/1 is up, line protocol is up
3073 unknown protocol drops
WPAN0/1/0 is up, line protocol is up
0 unknown protocol drops
Cellular0/4/0 is up, line protocol is up
0 unknown protocol drops
Cellular0/4/1 is up (spoofing), line protocol is up (spoofing)
0 unknown protocol drops
Cellular0/5/0 is up, line protocol is up
0 unknown protocol drops
Cellular0/5/1 is down, line protocol is down
0 unknown protocol drops
Loopback1 is up, line protocol is up
0 unknown protocol drops
Tunnell is up, line protocol is up
Tunnel protocol/transport GRE/IP
0 unknown protocol drops
Tunnel2 is up, line protocol is up
Tunnel protocol/transport GRE/IP
0 unknown protocol drops
VirtualPortGroup1 is up, line protocol is up
0 unknown protocol drops
```

Finding Support Information for Platforms and Cisco Software Images

The Cisco IOS XE software is packaged in feature sets consisting of software images that support specific platforms.

All of the Cisco IOS-XE configuration guides can be found here: https://www.cisco.com/c/en/us/support/ ios-nx-os-software/ios-xe-17/series.html

The group of feature sets that are available for a specific platform depends on which Cisco software images are included in a release. To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS XE software image, you can use Cisco Feature Navigator or see the https://www.cisco.com/c/en/us/support/ios-nx-os-software/ios-xe-17/series.html.

Using Cisco Feature Navigator

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator is a tool that enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To use the navigator tool, an account on Cisco.com is not required.

Getting Help

Entering a question mark (?) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help that is specific to a command mode, a command, a keyword, or an argument, use one of the following commands.

Command	Purpose
help	Provides a brief description of the help system in any command mode.
abbreviated-command-entry?	Provides a list of commands that begin with a particular character string.
	Note There is no space between the command and the question mark.
abbreviated-command-entry <tab> Completes a partial command name.</tab>	
?	Lists all the commands that are available for a particular command mode.
command ?	Lists the keywords or arguments that you must enter next on the command line.
	Note There is a space between the command and the question mark.

Finding Command Options: Example

This section provides information about how to display the syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (?) at the configuration prompt or after entering a part of a command followed by a space. The Cisco IOS XE software displays a list and brief descriptions of the available keywords and arguments. For example, if you are in global configuration mode and want to see all the keywords and arguments for the **arap** command, you should type **arap** ?.

The <cr> symbol in command help output stands for carriage return. On older keyboards, the carriage return key is the **Return** key. On most modern keyboards, the carriage return key is the **Enter** key. The <cr> symbol at the end of command help output indicates that you have the option to press **Enter** to complete the command and that the arguments and keywords in the list preceding the <cr> symbol are optional. The <cr> symbol by itself indicates that no more arguments or keywords are available, and that you must press **Enter** to complete the complete the command.

The following table shows examples of using the question mark (?) to assist you in entering commands.

Command	Comment
Router> enable Password: <password> Router#</password>	Enter the enable command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to a "#" from the ">", for example, Router> to Router#
Router# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)#	Enter the configure terminal privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to Router (config)#
Router(config)# interface GigabitEthernet ? <0-0> GigabitEthernet interface number	Enter interface configuration mode by specifying the interface that you want to configure, using the
Router(config)# interface GigabitEthernet 0/? <0-0> Port Adapter number	interface GigabitEthernet global configuration command.
Router (config) # interface GigabitEthernet 0/0/? <0-1> GigabitEthernet interface number	Enter ? to display what you must enter next on the command line.
Router (config)# interface GigabitEthernet 0/0/0?	When the <cr> symbol is displayed, you can press Enter to complete the command.</cr>
<0-1> Router(config-if)#	You are in interface configuration mode when the prompt changes to Router (config-if) #

Table 4: Finding Command Options

Command		Comment
Router(config-if)#	?	Enter ? to display a list of all the interface
Interface configura	tion commands:	configuration commands available for the interface.
		This example shows only some of the available
		interface configuration commands.
ip	Interface Internet	
Protocol		
	config commands	
keepalive	Enable keepalive	
lan-name	LAN Name command	
11c2	LLC2 Interface Subcommands	
load-interval	Specify interval for load	
calculation		
	for an interface	
locaddr-priority	Assign a priority group	
logging	Configure logging for	
interface		
loopback	Configure internal	
loopback on an		
	interface	
mac-address	Manually set interface	
MAC address		
mls	mls router sub/interface	
commands		
mpoa	MPOA interface	
configuration comma		
mtu	Set the interface	
	Maximum Transmission Unit	
(MTU)		
netbios	Use a defined NETBIOS	
access list		
	or enable	
	name-caching	
no	Negate a command or set	
its defaults		
nrzi-encoding	Enable use of NRZI	
encoding		
ntp	Configure NTP	
Router(config-if)#		

I

Command	Comment
	Enter the command that you want to configure for the interface. This example uses the ip command.
	Enter ? to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.

I

Command	Comment
Router(config-if)# ip ?	
Interface IP configuration subcommands:	
access-group Specify access control for packets	
address Set the IP address of an interface	
admission Apply Network Admission Control	
auth-proxy Apply authenticaton proxy	
authentication authentication subcommands	
bandwidth-percent Set EIGRP bandwidth limit	
bgp BGP interface commands	
broadcast-address Set the broadcast address of	
an interface	
cef Cisco Express Forwarding interface commands	
cgmp Enable/disable CGMP	
clear-dont-fragment Enable clear dont fragment	
(Currently Only SDWAN	
Tunnel Interface)	
dampening-change Percent interface metric must	
change to cause update	
dampening-interval Time in seconds to check	
interface metrics	
ddns Configure dynamic DNS	
dhcp Configure DHCP parameters for this	
interface	
directed-broadcast Enable forwarding of directed	
broadcasts	
dlep DLEP interface commands	
dns Configure DNS server	
flow NetFlow related commands	
flowspec FlowSpec configuration	
header-compression IPHC options	
hello-interval Configures EIGRP-IPv4 hello	
interval	
helper-address Specify a destination address	
for UDP broadcasts	
hold-time Configures EIGRP-IPv4 hold time	
igmp IGMP interface commands information-reply Enable sending ICMP	
Information Reply messages	
irdp ICMP Router Discovery Protocol	
load-sharing Style of load sharing	
local-proxy-arp Enable local-proxy ARP	
mask-reply Enable sending ICMP Mask Reply	
messages	
mfib Interface Specific MFIB Control	
mrm Configure IP Multicast Routing Monitor	
tester	
mroute-cache Enable switching cache for incoming	
multicast packets	
mtu Set IP Maximum Transmission Unit	
multicast IP multicast interface commands	
mux Enable IP multiplexing for outgoing packets	
nat NAT interface commands	
nbar Network-Based Application Recognition	
network-broadcast Accept and respond to	
network-prefix-directed	
broadcasts	
next-hop-self Configures EIGRP-IPv4	
next-hop-self	
ospf OSPF interface commands	
pim PIM interface commands	
policy Enable policy routing	
portbundle IP Portbundle configuration	

I

Command	Comment
probe Enable HP Probe support proxy-arp Enable proxy ARP rarp-server Enable RARP server for static arp entries reassembly Reassembly redirects Enable sending ICMP Redirect messages rgmp Enable/disable RGMP rip Router Information Protocol route-cache Enable fast-switching cache for outgoing packets router IP router interface commands rsvp RSVP Interface Commands rtp RTP parameters sap Session Advertisement Protocol interface commands sdr Session Directory Protocol interface commands security DDN IP Security Option service IP service split-horizon Perform split horizon sticky-arp Allow the creation of sticky ARP entries subscriber IP session configuration options summary-address Perform address summarization tcp TCP interface commands topology-accounting Enable accounting for IP on all topologies of	
Router(config-if)# ip Router(config-if)# ip address ? A.B.C.D IP address dhcp IP Address negotiated via DHCP pool IP Address autoconfigured from a local	Enter the command that you want to configure for the interface. This example uses the ip address command.
DHCP pool Router(config-if)# ip address	Enter ? to display what you must enter next on the command line.
	A carriage return (<cr>) is not displayed. Therefore, you must enter additional keywords or arguments to complete the command.</cr>
Router(config-if)# ip address 172.16.0.1 ? A.B.C.D IP subnet mask Router(config-if)# ip address 172.16.0.1	Enter the keyword or argument that you want to use. This example uses the 172.16.0.1 IP address.
Added (config if) - P duress i/2.iv.v.i	Enter ? to display what you must enter next on the command line. In this example, you must enter an IP subnet mask.
	<cr> is not displayed. Therefore, you must enter additional keywords or arguments to complete the command.</cr>

Command	Comment
Router(config-if)# ip address 172.16.0.1 255.255.255.0 ? secondary Make this IP address secondary address <cr> Router(config-if)# ip address 172.16.0.1 255.255.255.0</cr>	 Enter the IP subnet mask. This example uses the 255.255.255.0 IP subnet mask. Enter ? to display what you must enter next on the command line. In this example, you can enter the secondary keyword, or you can press Enter. <cr> is displayed. Press Enter to complete the command, or enter another keyword. </cr>
Router(config-if)# ip address 172.16.0.1 255.255.255.0 Router(config-if)#	Press Enter to complete the command.

Using Software Advisor

Cisco maintains the Software Advisor tool. See Tools and Resources. Use the Software Advisor tool to see if a feature is supported in a Cisco IOS XE release, to locate the software document for that feature, or to check the minimum software requirements of Cisco IOS XE software with the hardware installed on your router. You must be a registered user on Cisco.com to access this tool.

Using Software Release Notes

See the release notes for information about the following:

• Open and resolved severity 1 and 2 caveats

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases. For cumulative feature information, refer to the Cisco Feature Navigator at: http://www.cisco.com/go/cfn/.

Basic Router Configuration

This chapter contains the following sections:

- IR8340 Interface Naming, on page 25
- Basic Configuration, on page 26
- Configuring Global Parameters, on page 31
- Configuring the Gigabit Ethernet Interface, on page 32
- Support for sub-interface on GigabitEthernet0/0/0, on page 33
- Configuring a Loopback Interface, on page 33
- Configuring CPU Allocation, on page 34
- Enabling Cisco Discovery Protocol, on page 35
- Configuring Command-Line Access, on page 35
- Configuring Static Routes, on page 37
- Configuring Dynamic Routes, on page 39
- Modular QoS (MQC), on page 40

IR8340 Interface Naming

The supported hardware interfaces and their naming conventions are in the following table:

Hardware Interface	Naming Convention
Gigabit Ethernet WAN ports	GigabitEthernet0/0/0
	GigabitEthernet0/0/1

Hardware Interface	Naming Convention
Gigabit Ethernet LAN ports	GigabitEthernet0/1/0
	GigabitEthernet0/1/1
	GigabitEthernet0/1/2
	GigabitEthernet0/1/3
	GigabitEthernet0/1/4
	GigabitEthernet0/1/5
	GigabitEthernet0/1/6
	GigabitEthernet0/1/7
	GigabitEthernet0/1/8
	GigabitEthernet0/1/9
	GigabitEthernet0/1/10
	GigabitEthernet0/1/11
NIM Interface	0/2/0
	0/2/1
	0/3/0
	0/3/1
Cellular Interface	cellular 0/4/0
	cellular 0/4/1
	cellular 0/5/0
	cellular 0/5/1
mSATA SSD	msata
GPIO (External Alarm Interface)	alarm contact 1-2

Basic Configuration

The basic configuration is a result of the entries you made during the initial configuration dialog. This means the router has at least one interface set with an IP address to be reachable, either through WebUI or to allow the PnP process to work. Use the **show running-config** command to view the initial configuration, as shown in the following example:

```
IR8340#show running-config
Building configuration...
Current configuration : 6937 bytes
!
! Last configuration change at 17:35:35 UTC Wed Mar 23 2022
!
version 17.8
```

```
service timestamps debug datetime msec
service timestamps log datetime msec
! Call-home is enabled by Smart-Licensing.
service call-home
platform qfp utilization monitor load 80
platform punt-keepalive disable-kernel-core
hostname Sumatra-DUT
!
boot-start-marker
boot system flash
0081684787552360 ir8340-universalk9.BLD V178 THROTTLE LATEST 20220321 143500 V17 8 0 65.SSA.bin
boot-end-marker
!
1
! card type command needed for slot/bay 0/3
no aaa new-model
1
!
Т
1
!
T
1
1
login on-success log
1
1
!
1
1
1
1
subscriber templating
1
1
1
1
vtp mode transparent
!
multilink bundle-name authenticated
!
1
1
Т
1
1
crypto pki trustpoint TP-self-signed-829458546
enrollment selfsigned
 subject-name cn=IOS-Self-Signed-Certificate-829458546
 revocation-check none
rsakeypair TP-self-signed-829458546
!
crypto pki trustpoint SLA-TrustPoint
enrollment pkcs12
 revocation-check crl
Т
!
crypto pki certificate chain TP-self-signed-829458546
```

certificate self-signed 01

3082032E 30820216 A0030201 02020101 300D0609 2A864886 F70D0101 05050030 30312E30 2C060355 04031325 494F532D 53656C66 2D536967 6E65642D 43657274 69666963 6174652D 38323934 35383534 36301E17 0D323230 33323331 37333433 395A170D 33323033 32323137 33343339 5A303031 2E302C06 03550403 1325494F 532D5365 6C662D53 69676E65 642D4365 72746966 69636174 652D3832 39343538 35343630 82012230 0D06092A 864886F7 0D010101 05000382 010F0030 82010A02 82010100 90B8DF91 C27E2942 0C342B4E 5C7A03C5 91E9ACE7 C29E8D1B 291B8799 3C468901 6B4DA7E9 E4480CC0 B4C2E1D9 918BBDB9 26EB7EE4 E3D7F76B 42FD0642 D29E33DA 01ECAE68 2A7254DE 32163A82 959C75B7 DAA84B34 670B7CA3 F94B0803 A9B11490 A350030D 5DD8178F 1579E30B 8D0B079A 090917F3 60031B68 F961A0CE 9E958239 973E6B08 3D293F10 38136F15 83D8C801 A58D71E4 3CC128AE 8B9BF214 AA4B09E2 CB9841E3 0F455D66 504F89E9 F6B70AC7 1B2C3C48 5ED5679C 121A5415 198D7D0D 0AE444E1 76309174 67FF66E6 BBAFA506 EE10C77D EDD89004 BE72EC05 F960AAC0 F7DD0A3E 7769C277 3529B0CC 06788C4C B0A82D51 F8A74DAB 997D6716 3F0F694B 02030100 01A35330 51300F06 03551D13 0101FF04 05300301 01FF301F 0603551D 23041830 16801439 96B67C33 D1666886C 2C7A99C0 698D085E B69B0C30 1D060355 1D0E0416 04143996 B67C33D1 66686C2C 7A99C069 8D085EB6 9B0C300D 06092A86 4886F70D 01010505 00038201 01008D8D 7BED46B9 4DDF60D3 01BE178A D4B97142 9BF6991E 70693302 878693DE 5C39373B FE6D2D77 3B353F2C 21707C5F 67C99A51 E07D5FF6 B59FCDF1 EC6751B0 8DB7ED72 FAD9AED5 7D7F7895 9DA6FAD5 72304A73 869F4013 1559F607 7F8303E2 8E8F1011 525BC32B A32EF28A 7EC811C2 45268BC9 225B65AB 94998717 0BFC0F4F C772233D 7B6635DB AA554FB4 67EC7F7B 258BDD81 855B64A5 6236CE38 58B795D7 FD5096BE 8DA304CF 987450BE 4AD62994 CCC2D3FB 540A8BA5 A8CE6109 4DAB37C4 A692F2C9 02B653F8 7B539BC1 5B338E26 A71F8C43 192521BD F10401D8 0E23D095 1C943214 A01B9E48 40299F2C 35183755 26956737 8CF47405 E7757043 80AA8C93 8B41 quit crypto pki certificate chain SLA-TrustPoint certificate ca 01 30820321 30820209 A0030201 02020101 300D0609 2A864886 F70D0101 0B050030 32310E30 0C060355 040A1305 43697363 6F312030 1E060355 04031317 43697363 6F204C69 63656E73 696E6720 526F6F74 20434130 1E170D31 33303533 30313934 3834375A 170D3338 30353330 31393438 34375A30 32310E30 0C060355 040A1305 43697363 6F312030 1E060355 04031317 43697363 6F204C69 63656E73 696E6720 526F6F74 20434130 82012230 0D06092A 864886F7 0D010101 05000382 010F0030 82010A02 82010100 A6BCBD96 131E05F7 145EA72C 2CD686E6 17222EA1 F1EFF64D CBB4C798 212AA147 C655D8D7 9471380D 8711441E 1AAF071A 9CAE6388 8A38E520 1C394D78 462EF239 C659F715 B98C0A59 5BBB5CBD 0CFEBEA3 700A8BF7 D8F256EE 4AA4E80D DB6FD1C9 60B1FD18 FFC69C96 6FA68957 A2617DE7 104FDC5F EA2956AC 7390A3EB 2B5436AD C847A2C5 DAB553EB 69A9A535 58E9F3E3 C0BD23CF 58BD7188 68E69491 20F320E7 948E71D7 AE3BCC84 F10684C7 4BC8E00F 539BA42B 42C68BB7 C7479096 B4CB2D62 EA2F505D C7B062A4 6811D95B E8250FC4 5D5D5FB8 8F27D191 C55F0D76 61F9A4CD 3D992327 A8BB03BD 4E6D7069 7CBADF8B DF5F4368 95135E44 DFC7C6CF 04DD7FD1 02030100 01A34230 40300E06 03551D0F 0101FF04 04030201 06300F06 03551D13 0101FF04 05300301 01FF301D 0603551D 0E041604 1449DC85 4B3D31E5 1B3E6A17 606AF333 3D3B4C73 E8300D06 092A8648 86F70D01 010B0500 03820101 00507F24 D3932A66 86025D9F E838AE5C 6D4DF6B0 49631C78 240DA905 604EDCDE FF4FED2B 77FC460E CD636FDB DD44681E 3A5673AB 9093D3B1 6C9E3D8B D98987BF E40CBD9E 1AECA0C2 2189BB5C 8FA85686 CD98B646 5575B146 8DFC66A8 467A3DF4 4D565700 6ADF0F0D CF835015 3C04FF7C 21E878AC 11BA9CD2 55A9232C 7CA7B7E6 C1AF74F6 152E99B7 B1FCF9BB E973DE7F 5BDDEB86 C71E3B49 1765308B 5FB0DA06 B92AFE7F 494E8A9E 07B85737 F3A58BE1 1A48A229 C37C1E69 39F08678 80DDCD16 D6BACECA EEBC7CF9 8428787B 35202CDC 60E4616A B623CDBD 230E3AFB 418616A9 4093E049 4D10AB75 27E86F73 932E35B5 8862FDAE 0275156F 719BB2F0 D697DF7F 28 quit no license feature hseck9 license udi pid IR8340-K9 sn FD02523J7GF memory free low-watermark processor 63132 diagnostic bootup level minimal

ļ

L

! spanning-tree mode rapid-pvst spanning-tree extend system-id no power main redundant 1 ! Т ! redundancy mode none ! 1 1 1 controller Cellular 0/4/0 1 controller Cellular 0/5/0 1 1 vlan internal allocation policy ascending 1 ! 1 1 1 1 1 ! ! 1 ! ! 1 ! 1 1 interface GigabitEthernet0/0/0 no ip address shutdown negotiation auto ! interface GigabitEthernet0/0/1 no ip address shutdown negotiation auto 1 interface GigabitEthernet0/1/0 1 interface GigabitEthernet0/1/1 ! interface GigabitEthernet0/1/2 ! interface GigabitEthernet0/1/3 1 interface GigabitEthernet0/1/4 ! interface GigabitEthernet0/1/5 ! interface GigabitEthernet0/1/6 ! interface GigabitEthernet0/1/7

L interface GigabitEthernet0/1/8 ! interface GigabitEthernet0/1/9 ! interface GigabitEthernet0/1/10 I interface GigabitEthernet0/1/11 interface Serial0/2/0 ! interface Serial0/2/1 1 interface Serial0/2/2 T. interface Serial0/2/3 1 interface Serial0/2/4 1 interface Serial0/2/5 1 interface Serial0/2/6 1 interface Serial0/2/7 ! interface Cellular0/4/0 no ip address shutdown interface Cellular0/4/1 no ip address shutdown 1 interface Cellular0/5/0 no ip address shutdown 1 interface Cellular0/5/1 no ip address shutdown ! interface Vlan1 no ip address ! ip http server ip http authentication local ip http secure-server ip forward-protocol nd 1 control-plane line con 0 stopbits 1

line aux O

```
line vty 0 4
login
transport input ssh
line vty 5 14
login
transport input ssh
Т
call-home
! If contact email address in call-home is configured as sch-smart-licensing@cisco.com
 ! the email address configured in Cisco Smart License Portal will be used as contact email
address to send SCH notifications.
 contact-email-addr sch-smart-licensing@cisco.com
profile "CiscoTAC-1"
 active
 destination transport-method http
!
!
1
!
!
1
end
```

Configuring Global Parameters

To configure global parameters for your router, follow these steps.

	Command or Action	Purpose
Step 1	configure terminal Example:	Enters global configuration mode when using the console port. Use the following to connect to the router with
	Router> enable Router# configure terminal Router(config)#	a remote terminal: telnet router-name or address Login: login-id Password: ******** Router> enable
Step 2	hostname name Example: Router(config)# hostname Router	Specifies the name for the router.
Step 3	enable secret password or enable password password Example: Router(config)# enable secret password	Specifies a password to prevent unauthorized access to the router.

Configuring the Gigabit Ethernet Interface

The router features two Gigabit Ethernet (GE) ports that can be used to enable WAN uplink connectivity:

- Two GigE Copper port (RJ45) on the midplane board. It supports standard 3-speed (10/100/1000) Ethernet features including auto-MDIX.
- Two SFP socket. It supports standard 1000Base-X or 100Base-FX Ethernet over single-mode or multi-mode fiber.

Note These ports are combo mode. Either copper or SFP can be used distinctly, but not at the same time for each interface.

To configure the Gigabit Ethernet interface, follow these steps:

	Command or Action	Purpose
Step 1	configure terminal	
Step 2	<pre>ipv6 unicast-routing Example: Router(config)# ipv6 unicast-routing</pre>	Enables forwarding of IPv6 unicast data packets.
Step 3	interface GigabitEthernet slot/bay/port Example: Router(config)# interface GigabitEthernet 0/0/0	Enters the configuration mode for an interface on the router.
Step 4	<pre>ip address ip-address mask Example: Router(config-if)# ip address 192.168.12.2 255.255.255.0</pre>	Sets the IP address and subnet mask for the specified interface. Use this Step if you are configuring an IPv4 address.
Step 5	<pre>ipv6 address ipv6-address/prefix Example: Router(config-if)# ipv6 address 2001.db8::ffff:1/128</pre>	Sets the IPv6 address and prefix for the specified interface. Use this step instead of Step 2, if you are configuring an IPv6 address. IPv6 unicast-routing needs to be set-up as well, see further information in the IPv6 Addressing and Basic Connectivity Configuration Guide.
Step 6	no shutdown Example: Router(config-if)# no shutdown	Enables the interface and changes its state from administratively down to administratively up.

	Command or Action	Purpose
Step 7	exit	Exits the configuration mode of interface and
	Example:	returns to the global configuration mode.
	Router(config-if)# exit	

Support for sub-interface on GigabitEthernet0/0/0

Cisco IOS XE supports sub-interfaces and dot1q configuration on the g0/0/0 interface. For example:

```
Router(config)#interface g0/0/0.?
<1-4294967295> GigabitEthernet interface number
Router(config-subif)#encapsulation ?
dotlQ IEEE 802.1Q Virtual LAN
```

Configuring a Loopback Interface

Before you begin

The loopback interface acts as a placeholder for the static IP address and provides default routing information. To configure a loopback interface, follow these steps.

	Command or Action	Purpose
Step 1	configure terminal	
Step 2 interface type number	Enters configuration mode on the loopback	
	Example:	interface.
	Router(config)# interface Loopback 0	
Step 3	(Option 1) ip address <i>ip-address mask</i>	Sets the IP address and subnet mask on the
Example:	Example:	loopback interface. (If you are configuring an IPv6 address, use the ipv6 address
	Router(config-if)# ip address 192.0.2.0 255.255.0.0	<i>ipv6-address/prefix</i> command described below.
Step 4	(Option 2) ipv6 address <i>ipv6-address/prefix</i>	Sets the IPv6 address and prefix on the loopback
	Example:	interface.
	<pre>Router(config-if)# ipv6 address 2001:db8::ffff:1/128</pre>	

	Command or Action	Purpose
Step 5	exit	Exits configuration mode for the loopback
	Example:	interface and returns to global configuration mode.
	Router(config-if)# exit	

Example

Verifying Loopback Interface Configuration

Enter the **show interface loopback** command. You should see an output similar to the following example:

```
Router# show interface loopback 0
Loopback0 is up, line protocol is up
  Hardware is Loopback
  Internet address is 192.0.2.0/16
  MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation LOOPBACK, loopback not set
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/0, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

Alternatively, use the **ping** command to verify the loopback interface, as shown in the following example:

```
Router# ping 192.0.2.0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.0.2.0, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

Configuring CPU Allocation

You can change allocation of the available 8 cores of the IR8340 router to different functions in a flexible way. The core allocation is based on the customer configuration of the different services.

From Cisco IOS XE Release 17.9 onwards, you can use the **platform resource** {control-plane-heavy|data-plane-heavy|service-plane-heavy} command to adjust the cores across control plane, service plane, and data plane. However, you have to save the configuration and reboot the device for the configured profile to take effect.

```
Router#configure terminal
Router#platform resource ?
control-plane-heavy Use Control Plane Heavy template
data-plane-heavy Use Data Plane Heavy template
service-plane-heavy Use Service Plane Heavy template
```

The following show command output shows the default CPU cores allocation:

Router#show platform software cpu alloc

```
CPU alloc information:
Control plane cpu alloc: 0
Data plane cpu alloc: 4-7
Service plane cpu alloc: 1-3
Slow control plane cpu alloc: 1-3
Template used: default-service_plane_heavy
```

The following show command output shows the CPU cores allocaiton for the service plane:

```
Router#show platform software cpu alloc
CPU alloc information:
Control plane cpu alloc: 0
Data plane cpu alloc: 4-7
Service plane cpu alloc: 1-3
Slow control plane cpu alloc: 1-3
Template used: CLI-service_plane_heavy
```

The following show command output shows the CPU cores allocaiton for the control plane:

```
Router#show platform software cpu alloc
CPU alloc information:
Control plane cpu alloc: 0
Data plane cpu alloc: 4-7
Service plane cpu alloc: 2-3
Slow control plane cpu alloc: 1-3
Template used: CLI-control_plane_heavy
```

The following show command output shows the CPU cores allocaiton for the data plane:

```
Router#show platform software cpu alloc
CPU alloc information:
Control plane cpu alloc: 0
Data plane cpu alloc: 2-7
Service plane cpu alloc: 1
Slow control plane cpu alloc: 1-2
Template used: CLI-data_plane_heavy
```

Enabling Cisco Discovery Protocol

Cisco Discovery Protocol (CDP) is enabled by default on the router. It may be disabled if needed for security purposes.

For more information on using CDP, see Cisco Discovery Protocol Configuration Guide, Cisco IOS XE Release 3S.

Configuring Command-Line Access

To configure parameters to control access to the router, follow these steps.

Note

Transport input must be set as explained in the previous Telnet and SSH sections of the guide.

Procedure

	Command or Action	Purpose
Step 1	line [aux console tty vty] line-number Example: Router(config)# line console 0	Enters line configuration mode, and specifies the type of line. The example provided here specifies a console terminal for access.
Step 2	<pre>password password Example: Router(config-line)# password userpass</pre>	Specifies a unique password for the console terminal line.
Step 3	login Example: Router(config-line)# login	Enables password checking at terminal session login.
Step 4	<pre>exec-timeout minutes [seconds] Example: Router(config-line)# exec-timeout 5 30 Router(config-line)#</pre>	Sets the interval during which the EXEC command interpreter waits until user input is detected. The default is 10 minutes. Optionally, adds seconds to the interval value. The example provided here shows a timeout of 5 minutes and 30 seconds. Entering a timeout of 0 0 specifies never to time out.
Step 5	exit Example: Router(config-line)# exit	Exits line configuration mode to re-enter global configuration mode.
Step 6	<pre>line [aux console tty vty] line-number Example: Router(config)# line vty 0 4 Router(config-line)#</pre>	Specifies a virtual terminal for remote console access.
Step 7	end Example:	Exits line configuration mode, and returns to privileged EXEC mode.
	Router(config-line)# end	

Example

The following configuration shows the command-line access commands. Note that transport input none is the default, but if SSH is enabled this must be set to ssh.

You do not have to input the commands marked **default**. These commands appear automatically in the configuration file that is generated when you use the **show running-config** command.

```
.
line console 0
exec-timeout 10 0
password 4youreyesonly
login
transport input none (default)
stopbits 1 (default)
line vty 0 4
password secret
login
!
```

Configuring Static Routes

Static routes provide fixed routing paths through the network. They are manually configured on the router. If the network topology changes, the static route must be updated with a new route. Static routes are private routes unless they are redistributed by a routing protocol.

To configure static routes, follow these steps.

	Command or Action	Purpose
Step 1	(Option 1) ip route prefix mask {ip-address interface-type interface-number [ip-address]}	Specifies a static route for the IP packets. (If you are configuring an IPv6 address, use the ipv6 route command described below.)
	Example:	
	Router(config)# ip route 192.10.2.3 255.255.0.0 10.10.10.2	
Step 2	(Option 2) ipv6 route prefix/mask {ipv6-address interface-type interface-number [ipv6-address]} Example:	Specifies a static route for the IP packets. See additional information for IPv6 here: https://www.cisco.com/c/en/us/td/docs/ios-xml/ ios/ipv6_basic/configuration/xe-16-10/ ip6b-xe-16-10-book/read-me-first.html
	Router(config)# ipv6 route 2001:db8:2::/64 2001:db8:3::0	
Step 3	(Option 3) ip route vrf <i>vrf-name ip-address</i>	Configure IP router vrf.

	Command or Action	Purpose
Step 4	end	Exits global configuration mode and enters
	Example:	privileged EXEC mode.
	Router(config)# end	

In the following configuration example, the static route sends out all IP packets with a destination IP address of 192.168.1.0 and a subnet mask of 255.255.255.0 on the Gigabit Ethernet interface to another device with an IP address of 10.10.10.2. Specifically, the packets are sent to the configured layer 3 adjacent device.

You do not have to enter the command marked **default**. This command appears automatically in the configuration file generated when you use the **running-config** command.

! ip classless (**default**) ip route 2001:db8:2::/64 2001:db8:3::0

Verifying Configuration

To verify that you have configured static routing correctly, enter the **show ip route** command (or **show ipv6 route** command) and look for static routes marked with the letter S.

When you use an IPv4 address, you should see verification output similar to the following:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
10.00.0/24 is subnetted, 1 subnets
C 10.108.1.0 is directly connected, Loopback0
S* 0.0.0.0/0 is directly connected, GigabitEthernet0/0/0
When you use an IPv6 address, you should see verification output similar to the following:
```

```
Router# show ipv6 route
IPv6 Routing Table - default - 5 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
      B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
       I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
      EX - EIGRP external, ND - ND Default, NDp - ND Prefix, DCE -
Destination
      NDr - Redirect, O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1
       OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
      ls - LISP site, ld - LISP dyn-EID, a - Application
   2001:DB8:3::/64 [0/0]
С
      via GigabitEthernet0/0/2, directly connected
S
   2001:DB8:2::/64 [1/0]
      via 2001:DB8:3::1
```

Configuring Dynamic Routes

In dynamic routing, the network protocol adjusts the path automatically, based on network traffic or topology. Changes in dynamic routes are shared with other routers in the network.

All of the Cisco IOS-XE configuration guides can be found here: https://www.cisco.com/c/en/us/support/ ios-nx-os-software/ios-xe-17/series.html

Configuring Routing Information Protocol

To configure the RIP on a router, follow these steps.

Command or Action Purpose Step 1 router rip Enters router configuration mode, and enables RIP on the router. Example: Router (config) # router rip Step 2 version $\{1 \mid 2\}$ Specifies use of RIP version 1 or 2. Example: Router(config-router) # version 2 Step 3 network *ip-address* Specifies a list of networks on which RIP is to be applied, using the address of the network of Example: each directly connected network. Router(config-router) # network 192.168.1.1 Router(config-router) # network 10.10.7.1 Disables automatic summarization of subnet Step 4 no auto-summary routes into network-level routes. This allows Example: subprefix routing information to pass across classful network boundaries. Router(config-router) # no auto-summary Step 5 Exits router configuration mode, and enters end privileged EXEC mode. Example: Router(config-router)# end

Procedure

Example

Verifying Configuration

To verify that you have configured RIP correctly, enter the **show ip route** command and look for RIP routes marked with the letter R. You should see an output similar to the one shown in the following example:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/24 is subnetted, 1 subnets
C 10.108.1.0 is directly connected, Loopback0
R 3.0.0.0/8 [120/1] via 2.2.2.1, 00:00:02, Ethernet0/0/0
```

Configuring Enhanced Interior Gateway Routing Protocol

The Enhanced Interior Gateway Routing Protocol (EIGRP) is an enhanced version of the Interior Gateway Routing Protocol (IGRP) developed by Cisco. The convergence properties and the operating efficiency of EIGRP have improved substantially over IGRP, and IGRP is now obsolete.

The convergence technology of EIGRP is based on an algorithm called the Diffusing Update Algorithm (DUAL). The algorithm guarantees loop-free operation at every instant throughout a route computation and allows all devices involved in a topology change to synchronize. Devices that are not affected by topology changes are not involved in recomputations

Details on configuring Enhanced Interior Gateway Routing Protocol (EIGRP), are found in the following guide: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_eigrp/configuration/xe-16-10/ ire-xe-16-10-book/ire-enhanced-igrp.html

Modular QoS (MQC)

This section provides an overview of Modular QoS CLI (MQC), which is how all QoS features are configured on the IoT Integrated Services Router. MQC is a standardized approach to enabling QoS on Cisco routing and switching platforms.

Follow the procedures that are in the QoS Modular QoS Command-Line Interface Configuration Guide, Cisco IOS XE 17 guide.

Configuring Secure Shell

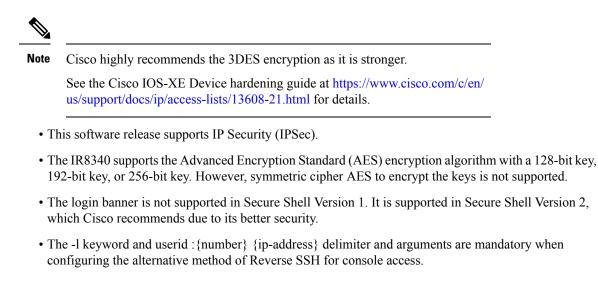
This section contains the following topics:

- Information About Secure Shell, on page 41
- How to Configure Secure Shell, on page 43
- Information about Secure Copy, on page 47
- Additional References, on page 49

Information About Secure Shell

Secure Shell (SSH) is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. This software release supports SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2).

Prerequisites for Configuring Secure Shell


The following are the prerequisites for configuring the device for secure shell (SSH):

- For SSH to work, the switch needs an RSA public/private key pair.
- The Secure Shell (SSH) server requires an IPsec (Data Encryption Standard [DES] or 3DES) encryption software image; the SSH client requires an IPsec (DES or 3DES) encryption software image.)
- Configure a hostname and host domain for your device by using the hostname and ip domain-name commands in global configuration mode. Use the **hostname** and **ip domain-name** commands in global configuration mode.

Restrictions for Configuring Secure Shell

The following are restrictions for configuring the IR8340 for secure shell.

- The router supports RSA authentication.
- SSH supports only the execution-shell application.
- The SSH server and the SSH client are supported only on Data Encryption Standard (DES) (56-bit) and 3DES (168-bit) data encryption software. In DES software images, DES is the only encryption algorithm available. In 3DES software images, both DES and 3DES encryption algorithms are available.

SSH And Router Access

Secure Shell (SSH) is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. This software release supports SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2). SSH functions the same in IPv6 as in IPv4. For IPv6, SSH supports IPv6 addresses and enables secure, encrypted connections with remote IPv6 nodes over an IPv6 transport.

SSH Servers, Integrated Clients, and Supported Versions

The Secure Shell (SSH) Integrated Client feature is an application that runs over the SSH protocol to provide device authentication and encryption. The SSH client enables a Cisco device to make a secure, encrypted connection to another Cisco device or to any other device running the SSH server. This connection provides functionality similar to that of an outbound Telnet connection except that the connection is encrypted. With authentication and encryption, the SSH client allows for secure communication over an unsecured network.

The SSH server and SSH integrated client are applications that run on the switch. The SSH server works with the SSH client supported in this release and with non-Cisco SSH clients. The SSH client works with publicly and commercially available SSH servers. The SSH client supports the ciphers of Data Encryption Standard (DES), 3DES, and password authentication.

Note The SSH client functionality is available only when the SSH server is enabled.

User authentication is performed like that in the Telnet session to the device. SSH also supports the following user authentication methods:

- TACACS+
- RADIUS
- · Local authentication and authorization

SSH Configuration Guidelines

Follow these guidelines when configuring the device as an SSH server or SSH client:

- An RSA key pair generated by a SSHv1 server can be used by an SSHv2 server, and the reverse.
- If you get CLI error messages after entering the **crypto key generate rsa** global configuration command, an RSA key pair has not been generated. Reconfigure the hostname and domain, and then enter the **crypto key generate rsa** command.
- When generating the RSA key pair, the message *No hostname specified* might appear. If it does, you must configure an IP hostname by using the **hostname** global configuration command.
- When generating the RSA key pair, the message No domain specified might appear. If it does, you must configure an IP domain name by using the **ip domain-name** global configuration command.
- When configuring the local authentication and authorization authentication method, make sure that AAA is disabled on the console.

How to Configure Secure Shell

Setting Up the IR8340 to Run SSH

Follow the procedure given below to set up your device to run SSH:

Before you begin

Configure user authentication for local or remote access. This step is required.

Procee	dure
--------	------

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example: Router# configure terminal		
Step 2	<pre>hostname hostname Example: Router(config)# hostname your_hostname</pre>	Configures a hostname and IP domain name for your device. Note Follow this procedure only if you are configuring the device as an SSH	
Step 3	ip domain-name <i>domain_name</i> Example:	server. Configures a host domain for your device.	
	Router(config)# ip domain-name your_domain_name		

	Command or Action	Purpose	
Step 4	Example:	Enables the SSH server for local and remote authentication on the device and generates an RSA key pair. Generating an RSA key pair for the device automatically enables SSH.	
		We recommend that a minimum modulus size of 2048 bits.	
		When you generate RSA keys, you are prompted to enter a modulus length. A longer modulus length might be more secure, but it takes longer to generate and to use.	
		Note Follow this procedure only if you are configuring the device as an SSH server.	
Step 5	end	Returns to privileged EXEC mode.	
	Example:		
	Router(config)# end		

Configuring the SSH Server

Follow these steps to configure the SSH server:

Note

This procedure is only required if you are configuring the device as an SSH server.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	IR8340# configure terminal	
Step 2	ip ssh version [2]	(Optional) Configures the device to run SSH Version 2.
	Example: IR8340(config)# ip ssh version 2	If you do not enter this command or do not specify a keyword, the SSH server selects the latest SSH version supported by the SSH client. For example, if the SSH client supports SSHv1 and SSHv2, the SSH server selects SSHv2.
Step 3	<pre>ip ssh {timeout seconds authentication-retries number}</pre>	Configures the SSH control parameters:

	Command or Action	Purpose
	Example: IR8340(config)# ip ssh timeout 90 ip ssh authentication-retries 2	• Specify the time-out value in seconds; the default is 120 seconds. The range is 0 to 120 seconds. This parameter applies to the SSH negotiation phase. After the connection is established, the device uses the default time-out values of the CLI-based sessions.
		By default, up to five simultaneous, encrypted SSH connections for multiple CLI-based sessions over the network are available (session 0 to session 4). After the execution shell starts, the CLI-based session time-out value returns to the default of 10 minutes.
		• Specify the number of times that a client can re-authenticate to the server. The default is 3; the range is 0 to 5.
		Repeat this step when configuring both parameters.
Step 4	Use one or both of the following: • line vty line_number [ending line number]	(Optional) Configures the virtual terminal line settings.
	<pre>• transport input ssh Example: IR8340(config)# line vty 1 10</pre>	• Enters line configuration mode to configure the virtual terminal line settings. For the <i>line_number</i> and <i>ending_line_number</i> arguments, the range is from 0 to 15.
	Or IR8340(config-line)# transport input ssh	• Specifies that the device prevents non-SSH Telnet connections, limiting the device to only SSH connections.
Step 5	end Example:	Exits line configuration mode and returns to privileged EXEC mode.
	IR8340(config-line)# end	

Monitoring the SSH Configuration and Status

Table 5: Commands for Displaying the SSH Server Configuration and Status

Command	Purpose
show ip ssh	Shows the version and configuration information for the SSH server.

Comma	nd	Purpose
show s	sh	Shows the status of the SSH server.

Configuring the Router for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The router then handles authentication and authorization. No accounting is available in this configuration.

Follow these steps to configure AAA to operate without a server by setting the router to implement AAA in local mode:

Note To secure the router for HTTP access by using AAA methods, you must configure the router with the ip http authentication aaa global configuration command. Configuring AAA authentication does not secure the router for HTTP access by using AAA methods.

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	IR8340# configure terminal		
Step 2	aaa new-model	Enables AAA	
	Example:		
	IR8340(config)# aaa new-model		
Step 3	aaa authentication login default local	Sets the login authentication to use the local	
	Example:	username database. The default keyword applies the local user database authentication to all	
	<pre>IR8340(config)# aaa authentication login default local</pre>		
Step 4	line vty line-number		
	Example:		
	IR8340(config)# line vty 0 4 IR8340(config-line)#		
Step 5	aaa authorization exec default local	Configures user AAA authorization, check the local database, and allow the user to run an EXEC shell	
	Example:		
	<pre>IR8340(config-line)# aaa authorization exec default local</pre>	LALC SIGH.	
Step 6	aaa authorization network local	Configures user AAA authorization for all	
	Example:	network-related service requests.	

	Command or Action	Purpose	
	<pre>IR8340(config-line)# aaa authorization network local</pre>		
Step 7	username name privilege level password encryption-type password	Enters the local database, and establishes a username-based authentication system.	
	Example:	Repeat this command for each user.	
	<pre>IR8340(config-line)# username your_user_name privilege 1 password 7 secret567</pre>	a. For <i>name</i> , specify the user ID as one word Spaces and quotation marks are not allowed.	
		b. (Optional) For <i>level</i> , specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privilege EXEC mode access. Level 0 gives user EXEC mode access.	
		c. For encryption-type, enter 0 to specify th an unencrypted password follows. Enter to specify that a hidden password follows	
		d. For password, specify the password the us must enter to gain access to the switch. The password must be from 1 to 25 character can contain embedded spaces, and must be the last option specified in the username command.	
Step 8	end	Exits line configuration mode and returns to	
	Example:	privileged EXEC mode.	
	IR8340(config-line)# end		

Information about Secure Copy

The Secure Copy Protocol (SCP) feature provides a secure and authenticated method for copying router configuration or router image files. SCP relies on Secure Shell (SSH), an application and a protocol that provide a secure replacement for the Berkeley r-tools.

Prerequisites for Secure Copy

The following are the prerequisites for configuring the device for secure shell (SSH):

- Before enabling SCP, you must correctly configure SSH, authentication, and authorization on the switch.
- Because SCP relies on SSH for its secure transport, the router must have an RSA key pair.
- SCP relies on SSH for security.
- SCP requires that authentication, authorization, and accounting (AAA) authorization be configured so the router can determine whether the user has the correct privilege level.

- A user must have appropriate authorization to use SCP.
- A user who has appropriate authorization can use SCP to copy any file in the Cisco IOS File System (IFS) to and from a switch by using the **copy** command. An authorized administrator can also do this from a workstation.

Restrictions for Configuring Secure Copy

- Before enabling SCP, you must correctly configure SSH, authentication, and authorization on the router.
- When using SCP, you cannot enter the password into the **copy** command. You must enter the password when prompted.

Configuring Secure Copy

To configure the Cisco IR8340 for Secure Copy (SCP) server-side functionality, perform the following steps.

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	aaa new-model	Sets AAA authentication at login.	
	Example:		
	Device(config)# aaa new-model		
Step 4	aaa authentication login {default list-name} method1 [method2]	Enables the AAA access control system.	
	Example:		
	Device(config)# aaa authentication login default group tacacs+		
Step 5	username name [privilege level] password encryption-type encrypted-password	Establishes a username-based authentication system.	
	Example:	Note You may omit this step if a network-based authentication	
	Device(config)# username superuser privilege 2 secret superpassword	mechanism, such as TACACS+ or RADIUS, has been configured.	

	Command or Action	Purpose
Step 6	ip scp server enable	Enables SCP server-side functionality.
	Example:	
	Device(config)# ip scp server enable	
Step 7	exit	Exits global configuration mode and returns to privileged EXEC mode.
	Example:	
	Device(config)# exit	
Step 8	show running-config	(Optional) Displays the SCP server-side functionality.
	Example:	
	Device# show running-config	
Step 9	debug ip scp	(Optional) Troubleshoots SCP authentication problems.
	Example:	
	Device# debug ip scp	

Example

scp://your_username@remotehost:/some/remote/directory/file flash:

Additional References

The following sections provide references related to the SSH feature.

Related Topic	Document Title
Configuring Identity Control policies and Identity Service templates for Session Aware networking.	Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE: https://www.cisco.com/en/US/docs/ios-xml/ios/san/configuration/ xe-3se/3850/san-xe-3se-3850-book.pdf
Configuring RADIUS, TACACS+, Secure Shell, 802.1X and AAA.	Secure Shell Configuration Guide, Cisco IOS XE Gibraltar 16.11.x: https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst9500/ software/release/16-11/configuration_guide/sec/b_1611_sec_9500_cg/ configuring_secure_shell_sshhtml

Installing the Software

This chapter contains the following sections:

- Installing the Software, on page 51
- Installing the Cisco IOS XE Release, on page 52
- ROMMON Images, on page 53
- File Systems, on page 53
- Option to Enable or Disable USB Access, on page 54
- Autogenerated File Directories and Files, on page 55
- Flash Storage, on page 56
- Related Documentation, on page 56

Installing the Software

Installing software on the router involves installing a consolidated package (bootable image). This consists of a bundle of subpackages (modular software units), with each subpackage controlling a different set of functions.

It is better to upgrade software in a planned period of maintenance when an interruption in service is acceptable. The router needs to be rebooted for a software upgrade to take effect.

Cisco Software Licensing

Cisco software licensing consists of processes and components to activate Cisco IOS software feature sets by obtaining and validating Cisco software licenses.

The IR8340 uses Enhanced Smart Licensing, which is discussed in detail in Smart Licensing Using Policy (SLP), on page 65.

Consolidated Packages

To obtain software images for the router, go to: https://software.cisco.com/download/home/286200112

Note

All of the IOS-XE feature set may not apply to the IR8340. Some features may not have been implemented yet, or are not appropriate for this platform.

An image-based license is used to help bring up all the subsystems that correspond to a license. This license is enforced only at boot time.

One of the following image-based licenses can be pre-installed on the IR8340 router:

- Network-Essentials
- Network-Advantage
- HSEC license

Note Details of the Network-Essentials and Network-Advantage contents can be found in the IR8340 product data sheet.

Network-Essentials

The Network-Essentials technology package includes the baseline features. It also supports security features.

The **Network-Essentials_npe** technology package (npe = No Payload Encryption) includes all the features in the Network-Essentials technology package without the payload encryption functionality. This is to fulfill export restriction requirements. The Network-Essentials_npe is available only in the Network-Essentials_npe image. The difference in features between the Network-Essentials package and the Network-Essentials_npe package is therefore the set of payload encryption features such as IPsec and Secure VPN.

Network-Advantage

The Network-Advantage technology package includes all crypto features.

The Network-Advantage_npe package (npe = No Payload Encryption) includes all the features in the Network-Advantage technology package without the payload-encryption functionality. This is to fulfill export restriction requirements. The Network-Advantage_npe package is available only in the Network-Advantage_npe image. The difference in features between the Network-Advantage package and the Network-Advantage_npe package is therefore the set of payload-encryption-enabling features such as IPsec and Secure VPN.

Related Documentation

For further information on software licenses, see the Smart Licensing chapter.

Installing the Cisco IOS XE Release

When the device boots up with Cisco IOS XE image for the first time, the device checks the installed version of the ROMMON, and upgrades if the system is running an older version. During the upgrade, do not power cycle the device. The system automatically power cycles the device after the new ROMMON is installed. After the installation, the system will boot up with the Cisco IOS XE image as normal.

Note

When the device boots up for first time and if the device requires an upgrade, the entire boot process may take several minutes. This process will be longer than a normal boot due to the ROMMON upgrade.

The following example illustrates the boot process of a consolidated package:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
Router#show running-config | i license
no license feature hseck9
license udi pid IR8340-K9 sn FD02523J6N1
license boot level network-advantage
Router#
Router#reload
System configuration has been modified. Save? [yes/no]: yes
Building configuration...
[OK]
Proceed with reload? [confirm]
Sep 8 10:28:36.135: %PMAN-5-EXITACTION: R0/0: pvp: Process manager is exiting: process exit
with reload chassis code
Initializing Hardware ...
Disable swap drive feature. Skip swap drive checking !!
System Bootstrap, Version v0.33, DEVELOPMENT SOFTWARE
Copyright (c) 1994-2021 by cisco Systems, Inc.
Compiled Mon Jul 12 22:57:23 2021 by gilchen
Current image running : Boot ROM1
Last reset cause (0x0000002): LocalSoft
IR8340-K9 platform with 8388608 Kbytes of main memory
. . . . .
```

ROMMON Images

A ROMMON image is a software package used by ROM Monitor (ROMMON) software on a router. The software package is separate from the consolidated package normally used to boot the router.

An independent ROMMON image (software package) may occasionally be released and the router can be upgraded with the new ROMMON software. For detailed instructions, see the documentation that accompanies the ROMMON image.

Note

A new version of the ROMMON image is not necessarily released at the same time as a consolidated package for a router.

File Systems

The following table provides a list of file systems that can be seen on the Cisco IR8340 router.

File System	Description
bootflash:	Boot flash memory file system.
cns:	Cisco Networking Services file directory.
crashinfo:	Directory or Filename
flash:	Alias to the boot flash memory file system above.
null:	Directory or Filename
nvram:	Router NVRAM. You can copy the startup configuration to NVRAM or from NVRAM.
sdcard:	SD card file system.
system:	System memory file system, which includes the running configuration.
tar:	Archive file system.
tmpsys:	Temporary system files file system.
usb:	USB file system.
webui:	Web UI file system.

Table 6: Router File Systems

Use the ? help option if you find a file system that is not listed in the table above.

Option to Enable or Disable USB Access

USB flash drives offer inexpensive and easy storage space for the routers to store the images, configuration files and other files.

Note The IR8340 does not support ext3, ext4, and above for USB flash drives.

The IR8340 supports hot plug/unplug of USB flash drives. To access the USB flash drive, insert the device into router's USB interface.

While hot plug/unplug of a USB flash drive is supported, the functionality comes with security vulnerabilities. To prevent users from copying sensitive information to the USB flash drive, USB enable/disable functionality has been added.

By default, the USB flash drive is enabled. If you want to disable USB, use the following disable command:

```
Router#config terminal
Router(config)#platform usb disable
Router(config)#end
```

Once the USB flash drive has been disabled, the file system is not shown on the device and syslog messages will not be displayed when the USB is inserted. You will not be able to access the contents of the USB.

L

The USB is enabled by issuing a 'no ' with the disable command:

```
Router#config terminal
Router(config)#no platform usb disable
Router(config)#end
```

The USB status can be displayed using the following command:

Router#**show platform usb status** USB enabled Router#

Autogenerated File Directories and Files

This section discusses the autogenerated files and directories that can be created, and how the files in these directories can be managed.

File or Directory	Description
crashinfo files	Crashinfo files may appear in the bootflash: file system.
	These files provide descriptive information of a crash and may be useful for tuning or troubleshooting purposes. However, the files are not part of router operations, and can be erased without impacting the functioning of the router.
core directory	The storage area for .core files.
	If this directory is erased, it will automatically regenerate itself at bootup. The .core files in this directory can be erased without impacting any router functionality, but the directory itself should not be erased.
managed directory	This directory is created on bootup if a system check is performed. Its appearance is completely normal and does not indicate any issues with the router.
tracelogs directory	The storage area for trace files.
	Trace files are useful for troubleshooting. If the Cisco IOS process fails, for instance, users or troubleshooting personnel can access trace files using diagnostic mode to gather information related to the Cisco IOS failure.
	Trace files, however, are not a part of router operations, and can be erased without impacting the router's performance.

Table 7: Autogenerated Files

Important Notes About Autogenerated Directories

Important information about autogenerated directories include:

• Autogenerated files on the bootflash: directory should not be deleted, renamed, moved, or altered in any way unless directed by Cisco customer support.

Altering autogenerating files on the bootflash: may have unpredictable consequences for system performance.

• Crashinfo files and files in the core and tracelogs directory can be deleted.

Flash Storage

Subpackages are installed to local media storage, such as flash. For flash storage, use the **dir bootflash:** command to list the file names.

Note Flash storage is required for successful operation of a router.

Related Documentation

For further information on software licenses, see Smart Licensing Using Policy (SLP), on page 65.

For further information on obtaining and installing feature licenses, see Configuring the Cisco IOS Software Activation Feature.

Software Maintenance Upgrade (SMU)

Note SMU installation was supported in both bundle boot and install mode. From Cisco IOS XE Release 17.9.x, SMU installation will be stopped if the router is booted up in bundle mode. If the router is booted up in install mode, SMU installation will keep working as it is in previous releases.

- Software Maintenance Upgrade (SMU), on page 57
- SMU Workflow and Basic Requirements, on page 58
- SMU Example, on page 58
- Installing a Patch Image, on page 58
- Uninstalling the Patch Image, on page 60

Software Maintenance Upgrade (SMU)

The Software Maintenance Upgrade (SMU) is a package that can be installed on a system to provide a patch fix or security resolution to a released image for a specific defect in order to respond to immediate issues. It does not contain new features.

Some of the caveats of the SMU are:

- Provided on a per release, per component basis and is specific to the platform. SMU versions are synchronized to the package major, minor, and maintenance versions they upgrade.
- SMUs are not an alternative to maintenance releases. All defects fixed by SMUs are then automatically integrated into the upcoming maintenance releases.
- The Cisco IOS XE platform internally validates the SMU compatibility and does not allow you to install non-compatible SMUs. This is based on rules/limitations for a SMU change-set.
- An SMU provides a significant benefit over classic IOS software as it allows you to address the network issue quickly while reducing the time and scope of the testing required.
- SMU is a method to fix bugs in an existing release, and allows the application of a PSIRT fix in an existing release
- SMU is NOT an upgrade path from release X to maintenance release X.1
- SMU is NOT an upgrade path from release X to release Y

The device only supports "Hot Patching". This means:

· The running image is modified in-place or in-service

- · This avoids downtime and interruption of service
- The updated code to fix the defect is written in a different location, and where the patch redirects the program run

SMU Workflow and Basic Requirements

The workflow for the patch requires that you complete the following sequence of operation in exec mode:

- 1. Addition of the SMU to the file system.
- 2. Activation of the SMU onto the system.
- 3. Committing the SMU change.
- 4. Removal and uninstallation of the SMU.

The basic requirements for SMU are:

- The image where the defect was discovered.
- The patch file that contains the fix for the defect must be formatted as ir8340-image_name.release_version.CSCxxyyyyy.SPA.smu.bin.

SMU Example

This section shows an example of a patch created as a test. Your patch will have a name associated with a CDET to be installed as a fix.

Installing a Patch Image

Perform the following steps to install the patch image:

Procedure

```
Step 1 Show a standard command.
```

```
Router#show power
Main PSU :
Total Power Consumed: 11.37 Watts
Configured Mode : N/A
Current runtime state same : N/A
PowerSupplySource : External PS
POE Module :
Configured Mode : N/A
Current runtime state same : N/A
Total power available : 30 Watts
Router#
```

Step 2 Add the image.

```
Router# install add file
sdcard:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bininstall_add: START
Wed Aug 11 17:05:59 UTC 2021
Copying sdcard:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin to
bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin
install_add: Adding SMU
install_add: Checking whether new add is allowed ....
```

--- Starting SMU Add operation ---Performing SMU_ADD on Active/Standby [1] SMU_ADD package(s) on R0 [1] Finished SMU_ADD on R0 Checking status of SMU_ADD on [R0] SMU_ADD: Passed on [R0] Finished SMU Add operation

SUCCESS: install_add Wed Aug 11 17:06:22 UTC 2021

Router#

Step 3 Activate the patch image.

Router# install activate file bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bininstall_activate: START Thu Aug 6 11:53:59 PDT 2020 install activate: START Wed Aug 11 17:06:35 UTC 2021

```
System configuration has been modified.

Press Yes(y) to save the configuration and proceed.

Press No(n) for proceeding without saving the configuration.

Press Quit(q) to exit, you may save configuration and re-enter the command. [y/n/q]

167: +++ SLE_Sumatra: receive +++

y
```

Building configuration... [OK]Modified configuration has been saved install_activate: Activating SMU

This operation may require a reload of the system. Do you want to proceed? [y/n]

Step 4 Commit the installation.

```
Router# install commit: START Wed Aug 11 17:12:40 UTC 2021
install_commit: Committing SMU
Executing pre scripts....
Executing pre sripts done.
--- Starting SMU Commit operation ---
Performing SMU_COMMIT on Active/Standby
[1] SMU_COMMIT package(s) on R0
[1] Finished SMU_COMMIT on R0
Checking status of SMU_COMMIT on [R0]
SMU_COMMIT: Passed on [R0]
Finished SMU_Commit operation
```

```
SUCCESS: install_commit
/bootflash/ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin Wed Aug 11
17:13:24 UTC 2021
Router#
```

Step 5 Show the status summary of the installation procedure.

```
Router# show install summary[ R0 ] Installed Package(s) Information:
State (St): I - Inactive, U - Activated & Uncommitted,
```

```
C - Activated & Committed, D - Deactivated & Uncommitted

Type St Filename/Version

SMU C bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin

IMG C 17.07.01.0.139972

Auto abort timer: inactive
```

```
Router#
```

Step 6 Verify the result of the patch by showing the same command.

```
Router#show power
Main PSU :
Total Power Consumed: 11.04 Watts
Device HOT SMU works!
Configured Mode : N/A
Current runtime state same : N/A
PowerSupplySource : External PS
```

```
POE Module :
    Configured Mode : N/A
    Current runtime state same : N/A
    Total power available : 0 Watts
Router#
```

Uninstalling the Patch Image

There are two methods to remove or uninstall the patch image.

- Restoring the image to its original version by using the following command:
 - install rollback to base
- Specific removal of a patch by using the following commands in sequence:
 - install deactivate file flash:
 - install commit
 - install remove file flash:

Uninstalling the Patch Image Using Rollback

This section shows an example of using the rollback method.

```
Router# show install summary
[ R0 ] Installed Package(s) Information:
State (St): I - Inactive, U - Activated & Uncommitted,
C - Activated & Committed, D - Deactivated & Uncommitted
Type St Filename/Version
```

```
SMU C bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin
IMG C 17.07.01.0.139972
Auto abort timer: inactive
```

Router#

The following commands are available:

Router# install	?			
abort	Abort the current install operation			
activate	Activate an installed package			
add	Install a package file to the system			
auto-abort-tim	ner Install auto-abort-timer			
commit	Commit the changes to the loadpath			
deactivate	Deactivate an install package			
label	Add a label name to any installation point			
prepare	Prepare package for operation			
remove	Remove installed packages			
rollback	rollback Rollback to a previous installation point			
Router# install	rollback to ?			
base Ro.	llback to the base image			
committed Ro.	llback to the last committed installation point			
id Ro.	llback to a specific install point id			
label Ro.	llback to a specific install point label			

The **install rollback to base** command removes the entire patch and returns to the base image version with the found defect.

```
Router# install rollback to base
```

```
install_rollback: START Thu Aug 6 12:04:04 PDT 2020
install_rollback: Rolling back SMU
Executing pre scripts....
Executing pre sripts done.
--- Starting SMU_ROllback operation ---
Performing SMU_ROLLBACK on Active/Standby
[1] SMU_ROLLBACK package(s) on R0
[1] Finished SMU_ROLLBACK on R0
Checking status of SMU_ROLLBACK on [R0]
```

SMU_ROLLBACK: Passed on [R0] Finished SMU Rollback operation

```
CSCxx12345:SUCCESS
SUCCESS: install_rollback
/flash1/ir8300-universalk9.2020-08-06_10.38_shchang2.0.CSCxx12345.SSA.smu.bin Thu Aug 6
12:04:57 PDT 2020
Router#
```

```
Auto abort timer: inactive
Router#
```

```
Note
```

• In the above command output, the patch has been removed and the device returns to the base image version prior to the upgrade.

Uninstalling the Patch Image Using Deactivate, Commit, and Remove

Show what patches are installed.

Procedure

Step 1 Deactivate the patch.

```
Router# install deactivate file
bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin
install_deactivate: START Wed Aug 11 17:14:35 UTC 2021
```

```
System configuration has been modified.

Press Yes(y) to save the configuration and proceed.

Press No(n) for proceeding without saving the configuration.

Press Quit(q) to exit, you may save configuration and re-enter the command. [y/n/q]

332: +++ SLE_Sumatra: receive +++

y
```

Building configuration... [OK]Modified configuration has been saved install deactivate: Deactivating SMU

This operation may require a reload of the system. Do you want to proceed? [y/n]

SMU D bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin IMG C 17.07.01.0.139972

Auto abort timer: active on install_deactivate, time before rollback - 01:55:21

Step 2 Commit the action.

```
Router# install commit
install_commit: START Wed Aug 11 17:21:23 UTC 2021
install_commit: Committing SMU
Executing pre scripts....
Executing pre sripts done.
--- Starting SMU Commit operation ---
Performing SMU_COMMIT on Active/Standby
[1] SMU_COMMIT package(s) on R0
[1] Finished SMU_COMMIT on R0
Checking status of SMU_COMMIT on [R0]
SMU_COMMIT: Passed on [R0]
Finished SMU Commit operation
```

```
SUCCESS: install_commit
/bootflash/ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin Wed Aug 11
17:21:53 UTC 2021
```

Show what patches are installed:

```
Router# show install summary
```

Step 3 Remove the patch.

```
Router# install remove file
bootflash:ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bininstall_remove:
START Wed Aug 11 17:22:03 UTC 2021
install_remove: Removing SMU
Executing pre scripts....
Executing pre sripts done.
```

```
--- Starting SMU Remove operation ---

Performing SMU_REMOVE on Active/Standby

[1] SMU_REMOVE package(s) on R0

[1] Finished SMU_REMOVE on R0

Checking status of SMU_REMOVE on [R0]

SMU_REMOVE: Passed on [R0]

Finished SMU Remove operation
```

```
SUCCESS: install_remove
/bootflash/ir8340-universalk9.2021-06-14_14.55_suraiyer.0.cold.SSA.smu.bin Wed Aug 11
17:22:20 UTC 2021
```

```
Router# show install summary
[ R0 ] Installed Package(s) Information:
State (St): I - Inactive, U - Activated & Uncommitted,
C - Activated & Committed, D - Deactivated & Uncommitted
Type St Filename/Version
IMG C 17.07.01.0.139972
Auto abort timer: inactive
```


Smart Licensing Using Policy (SLP)

- SLP Overview, on page 65
- Customer Topologies, on page 67
- License Installation Procedure Full Offline Access Topology, on page 68
- License Installation Procedure CSLU has No Access to CSSM, on page 73
- License Installation Process in the Router, on page 84
- HSEC Installation, on page 85

SLP Overview

Smart Licensing Using Policy (SLP), previously known as Smart Licensing Enhanced (SLE), is the default mode with IOS-XE release 17.3.2. SLE replaces Smart Software Licensing. The IR8340 router only supports SLP. Some of the feature differences are:

- An Authorization Code is required only for export control requirement
- Throughput greater than 250 Mbps requires an HSEC license
- No more EVAL licenses. Authorized status has changed to In Use or Not In Use with an Enforcement Type class.
- Cisco Smart Licensing Utility (CSLU) is a new tool interfacing between the devices and Cisco Smart Software Manager (CSSM) in specific customer topologies.

License Enforcement Types

A given license belongs to one of three enforcement types. The enforcement type indicates if the license requires authorization before use, or not.

• Unenforced or Not Enforced

The vast majority of licenses belong to this enforcement type. Unenforced licenses do not require authorization before use in air-gapped networks, or registration, in connected networks. The terms of use for such licenses are as per the end user license agreement (EULA).

• Enforced

Licenses that belong to this enforcement type require authorization before use. The required authorization is in the form of an authorization code, which must be installed in the corresponding product instance.

An example of an enforced license is the Media Redundancy Protocol (MRP) Client license, which is available on Industrial Ethernet Switches.

• Export-Controlled

Licenses that belong to this enforcement type are export-restricted by U.S. trade-control laws and these licenses require authorization before use. The required authorization code must be installed in the corresponding product instance for these licenses as well. Cisco may pre-install export-controlled licenses when ordered with hardware purchase.

An example of an export-controlled license is the High Security (HSEC) license, which is available on certain Cisco Routers.

SLP Architecture

This section explains the various components that can be part of your SLP implementation.

Product Instance

A product instance is a single instance of a Cisco product, identified by a Unique Device Identifier (UDI).

A product instance records and reports license usage (RUM reports), and provides alerts and system messages about overdue reports, communication failures, etc. The RUM reports and usage data are also stored securely in the product instance.

A Resource Utilization Measurement report (RUM report) is a license usage report, which fulfils reporting requirements as specified by the policy. RUM reports are generated by the product instance and consumed by CSSM. The product instance records license usage information and all license usage changes in an open RUM report. At system-determined intervals, open RUM reports are closed and new RUM reports are opened to continue recording license usage. A closed RUM report is ready to be sent to CSSM.

A RUM acknowledgement (RUM ACK or ACK) is a response from CSSM and provides information about the status of a RUM report. Once the ACK for a report is available on the product instance, it indicates that the corresponding RUM report is no longer required and can be deleted.

CSSM displays license usage information as per the last received RUM report.

Cisco Smart Software Manager (CSSM)

CSSM is a portal that enables you to manage all your Cisco software licenses from a centralized location. CSSM helps you manage current requirements and review usage trends to plan for future license requirements.

You can access CSSM at https://software.cisco.com . Under the License tab, click the Smart Software Licensing link.

In CSSM you can:

- · Create, manage, or view virtual accounts.
- Create and manage Product Instance Registration Tokens.
- Transfer licenses between virtual accounts or view licenses.
- Transfer, remove, or view product instances.
- Run reports against your virtual accounts.
- · Modify your email notification settings.
- View overall account information.

Prior to using CSSM, please view a short video about how to use the portal found here:

https://www.cisco.com/c/en/us/buy/smart-accounts/software-manager.html

Click on the View Video button.

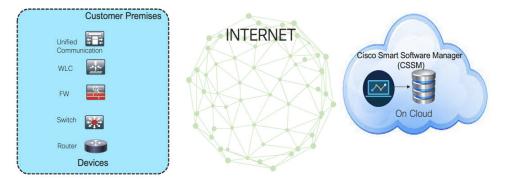
Cisco Smart Licensing Utility (CSLU)

CSLU is a Windows-based reporting utility that provides aggregate licensing work-flows. It helps you administer all your licenses and their associated product instances from your premises instead of having to connect to CSSM.

This utility performs the following key functions:

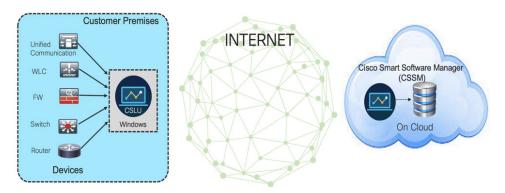
- Provides the options relating to how work-flows are triggered. The work-flows can be triggered by CSLU or by the product instance
- Collects usage reports from the product instance and upload these usage reports to the corresponding smart account or virtual account – online, or offline, using files. Similarly, the RUM report ACK is collected online, or offline, and provided back to the product instance.
- · Sends authorization code requests to CSSM and receives authorization codes1 from CSSM.

CSLU can be part of your SLE topology in the following ways:


- Install the windows application, to use CSLU as a standalone tool and connect it to CSSM.
- Install the windows application, to use CSLU as a standalone tool and not connect it to CSSM. With this option, the required usage information is downloaded to a file and then uploaded to CSSM. This is suited to air-gapped networks.
- Embed it in a controller such as Cisco DNA Center.

Customer Topologies

IoT Routing platforms use two different topologies.


- Full Offline Access
- CSLU has No Access to CSSM

The following figure illustrates the Full Offline Access:

In this topology, devices do not have connectivity to CSSM (software.cisco.com). The user must copy and paste information between Cisco products and CSSM to manually check in and out licenses.

The following figure illustrates the CSLU having No Access to CSSM:

In this topology the devices are connected to the CSLU controller, but there is no connectivity between CSLU and CSSM (Cisco Smart Software Manager – software.cisco.com).

Cisco devices will send usage information to a locally installed CSLU. The user must copy and paste information between the CSLU and CSSM to manually check-in and check-out licenses.

License Installation Procedure - Full Offline Access Topology

This procedure requires a manual exchange of required information between the router and CSSM.

Refer to the following graphic for the flow of information:

- 1. Generate a License Usage Data file or AuthCode Request.
- **2.** Export to CSSM.
- **3.** Upload License Usage Data or AuthCode Request.
- 4. Export ACK/AuthRequest file to Router.
- 5. Upload ACK file or AuthRequestAuthCode

Procedure to Register Product Instance in CSSM

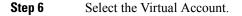
Procedure

 Step 1
 Generate a license usage file from the Router.

 In exec mode, perform the following:
 Example:

 Router# license smart save usage all file flash:sle

Step 2 Export the license usage file (sle) to your host laptop/PC.


Step 3Importing the license usage file to CSSM on Cloud. Click on the Usage Data Files tab.Figure 1: Usage Data File

	are Central > Smart Softwa Software Lice		
Alerts In	ventory Convert to Smar	t Licensing Reports	Preferences On-Prem Accounts Activity
Reports	-	3	
Report	Usage Data Files	Reporting Policy	
Name			Description
Licenses	5		Includes a summary of current license counts and usage over selected virtual accounts.
License	Subscriptions		Includes a summary of current subscription license counts and usage over selected virtu
Product	Instances		Includes count and listing of current product instances for selected virtual accounts.

Step 4 The Upload Usage Data window appears. Click Browse, and navigate to where the file is.Step 5 Click on Upload Data.

Figure 2: Browse and Upload

	Upload Usage Data	
Cisco Software Central > Smart Software Lice Smart Software Licensir Alerts Inventory Convert to Smart Licen	• Usage Data File: Browse Sie	5 IID SA-Switching-Polaris Feedback Support He
Reports	Upload Data Cano	
	porting Policy	
Devices can be configured to report the featu		

Figure 3: Select Account

		ah ah	_	
	Select Virtual Accounts		×	6
Cisco Software Central > Smart Software Licens Smart Software Licensing Alerts Inventory Convert to Smart Licensin	Some of the usage data files do not include to virtual account is unrecognized. Please select an account:	he name of the virtual account that the data refers t	to, or the	SA-Switching-Polaris • Feedback Support Heij
Reports Report Usage Data Files Repo		Ok	Cancel	
Devices can be configured to report the features the This usage then determines which licenses are not				

Step 7

From the pull-down, select your respective virtual account.

Figure 4: Select Your Account

		ulu		
	Select Virtual Accounts	×	Select your respective	virtual account
Cisco Software Central > Smart Software Licens	Some of the usage data files do not include the nar virtual account is unrecognized.	me of the virtual account that the data refers to, or the	7 B SA-Switching-Polaris V	
Smart Software Licensing	Please select an account:		Feedback Support Help	
Alerts Inventory Convert to Smart Licensing	Select one account for all files: Select a virtual account per file:	EFAULT		
Reports				
Report Usage Data Files Repo		Ok Cancel		
Devices can be configured to report the features This usage then determines which licenses are n			8	

Step 8 Click Ok.

Step 9 Observe the Smart Software Licensing window. Initially, the Reporting Status state will be **Pending**. Wait until the window reflects **No Errors** before continuing.

Figure 5: Reporting Status

Cisco Software Central > Smart Software Licensing Smart Software Licensing						I SA-Switching-Polaris ▼ Feedback Support Help
Alerts Inve	entory Convert to Smart	Licensing Reports Prefe	rences On-Prem Accou	ints Activity		
Reports					will be in pend change to "no	
	•	Reporting Policy e features that they are using. nses are needed, in order to be o	ompliant.	9		10
Uplo	ad Usage Data			earch by	File Name, Virtual Account	Q
🕣 Usa	ige Data File	Reported	Virtual Account	Reporting Status	Devices	Acknowledger .t
sle		2020-Aug-0	DEFAULT	1 No Errors	1	Download
				- 3000033400348		

L

1 Minor Hide Alerts

Step 10	Click Download to download the ACK file.
Step 11	Check under the Product Instances tab to verify your device is listed.
	Figure 6: Product Instances
	Virtual Account: VA-Blackheart -
	General Licenses Product Instances Event Log

Authorize License-Enforced Features		Search b	y Name, Product Type	୍
Name	Product Type	Last Contact	Alerts	Actions
UDI_PID:ESR-6300-CON-K9; UDI_SN:FOC23032UWF;	5900	2020-Sep-24 20:23:59 (Reserve	ed Licenses)	Actions -
UDI_PID:ESR-6300-CON-K9; UDI_SN:SJC19700415;	5900	2020-Sep-24 20:41:41 (Reserve	ed Licenses)	Actions -
UDI_PID:IR1101-K9; UDI_SN:FCW24150J0F;	IR1100	2020-Jul-30 02:22:04		Actions -
UDI_PID:IR1833-K9; UDI_SN:FCW2420P0VB;	M2M800	2020-Jul-07 20:15:11 (Reserved	d Licenses)	Actions -
UDI_PID:IR1835-K9; UDI_SN:FHH2416P00Z;	M2M800	2020-Sep-30 01:01:21		Actions -
UDI_PID:IR8140H-P-K9; UDI_SN:FDO2420J786;	CGR1000	2020-Sep-08 18:37:24		Actions -

Step 12

Import the ACK file from CSSM to your device using the command line interface.

Importing the ACK file from CSSM to your Device

Procedure

Step 1 Copy the ACK file from CSSM to your host laptop or usbflash device. In exec mode on the device:

Example:

```
Router#license smart import bootflash: ACK_sle
Import Data Successful
Router#
*Sep 1 21:12:58.576: %SIP-1-LICENSING: SIP service is Up. License report acknowledged.
*Sep 1 21:12:58.616: %SMART_LIC-6-POLICY_INSTALL_SUCCESS: A new licensing policy was
successfully installed
```

Step 2 Verify Product Instance has imported the data

Example:

```
Router# show license usage
License Authorization:
   Status: Not Applicable
network-advantage_250M (IR8340_P_250M_A):
   Description: network-advantage_250M
   Count: 1
   Version: 1.0
   Status: IN USE
   Export status: NOT RESTRICTED
   Feature Name: network-advantage_250M
   Feature Description: network-advantage_250M
   Enforcement type: NOT ENFORCED
```

Step 3 Verify the license is in use.

Example:

```
Router# show license summary
License Usage:
 License
                                           Entitlement tag
                                                                       Count
                                                                              Status
                                                      _____
 network-advantage 250M (IR8340 P 250M A)
                                           1 IN USE
Router#
Router#show license all | beg Usage Reporting:
Usage Reporting:
 Last ACK received: Sep 01 21:12:58 2020 UTC
 Next ACK deadline: <none>
 Reporting Interval: 0 (no reporting)
 Next ACK push check: <none>
 Next report push: <none>
 Last report push: <none>
 Last report file write: <none>
Trust Code Installed: Sep 01 00:28:48 2020 UTC
```

Removing the Device from CSSM

Procedure

Step 1

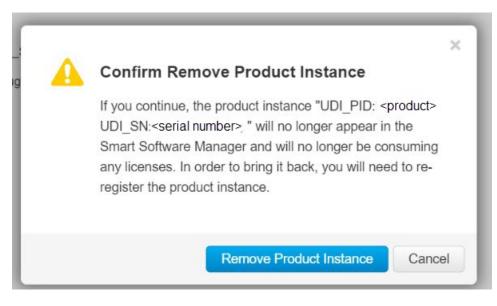

Navigate back to the product instances tab. Locate your device.

Figure 7: Product Instances

C	j-inventory		☆	
erts Inventory Convert to Smart Licensing Report	s Preferences On-Prem Ac	counts Activity		
irtual Account: DEFAULT -			1 Major 🚯 Minor 📀	Informational Hide Ale
General Licenses Product Instances	Event Log			
Authorize License-Enforced Features		Search	by Name, Product Type	٩,
Name	Product Type	Last Contact	Alerts	Actions
UDI_PID:IE-3300-8U2X; UDI_SN:FCW24030HD6;	IE3000	2020-Aug-14 12:25:07 (Rese	rved Licenses)	Actions -
UDI_PID:IE-3400-8T2S; UDI_SN:FOC2330V02D;	IE3000	2020-Aug-14 12:14:00 (Rese	rved Licenses)	Actions -
UDI_PID:IE-3400H-24T; UDI_SN:FCW23200H5S;	IE3000	2020-Sep-24 07:43:31		Actions -
UDI_PID:IR1835-K9; UDI_SN:FHH2416P00Z;	M2M800	2020-Oct-01 05:48:27 (Reser	ved Licenses)	Actions -
UDI_PID:IR8140H-P-K9; UDI_SN:FDO241519G8;	CGR1000	2020-Aug-12 17:14:56 (Rese	rved Licenses) Tran	sfer
UDI_PID:IR8140H-P-K9; UDI_SN:FDO2420J4ZK;	CGR1000	2020-Sep-24 21:01:56 (Rese	rved Licenses) Upda	ate Reserved Licenses
UDI_PID:IR8140H-P-K9; UDI_SN:FDO2420J64L;	CGR1000	2020-Sep-26 00:39:13	Rem	ove
UDI PID:IR8140H-P-K9; UDI SN:FDO2420J77G;	CGR1000	2020-Sep-08 22:10:30	_	Actions -

Step 2Click on Actions beside your device, and from those options click Remove.The Confirm Remove Product Instance window appears.

Figure 8: Confirm Remove Product Instance

License Installation Procedure - CSLU has No Access to CSSM

This procedure performs an online exchange of required information between the Router and CSLU. Refer to the following graphic for the flow of information:

Procedure

- **Step 1** In CSLU, identify the devices that require an AuthCode, and initiate the request. An AuthCode file is created.
- **Step 2** Export the AuthCode file to CSSM.
- **Step 3** Upload the AuthCode to CSSM SA/VA account.
- **Step 4** Export the AuthRequestAuthcode file to CSLU.
- **Step 5** Upload ACK file or AuthRequestAuthCode

Procedure when devices are connected to the CSLU

First, perform these steps on the router using the CLI to get a license UDI:

Procedure

- **Step 1** Open the Cisco Smart License Utility (CSLU).
- **Step 2** Navigate to the **Product Instances** tab, then click on the UDI.

Figure 9: Select UDI

	t Instances Edit Help			Logout fro
	Inventory Preferences			
rodu	uct Instances			1
Add S	Single Product Actions for Selected	Refresh Product Instanc	e List	
	Name	Last Contact	Alerts	
	Filter By Host/IP, SN or PID	Filter By Last Contact	Filter By Alert	s
	UDI_PID:IR8140H-P-K9; UDI_SN:FD02420J64L	29-Sep-2020 18:27	COMPLE SSM	
~	UDI_PID:IR1835-K9; UDI_SN:FHH2416P00Z	-never-		
			•	

Step 3 The Edit Single Product Instance window appears.

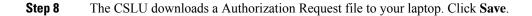
Figure 10: Edit Single Product Instance

Prod	uct instances	Edit Single Product Instance		
Add	Single Product Actions for Selected Product		can ongre risodat materide	
	Note	Details	General	
	Printer Hardward Print, 201 (or Print	Hunt 172.27.168.71	Host Identifier	
	COLIND WITHOUT AND COLINY DODADDANE	Unar maxim CISCO	MAC Address	DLC request cent to CDDM
	COLIND RELEASE COLUMPIE COLUMPIE	Persent	SUM	Usage report from product instance
	LOL PERMISSION LOL INFORMATION	CONVECTMENTE CSLU Indiated - REST API	+0 ESR-6300-CQN-K9	Usage report uproaded to CSSM
	UDI_PEXEM4.4300-C04+8,UDI_SH(F0C23032.04		F0C23032UM	Usage report up/baded to CDDM
			VD	dumo per pige 6 🔹 1-41
-			UUD	-
		Save Cancel		

Step 4The Edit Multiple Devices window appears. Supply your account password and click Save.Figure 11: Edit Multiple Devices

	Device	Last Contacted		Alerts		
	Filter By Host1P, SN or PID	Filter Ry Lass Contacted		Filter Ry Alarts		
	172.27.167.69 SN: FCW2150TH0F PID: IR1101-K9	Edit Multiple Devices			eport from product instance	
0	172.27.167.58 SN: FCW24150HHE PID: IR1101-K9	Details Host 172.27.167.71	Unique Device Identifier (UDI) Host Identifier		eport from product instance	
0	172.27.167.56 SN: FCW24150JBK PID: IR1101-K9	User Name admin Password	MAC Address		eport from product instance	
	172.27.167.71 SN: FOC23032UVB PID: ESR-6300-CON-K9	Connect Method CSLU Infliated - REST API	PID ESR-6300-CON-K9 Serial Number		sport from product instance	
	172 27.167.70 SN: FOC23232KC7 PID: ESR-5300-CON-K9		FOC23032UVB		eport from product instance	
			dinn			
		Save Cancel				

Step 5 In the **Product Instances** window, click on the **Actions for Selected Devices** Tab.


Figure 12: Actions for Selected Devices

	t License Ublity t Instances Edit Help			
	Inventory	Preferences		
-	uct Instances			
-	Single Product	Actions for Selected Refresh Product Instance List		
•	Name 🕈	Remove	Last Contact	Alerts
	Fiter By Host/IP, SN or	Edt	Filter By Last Contact	Filter By Alerts
	UDI_PIDIR1835K9; U	Collect Usage	16-Oct-2020 11:37	COMPLETE Usage report from product instance
٥	UDI_PID1R8140H-P-K	Authorization Code Request	12-0:1-2020 16:25	COMPLETE DLC request sent to CSSM
٥	UDI_PIDIR1835-K9; UI	DI_SN.FCW2417P176	08-Oct-2020 09.47	COMPLETE Usage report uploaded to CSSM

- Step 6 Select Authorization Code Request.
- Step 7The Authorization Request Information window appears. Read the contents and then click Accept.Figure 13: Authorization Request Information

Authorization Request Information

dov	vnloaded please:
1.	Upload the file to CSSM.
2.	After uploading to CSSM you will be able to download
	the file containing the authorization codes for devices
	you selected.
3.	Please upload this file using the "Upload From CSSM"
	menu option to apply the authorization codes for the
	devices.

Figure 14: Authorization Request File

Cisco Smart License Utility				
blobcfile:///ed160eab-5216-4c02-a3f0-21249da01f89				
		• 4 Search SLE	8	
Organize • New folder		[V][······		
Favorites	Date modified Type	Size		
Desitop Desitop Desitop Desitop Downloads S Recent Places	9/17/2828 1:27 AM CSV File	1 KB		
Libraries Documents Music				Akrts
Pictures Videos				Auerts Filter By Alerts
F Computer Local Disk (C:) KINGSTON (E:)				COMPLETE DLC request sent to CSSM
File name: AuthRequest_Aventus Save as type: All Files (*.*)				COMPLETE Acknowledgement received from CSSM
Hide Folders		Save	Cancel	Items per page: <u>5</u> ▼ 1−2 of 2 < <

Exporting the AuthRequest File to CSSM

The next step is to take the Authorization Request file you just saved, and export it into Cisco Smart Software Manager (CSSM).

Launch CSSM.

Click on the Inventory Tab, select your Virtual Account.

Procedure

Step 1 Click on the Product Instances Tab.

Step 2 Click on Authorize License-Enforced Features.

Figure 15: Authorize License-Enforced Features

Cisco	Software Central		cisco			Q	(M) (Ð
	Cisco Software Central > Smart Software Licensing				🛍 SA-IOT-Polaris 👻			
	Smart Software Licensing				Feedback Support Help			
	Alerts Inventory Convert to Smart Licensing Reports	Preferences On-Prem Ac	counts Activity					
	Virtual Account: VA-Blackheart -			O M	ajor 🚺 Minor Hide Alerts			
	Virtual Account: VA-blackficant +							
		Event Log						
	General Licen 2 Product Instances	Event Log	Search by	Name, Product Type	٩			
	General Licen 2 Product Instances	Event Log Product Type	Search by Lest Contact					
	General Licen 2 Product Instances Authorize License-Enforced Features			Name, Product Type	٩			
	General License-Enforced Features	Product Type	Last Contact	Name, Product Type	Q. Actions			
	General Liver 2 Product instances Authorize License-Enforced Features.	Product Type 5900	Last Contact 2020-Aug-26 00:37:52	Name, Product Type	Q Actions Actions +			
	General Licen 2 Product Instances Authorize License-Enforced Features () () Name ()	Product Type 5900 5900	Last Contact 2020-Aug-26 00:37:52 2020-Aug-26 01:10:34	Name, Product Type	م Actions Actions + Actions +			
	Owner Litere Product Instances Authoritie License Enforced Features Image: Comparison of Control (Comparison of Control (Control (Con	Product Type 5900 5900 IR1100	Last Contact 2020-Aup-26 00 37:52 2020-Aup-26 01:10:34 2020-Jul-30 02:22:04	Name, Product Type	Q Actions Actions + Actions + Actions +			
	Control Lucre 2 Protect Instance Authorize Lucrees Carford of Features Control	Product Type 5900 5900 IR1100 IR1100	Last Contact 2020-Aug-26 00 37:52 2020-Aug-26 01:10:34 2020-Jul-30 02:22:04 2020-Jul-30 04:24:13	Name, Product Type	م Actions Actions = Actions = Actions =			

The Authorize License-Enforced Features window appears.

\leftrightarrow \rightarrow O \triangle https://softw	ware-stage0.cisco.com/software/	/csws/ws/platform/home?loo	ale=en_US#SmartLicensing	Inventory			六 方 (a 🏩 …
								-
Cisco Softwa	Authorize License-Enfor	rced Features				×.1	Q (M)	₩ ^{US} EN
	STEP 1	STEP 2	STEP 3	STEP 4				
	Enter Request Code	Select Licenses	Review and confirm	Authorization Code				
	to the device to enable the feature	es. Learn More			reserved, an authorization code is uploaded ensing Manager, to report the features they	İ		
	Single Device	~						
	Single Device Mutple proces UUID: Serial Number: PID: Version ID: Hott ID: Mode Address: When ID:							
					Cancel	ext		
					Showing All 7 Rec	ords		

Figure 16: Authorize License-Enforced Features

Step 3 Choose **Multiple** or **Single** devices from the pull-down.

Step 4 The window changes to an option to select a device file. Click on **Choose File**.

Cisco Softw	14 C		ale ale			-	Q (
CISCO SOILW	Authorize License-Enfor	ced Features				× 1		
	STEP 1 Enter Request Code	STEP 2 Select Licenses	STEP 3 Review and confirm	STEP 4 Authorization Code				
	the device to enable the features.	Learn More			are reserved, an authorization code is uplo o Licensing Manager, to report the features th			
	Multiple Devices United a list patient of the left in Device File Chasse File Deviced a introduce	evices to be licensed.	v					
	Upload a file that contains the set of Device File: Choose File: No file of	evices to be licensed.	2		Cancel	Next		

Step 5 A popup window opens to navigate to where you saved your Authorization Request file on your laptop.

n to Quick Copy Paste sho	Move Copy Delete Renam	• <u>₹</u>]•	Properties	Balect none	
Clipboard	Organize	New	Open	ch Downloads	
> ·· 🛧 💺 > This PC > Do			ע ט Sear	ch Downloads	م
len OneDrive	^ Name				
🔉 🔚 Pictures	Auth_Request.	dsx			
🍌 Saved Games					
Searches					
Videos					
This PC					
and the same research					
This PC			Select	a file to preview.	
 This PC B 3D Objects 			Select	a file to preview.	
 This PC 3D Objects Desktop 	_		Select	a file to preview.	
This PC 3D Objects Desktop Documents	_		Select	a file to preview.	
 This PC 3D Objects Desktop Documents Downloads 	-		Select	a file to preview.	
 This PC 3D Objects Desktop Documents Downloads Music 	-		Select	a file to preview.	
 This PC 3D Objects Desktop Documents Downloads Music Pictures 			Select	a file to preview.	

Figure 17: Open File Navigation Window

- **Step 6** Select your file, and then click **Open**.
- **Step 7** The authorization file loads, and the window changes to present your devices.

Figure 18: Present Devices

and Orthographic Oresteel			a heada	2		-
isco Software Central Au	thorize License-Enfo	rced Features			×	
	STEP	STEP 2	STEP 3	STEP 4		
	Enter Request Code	Select Licenses	Review and confirm	Authorization Code		
	he device to enable the features.	Learn More here is only required for devices that of devices to be licensed.		I on the device. After the licenses are rese e Manager directly, or through the Cisco Lice		
	Device		St	atus		
	Device			Select Status	~	
	SIN FHH2416P00Z		C	Success		
s	elected 1				Success: 1 Errors: 0	
					Cancel Next	

Step 8 When successful, click Next.

Step 9 The Select Licenses Tab opens.

Figure 19: Select Licenses

000				de de		
×					Features	Authorize License-Enfor
			STEP	STEP 3	STEP 2	STEP 1 V
		in Code	Authorizatio	leview and confirm	Select Licenses	Enter Request Code
					atures	Select the Licenses to Enabled
				be reserved on the devices	the desired features. The licen	Select the set of licenses that will
	Device Se Total Quantity	Quantity per Device	Available	Purchased		License
	2	1	30	32	coreding 2505/bps enabled with encryption	ESR6300_HSEC_License
	0	0	10	10		IR1800 HSEC
					ceeding 2508bps anabled with encryption	HSEC license required for authorized out
					onedny 2008kut sinkked untranspilor	IEEE koons wapnet for sufficient web
	Cancel Back				onseing 2008/ps sinable of newsyste	And the second data and the second

Step 10 Under **Quantity per Device**, enter the number you wish.

Figure 20: Enter Number

isco Softw	-		de de					
0.500 00111	Authorize License-Enforc	ed Features					×	
	STEP 1 🗸	STEP 2	STEP 3		STEP 4			
	Enter Request Code	Select Licenses	Review and confirm		Authorization	n Code		
	Select the Licenses to Enabled th	e Features						
	Select the set of licenses that will en	nable the desired features. The licenses	will be reserved on the devic	es			Device Selected: 2	
	License		Purc	hased /	Available	Quantity per Device	Total Quantity	
	ESR6300_HSEC_License	ners exceeding 2505/bps enabled with encryption	32		30	1	2	
	IR1800 HSEC	ners exceeding 2504/bps enabled with encryption	10		10	0	0	
	Hole and Append to an other second	and according seconds and and accelerate						
							Cancel Back Next	
	and in all the second second second						Showing All 7 Records	

Step 11 If CSSM cannot identify your device from the identifying information, you can select it manually.

Cisco Softwa	<u></u>	di di		0 0 4
CISCO SUITWA	Authorize License-Enforced Fe	iturae	×	CC (CM) (H)
	step 1 🗸 s	Select a Device Type ×		
	Enter Request Code S	Some devices could not be identified based on the identifiers provided. Please select a device type.		
	Select the Licenses to Enabled the Featu	Device Type:		
	Select the set of licenses that will enable the	Unidentified Devices:	Device Selected: 2	
	License	Device	Total Quantity	
	ESR6300_HSEC_License HSEC loanse required for authroload customers enceed	Search	2	
	IR 1800 HSEC HSEC license required for authorized customers exceed	SN: FOC23032UVB PID: ESR-6306-CON-K9	•	
		SH. F0C23223K07		
		Selected: 2 If you want to enable features on different types of devices, you must perform this operation separately for each type.		
		Continue Cancel		
			Cancel Back Next	
			Showing All 7 Records	

Figure 21: Select a Device Type

Step 12 Click **Continue**, and the window changes to **Review and Confirm**.

Figure 22: Review and Confirm

		بلي بار			
Cisco Software Central	Authorize License-Enforced Features				×
	STEP 1 ✓ STEP 2 ✓ Enter Request Code Select Licenses	STEP 3 Review and confirm	STEP 4 Authorization Code		
	Devices				
	Device	Devic	e Type		
	Device	Sel	ect Device Type		~
	SN: FH42416P00Z PD: (F1835-K9	819 r	outing pids		
	Selected: 1 Licenses to Reserve				
	License	Quanti	ty per Device	Total Quantity to Reserve	
	IR1800 HSEC HSEClasse majord for adheted subsect exceeding 2008gr enabled with encrytics	1		1	
				Cancel Back Reserve	Licenses

Step 13 Click on Reserve Licenses, and CSSM generates feature authorization codes.

Figure 23: Feature Authorization Codes

_			يلد بلد			-	0	0	
Cisco Soft	Authorize License-Ent	forced Features				×	C	EM	(US EN
	STEP 1 -	STEP $2 \checkmark$ Select Licenses	STEP 3 ~ Review and confirm	STEP 4 Authorization Code					
		Codes Have Been Generated have been generated for the devices, and	d the licenses are reserved in your in	wentory.					
	If you are configuring the	Licensing UIIIty, upload the file to the util device, dectly, open the file, capy the a code, see the configuration guide for the code, see the configuration guide for the	thorization code for a device, then e	evices.	ettings of that device, to enable the features.				
						lose			
					Showing All 7 Re	cords			

 Step 14
 Click Download Authorization Codes, and a window opens to navigate to where you wish to save the codes.

 Figure 24: Save Authorization Code

File Home Share	View							1
Navigation 📑 Details pane	Extra large icons	Sm	all icons 👻	Sort	 ☐ Item check boxes ✓ File name extension 	ns Hide selected	Options	
pane *	₿₿ List	}⊞ De	tails 🔻	by 🕶 🛗	✓ Hidden items	items	*	
Panes		ayout		Current view	Show/h			
← → · · ↑ 🖡 → This	PC > Downloads				v Ç	Search Downloa	ds	
OneDrive		^	Name					
hictures			Auth_Reque	est Auth Codes	SLE.xlsx			
🍺 Saved Games								
🐌 Searches								
📳 Videos								
interest 🗢 🗢 🔍								
📙 3D Objects								
🔚 Desktop								
📔 Documents								
🔈 Downloads								
🌗 Music		1						
hictures								
📳 Videos								
🧐 OSDisk (C:)								
Gen 1 1		~	<					
🐂 Libraries								

Uploading the Authorization Request Code file into CSLU

Procedure

Step 1 Open the Cisco Smart License Utility (CSLU).

Step 15

 Step 2
 Navigate to Product Instances, and then select Upload From Cisco.

 Figure 25: Upload From Cisco

📑 Cisco Smart Lii	cense Utility			
Down Upload Send A Uzload	unterest Berlag Dod All Product Instruct Lint CM+S Product Instruct Lint CM+U II To Circo CM+DH+S Did All Face Name PM+SPH+S Frem Circo CM+SPH+S			Logout
Add Sir	Instances rgle Product Actions for Selected Refresh Product Instance List			
	Name	Last Contact Filter By Last Contact	Alerts Filter by Alerts	
	UDL/PD/R8140H-P-49; UDL/SNFD02420044L	30-Sep-2020 11:02	COMPLETE DLC request sent to CSSM	
	UDL/PD:R183549, UDL_SNFHH2416F00Z	30-Sep-2020 11:03	COMPLETE Acknowledgement received from CSSM	
			thems per page: $5 - 7$ 1 – 2 of 2 $\langle \rangle$	×

Step 3 There are two options to load your file. **Drag and Drop**, or **Browse** to where you saved your file. This example shows Browse.

Z ■ ▼ Downloads		
None Your Improve spare Bit Shall lengt score: Langt score: Improve spare Bit Shall lengt score: Improve spare		
Concluse Concluse	ρ	Alerts 🕈 Filter By Alerts
50 Objects Bettop 60 Dectorpett Bettop 60 Decorrects <		COMPLETE Usage report from product instance COMPLETE Usage report from product instance
Gi OSBA (C) Libraies v c PULIKTIVI-MY	your computer.	COMPLETE Usage report from product instance
172 27.157.71 SN F0C23032VVB PID: ESR-8300-CON-H9		COMPLETE Usage report from product instance
172 271 557 88 SNL FOC23232KC7 26-Aug-2020 19 01 PID: ESR-5300-CON-H9		COMPLETE Usage report from product instance
		items per page: 5 1−5 of 5 < < >

Figure 26: Browse to File

Step 4 Select your authorization code file, and then click **Open**. The system uploads the authorization code file, then a successful upload message appears.

Figure 27: Successful Upload

Prod	uct instances			
Add	Single Product Actions for Selected Parkesh Product Instance List			
	Kana	Last Contact	Alerts	
	Ether Der Hondoff, Shi an PC-	The InLast Contact	Filter Donom	
۵	IOLAD ATMENANG LOCARDON DUAL		COMPLETE DLC request sectio CSSM	
0	LOU-FO-BILDING LOU-BILTH-CHIPPOL	Upload From Cisco	COMPLETE Usinge report from product instance	
۵	LOLFORNISHE LOLINFORMERIE		COMPLETE Usage report upmaded to CBDM	
UCL PO SIGNATED CONNER DO L'ENVOCEDENTAL		Drag & Drop a File or Browse from your computer.	COMPLETE Unage report acknowledgement to product endance	
			Terrispersage 5 + Te-Kalik (C	

License Installation Process in the Router

Perform the following from the command line interface.

```
Router(config)#license boot level ?
network-advantage License Level Network-Advantage
network-essentials License Level Network-Essentials
Router(config)#license boot level
Router(config)#platform hardware throughput crypto ?
T0 T0(up to 15 mbps) bidirectional thput
T1 T1(up to 100 mbps) bidirectional thput
T2 T2(up to 1 gbps) bidirectional thput
Router(config)#platform hardware throughput crypto
```

Router# license smart trust idtoken <tokened> local force *Sep 21 17:25:15.726: %CRYPTO_ENGINE-5-KEY_ADDITION: A key named SLA-KeyPair has been generated or imported by crypto-engine

*Sep 21 17:25:15.808: %PKI-4-NOCONFIGAUTOSAVE: Configuration was modified. Issue "write memory" to save new IOS PKI configuration

*Sep 21 17:25:24.310: %SMART_LIC-5-COMM_RESTORED: Communications with Cisco Smart Software Manager (CSSM) restored

*Sep 21 17:25:24.490: %SMART_LIC-6-TRUST_INSTALL_SUCCESS: A new licensing trust code was successfully installed on P:IR8340-K9,S:FD02523J6N1.

```
Router# show license tech support | i Trust

Trust Establishment:

Trust Acknowledgement:

Trust Sync:

Trusted Store Interface: True

Local Device: P:IR8340-K9,S:FD02523J6N1, state[2], Trust Data INSTALLED TrustId:869

Overall Trust: INSTALLED (2)
```

```
Router#show license summary
Account Information:
```

```
Smart Account: SA-IOT-Polaris As of Sep 23 04:58:01 2021 UTC
 Virtual Account: Router
License Usage:
                       Entitlement Tag
                                                   Count Status
 License
  _____
 network-advantage T1 (IR8300 NA T1 PERF)
                                                      1 IN USE
Router#
Router#show license usage
License Authorization:
 Status: Not Applicable
network-advantage T1 (IR8300 NA T1 PERF):
 Description: network-advantage T1
 Count: 1
 Version: 1.0
Status: IN USE
 Export status: NOT RESTRICTED
 Feature Name: network-advantage T1
 Feature Description: network-advantage T1
 Enforcement type: NOT ENFORCED
 License type: Perpetual
Router#
Router#show running-config | i license
license udi pid IR8340-K9 sn FDO2523J6N1
license boot level network-advantage
license smart url https://smartreceiver-stage.cisco.com/licservice/license
license smart url smart https://smartreceiver-stage.cisco.com/licservice/license
license smart transport smart
Router#
```

HSEC Installation

This example uses the IR8300 series router.

Perform the following from the command line interface.

```
Router#license smart authorization request add hseck9 local
Router#
Sep 23 05:29:37.894: %SMART LIC-6-AUTHORIZATION INSTALL SUCCESS: A new licensing authorization
code was successfully installed on PID:IR8340-K9, SN:FD02523J6N1
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #license feature hseck9
Router (config) #end
Router#show running-config | i license
license feature hseck9
license udi pid IR8340-K9 sn FDO2523J6N1
license boot level network-advantage
license smart url https://smartreceiver-stage.cisco.com/licservice/license
license smart url smart https://smartreceiver-stage.cisco.com/licservice/license
license smart transport smart
Router#
Router#show license summary
Account Information:
  Smart Account: SA-IOT-Polaris As of Sep 23 05:29:41 2021 UTC
 Virtual Account: Router
```

```
License Usage:
 License
                   Entitlement Tag
                                            Count Status
 _____
 network-advantage_T1 (IR8300_NA_T1_PERF) 1 IN USE
 hseck9
                    (IR8300_HSEC)
                                               1 IN USE
Router#
Router#show license usage
License Authorization:
 Status: Not Applicable
.
hseck9 (IR8300 HSEC):
 Description: hseck9
 Count: 1
 Version: 1.0
 Status: IN USE
 Export status: RESTRICTED - ALLOWED
 Feature Name: hseck9
 Feature Description: hseck9
 Enforcement type: EXPORT RESTRICTED
 License type: Export
```


Configuring Ethernet Switch Ports

- Configuring VLANs, on page 87
- Configuring Private VLANs, on page 91
- Configuring Voice VLANs, on page 99
- Configuring VXLAN Tunneling, on page 101
- IEEE 802.1x Protocol, on page 102
- Spanning Tree Protocol Overview, on page 106
- MAC Table Manipulation, on page 114
- Assigning IP Addresses to Switch Virtual Interfaces, on page 117
- SVI Supported Features, on page 118
- IGMP Snooping for IPv4, on page 119
- IGMP Filtering and Throttling, on page 120
- MLD Snooping, on page 124
- Configuring UniDirectional Link Detection, on page 126
- Configuring the Switched Port Analyzer, on page 128
- EtherChannel Overview, on page 141
- Modular Quality of Service Command-Line Interface, on page 148

Configuring VLANs

A VLAN is a switched network that is logically segmented by function or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs. However, you can group end-stations even if they are not physically located on the same LAN segment. Any device port can belong to a VLAN, unicast, broadcast, and multicast packets are forwarded and flooded only to end-stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or a device supporting fallback bridging. In a device stack, VLANs can be formed with ports across the stack. Because a VLAN is considered a separate logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree.

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the device is assigned manually on an interface-by-interface basis. When you assign device interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership. The device can route traffic between VLANs by using device virtual interfaces (SVIs). An SVI must be explicitly configured and assigned an IP address to route traffic between VLANs.

Access Ports

An access port belongs to and carries the traffic of only one VLAN (unless it is configured as a voice VLAN port). Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives a tagged packet IEEE 802.1Q tagged), the packet is dropped, and the source address is not learned.

Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database. These trunk port types are supported:

An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An IEEE 802.1Q trunk
port is assigned a default port VLAN ID (PVID), and all untagged traffic travels on the port default
PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port
default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sent untagged. All
other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 4094) are in the allowed list. A trunk port can become a member of a VLAN only if VTP knows of the VLAN and if the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

For more information on VLANs, see VLAN Configuration Guide, Cisco IOS XE Gibraltar 16.10.x.

Creating a VLAN

With VTP version 1 and 2, if the device is in VTP transparent mode, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database.

To configure the Vlan, perform these steps. You can configure the Vlan in access or trunk mode. The procedure is same for the both the modes.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	vlan vlan-id	Enters a VLAN ID, and enters VLAN
	Example:	configuration mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID
	Router(config)# vlan 20	to modify that VLAN.

Procedure

	Command or Action	Purpose
		Note The available VLAN ID range for this command is 1 to 4094.
Step 3	<pre>name vlan-name Example: Router(config-vlan)# name test20</pre>	(Optional) Enters a name for the VLAN. If no name is entered for the VLAN, the default is to append the <i>vlan-id</i> value with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4.
Step 4	exit	Returns to configuration mode.
	Example: Router(config-vlan)# exit	
Step 5	<pre>interface interface-id Example: Router(config)# interface gigabitethernet 0/1/0</pre>	Specifies the physical port to be configured, and enter interface configuration mode.
Step 6	<pre>switchport mode access Example: Router(config-if)# switchport mode access</pre>	Configures the interface as a VLAN access port.
Step 7	<pre>switchport access vlan vlan id Example: Router(config-if)# switchport access vlan 20</pre>	Specifies the VLAN for which this access port will carry traffic. If you do not enter this command, the access port carries traffic on VLAN1 only; use this command to change the VLAN for which the access port carries traffic.
Step 8	end	Returns to configuration mode.
	Example:	
	Router(config-if)# end	

Configuring LAN Ports for Layer 2 Switching

This section describes how configure all three types of ethernet LAN ports for Layer 2 switching on the Cisco IR8340 routers. The configuration tasks in this section apply to LAN ports on the router.

Layer 2 LAN Port Modes

The following table lists the Layer 2 LAN port modes and describes how they function on LAN ports.

Mode	Function
switchport mode access	Puts the LAN port into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The LAN port becomes a nontrunk port even if the neighboring LAN port does not agree to the change.
switchport mode dynamic desirable	Makes the LAN port actively attempt to convert the link to a trunk link. The LAN port becomes a trunk port if the neighboring LAN port is set to trunk , desirable , or auto mode. This is the default mode for all LAN ports.
switchport mode dynamic auto	Makes the LAN port willing to convert the link to a trunk link. The LAN port becomes a trunk port if the neighboring LAN port is set to trunk or desirable mode.
switchport mode trunk	Puts the LAN port into permanent trunking mode and negotiates to convert the link into a trunk link. The LAN port becomes a trunk port even if the neighboring port does not agree to the change.
switchport nonegotiate	Puts the LAN port into permanent trunking mode but prevents the port from generating DTP frames. You must configure the neighboring port manually as a trunk port to establish a trunk link.

Table 8: Layer 2 LAN Port Modes

Note DTP is a point-to-point protocol. However, some internetworking devices might forward DTP frames improperly. To avoid this problem, ensure that LAN ports connected to devices that do not support DTP are configured with the **access** keyword if you do not intend to trunk across those links. To enable trunking to a device that does not support DTP, use the **nonegotiate** keyword to cause the LAN port to become a trunk but not generate DTP frames.

Default Layer 2 LAN Interface Configuration

The following table shows the Layer 2 LAN port default configuration.

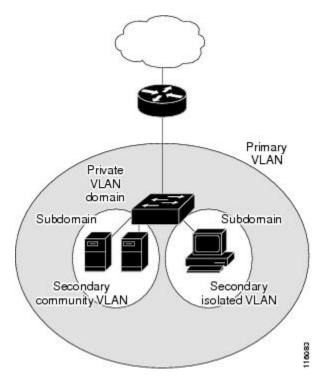
Table 9: Layer 2 LAN Interface Default Configuration

Feature	Default
Interface mode:	
• Before entering the switchport command	
• After entering the switchport command	switchport mode dynamic desirable
Default access VLAN	VLAN 1

Feature	Default
Native VLAN (for 802.1Q trunks)	VLAN 1

Configuring LAN Interfaces for Layer 2 Switching

These sections describe how to configure Layer 2 switching on the Cisco IR8340 routers:


Note Use the default **interface** *interface -type slot/subslot/port* command to revert an interface to its default configuration.

Configuring Private VLANs

Information About Private VLANs

Using private VLANs addresses the scalability problem and provides IP address management benefits for service providers and Layer 2 security for customers. Private VLANs partition a regular VLAN domain into subdomains. A subdomain is represented by a pair of VLANs: a primary VLAN and a secondary VLAN. A private VLAN can have multiple VLAN pairs, one pair for each subdomain. All VLAN pairs in a private VLAN share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another.

Figure 28: Private VLAN Domain

Primary and Secondary VLANs in Private VLANs

A private VLAN domain has only one primary VLAN. Each port in a private VLAN domain is a member of the primary VLAN; the primary VLAN is the entire private VLAN domain.

Secondary VLANs provide isolation between ports within the same private VLAN domain. The following two types are secondary VLANs within a primary VLAN:

- Isolated VLANs—Ports within an isolated VLAN cannot communicate directly with each other at the Layer 2 level.
- Community VLANs—Ports within a community VLAN can communicate with each other but cannot communicate with ports in other community VLANs or in any isolated VLANs at the Layer 2 level.

Private VLAN Ports

The three types of PVLAN ports are as follows:

Promiscuous port—A promiscuous port belongs to the primary VLAN. The promiscuous port can
communicate with all interfaces, including the community and isolated host ports, that belong to those
secondary VLANs associated to the promiscuous port and associated with the primary VLAN. You can
have several promiscuous ports in a primary VLAN. Each promiscuous port can have several secondary
VLANs or no secondary VLANs that are associated to that port. You can associate a secondary VLAN
to more than one promiscuous port, as long as the promiscuous port and secondary VLANs are within
the same primary VLAN. You may want to do this for load-balancing or redundancy purposes. You can
also have secondary VLANs that are not associated to any promiscuous port.

A promiscuous port can be configured as an access port.

Isolated port—An isolated port is a host port that belongs to an isolated secondary VLAN. This port has
complete isolation from other ports within the same PVLAN domain, except that it can communicate
with associated promiscuous ports. PVLANs block all traffic to isolated ports except traffic from
promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports. You
can have more than one isolated port in a specified isolated VLAN. Each port is completely isolated from
all other ports in the isolated VLAN.

An isolated port can be configured an access port.

 Community port—A community port is a host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with associated promiscuous ports. These interfaces are isolated from all other interfaces in other communities and from all isolated ports within the PVLAN domain.

A community port must be configured as an access port.

Guidelines and Limitations for Private VLANs

The following are guidelines and limitations for configuring Private VLANs on IR8340:

- A primary VLAN can have only one isolated VLAN and multiple community VLANs.
- Secondary VLANs must be part of one and only one primary VLAN.
- SVI for secondary VLAN is disabled when primary-secondary VLAN association is configured. Deleting the association will bring back the secondary VLAN SVI.
- Deletion of a secondary VLAN puts the ports in that VLAN in inactive state.

- VLANs that cannot be configured as PVLAN-1, 1001-1005
- All switches in the network must be manually configured with the primary-secondary VLAN association. Otherwise, the MAC addresses will not be replicated from primary VLAN to secondary and vice versa, in that switch. That will lead to flooding of PVLAN traffic.
- Maximum number of primary or secondary VLANs that can be configured is limited by the number of VLANs that can be supported by the switch.
- Maximum number of end devices that can be configured in PVLAN is limited by the L2 TCAM entry limitation.

The following features are supported on IR8340:

- Isolated access port—Access port which can only communicate with promiscuous port
- Promiscuous access port—Access ports which can communicate with all ports in private VLAN
- Community access port—Access ports which can communicate with ports in same community and promiscuous ports
- Private VLAN across switches—Private VLAN traffic can be carried across normal trunk ports and the feature can span across switches
- Multicast in Private VLAN-Multicast communication in and out of private VLAN

The following features are not supported on IR8340:

- 2-way community VLAN-The community ports send and receive traffic in the same VLAN
- **Promiscuous trunk port**—A trunk port carrying primary VLAN traffic for multiple private VLAN. The secondary VLANs are explicitly mapped to primary VLAN for multiple private VLAN
- Trunk isolated/community ports—Isolated and community ports are trunk with secondary VLANs of multiple private VLAN
- Layer 3 communication between isolated ports—Isolated ports can communicate at layer 3

Configuring a Private VLAN

Configuring a VLAN as a Private VLAN

To create a private VLAN, you first create a VLAN, and then configure that VLAN to be a private VLAN.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	vlan vlan-id	Enters VLAN configuration submode.
	Example:	

	Command or Action	Purpose
	Router(config)# vlan 202	
Step 3	<pre>[no] private-vlan {community isolated primary} Example: Router(config-vlan)# private-vlan primary</pre>	 Configures a VLAN as a private VLAN. Use the no form of this command to clear the private VLAN configuration. Note These commands will not take effect until you exit VLAN configuration submode.
Step 4	<pre>end Example: Router(config-vlan)# end</pre>	Exits VLAN configuration mode.
Step 5	<pre>show vlan private-vlan [type] Example: Router# show vlan private-vlan</pre>	 Verifies the configuration. Note When a VLAN is configured as part of a private VLAN, all the normal access ports belonging to the VLAN will be brought down, waiting for the configuration of their port roles in the PVLAN to take effect.

Example

The following example shows how to configure VLAN 202 as a primary VLAN and verify the configuration:

The following example shows how to configure VLAN 303 as a community VLAN and verify the configuration:

The following example shows how to configure VLAN 440 as an isolated VLAN and verify the configuration:

```
Router# configure terminal
Router(config)# vlan 440
```

Router(c	config-vlar	n)# private-vlan :	isolated
Router(c	config-vlar	n)# end	
Router#	show vlan	private-vlan	
Primary	Secondary	Туре	Interfaces
202		primary	
	303	community	
	440	isolated	

Associating Secondary VLANs with a Primary Private VLAN

To associate secondary VLANs with a primary VLAN, perform this task:

Procedure

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 2	vlan primary-vlan-id	Enters VLAN configuration submode for the	
	Example:	primary VLAN.	
	Router(config)# vlan 202		
Step 3	<pre>private-vlan association {secondary_vlan_list add secondary_vlan_list remove secondary_vlan_list} Example: Router(config-vlan)# private-vlan association 303-307,309,440</pre>	Associates the secondary VLANs with the primary VLAN. Use no private-vlan association to clear all secondary VLAN associations.	
Step 4	end	Exits VLAN configuration mode.	
	Example:		
	Router(config-vlan)# end		
Step 5	show vlan private-vlan [type]	Verifies the configuration.	
	Example:		
	Router# show vlan private-vlan		

Example

The following example shows how to associate community VLANs 303 through 307, 309, and isolated VLAN 440 with primary VLAN 202, and verify the configuration:

```
Router# configure terminal
Router(config)# vlan 202
Router(config-vlan)# private-vlan association 303-307,309,440
Router(config-vlan)# end
Router# show vlan private-vlan
Primary Secondary Type Interfaces
```

			·
202	303	community	
202	304	community	
202	305	community	
202	306	community	
202	307	community	
202	309	community	
202	440	isolated	
	308	community	

Configuring a Layer 2 Interface as a Private VLAN Host Port

To configure a Layer 2 interface as a private VLAN host port, perform this task:

	Command or Action	Purpose		
Step 1	configure terminal	Enters global configuration mode.		
	Example:			
	Router# configure terminal			
Step 2	interface type slot/port	Selects the LAN interface to configure.		
	Example:			
	<pre>Router(config)# interface gigabitethernet 0/1/0</pre>			
Step 3	switchport	Configures the LAN interface for Layer 2		
	Example:	switching.		
	Router(config-if)# switchport			
Step 4	switchport mode private-vlan host	Configures the Layer 2 port as a private VLAN host port.		
	Example:			
	Router(config-if)# switchport mode private-vlan host	Use no switchport mode private-vlan host to clears private VLAN port configuration.		
Step 5	switchport private-vlan host host-association primary_vlan_ID secondary_vlan_ID	Associates the Layer 2 port with a private VLAN.		
	Example:	Use no switchport private-vlan host		
	Router(config-if)# switchport private-vlan host-association 202 303	host-association to clear the association.		
Step 6	end	Exits interface configuration mode.		
	Example:			
	Router(config-if)# end			
Step 7	show interface type slot/port switchport	Verifies the configuration.		
	Example:			
	Router# show interface gigabitethernet 0/1/0 switchport			

L

Example

This example shows how to configure interface gigabitethernet 0/1/0 as a private VLAN host port and verify the configuration:

```
Router# configure terminal
Router(config) # interface gigabitethernet 0/1/0
Router(config-if) # switchport mode private-vlan host
Router(config-if)# switchport private-vlan host-association 202 303
Router(config-if) # end
Router# show interfaces gigabitethernet 0/1/0 switchport
Name: Ge0/1/0
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: down
Administrative Trunking Encapsulation: negotiate
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative private-vlan host-association: 202 (VLAN0202) 303 (VLAN0303)
Administrative private-vlan mapping: none
Operational private-vlan: 202 (VLAN0202)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
```

Configuring a Layer 2 Interface as a Private VLAN Promiscuous Port

To configure a Layer 2 interface as a private VLAN promiscuous port, perform this task:

	Command or Action	Purpose	
Step 1	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 2	interface type slot/port	Selects the LAN interface to configure.	
	Example:		
	Router(config)# interface gigabitethernet 0/1/0		
Step 3	switchport	Configures the LAN interface for Layer 2	
	Example:	switching.	
	Router(config-if) # switchport		
Step 4	switchport mode private-vlan promiscuous	Configures the Layer 2 port as a private VLAN	
	Example:	promiscuous port.	
	Router(config-if)# switchport mode	Use no switchport mode private-vlan to clear	
	private-vlan promiscuous	the private VLAN port configuration.	

	Command or Action	Purpose
Step 5	<pre>switchport private-vlan mapping primary_vlan_ID {secondary_vlan_list add secondary_vlan_list remove secondary_vlan_list} secondary_vlan_ID Example: Router(config-if) # switchport private-vlan mapping 202 303,440</pre>	Maps the private VLAN promiscuous port to a primary VLAN and to selected secondary VLANs. Use no switchport private-vlan mapping to clear all mapping between the private VLAN promiscuous port and the primary VLAN and any secondary VLANs.
Step 6	end Example: Router(config-if)# end	Exits interface configuration mode.
Step 7	<pre>show interface type slot/port switchport Example: Router# show interface gigabitethernet 0/1/0 switchport</pre>	Verifies the configuration.

Example

The following example shows how to configure interface gigabitethernet 0/1/0 as a private VLAN promiscuous port and map it to a private VLAN:

```
Router# configure terminal
Router(config)# interface gigabitethernet 0/1/0
Router(config-if)# switchport mode private-vlan promiscuous
Router(config-if)# switchport private-vlan mapping 202 303,440
Router(config-if)# end
```

The following example shows how to verify the configuration:

```
Router# show interfaces gigabitethernet 0/1/0 switchport
Name: Ge0/1/0
Switchport: Enabled
Administrative Mode: private-vlan promiscuous
Operational Mode: down
Administrative Trunking Encapsulation: negotiate
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative private-vlan host-association: none ((Inactive))
Administrative private-vlan mapping: 202 (VLAN0202) 303 (VLAN0303) 440 (VLAN0440)
Operational private-vlan: 202 (VLAN0202)
Trunking VLANS Enabled: ALL
Pruning VLANS Enabled: 2-1001
Capture Mode Disabled
```

Configuring Voice VLANs

The voice VLAN feature provides support for connecting an IP phone to an access switch port. Voice VLAN on an access port is desirable so that feature like port security, dot1x, dynamic access port, protected port can be configured.

The voice VLAN requires the access port to support dedicated VLAN for voice traffic (as the data traffic on the phone link might deteriorate the voice traffic quality) thus the device can differentiate voice traffic from data traffic and provide QoS for voice traffic and ensure quality.

The Ethernet port will be associated with two VLANs on a voice VLAN port as following:

- 1. A native VLAN to carry data traffic
- 2. An auxiliary or Voice VLAN to carry voice traffic

The data traffic will be sent either tagged or untagged with the access VLAN id. The phone will send voice traffic tagged with configured voice VLAN id. The voice VLAN id used by phone can either configured manually or learned through CDP. When voice VLAN is configured on the access port, the device will instruct IP phone to send voice traffic over the configured voice VLAN. This is achieved through sending CDP messages to IP phone indicating the same. QoS configurations can be done on the voice VLAN port in order to provide predictable forwarding of voice traffic and thus ensure voice quality.

Limitations and Restrictions

- · Voice VLAN configuration is only supported on device access ports.
- Voice VLAN configuration will not be applicable to port channels.
- Private VLAN configuration will not be allowed on a voice VLAN port and vice versa.

How to Configure Voice VLANs

The following sections provide information about configuring Voice VLANs:

Configuring Cisco IP Phone Voice Traffic

You can configure a port connected to the Cisco IP Phone to send CDP packets to the phone to configure the way in which the phone sends voice traffic. The phone can carry voice traffic in IEEE 802.1Q frames for a specified voice VLAN with a Layer 2 CoS value. It can use IEEE 802.1p priority tagging to give voice traffic a higher priority and forward all voice traffic through the native (access) VLAN. The Cisco IP Phone can also send untagged voice traffic or use its own configuration to send voice traffic in the access VLAN. In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5).

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	

	Command or Action	Purpose
	Router# configure terminal	
Step 2	<pre>interface interface-id Example: Router(config)# interface gigabitethernet 0/1/0</pre>	Specifies the interface connected to the phone, and enters interface configuration mode.
Step 3	<pre>switchport voice vlan {vlan-id dot1p none untagged} Example: Router(config-if)# switchport voice vlan dot1p</pre>	 Configures the voice VLAN. <i>vlan-id</i> —Configures the phone to forward all voice traffic through the specified VLAN. By default, the Cisco IP Phone forwards the voice traffic with an IEEE 802.1Q priority of 5. Valid VLAN IDs are 1 to 4094. dot1p —Configures the phone to use IEEE 802.1p priority tagging for voice traffic and to use the default native VLAN (VLAN 0) to carry all traffic. By default, the Cisco IP Phone forwards the voice traffic with an IEEE 802.1p priority and IEEE 802.1p priority of 5. none —Allows the phone to use its own configuration to send untagged —Configures the phone to send untagged voice traffic.
Step 4	end Example:	Exits interface configuration mode.
	Router(config-if)# end	

What to do next

To configure port security for Voice VLAN:

```
Router#configure terminal
Router(config)#interface <interface-id>
Router(config-if)# switchport mode access
Router(config-if)# switchport voice vlan vlan-id
Router(config-if)# switchport port-security
Router(config-if)# switchport port-security [maximum value [vlan {access | voice}]]
Router(config-if)# switchport port-security violation {protect | restrict | shutdown}
Router(config-if)# switchport port-security [mac-address mac-address [vlan {access | voice}]]
Router(config-if)#end
Router#show port-security
```

Removing Voice VLAN

To remove the voice VLAN configuration, use the no switchport voice vlan command.

Monitoring Voice VLAN

To display voice VLAN configuration for an interface, use the **show interfaces** *interface-id* **switchport** privileged EXEC command.

Configuring VXLAN Tunneling

VXLAN is an extension to the Layer 2 VLAN. It was designed to provide the same VLAN functionality with greater extensibility and flexibility. VXLAN offers the following benefits:

- VLAN flexibility in multitenant segments: It provides a solution to extend Layer 2 segments over the underlying network infrastructure so that tenant workload can be placed across physical pods in the data center.
- Higher scalability: VXLAN uses a 24-bit segment ID known as the VXLAN network identifier (VNID), which enables up to 16 million VXLAN segments to coexist in the same administrative domain.
- Improved network utilization: VXLAN solved Layer 2 STP limitations. VXLAN packets are transferred through the underlying network based on its Layer 3 header and can take complete advantage of Layer 3 routing, equal-cost multipath (ECMP) routing, and link aggregation protocols to use all available paths.

VXLAN uses the VXLAN tunnel endpoint (VTEP) to map tenants' end devices to VXLAN segments and to perform VXLAN encapsulation and decapsulation. Each VTEP function has two interfaces: one is a switch interface on the local LAN segment to support local endpoint communication, and the other is an IP interface to the transport IP network.

Infrastructure VLAN is a unique IP address that identifies the VTEP device on the transport IP network. The VTEP device uses this IP address to encapsulate Ethernet frames and transmits the encapsulated packets to the transport network through the IP interface.

A VTEP device also discovers the remote VTEPs for its VXLAN segments and learns remote MAC Address-to-VTEP mappings through its IP interface.

The following example shows that two IR8340 routers act as VTEPs:

Table 10: VXLAN Configuration

bridge-domain 1
member vni 6001
member Vlan100 service-instance 1
!
interface Loopback1
ip address 100.100.100.100 255.255.255.255
!
interface GigabitEthernet0/0/1
ip address 192.168.1.3 255.255.255.0
media-type rj45
!
interface GigabitEthernet0/1/2
switchport access vlan 100
!
interface Vlan100
no ip address
service instance 1 ethernet
encapsulation dot1q 100
!
interface nvel
no ip address
source-interface Loopback1
member vni 6001
ingress-replication 200.200.200.200
!
ip forward-protocol nd
ip pim rp-address 100.100.100.100
no ip http server
ip http secure-server
ip route 0.0.0.0 0.0.0.0 192.168.1.2
!

For more details and multiple VTEP configuration with multicast, see https://www.cisco.com/c/en/us/support/docs/ip/multicast/200791-Configuration-and-Troubleshooting-of-VxL.html.

IEEE 802.1x Protocol

The IEEE 802.1x standard defines a client/server-based access control and authentication protocol that prevents clients from connecting to a LAN through publicly accessible ports unless they are authenticated. The authentication server authenticates each client connected to a port before making available any services offered by the router or the LAN.

Until the client is authenticated, IEEE 802.1x access control allows only Extensible Authentication Protocol over LAN (EAPOL), Cisco Discovery Protocol (CDP), and Spanning Tree Protocol (STP) traffic through the port to which the client is connected. After authentication, normal traffic can pass through the port. For more information on IEEE 802.1x port-based authentication, see the Configuring IEEE 802.1x Port-Based Authentication chapter of the Security Configuration Guide, Cisco IOS XE Gibraltar 16.10.x.

Configuring IEEE 802.1X Port-Based Authentication

IEEE 802.1X port-based authentication is configured on a device to prevent unauthorized devices (supplicants) from gaining access to the network. The device can combine the function of a router, switch, and access point,

depending on the fixed configuration or installed modules. The switch functions are provided by either built-in switch ports or a plug-in module with switch ports. This feature supports both access ports and trunk ports. For more information on 802.1X port-based authentication, see the Configuring IEEE 802.1X Port-Based Authentication Guide.

Enabling AAA Authorization for VLAN Assignment

AAA authorization limits the services available to a user. When AAA authorization is enabled, the device uses information retrieved from the user's profile, which is in the local user database or on the security server, to configure the user's session. The user is granted access to a requested service only if the information in the user profile allows it.

Procedure

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Router> enable		
Step 2	configure terminal	Enter global configuration mode.	
	Example:		
	Router# configure terminal		
Step 3	aaa new-model	Enables AAA.	
	Example:		
	Router(config) # aaa new-model		
Step 4	aaa authorization network radius	Configures the device for user RADIUS	
	if-authenticated	authorization for all network-related service	
	Example:	requests. RADIUS authorization succeeds if the user has authenticated.	
	Router(config)# aaa authorization network radius if-authenticated		
Step 5	aaa authorization exec radius	Configures the device for user RADIUS	
	if-authenticated	authorization if the user has privileged EXEC access. RADIUS authorization succeeds if the	
	Example:	user has authenticated.	
	Router(config)# aaa authorization exec radius if-authenticated		
Step 6	end	Returns to privileged EXEC mode.	
	Example:		
	Router(config)# end		

Enabling IEEE 802.1X Authentication and Authorization

Follow these steps to enable IEEE 802.1X authentication and authorization.

I

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	aaa authentication dot1x {default listname} method1 [method2]	Creates a series of authentication methods that are used to determine user privilege to access
	Example:	the privileged command level so that the device can communicate with the AAA server.
	Router(config)# aaa authentication dot1x default group radius	
Step 4	dot1x system-auth-control	Globally enables 802.1X port-based
	Example:	authentication.
	Router(config)# dot1x system-auth-control	
Step 5	identity profile default	Creates an identity profile and enters dot1x
	Example:	profile configuration mode.
	Router(config) # identity profile default	
Step 6	exit	Exits dot1x profile configuration mode and
	Example:	returns to global configuration mode.
	Router(config-identity-prof)# exit	
Step 7	interface type slot/port	Enters interface configuration mode and
	Example:	specifies the interface to be enabled for 802.1X authentication.
	Router(config) # interface	aumentication.
	Gigabitethernet 0/1/0	
Step 8	access-session port-control {auto force-authorized force-unauthorized}	Enables 802.1X port-based authentication on the interface.
	Example:	• auto —Enables IEEE 802.1X
	Router(config-if)# access-session port-control auto	authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port changes from down to up or when an EAPOL-start frame is received. The Device requests the identity of the supplicant and begins relaying authentication messages between the

I

	Command or Action	Purpose
		 supplicant and the authentication server. Each supplicant attempting to access the network is uniquely identified by the Device by using the supplicant MAC address. force-authorized — Disables IEEE 802.1X authentication and causes the port to change to the authorized state without any authentication exchange required. The port sends and receives normal traffic without IEEE 802.1X-based
		authentication of the client. This is the default setting.
		• force-unauthorized —Causes the port to remain in the unauthorized state, ignoring all attempts by the supplicant to authenticate. The Device cannot provide authentication services to the supplicant through the port.
Step 9	dot1x pae [supplicant authenticator both]	Sets the Port Access Entity (PAE) type.
	<pre>Example: Device(config-if)# dot1x pae authenticator</pre>	• supplicant —The interface acts only as a supplicant and does not respond to messages that are meant for an authenticator.
		• authenticator The interface acts only as an authenticator and does not respond to any messages meant for a supplicant.
		• both — The interface behaves both as a supplicant and as an authenticator and thus does respond to all dot1x messages.
Step 10	end	Returns to privileged EXEC mode.
	Example:	
	<pre>router(config)# end</pre>	
Step 11	show dot1x	Displays whether 802.1X authentication has
	Example:	been configured on the device.
	Router# show dot1x	

Spanning Tree Protocol Overview

Spanning Tree Protocol (STP) is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Device might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

The STP uses a spanning-tree algorithm to select one device of a redundantly connected network as the root of the spanning tree. The algorithm calculates the best loop-free path through a switched Layer 2 network by assigning a role to each port based on the role of the port in the active topology:

- Root—A forwarding port elected for the spanning-tree topology
- · Designated-A forwarding port elected for every switched LAN segment
- Alternate—A blocked port providing an alternate path to the root bridge in the spanning tree
- Backup—A blocked port in a loopback configuration

The device that has *all* of its ports as the designated role or as the backup role is the root device. The device that has at least *one* of its ports in the designated role is called the designated device.

Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path. Device send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The device do not forward these frames but use them to construct a loop-free path. BPDUs contain information about the sending device and its ports, including device and MAC addresses, device priority, port priority, and path cost. Spanning tree uses this information to elect the root device and root port for the switched network and the root port and designated port for each switched segment.

When two ports on a device are part of a loop, the spanning-tree and path cost settings control which port is put in the forwarding state and which is put in the blocking state. The spanning-tree port priority value represents the location of a port in the network topology and how well it is located to pass traffic. The path cost value represents the media speed.

Note By default, the device sends keepalive messages (to ensure the connection is up) only on interfaces that do not have small form-factor pluggable (SFP) modules. You can change the default for an interface by entering the [**no**] **keepalive** interface configuration command with no keywords.

IR8340 uses STP (the IEEE 802.1D bridge protocol) on all VLANs. By default, a single instance of STP runs on each configured VLAN (provided you do not manually disable STP). You can enable and disable STP on a per-VLAN basis.

For more information on STP, see the **Configuring Spanning Tree Protocol** chapter of the Layer 2 Configuration Guide.

Default STP Configuration

The following table shows the default STP configuration.

Table 11: STP Default Configuration

Feature	Default Value
Disable state	STP disabled for all VLANs
Bridge priority	32768
STP port priority (configurable on a per-port basis—used on LAN ports configured as Layer 2 access ports)	128
STP port cost (configurable on a per-port basis—used on LAN ports configured as Layer 2 access ports)	Gigabit Ethernet: 4
STP VLAN port priority (configurable on a per-VLAN basis—used on LAN ports configured as Layer 2 trunk ports)	128
STP VLAN port cost (configurable on a per-VLAN basis—used on LAN ports configured as Layer 2 trunk ports)	Gigabit Ethernet:100000000
Hello time	2 seconds
Forward delay time	15 seconds
Maximum aging time	20 seconds
Mode	PVST

Enabling STP

Ŵ

Note

• STP is disabled by default on all VLANs.

You can enable STP on a per-VLAN basis. The Cisco SM-X-16G4M2X or SM-X-40G8M2X Layer 2 Gigabit EtherSwitch Service Module maintain a separate instance of STP for each VLAN (except on VLANs on which you disable STP).

If you want to enable a mode that is different from the default mode, this procedure is required.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 2	<pre>spanning-tree mode {pvst mst rapid-pvst}</pre>	Configures a spanning-tree mode.
		All stack members run the same version of spanning tree.
		• Select pvst to enable PVST+.
		• Select mst to enable MSTP.
		• Select rapid-pvst to enable rapid PVST+.
Step 3	interface interface-id	Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports, VLANs, and port channels. The VLAN ID range is 1 to 4094. The port-channel range is 1 to 48.
Step 4	spanning-tree link-type point-to-point	Specifies that the link type for this port is
	Example:	point-to-point.
	Device(config-if)# spanning-tree link-type point-to-point	If you connect this port (local port) to a remote port through a point-to-point link and the local port becomes a designated port, the negotiates with the remote port and rapidly changes the local port to the forwarding state.
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 6	clear spanning-tree detected-protocols	If any port on the device is connected to a port
	Example:	on a legacy IEEE 802.1D device, this command restarts the protocol migration process on the
	Router# clear spanning-tree detected-protocols	entire device.
	detected-protocors	This step is optional if the designated device detects that this device is running rapid PVST+.
Step 7	show spanning-tree vlan vlan_ID	Verifies that STP is enabled.

What to do next

Caution Do not disable spanning tree on a VLAN unless all switches and bridges in the VLAN have spanning tree disabled. You cannot disable spanning tree on some switches and bridges in a VLAN and leave it enabled on other switches and bridges in the VLAN. This action can have unexpected results because switches and bridges with spanning tree enabled will have incomplete information regarding the physical topology of the network.

 $[\]triangle$

Caution

We do not recommend disabling spanning tree, even in a topology that is free of physical loops. Spanning tree serves as a safeguard against misconfigurations and cabling errors. Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN.

This example shows how to enable STP on VLAN 200:

```
Device# configure terminal
Device(config)# spanning-tree vlan 200
Device(config)# end
Device#
```

Note STP is disabled by default.

This example shows how to verify the configuration:

Device# show spanning-tree vlan 200

```
G0:VLAN0200
 Spanning tree enabled protocol ieee
 Root ID
          Priority 32768
           Address
                    00d0.00b8.14c8
           This bridge is the root
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority
                     32768
           Address
                     00d0.00b8.14c8
          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
          Aging Time 300
Interface
              Role Sts Cost
                              Prio.Nbr Status
_____ ____
Gi1/4
             Desg FWD 200000 128.196 P2p
Gi1/5
              Back BLK 200000
                            128.197 P2p
Device#
```

You must have at least one interface that is active in VLAN 200 to create a VLAN 200 spanning tree. In this example, two interfaces are active in VLAN 200.

Configuring Optional STP Features

This section describes how to configure the following optional STP features:

Enabling PortFast

<u>/</u>!\

Caution Use PortFast *only* when connecting a single end station to a Layer 2 access port. Otherwise, you might create a network loop.

To enable PortFast on a Layer 2 access port, perform this task:

	Command or Action	Purpose
Step 1	Router(config)# interface {type slot/port}	Selects a port to configure.
Step 2	Router(config-if)# spanning-tree portfast	Enables PortFast on a Layer 2 access port connected to a single workstation or server.
Step 3	Router(config-if)# spanning-tree portfast default	Enables PortFast.
Step 4	Router(config-if)# end	Exits configuration mode.
Step 5	Router# show running interface { <i>type slot/port</i> }	Verifies the configuration.

Procedure

Configuring PortFast BPDU Filtering

These sections describe how to configure PortFast BPDU filtering.

To enable PortFast BPDU filtering globally, perform this task:

Procedure

	Command or Action	Purpose
Step 1	spanning-tree portfast bpdufilter default	Enables BPDU filtering globally on the router.
	Example:	
	Router(config)# spanning-tree portfast bpdufilter default	
Step 2	show spanning-tree summary totals	Verifies the configuration.
	Example:	
	Router(config)# show spanning-tree summary totals	

Enabling PortFast BPDU Filtering

BPDU filtering is set to default on each port. This example shows how to enable PortFast BPDU filtering on the port and verify the configuration in PVST+ mode:

Router(config) # spanning-tree portfast bpdufilter default

Router(config)# ^Z Router# show spanning-tree summary totals

Switch is in pvst mode Root bridge for: G0:VLAN0013, G0:VLAN0020, G1:VLAN0020 EtherChannel misconfig guard is enabled Extended system ID is enabled Portfast Default is disabled PortFast BPDU Guard Default is disabled Portfast BPDU Filter Default is disabled Loopguard Default is disabled UplinkFast is disabled

BackboneFast	is	disabled			
Pathcost method used	is	short			
Name	Blocking	Listening	Learning	Forwarding	STP Active
3 vlans	0	0	0	3	3

To enable PortFast BPDU filtering on a nontrunking port, perform this task:

Procedure

	Command or Action	Purpose
Step 1	interface interface-id	Selects the interface to configure.
	Example:	
	<pre>Router(config)# interface gigabitethernet 0/1/0</pre>	
Step 2	spanning-tree bpdufilter enable	Enables BPDU filtering.
	Example:	
	Router(config-if)# spanning-tree bpdufilter enable	
Step 3	show spanning-tree interface interface-id	Verifies the configuration.
	Example:	
	Router# show spanning-tree interface gigabitethernet 0/1/0	

What to do next

This example shows how to enable PortFast BPDU filtering on a nontrunking port:

```
Router(config)# interface gigabitethernet 0/1/0
Router(config-if)# spanning-tree bpdufilter enable
```

```
Port 196 (gigabitethernet 0/1/0) of VLAN0010 is forwarding
Port path cost 1000, Port priority 160, Port Identifier 160.196.
Designated root has priority 32768, address 00d0.00b8.140a
Designated bridge has priority 32768, address 00d0.00b8.140a
Designated port id is 160.196, designated path cost 0
Timers:message age 0, forward delay 0, hold 0
Number of transitions to forwarding state:1
The port is in the portfast mode by portfast trunk configuration
Link type is point-to-point by default
Bpdu filter is enabled
BPDU:sent 0, received 0
Router#
```

Enabling BPDU Guard

To enable BPDU Guard globally, perform this task:

Procedure

	Command or Action	Purpose
Step 1	spanning-tree portfast bpduguard default	Enables BPDU Guard globally.
	Example:	Disables BPDU Guard globally.
	Router(config)# no spanning-tree portfast bpduguard default	
Step 2	end	Exits configuration mode.
	Example:	
	Router(config)# end	
Step 3	show spanning-tree summary totals	Verifies the configuration.
	Example:	
	Router# show spanning-tree summary totals	

What to do next

This example shows how to enable BPDU Guard:

```
Router# configure terminal
Router(config)# spanning-tree portfast bpduguard
Router(config)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show spanning-tree summary totals
default.
Root bridge for:VLAN0010
EtherChannel misconfiguration guard is enabled
Extended system ID is disabled
Portfast
                 is enabled by default
PortFast BPDU Guard is disabled by default
Portfast BPDU Filter is enabled by default
Loopguard is disabled by default
BackboneFast
Pathcost method used is long
                  Blocking Listening Learning Forwarding STP Active
Name
                  - ----- ------ ------ ------- -------
_____
                   0 0 0 3 3
2 vlans
Router#
```

Enabling UplinkFast

UplinkFast increases the bridge priority to 49152 and adds 3000 to the STP port cost of all Layer 2 LAN interfaces on the device, decreasing the probability that the router will become the root bridge. The *max_update_rate* value represents the number of multicast packets transmitted per second (the default is 150 packets per second). UplinkFast cannot be enabled on VLANs that have been configured for bridge priority. To enable UplinkFast on a VLAN with bridge priority configured, restore the bridge priority on the VLAN to the default value by entering a **no spanning-tree vlan** *vlan_ID* **priority** command in global configuration mode.

Note When you enable UplinkFast, it affects all VLANs on the device. You cannot configure UplinkFast on an individual VLAN.

To enable UplinkFast, perform this task:

Procedure

	Command or Action	Purpose
Step 1	Router(config)# spanning-tree uplinkfast [max-update-rate max_update_rate]	Enables UplinkFast.
Step 2	Router(config)# no spanning-tree uplinkfast max-update-rate	Reverts to the default rate.
Step 3	Router(config)# no spanning-tree uplinkfast	Disables UplinkFast.
Step 4	Router(config)# end	Exits configuration mode.
Step 5	Router# show spanning-tree vlan vlan_ID	Verifies that UplinkFast is enabled.

What to do next

This example shows how to enable UplinkFast with an update rate of 400 packets per second:

```
Router# configure terminal
Router(config)# spanning-tree uplinkfast max-update-rate 400
Router(config)# exit
Router#
```

This example shows how to verify that UplinkFast is enabled:

```
Router# show spanning-tree uplinkfast
```

```
UplinkFast is enabled
Router#
```

Enabling BackboneFast

Ø

Note BackboneFast operates correctly only when enabled on all network devices in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party network devices.

To enable BackboneFast, perform this task:

	Command or Action	Purpose
Step 1	Router(config)# spanning-tree backbonefast	Enables backbonefast.
Step 2	Router(config)# no spanning-tree backbonefast	Disables BackboneFast.

	Command or Action	Purpose
Step 3	Router(config)# end	Exits configuration mode.
Step 4	Router# show spanning-tree vlan vlan_ID	Verifies that BackboneFast is enabled.

What to do next

This example shows how to enable BackboneFast:

```
Router# configure terminal
Router(config)# spanning-tree backboneFast
Router(config)# end
Router#
```

This example shows how to verify that BackboneFast is enabled:

```
Router# show spanning-tree backbonefast
```

MAC Table Manipulation

This section includes the following:

Creating a Static Entry in the MAC Address Table

Perform the following task to create a static entry in the MAC address table.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mac address-table static mac-address vlan <i>vlan-id</i> interface <i>Interface-id</i>	Creates a static entry in the MAC address table.
	Example:	

	Command or Action	Purpose
	Router(config) # mac address-table static 00ff.ff0d.2dc0 vlan 1 interface gigabitethernet 0/1/0	
Step 4	end Example: Router(config)# end	Returns to privileged EXEC mode.
Step 5	show mac address-table Example: Router# show mac address-table	Verifies the MAC address table.

MAC Address-Based Traffic Blocking

Perform the following task to block all traffic to or from a MAC address in a specified VLAN.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mac address-table static mac-address vlan vlan-id drop	Creates a static entry with drop action in the MAC address table.
	Example:	
	Router(config)# mac address-table static 00ff.ff0d.2dc0 vlan 1 drop	
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	<pre>router(config)# end</pre>	
Step 5	show mac address-table	Verifies the MAC address table.
	Example:	
	Router# show mac address-table	

Configuring and Verifying the Aging Timer

Perform this task to configure the aging timer.

I

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mac address-table aging-time time	Configures the MAC address aging timer age in seconds.
	<pre>Example: Router(config)# mac address-table aging-time 600 Or Router(config)# mac address-table aging-time 0</pre>	 The accept value is either 0 or 10-1000000 seconds. Default value is 300 seconds. The maximum aging timer supported by switch chipset is 634 seconds. If configure greater than 634 seconds, MAC address will age out after 634 seconds. The value 0 means dynamic MAC entries will never age out.
Step 4	end Example: router(config)# end	Returns to privileged EXEC mode.
Step 5	show mac address-table aging-time Example: Router# show mac address-table aging-time	Verifies the MAC address table.

Procedure

MAC Learning on a Vlan

To disable or enable MAC learning on specified vlan, perform these steps.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	mac address-table learning vlan vlan-id interface Interface-id	Creates a static entry in the MAC address table.
	Example:	
	Router(config)# mac address-table learning vlan 10	
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	<pre>router(config) # end</pre>	

Assigning IP Addresses to Switch Virtual Interfaces

To configure IP routing, you need to assign IP addresses to Layer 3 network interfaces. This enables communication with the hosts on those interfaces that use IP. IP routing is disabled by default, and no IP addresses are assigned to Switch Virtual Interfaces (SVIs).

An IP address identifies a destination for IP packets. Some IP addresses are reserved for special uses and cannot be used for host, subnet, or network addresses. RFC 1166, "Internet Numbers," contains the official description of these IP addresses.

An interface can have one primary IP address. A a subnet mask identifies the bits that denote the network number in an IP address.

Beginning in privileged EXEC mode, follow these steps to assign an IP address and a network mask to an SVI.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
Step 2	interface vlan vlan-id	Enter interface configuration mode, and specify the Layer 3 VLAN to configure.
Step 3	ip address ip-address subnet-mask	Configure the IP address and IP subnet mask.
Step 4	end	Returns to privileged EXEC mode.
Step 5	show interfaces [interface-id] show ip interface [interface-id] show running-config interface [interface-id]	Verify your entries.
Step 6	copy running-config startup-config	(Optional) Save your entries in the configuration file.

SVI Supported Features

The following table provided the supported features on the SVI.

Table 12: SVI Supported Features

Techolongy	Feature	Use Case
Routing	Routing Protocol	Interconnects Layer 3 networks using protocols such as Routing Information Protocol (RIP), Open Shortest Path First (OSPF) Protocol, and Enhanced Interior Gateway Routing Protocol (EIGRP) configured under SVI.
		For more informaton on routing protocol, see the IP Routing: Protocol-Independent Configuration Guide.
	Hot Standby Router Protocol (HSRP)	Supports redundancy and high availability with a secondary device connected to the LAN with SVI, using HSRP.
		For more informaton on HSRP, see the First Hop Redundancy Protocols Configuration Guide.
	DHCP	Cisco devices running Cisco software include Dynamic Host Configuration Protocol (DHCP) server and the relay agent software. The Cisco IOS DHCP server is a full DHCP server implementation that assigns and manages IP addresses from specified address pools within the device to DHCP clients. The DHCP server can be configured to assign additional parameters such as the IP address of the Domain Name System (DNS) server and the default device.
		For more informaton on HSRP, see the, IP Addressing: DHCP Configuration Guide
	Multicast (IPv4)	Provides multicast support for clients connected to the switch ports.
		For more informaton on HSRP, see the, IP Multicast: PIM Configuration Guide
	VRF	Associates a VRF instance with an SVI to map VLANs to different logical or physical VPN WAN connections.
		For more informaton on VRF protocol, see the IP Routing: Protocol-Independent Configuration Guide.

Techolongy	Feature	Use Case
Security	ACL	Provides packet filtering to control network traffic and restrict the access of users and devices to the network
		For more informaton on ACL protocol, see the Security Configuration Guide: Access Control Lists.
	NAT	Provides NAT under SVI.
		For more information on NAT, see the IP Addressing: NAT Configuration Guide.
Qos	Classification with standard and extended access list	Provides QoS classification with standard and extended access lists.
		For more information on QoS, see the Security Configuration Guide: Access Control Lists.
	Class-based marking	Provides QoS marking based on user-defined traffic class with DSCP and IP precedence values.
		For more information on QoS Marking, see the QoS: Classification Configuration Guide.
	Policing	Limits the input or output transmission rate on SVI and specifies traffic handling policies when the traffic either conforms to or exceeds the specified rate limits.
		For more informtion on Policing, see the QoS: Policing and Shaping Configuration Guide
Bridging	EVC under SVI	Supports a default encapsulation EFP under SVI, to have VLAN/BD integrated.
	EVC with MAC ACL under SVI	For more information on EVC, see <i>Layer 2 Configuration Guide</i> , <i>Cisco IOS XE Gibraltar 16.11</i> .

IGMP Snooping for IPv4

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on their content. You can configure the switch to use IGMP snooping in subnets that receive IGMP queries from either IGMP or the IGMP snooping querier. IGMP snooping constrains IPv4 multicast traffic at Layer 2 by configuring Layer 2 LAN ports dynamically to forward IPv4 multicast traffic only to those ports that want to receive it.

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group, the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients. For more information on this feature, see

https://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/snooigmp.html.

IGMP Filtering and Throttling

In some environments, for example, metropolitan or multiple-dwelling unit (MDU) installations, you might want to control the set of multicast groups to which a user on a switch port can belong. You can control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. You might also want to limit the number of multicast groups to which a user on a switch port can belong.

With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing. You can also set the maximum number of IGMP groups that a Layer 2 interface can join.

IGMP filtering controls only group-specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.

IGMP filtering applies only to the dynamic learning of IP multicast group addresses, not static configuration.

With the IGMP throttling feature, you can set the maximum number of IGMP groups that a Layer 2 interface can join. If the maximum number of IGMP groups is set, the IGMP snooping forwarding table contains the maximum number of entries, and the interface receives an IGMP join report, you can configure an interface to drop the IGMP report or to replace the randomly selected multicast entry with the received IGMP report.

Default IGMP Filtering and Throttling Configuration

The following table displays the default IGMP filtering and throttling configuration for the device.

Feature	Default Setting	
IGMP filters	None applied.	
IGMP maximum number of IGMP groups	No maximum set.	
	Note When the maximum number of groups is in the forwarding table, the default IGMP throttling action is to deny the IGMP report.	
IGMP profiles	None defined.	
IGMP profile action	Deny the range addresses.	

Table 13: Default IGMP Filtering Configuration

Configuring IGMP Profiles

To configure an IGMP profile, use the **ip igmp profile** global configuration command with a profile number to create an IGMP profile and to enter IGMP profile configuration mode. From this mode, you can specify the parameters of the IGMP profile to be used for filtering IGMP join requests from a port.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	ip igmp profile profile-number	Enters IGMP profile configuration mode, and
	Example:	assigns a number to the profile you are
	Router(config)# ip igmp profile 3	configuring. The range is from 1 to 4294967295.
Step 3	permit deny	(Optional) Sets the action to permit or deny
	Example:	access to the IP multicast address. If no action is configured, the default for the profile is to
	Router(config-igmp-profile)# permit	deny access.
Step 4	range ip multicast address	Enter the IP multicast address or range of IP
	Example:	multicast addresses to which access is being controlled. If entering a range, enter the low IP
	Router(config-igmp-profile)# range 229.9.9.0	multicast address, a space, and the high IP multicast address.
		You can use the range command multiple times to enter multiple addresses or ranges of addresses.
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-igmp-profile)# end	

Applying IGMP Profiles

To control access as defined in an IGMP profile, use the ip igmp filter interface configuration command to apply the profile to the appropriate interfaces. You can apply IGMP profiles to layer 2 access ports only; you cannot apply IGMP profiles to routed ports or SVIs. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can only have one profile applied to it.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface interface-id	Specifies the physical interface, and enters
Route	Example:	interface configuration mode. The interface must be a Layer 2 port that does not belong to
	Router(config) # interface	an EtherChannel port group.
	GigabitEthernet0/1/0	
Step 3	ip igmp filter profile-number	Applies the specified IGMP profile to the interface. The range is 1 to 4294967295.
	Example:	
	<pre>Router(config-if)# ip igmp filter 123</pre>	
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Procedure

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the **ip igmp max-groups interface** configuration command. Use the **no** form of this command to set the maximum back to the default, which is no limit. This restriction can be applied to Layer 2 ports only; you cannot set a maximum number of IGMP groups on routed ports or SVIs. You also can use this command on a logical EtherChannel interface but cannot use it on ports that belong to an EtherChannel port group.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface interface-id	Specifies the physical interface to be configured,
	Example:	and enters interface configuration mode. The interface must be a Layer 2 port that does no belong to an EtherChannel port group.
	Router(config)# interface GigabitEthernet0/1/0	
Step 3	ip igmp max-groups number	Sets the maximum number of IGMP groups that
	Example: Router(config-if)# ip igmp max-groups 20	the interface can join. The range is 0 to 4294967294. The default is to have no maximum set.

	Command or Action	Purpose
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Configuring the IGMP Throttling Action

After you set the maximum number of IGMP groups that a Layer 2 interface can join, you can configure an interface to remove a randomly selected multicast entry in the forwarding table and to add the next IGMP group to it by using the ip igmp max-groups action replace interface configuration command.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface interface-id	Specifies the physical interface to be configured,
	Example:	and enters interface configuration mode. The interface must be a Layer 2 port that does n
		belong to an EtherChannel port group.
Step 3	<pre>ip igmp max-groups action {deny replace} Example: Router(config-if)# ip igmp max-groups</pre>	When an interface receives an IGMP report and the maximum number of entries is in the forwarding table, specifies the action that the interface takes:
	action replace	• deny —Drop the report.
		• replace —Remove a randomly selected multicast entry in the forwarding table, and add the IGMP group in the report.
		To prevent the device from removing the forwarding-table entries, you can configure the IGMP throttling action before an interface adds entries to the forwarding table.
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

MLD Snooping

In IP Version 4 (IPv4), Layer 2 switches can use Internet Group Management Protocol (IGMP) snooping to limit the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. In IPv6, MLD snooping performs a similar function. With MLD snooping, IPv6 multicast data is selectively forwarded to a list of ports that want to receive the data, instead of being flooded to all ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets.

MLD is a protocol used by IPv6 multicast routers to discover the presence of multicast listeners (nodes wishing to receive IPv6 multicast packets) on the links that are directly attached to the routers and to discover which multicast packets are of interest to neighboring nodes. MLD is derived from IGMP; MLD Version 1 (MLDv1) is equivalent to IGMPv2, and MLD Version 2 (MLDv2) is equivalent to IGMPv3. MLD is a subprotocol of Internet Control Message Protocol Version 6 (ICMPv6), and MLD messages are a subset of ICMPv6 messages, identified in IPv6 packets by a preceding Next Header value of 58.

MLD Snooping Configuration Guidelines

When configuring MLD snooping, consider these guidelines:

- You can configure MLD snooping characteristics at any time, but you must globally enable MLD snooping by using the **ipv6 mld snooping** global configuration command for the configuration to take effect.
- MLD snooping and IGMP snooping act independently of each other. You can enable both features at the same time on the switch.

Default MLD Snooping Configuration

Table 14: Default MLD Snooping Configuration

Feature	Default Setting
MLD snooping (Global)	Disabled.
MLD snooping (per VLAN)	Enabled. MLD snooping must be globally enabled for VLAN MLD snooping to take place.
IPv6 Multicast addresses	None configured.
IPv6 Multicast router ports	None configured.
MLD snooping Immediate Leave	Disabled.
MLD snooping robustness variable	Global: 2; Per VLAN: 0.
	Note The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.
Note	The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.

Feature	Default Setting
Last listener query count	Global: 2; Per VLAN: 0.
	Note The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.
Note	The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.
Last listener query interval	Global: 1000 (1 second); VLAN: 0.
	Note The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global interval.
Note	The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global interval.
TCN query solicit	Disabled.
TCN query count	2
MLD listener suppression	

Enabling or Disabling MLD Snooping on a VLAN

To enable MLD snooping on a VLAN, perform this procedure:

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	ipv6 mld snooping	Enables MLD snooping on the switch.
	Example:	
	Router(config)# ipv6 mld snooping	
Step 4	ipv6 mld snooping vlan vlan-id	Enables MLD snooping on the VLAN. The
	Example:	VLAN ID range is 1 to 1001 and 1006 to 4094.

	Command or Action	Purpose
	Device(config)# ipv6 mld snooping vlan 1	Note MLD snooping must be globally enabled for VLAN snooping to be enabled.
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring UniDirectional Link Detection

UniDirectional Link Detection (UDLD) is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it disables the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

Enabling UDLD Globally

Follow these steps to enable UDLD in the aggressive or normal mode and to set the configurable message timer on all fiber-optic ports on the device.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	udld {aggressive enable message time	Specifies the UDLD mode of operation:
	message-timer-interval} Example:	• aggressive —Enables UDLD in aggressive mode on all fiber-optic ports.
	Router(config)# udld enable message time 10	• enable —Enables UDLD in normal mode on all fiber-optic ports on the . UDLD is disabled by default.
		An individual interface configuration overrides the setting of the udld enable global configuration command.
		• message time message-timer-interval —Configures the period of time between UDLD probe messages on ports that are in the advertisement phase and are detected to be bidirectional. The range is from 1 to 90 seconds; the default value is 15.

	Command or Action	Purpose
		Note This command affects fiber-optic ports only. Use the udld interface configuration command to enable UDLD on other port types.
		Use the no form of this command, to disable UDLD.
Step 3	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Enabling UDLD on an Interface

Follow these steps either to enable UDLD in the aggressive or normal mode or to disable UDLD on a port.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface interface-id	Specifies the port to be enabled for UDLD, an enters interface configuration mode.
	Example:	
	Router(config)# interface gigabitethernet 0/1/0	
Step 3	udld port [aggressive]	UDLD is disabled by default.
	Example: Router(config-if)# udld port aggressive	 udld port —Enables UDLD in normal mode on the specified port. udld port aggressive —(Optional) Enables UDLD in aggressive mode on the
		specified port.
		Note Use the no udld port interface configuration command to disable UDLD on a specified fiber-optic port.
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Configuring the Switched Port Analyzer

This section describes how to configure a Switched Port Analyzer (SPAN) session.

- IR8340 can support 66 SPAN sessions in all ports. However, only eight of them can be used as source sessions which includes local SPAN sessions and remote SPAN source sessions. The remaining sessions can be used as remote SPAN destination sessions.
- The session ID range is from 1 to 66.

Tx, Rx, or both Tx and Rx monitoring is supported.

SPAN and **RSPAN**

You can analyze network traffic passing through ports or VLANs by using SPAN or RSPAN to send a copy of the traffic to another port on the device or on another device that has been connected to a network analyzer or other monitoring or security device. SPAN copies (or mirrors) traffic received or sent (or both) on source ports or source VLANs to a destination port for analysis. SPAN does not affect the switching of network traffic on the source ports or VLANs. You must dedicate the destination port for SPAN use. Destination ports do not receive or forward traffic by default. It can receive or forward traffic when ingress-forwarding is enabled on the destination ports.

Only traffic that enters or leaves source ports or traffic that enters or leaves source VLANs can be monitored by using SPAN; traffic routed to a source VLAN cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN cannot be monitored; however, traffic that is received on the source VLAN and routed to another VLAN can be monitored.

You can use the SPAN or RSPAN destination port to inject traffic from a network security device. For example, if you connect a Cisco Intrusion Detection System (IDS) sensor appliance to a destination port, the IDS device can send TCP reset packets to close down the TCP session of a suspected attacker.

Creating a Local SPAN Session

Follow these steps to create a SPAN session and specify the source (monitored) ports or VLANs and the destination (monitoring) ports.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	no monitor session {session_number all local remote}	Removes any existing SPAN configuration for the session.
	Example:	• For session_number, the range is 1 to 66.
	Router(config) # no monitor session all	• all — Removes all SPAN sessions.
		• local — Removes all local sessions.
		• remote —Removes all remote SPAN sessions.
Step 4		Specifies the SPAN session and the source port/Vlan (monitored port).
		• For session_number , the range is 1 to 66
		• For interface-id, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logica interfaces (port-channel port-channel-number). Valid port-channel numbers are 1 to 32.
		• For vlan-id, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).
		Note A single session can include multiple sources (ports or VLANs) defined in a series of commands, but you cannot combine source ports and source VLANs in one session.
		 (Optional) [, -] Specifies a series or rang of interfaces. Enter a space before and afte the comma; enter a space before and afte the hyphen.
		• (Optional) both rx tx —Specifies the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.
		 both —Monitors both received and sent traffic.
		• rx —Monitors received traffic.
		• tx —Monitors sent traffic.

	Command or Action	Purpose
		Note You can use the monitor session session_number source command multiple times to configure multiple source ports.
Step 5	<pre>monitor session session_number destination {interface interface-id [, -] [encapsulation {replicate do1q}]} Example: Router(config) # monitor session 1 destination interface gigabitethernet 0/1/0 encapsulation replicate</pre>	 Note For local SPAN, you must use the same session number for the source and destination interfaces. For session_number , specify the session number entered in step 4. (Optional) [, -] Specifies a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen. (Optional) encapsulation replicate specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged). (Optional) encapsulation dot1q specifies that the destination interface accepts the source interface incoming packets with IEEE 802.1Q encapsulation. Note You can use monitor session session_number destination command multiple times to configure multiple destination ports.
Step 6	end Example: Router(config)# end	Returns to privileged EXEC mode.
Step 7	show running-config	Verifies your entries.
	Example:	
	Router# show running-config	
Step 8	copy running-config startup-config	(Optional) Saves your entries in the
	Example:	configuration file.
	Router# copy running-config startup-config	

Creating a Local SPAN with Incoming Traffic Allowed on Destination

Follow these steps to create a SPAN session, to specify the source ports or VLANs and the destination ports, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	no monitor session {session_number all local remote}	Removes any existing SPAN configuration for the session.
	Example:	• For <i>session_number</i> , the range is 1 to 66.
	Router(config) # no monitor session all	• all —Removes all SPAN sessions.
		• local —Removes all local sessions.
		• remote —Removes all remote SPAN sessions.
Step 4	monitor session session_number source {interface interface-id vlan vlan-id} [, -] [both rx tx]	Specifies the SPAN session and the source port (monitored port).
	Example:	
	Router(config)# monitor session 2 source gigabitethernet 0/1/0 rx	
Step 5	<pre>monitor session session_number destination {interface interface-id [, -] [encapsulation {replicate] [ingress {dot1q vlan vlan-id untagged vlan vlan-id vlan vlan-id}]} Example: Router(config) # monitor session 2 destination interface gigabitethernet 0/1/0 encapsulation replicate ingress dot1q vlan 6</pre>	Specifies the SPAN session, the destination port, the packet encapsulation, and the ingress VLAN and encapsulation.
		• For session_number , specify the session number entered in Step 4.
		• For interface-id, specify the destination port. The destination interface must be a physical port or port-channel; it cannot be an EtherChannel, and it cannot be a VLAN.
		• (Optional) [, -] —Specifies a series or range of interfaces. Enter a space before and after the comma or hyphen.

	Command or Action	Purpose
		(Optional) encapsulation replicate specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).
		• (Optional) encapsulation dot1q specifies that the destination interface accepts the source interface incoming packets with IEEE 802.1Q encapsulation.
		• ingress enables forwarding of incoming traffic on the destination port and to specify the encapsulation type:
		• dot1q vlan vlan-id— Accepts incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.
		• untagged vlan vlan-id or vlan vlan-id— Accepts incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN.
Step 6	end	Returns to privileged EXEC mode.
-	Example: Router(config)# end	
Step 7	show running-config	Verifies your entries.
	Example:	
	Router# show running-config	
Step 8	copy running-config startup-config	(Optional) Saves your entries in the
	Example:	configuration file.
	Router# copy running-config startup-config	

Specifying VLANs to Filter

Follow these steps to limit SPAN source traffic to specific VLANs.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	no monitor session {session_number all local remote}	Removes any existing SPAN configuration fo the session.
	Example:	• For <i>session_number</i> , the range is 1 to 66
	Router(config) # no monitor session all	• all — Removes all SPAN sessions.
		• local —Removes all local sessions.
		• remote —Removes all remote SPAN sessions.
Step 4	monitor session session_number source {interface interface-id]	Specifies the characteristics of the source por (monitored port) and SPAN session.
	Example:	• For session_number , the range is 1 to 66
	Router(config)# monitor session 2 source interface gigabitethernet 0/1/0 rx	• For interface-id , specify the source port to monitor. The interface specified must already be configured as a trunk port.
Step 5	monitor session <i>session_number</i> filter vlan <i>vlan-id</i> [, -]	Limits the SPAN source traffic to specific VLANs.
	Example: Router(config) # monitor session 2 filter	• For session_number , enter the session number specified in Step 4.
	v lan 1 - 5 , 9	• For vlan-id, the range is 1 to 4094.
		 (Optional) Use a comma (,) to specify a series of VLANs, or use a hyphen (-) to specify a range of VLANs. Enter a space before and after the comma; enter a space before and after the hyphen.
Step 6	monitor session session_number destination {interface interface-id [, -] [encapsulation	Specifies the SPAN session and the destinatio port (monitoring port).
	replicate encapsulation dot1q}]}	 For session_number , specify the session number entered in Step 4.
	Router(config)# monitor session 2 destination interface gigabitethernet 0/1/0	 For interface-id , specify the destination port. The destination interface must be a

	Command or Action	Purpose
		physical port or port-channel; it cannot be an EtherChannel, and it cannot be a VLAN.
		• (Optional) [, -] Specifies a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
		• (Optional) encapsulation replicate specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).
		• (Optional) encapsulation dot1q IEEE 802.1Q is a standard protocol for interconnecting multiple switches and routers and for defining VLAN topologies. Applies a VLAN ID to the subinterface.
Step 7	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 8	show running-config	Verifies your entries.
	Example:	
	Router# show running-config	
Step 9	copy running-config startup-config	(Optional) Saves your entries in the
	Example:	configuration file.
	Router# copy running-config startup-config	
·		I

Verifying the SPAN Session

Use the **show monitor session** command to verify the sources and destinations configured for the SPAN session.

Router#show monitor session 1

```
Session 1
------
Session 1
------
Type : Local Session
Source Ports :
Both : Gi0/1/0
Destination Ports : Gi0/1/1
```

Removing a SPAN Session

To remove sources or destinations from the SPAN session, use the **no monitor session** session command in global configuration mode as shown in the following example:

Router(config) #no monitor session 1

Configuring a VLAN as an RSPAN VLAN

Follow these steps to create a new VLAN, then configure it to be the RSPAN VLAN for the RSPAN session.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	vlan vlan-id	Enters a VLAN ID to create a VLAN, or enters
	Example:	the VLAN ID of an existing VLAN, and enters VLAN configuration mode. The range is 2 to
	Router(config)# vlan 100	1001 and 1006 to 4094.
		The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 through 1005 (reserved for Token Ring and FDDI VLANs).
Step 4	remote-span	Configures the VLAN as an RSPAN VLAN.
	Example:	
	Router(config)# remote-span	
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 6	show running-config	Verifies your entries.
	Example:	
	Router# show running-config	
Step 7	copy running-config startup-config	(Optional) Saves your entries in the
	Example:	configuration file.
	Router# copy running-config startup-config	

What to do next

You must create the RSPAN VLAN in all devices that will participate in RSPAN. If the RSPAN VLAN-ID is in the normal range (lower than 1005) and VTP is enabled in the network, you can create the RSPAN VLAN in one device, and VTP propagates it to the other devices in the VTP domain. For extended-range VLANs (greater than 1005), you must configure RSPAN VLAN on both source and destination devices and any intermediate devices.

Use VTP pruning to get an efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.

To remove the remote SPAN characteristic from a VLAN and convert it back to a normal VLAN, use the **no remote-span** VLAN configuration command.

To remove a source port or VLAN from the SPAN session, use the **no monitor session** session_number **source** {**interface** interface-id | **vlan** vlan-id} global configuration command. To remove the RSPAN VLAN from the session, use the **no monitor session** session_number {**Source**|destination} remote vlan vlan-id.

Creating an RSPAN Source Session

Follow these steps to create and start an RSPAN source session and to specify the monitored source and the destination RSPAN VLAN.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example: Router# configure terminal	
Step 3	no monitor session {session_number all local remote}	Removes any existing SPAN configuration for the session.
	Example: Router(config)# no monitor session all	 For <i>session_number</i>, the range is 1 to 66. all —Removes all SPAN sessions. local —Removes all local sessions. remote —Removes all remote SPAN sessions.
Step 4	<pre>monitor session session_number source {interface interface-id vlan vlan-id} [, -] [both rx tx] Example: Router(config)# monitor session 1 source interface gigabitethernet 0/1/0 tx</pre>	 Specifies the RSPAN session and the source port (monitored port). For session_number , the range is 1 to 66. Enter a source port or source VLAN for the RSPAN session:

	Command or Action	Purpose
		 For interface-id, specifies the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number). Valid port-channel numbers are 1 to 32.
		• For vlan-id, specifies the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).
		A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.
		• (Optional) [, -] —Specifies a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
		• (Optional) both rx tx —Specifies the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.
		• both —Monitors both received and sent traffic.
		• rx —Monitors received traffic.
		• tx —Monitors sent traffic.
Step 5	monitor session session_number destination remote vlan vlan_id	Specifies the RSPAN session, the destination RSPAN VLAN, and the destination-port group.
	Example:	• For session_number , enter the number defined in Step 4.
	Router(config)# monitor session 1 destination remote vlan 100	 For vlan-id, specify the RSPAN VLAN in source session, which will transport mirrored traffic to destination session.
Step 6	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

	Command or Action	Purpose
Step 7	show running-config	Verifies your entries.
	Example:	
	Router# show running-config	
Step 8	copy running-config startup-config	(Optional) Saves your entries in the
	Example:	configuration file.
	Router# copy running-config startup-config	

Specifying VLANs to Filter on RSPAN Source Session

Follow these steps to configure the RSPAN source session to limit RSPAN source traffic to specific VLANs.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	no monitor session {session_number all local remote}	Removes any existing SPAN configuration for the session.
	Example:	• For <i>session_number</i> , the range is 1 to 66.
	Router(config)# no monitor session 2	• all — Removes all SPAN sessions.
		• local —Removes all local sessions.
		• remote —Removes all remote SPAN sessions.
Step 4	monitor session session_number source interface interface-id	Specifies the characteristics of the source port (monitored port) and SPAN session.
	Example:	• For session_number , the range is 1 to 66.
	Router(config) # monitor session 2 source interface gigabitethernet 0/1/0 rx	• For interface-id, specify the source port to monitor. The interface specified must already be configured as a trunk port.
Step 5	monitor session <i>session_number</i> filter vlan <i>vlan-id</i> [, -]	Limits the SPAN source traffic to specific VLANs.

	Command or Action	Purpose
	<pre>Example: Router(config)# monitor session 2 filter vlan 1 - 5 , 9</pre>	 For session_number , enter the session number specified in step 4. For vlan-id , the range is 1 to 4094. (Optional), - Use a comma (,) to specify a series of VLANs or use a hyphen (-) to specify a range of VLANs. Enter a space before and after the comma; enter a space before and after the hyphen.
Step 6	<pre>monitor session session_number destination remote vlan vlan-id Example: Router(config) # monitor session 2 destination remote vlan 902</pre>	 Specifies the RSPAN session and the destination remote VLAN (RSPAN VLAN). For session_number , enter the session number specified in Step 4. For vlan-id , specify the RSPAN VLAN to carry the monitored traffic to the destination port.
Step 7	end Example: Router(config)# end	Returns to privileged EXEC mode.
Step 8	show running-config Example: Router# show running-config	Verifies your entries.
Step 9	copy running-config startup-config Example: Router# copy running-config startup-config	(Optional) Saves your entries in the configuration file.

Creating an RSPAN Destination Session and Configuring Incoming Traffic

Follow these steps to create an RSPAN destination session, to specify the source RSPAN VLAN and the destination port, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	

	Command or Action	Purpose
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	no monitor session {session_number all local remote}	Removes any existing SPAN configuration for the session.
	Example:	• For session_number, the range is 1 to 66.
	Router(config)# no monitor session 2	• all —Removes all SPAN sessions.
		• local —Removes all local sessions.
		• remote —Removes all remote SPAN sessions.
Step 4	monitor session session_number source remote vlan vlan-id	Specifies the RSPAN session and the source RSPAN VLAN.
	Example:	• For session_number , the range is 1 to 66.
	Router(config)# monitor session 2 source remote vlan 901	• For vlan-id, specify the RSPAN VLAN in destination session, which will receive mirrored traffic from the source session.
Step 5	monitor session session_number destination {interface interface-id [, -] [ingress {dot1q vlan vlan-id untagged vlan vlan-id vlan	Specifies the SPAN session, the destination port, the packet encapsulation, and the incoming VLAN and encapsulation.
	vlan-id}]} Example:	• For session_number , enter the number defined in Step 5.
	Router(config)# monitor session 2 destination interface gigabitethernet 0/1/0 ingress vlan 6	In an RSPAN destination session, you must use the same session number for the source RSPAN VLAN and the destination port.
		• For interface-id , specify the destination interface. The destination interface must be a physical interface.
		• Though visible in the command-line help string, encapsulation replicate is not supported for RSPAN. The original VLAN ID is overwritten by the RSPAN VLAN ID, and all packets appear on the destination port as untagged.
		• (Optional) [, -] Specifies a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.

	Command or Action	Purpose
		• Enter ingress with additional keywords to enable forwarding of incoming traffic on the destination port and to specify the encapsulation type:
		• dot1q vlan vlan-id— Forwards incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.
		• untagged vlan vlan-id or vlan vlan-id— Forwards incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN.
Step 6	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 7	show running-config	Verifies your entries.
	Example:	
	Router# show running-config	
Step 8	copy running-config startup-config	(Optional) Saves your entries in the
	Example:	configuration file.
	Router# copy running-config startup-config	
	1	1

EtherChannel Overview

EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use the EtherChannel to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention.

An EtherChannel consists of individual Ethernet links bundled into a single logical link

The EtherChannel provides full-duplex bandwidth up to 4 Gb/s (Gigabit EtherChannel) between your switch and another switch or host.

Each EtherChannel can consist of up to four compatibly configured Ethernet ports.

Channel Groups and Port-Channel Interfaces

An EtherChannel comprises a channel group and a port-channel interface. The channel group binds physical ports to the port-channel interface. Configuration changes applied to the port-channel interface apply to all the physical ports bound together in the channel group. The channel-group command binds the physical port and the port-channel interface together. Each EtherChannel has a port-channel logical interface numbered from 1 to 32. This port-channel interface number corresponds to the one specified with the channel-group interface configuration command.

Port Aggregation Protocol

The Port Aggregation Protocol (PAgP) is a Cisco-proprietary protocol that can be run only on Cisco devices and on those devices licensed by vendors to support PAgP. PAgP facilitates the automatic creation of EtherChannels by exchanging PAgP packets between Ethernet ports.

By using PAgP, the device learns the identity of partners capable of supporting PAgP and the capabilities of each port. It then dynamically groups similarly configured ports (on a single device in the stack) into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single device port.

Link Aggregation Control Protocol

The LACP is defined in IEEE 802.3ad and enables Cisco devices to manage Ethernet channels between devices that conform to the IEEE 802.3ad protocol. LACP facilitates the automatic creation of EtherChannels by exchanging LACP packets between Ethernet ports.

By using LACP, the switch learns the identity of partners capable of supporting LACP and the capabilities of each port. It then dynamically groups similarly configured ports into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, LACP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, LACP adds the group to the spanning tree as a single device port.

Configuring Layer 2 EtherChannels

Configure Layer 2 EtherChannels by assigning ports to a channel group with the **channel-group** command in interface configuration mode. This command automatically creates the port-channel logical interface.

Use the show etherchannel swport xxx command to view the EtherChannels.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	

	Command or Action	Purpose
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface [interface-id] Example:	Specifies a physical port, and enters interface configuration mode.
	Router(config)# interface gigabitethernet 0/1/0	Valid interfaces are physical ports.
		For a PAgP EtherChannel, you can configure up to four ports of the same type and speed for the same group.
		For a LACP EtherChannel, you can configure up to 8 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.
Step 4	<pre>switchport mode {access trunk} Example: Router(config-if)# switchport mode access</pre>	Assigns all ports as static-access ports in the same VLAN, or configure them as trunks. If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094.
Step 5	<pre>switchport access vlan vlan-id Example: Router(config-if)# switchport access vlan 22</pre>	(Optional) If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094.
Step 6	{auto [non-silent] desirable [non-silent]	Assigns the port to a channel group, and specifies the PAgP or the LACP mode.
	on } { active passive}	For mode , select one of these keywords:
	<pre>Example: Router(config-if)# channel-group 5 mode auto</pre>	• auto – Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation.
		• desirable – Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets.
		• on – Forces the port to channel without PAgP or LACP. In the on mode, an EtherChannel exists only when a port group in the on mode is connected to another port group in the on mode.

	Command or Action	Purpose
		 non-silent – (Optional) If your device is connected to a partner that is PAgP-capable, configures the device port for nonsilent operation when the port is in the auto or desirable mode. If you do not specify non-silent, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission. active —Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets. passive — Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation.
Step 7	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring EtherChannel Load-Balancing

You can configure EtherChannel load-balancing to use one of several different forwarding methods.

This task is optional.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	port-channel swport load-balance { dst-ip	Configures an EtherChannel load-balancing
	dst-mac dst-mixed-ip-port dst-port	method.
	extended [dst-ip dst-mac dst-port ipv6-label l3-proto src-ip src-mac	Select one of these load-distribution methods:
	<pre>src-port] src-dst-ip src-dst-mac</pre>	• dst-ip — Specifies destination-host IP
	src-dst-mixed-ip-port src-dst-portsrc-ip	address.
	<pre>src-mac src-mixed-ip-port src-port }</pre>	

	Command or Action	Purpose
	Example: Router(config)# port-channel swport	• dst-mac — Specifies the destination-host MAC address of the incoming packet.
	load-balance src-mac	• dst-mixed-ip-port —Specifies the host II address and TCP/UDP port.
		• dst-port —Specifies the destination TCP/UDP port.
		• extended —Specifies extended load balance methodscombinations of sourc and destination methods beyond those available with the standard command.
		• ipv6-label — Specifies the IPv6 flow labe
		• 13-proto — Specifies the Layer 3 protoco
		• src-dst-ip —Specifies the source and destination host IP address.
		• src-dst-mac —Specifies the source and destination host MAC address.
		• src-dst-mixed-ip-port —Specifies the source and destination host IP address an TCP/UDP port.
		• src-dst-port —Specifies the source and destination TCP/UDP port.
		• src-ip —Specifies the source host IP address.
		• src-mac —Specifies the source MAC address of the incoming packet.
		 src-mixed-ip-port — Specifies the source host IP address and TCP/UDP port.
		• src-port —Specifies the source TCP/UD port.
Step 3	end	Returns to privileged EXEC mode.
-	Example:	
	Router(config)# end	

Configuring the PAgP Learn Method and Priority

This task is optional.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface [interface-id]	Specifies the port for transmission, and enters
	Example:	interface configuration mode.
	<pre>Router(config)# interface gigabitethernet 0/1/0</pre>	
Step 4	pagp learn-method physical-port	Selects the PAgP learning method.
	Example:	By default, aggregation-port learning is
	Router(config-if)# pagp learn-method physical port	selected, which means the device sends packet to the source by using any of the ports in the EtherChannel. With aggregate-port learning, i is not important on which physical port the packet arrives.
		Selects physical-port to connect with another device that is a physical learner.
		Make sure to configure the port-channel load-balance global configuration command to src-mac .
		The learning method must be configured the same at both ends of the link.
Step 5	pagp port-priority priority	Assigns a priority so that the selected port is
	Example:	chosen for packet transmission.
	<pre>Router(config-if)# pagp port-priority 200</pre>	For <i>priority</i> , the range is 0 to 255. The default is 128. The higher the priority, the more likely that the port will be used for PAgP transmission
Step 6	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring the LACP Port Channel Min-Links Feature

You can specify the minimum number of active ports that must be in the link-up state and bundled in an EtherChannel for the port channel interface to transition to the link-up state. Using EtherChannel min-links, you can prevent low-bandwidth LACP EtherChannels from becoming active. Port channel min-links also

cause LACP EtherChannels to become inactive if they have too few active member ports to supply the required minimum bandwidth.

To configure the minimum number of links that are required for a port channel. Perform the following tasks.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface port-channel [channel-number]	Enters interface configuration mode for a
	Example:	port-channel.
	Router(config)# interface port-channel 2	For <i>channel-number</i> , the range is 1 to 63.
Step 4	port-channel min-links min-links-number	Specifies the minimum number of member ports
	Example:	that must be in the link-up state and bundled in
	Router(config-if)# port-channel min-links 3	the EtherChannel for the port channel interface to transition to the link-up state.
		For <i>min-links-number</i> , the range is 2 to 8.
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Procedure

Configuring LACP Fast Rate Timer

You can change the LACP timer rate to modify the duration of the LACP timeout. Use the **lacp rate** command to set the rate at which LACP control packets are received by an LACP-supported interface. You can change the timeout rate from the default rate (30 seconds) to the fast rate (1 second). This command is supported only on LACP-enabled interfaces.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	

	Command or Action	Purpose
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type slot/port	Configures an interface and enters interface
	Example:	configuration mode.
	<pre>Router(config)# interface gigabitEthernet 0/1/0</pre>	
Step 4	lacp rate { normal fast}	Configures the rate at which LACP control
	Example:	packets are received by an LACP-supported interface
	Router(config-if)# lacp rate fast	
		To reset the timeout rate to its default, use the no lacp rate command.
Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 6	show lacp internal	Verifies your configuration.
	Example:	
	Router# show lacp internal	
	Router# show lacp counters	

Modular Quality of Service Command-Line Interface

The MQC (Modular Quality of Service (QoS) Command-Line Interface (CLI)) enables you to set packet classification and marking based on a QoS group value. ith the device, QoS features are enabled through the Modular QoS command-line interface (MQC). The MQC is a command-line interface (CLI) structure that allows you to create traffic policies and attach these policies to interfaces. A traffic policy contains a traffic class and one or more QoS features. A traffic class is used to classify traffic, while the QoS features in the traffic policy determine how to treat the classified traffic. One of the main goals of MQC is to provide a platform-independent interface for configuring QoS across Cisco platforms. For more infomraton on the Modular Quality of Service, see the Quality of Service Configuration Guide, Cisco IOS XE Fuji 16.9.x.

Note QoS limitations on IR8340 platforms

- 1. Quality of Service (QoS) is supported for traffic moving between switch ports.
- 2. For inter-vlan routing between switch ports, QoS limitations are:
 - It is supported only when a policy is applied on the Switch Virtual Interface (SVI).
 - Only marking and policing actions based on Differentiated Services Code Point (DSCP) match are supported on SVI.
 - Queuing and shaping actions are not supported on SVI.
- 3. For traffic moving from LAN to WAN port, QoS limitations are:
 - It is supported only when a policy is applied on SVI.
 - Only marking and policing actions based on Differentiated Services Code Point (DSCP) match are supported on SVI.
 - Queuing and shaping actions are not supported on SVI.

Creating a Traffic Class

To create a traffic class containing match criteria, use the **class-map** command to specify the traffic class name, and then use the following **match** commands in class-map configuration mode, as needed.

Before you begin

All match commands specified in this configuration task are considered optional, but you must configure at least one match criterion for a class.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	<pre>class-map class-map name {match-any}</pre>	Enters class map configuration mode.
	<pre>Example: Router(config)# class-map type ngsw-qos test_1000 Router(config-cmap)#</pre>	 Creates a class map to be used for matching packets to the class whose name you specify. match-any: Any one of the match criteria must be met for traffic entering the traffic class to be classified as part of it.

	Command or Action	Purpose
Step 3	match access-group { index number name } Example:	The following parameters are available for this command:
	Router(config-cmap)# match access-group	• access-group
	100 Router(config-cmap)#	• cos
		• dscp
		• group-object
		• ip
		• mpls
		• precedence
		• protocol
		• qos-group
		• vlan
		• wlan
		(Optional) For this example, enter the access-group ID:
		• Access list index (value from 1 to 2799)
		Named access list
Step 4	match cos cos value	(Optional) Matches IEEE 802.1Q or ISL class of service (user) priority values.
	<pre>Example: Router(config-cmap)# match cos 2 3 4 5</pre>	• Enters up to 4 CoS values separated by spaces (0 to 7).
Step 5	match dscp dscp value	(Optional) Matches the DSCP values in IPv4
	Example:	and IPv6 packets.
	Router(config-cmap) # match dscp af11 af12	
Step 6	match ip { dscp <i>dscp value</i> precedence <i>precedence value</i> }	(Optional) Matches IP values including the following:
	Example:	• dscp—Matches IP DSCP (DiffServ
	<pre>Router(config-cmap)# match ip dscp af11 af12</pre>	codepoints).
		• precedence —Matches IP precedence (0 to 7).
Step 7	match qos-group qos group value	(Optional) Matches QoS group value (from 0
	Example:	to 31).
	Router(config-cmap)# match qos-group 10	

	Command or Action	Purpose
Step 8	match vlan vlan value	(Optional) Matches a VLAN ID (from 1 to 4095).
	Example:	
	Router(config-cmap)# match vlan 210	
Step 9	end	Saves the configuration changes.
	Example:	
	Router(config)# end	

What to do next

Configure the policy map.

Creating a Traffic Policy

To create a traffic policy, use the **policy-map** global configuration command to specify the traffic policy name.

The traffic class is associated with the traffic policy when the **class** command is used. The **class** command must be entered after you enter the policy map configuration mode. After entering the **class** command, the device is automatically in policy map class configuration mode, which is where the QoS policies for the traffic policy are defined.

The following policy map class-actions are supported:

- · bandwidth—Bandwidth configuration options.
- exit-Exits from the QoS class action configuration mode.
- no-Negates or sets default values for the command.
- police—Policer configuration options.
- priority-Strict scheduling priority configuration options for this class.
- queue-buffers—Queue buffer configuration options.
- queue-limit—Queue maximum threshold for Weighted Tail Drop (WTD) configuration options.
- service-policy-Configures the QoS service policy.
- set—Sets QoS values using the following options:
 - CoS values
 - DSCP values
 - Precedence values
 - QoS group values
- shape—Traffic-shaping configuration options.

Before you begin

You should have first created a class map.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	policy-map type policy-map name	Enters policy map configuration mode.
	Example:	Creates or modifies a policy map that can be
	<pre>Router(config)# policy-map type ngsw-qos test_1000</pre>	attached to one or more interfaces to specify a service policy.
Step 3	class { class-name class-default}	Specifies the name of the class whose policy
	Example:	you want to create or change.
	Router(config-pmap)# class test_1000	You can also create a system default class for unclassified packets.
Step 4	bandwidth { kb /s <i>kb</i> /s <i>value</i> percent <i>percentage</i> remaining { <i>percent</i> <i>ratio</i> }}	(Optional) Sets the bandwidth using one of the following:
	Example:	• kb/s—Kilobits per second, enter a value
	<pre>Router(config-pmap-c)# bandwidth 50</pre>	between 20000 and 10000000 for Kb/s.
		• percent —Enter the percentage of the total bandwidth to be used for this policy map.
		• remaining —Enter the percentage ratio of the remaining bandwidth.
Step 5	exit	(Optional) Exits from QoS class action
	Example:	configuration mode.
	Router(config-pmap-c)# exit	
Step 6	no	(Optional) Negates the command.
	Example:	
	Router(config-pmap-c)# no	
Step 7	<pre>police { target_bit_rate cir rate}</pre>	(Optional) Configures the policer:
	Example:	• <i>target_bit_rate</i> —Enter the bit rate per
	Router(config-pmap-c)# police 100000	second, enter a value between 8000 and 10000000000.
		• cir—Committed Information Rate

	Command or Action	Purpose
		• rate—Specify police rate, PCR for hierarchical policies or SCR for single-level ATM 4.0 policer policies.
Step 8	<pre>priority level level value Example: Router(config-pmap-c)# priority level</pre>	(Optional) Sets the strict scheduling priority for this class. Command options include: • level—Establishes a multi-level priority
	1	queue. Enter a value (1 or 2).
Step 9	queue-buffers ratio ratio limit	(Optional) Configures the queue buffer for the
	<pre>Example: Router(config-pmap-c)# queue-buffers ratio 10</pre>	class. Enter the queue buffers ratio limit (0 to 100).
Step 10	queue-limit { packets cos dscp percent} Example:	(Optional) Specifies the queue maximum threshold for the tail drop:
	Router(config-pmap-c)# queue-limit cos 7 percent 50	• <i>packets</i> —Packets by default, enter a value between 1 to 2000000.
		• cos —Enter the parameters for each COS value.
		• dscp —Enter the parameters for each DSCP value.
		• percent —Enter the percentage for the threshold.
Step 11	service-policy policy-map name	(Optional) Configures the QoS service policy
	Example: Router(config-pmap-c)# service-policy test_2000	
Step 12	<pre>set { cos dscp ip precedence qos-group wlan}</pre>	(Optional) Sets the QoS values. Possible QoS configuration values include:
	Example: Router(config-pmap-c)# set cos 7	 cos—Sets the IEEE 802.1Q/ISL class or service/user priority.
		• dscp —Sets DSCP in IP(v4) and IPv6 packets.
		• ip—Sets IP specific values.
		• precedence —Sets precedence in IP(v4) and IPv6 packet.
		• qos-group—Sets the QoS Group.

	Command or Action	Purpose
Step 13	<pre>shape average { target _bit_rate percent} Example: Router(config-pmap-c) # shape average percent 50</pre>	 (Optional) Sets the traffic shaping. Command parameters include: <i>target_bit_rate</i>—Target bit rate. percent—Percentage of interface bandwidth for Committed Information Rate.
Step 14	end Example: Router(config)# end	Saves the configuration changes.

What to do next

Configure the interface.

Configuring Class-Based Packet Marking

This is an important procedure that explains how to configure the following class-based packet marking features on your device:

- CoS value
- DSCP value
- IP value
- Precedence value
- QoS group value
- WLAN value

Before you begin

You should have created a class map and a policy map before beginning this procedure.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	policy-map type policy-map name	Enters policy map configuration mode.
	Example:	Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy.

	Command or Action	Purpose
	<pre>Router(config)# policy-map type ngsw-qos policy1 Device(config-pmap)#</pre>	
Step 3	policy1	 Enters policy class map configuration mode. Specifies the name of the class whose policy you want to create or change. Command options for policy class map configuration mode include the following: bandwidth—Bandwidth configuration options. exit—Exits from the QoS class action configuration mode. no—Negates or sets default values for the command. police—Policer configuration options. priority—Strict scheduling priority configuration options for this class. queue-buffers—Queue buffer configuration options. service-policy—Configures the QoS service policy. set—Sets QoS values using the followin options:
		• CoS values
		DSCP values
		Precedence values
		QoS group values
		WLAN values
		• shape —Traffic-shaping configuration options.

	Command or Action	Purpose
		Note This procedure describes the available configurations using set command options. The other command options (bandwidth) are described in other sections of this guide. Although this task lists all of the possible set commands, only one set command is supported per class.
Step 4	<pre>set cos {cos value cos table table-map name dscp table table-map name precedence table table-map name qos-group table table-map name wlan user-priority table table-map name} Example: Router (config-pmap) # set cos 5</pre>	 (Optional) Sets the specific IEEE 802.1Q Layer 2 CoS value of an outgoing packet. Values are from 0 to7. You can also set the following values using the set cos command: cos table—Sets the CoS value based on a table map. dscp table—Sets the code point value based on a table map. precedence table—Sets the code point value based on a table map. qos-group table—Sets the CoS value from QoS group based on a table map. wlan user-priority table—Sets the CoS value from the WLAN user priority based on a table map.
Step 5	<pre>set dhcp {dhcp value default dscp table table-map name ef precedence table table-map name qos-group table table-map name wlan user-priority table table-map name} Example: Router(config-pmap)# set dscp af11</pre>	 (Optional) Sets the DSCP value. In addition to setting specific DSCP values, you can also set the following using the set dscp command: default—Matches packets with default DSCP value (000000). dscp table—Sets the packet DSCP value from DSCP based on a table map. ef—Matches packets with EF DSCP value (101110). precedence table—Sets the packet DSCP value from precedence based on a table map. qos-group table—Sets the packet DSCP value from a QoS group based upon a table map.

	Command or Action	Purpose
		• wlan user-priority table—Sets the packet DSCP value based upon a WLAN user-priority based upon a table map.
Step 6	set ip {dscp precedence} Example:	(Optional) Sets IP specific values. These value are either IP DSCP or IP precedence values.
	Router(config-pmap)# set ip dscp c3	You can set the following values using the set ip dscp command:
		• <i>dscp value</i> —Sets a specific DSCP value
		• default —Matches packets with default DSCP value (000000).
		• dscp table —Sets the packet DSCP valu from DSCP based on a table map.
		• ef—Matches packets with EF DSCP value (101110).
		• precedence table —Sets the packet DSC value from precedence based on a table map.
		• qos-group table —Sets the packet DSC value from a QoS group based upon a table map.
		• wlan user-priority table—Sets the packet DSCP value based upon a WLA user-priority based upon a table map.
		You can set the following values using the s ip precedence command:
		• <i>precedence value</i> —Sets the precedence value (from 0 to 7).
		• cos table—Sets the packet precedence value from Layer 2 CoS based on a tab map.
		• dscp table—Sets the packet precedence from DSCP value based on a table map
		• precedence table —Sets the precedence value from precedence based on a table map
		• qos-group table —Sets the precedence value from a QoS group based upon a table map.

	Command or Action	Purpose
Step 7	<i>table-map name</i> dscp table <i>table-map name</i> precedence table <i>table-map name</i> gos-group table <i>table-map name</i> }	(Optional) Sets precedence values in IPv4 and IPv6 packets. You can set the following values using the set precedence command:
		• <i>precedence value</i> —Sets the precedence value (from 0 to 7).
		• cos table —Sets the packet precedence value from Layer 2 CoS on a table map.
		• dscp table —Sets the packet precedence from DSCP value on a table map.
		• precedence table —Sets the precedence value from precedence based on a table map.
		• qos-group table —Sets the precedence value from a QoS group based upon a table map.
Step 8	<pre>set qos-group {qos-group value dscp table table-map name precedence table table-map name} Example: Router(config-pmap)# set qos-group 10</pre>	 (Optional) Sets QoS group values. You can set the following values using this command: <i>qos-group value</i>—A number from 1 to 31. dscp table—Sets the code point value from DSCP based on a table map.
		• precedence table —Sets the code point value from precedence based on a table map.
Step 9	<pre>set wlan user-priority table {wlan user-priority table value cos table table-map name dscp table table-map name qos-group table table-map name wlan table table-map name} Example: Router (config-pmap) # set wlan user-priority 1</pre>	 (Optional) Sets the WLAN user priority value. You can set the following values using this command: • wlan user-priority value—A value
		between 0 to 7.
		• cos table—Sets the WLAN user priority value from CoS based on a table map.
		• dscp table —Sets the WLAN user priority value from DSCP based on a table map.
		• qos-group table —Sets the WLAN user priority value from QoS group based on a table map.

	Command or Action	Purpose
		• wlan table—Sets the WLAN user priority value from the WLAN user priority based on a table map.
Step 10	end	Saves the configuration changes.
	Example:	
	Router(config)# end	
Step 11	show policy-map	(Optional) Displays policy configuration
	Example:	information for all classes configured for all
	Router(config)# show policy-map	service policies.

What to do next

Attach the traffic policy to an interface using the service-policy command.

Attaching a Traffic Policy to an Interface

After the traffic class and traffic policy are created, you must use the **service-policy** interface configuration command to attach a traffic policy to an interface, and to specify the direction in which the policy should be applied (either on packets coming into the interface or packets leaving the interface).

Before you begin

A traffic class and traffic policy must be created before attaching a traffic policy to an interface.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface type	
Step 3	<pre>service-policy {input policy-map output policy-map}</pre>	Attaches a policy map to an input or output interface. This policy map is then used as the
	Example:	service policy for that interface.
	<pre>Router(config-if)# service-policy output policy_map_01</pre>	In this example, the traffic policy evaluates a traffic leaving that interface.
Step 4	end	Saves the configuration changes.
	Example:	
	Router(config)# end	

	Command or Action	Purpose
Step 5	show policy map	(Optional) Displays statistics for the policy on
	Example:	the specified interface.
	Router(config)# show policy map	

Example

What to do next

Proceed to attach any other traffic policy to an interface, and to specify the direction in which the policy should be applied.

Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps

You can configure a nonhierarchical policy map on a physical port that specifies which traffic class to act on. Actions supported are remarking and policing.

Before you begin

You should have already decided upon the classification, policing, and marking of your network traffic by policy maps prior to beginning this procedure.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	<pre>class-map { class-map name match-any}</pre>	Enters class map configuration mode.
	Example: Device(config)# class-map ipclass1 Device(config-cmap)# exit	• Creates a class map to be used for matching packets to the class whose name you specify.
		• If you specify match-any , one of the match criteria must be met for traffic entering the traffic class to be classified as part of the traffic class. This is the default.
Step 3	<pre>match access-group { access list index access list name }</pre>	The following parameters are available for this command:
	Example:	• access-group

	Command or Action	Purpose
	Device (config-cmap) # match access-group 1000	• cos
	Device(config-cmap)# exit	• dscp
		• group-object
		• ip
		• mpls
		• precedence
		• protocol
		• qos-group
		• vlan
		• wlan
		(Optional) For this example, enter the access-group ID:
		• Access list index (value from 1 to 2799)
		Named access list
Step 4	policy-map policy-map name Example:	Creates a policy map by entering the policy map name, and enters policy-map configuration mode.
	<pre>Router(config)# policy-map type ngsw-qos flowit Device(config-pmap)#</pre>	By default, no policy maps are defined.
Step 5	class {class-map-name class-default} Example:	Defines a traffic classification, and enter policy-map class configuration mode.
	Device(config-pmap)# class ipclass1	By default, no policy map class-maps are defined.
		If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command.
		A class-default traffic class is predefined and can be added to any policy. It is always placed at the end of a policy map. With an implied match any included in the class-default class, all packets that have not already matched the other traffic classes will match class-default .
Step 6	set { cos dscp ip precedence qos-group wlan user-priority}	(Optional) Sets the QoS values. Possible QoS configuration values include:
	Example: Device(config-pmap-c)# set dscp 45	• cos—Sets the IEEE 802.1Q/ISL class of service/user priority.

	Command or Action	Purpose
		• dscp —Sets DSCP in IP(v4) and IPv6 packets.
		• ip —Sets IP specific values.
		• precedence —Sets precedence in IP(v4) and IPv6 packet.
		• qos-group—Sets QoS group.
		• wlan user-priority—Sets WLAN user priority.
		In this example, the set dscp command classifies the IP traffic by setting a new DSCP value in the packet.
Step 7	<pre>police { target_bit_rate cir rate }</pre>	(Optional) Configures the policer:
	Example: Device (config-pmap-c) # police 100000 conform-action transmit exceed-action	• <i>target_bit_rate</i> —Specifies the bit rate per second, enter a value between 8000 and 10000000000.
	drop	• cir—Committed Information Rate.
		• rate —Specifies the police rate PCR for hierarchical policies.
		In this example, the police command adds a policer to the class where any traffic beyond the 100000 set target bit rate is dropped.
Step 8	exit	Returns to policy map configuration mode.
	Example: Router(config-pmap-c)# exit	
Step 9	exit	Returns to global configuration mode.
	Example:	
	Router(config-pmap)# exit	
Step 10	interface [interface-id]	Specifies the port to attach to the policy map,
	Example:	and enters interface configuration mode.
	Router(config)# interface gigabitethernet 0/1/0	Valid interfaces include physical ports.
Step 11	service-policy input [policy-map-name]	Specifies the policy-map name, and applies it
	Example:	to an ingress port. Only one policy map per ingress port is supported.
	<pre>Device(config-if)# service-policy input flowit</pre>	

	Command or Action	Purpose
Step 12	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	
Step 13	<pre>show policy-map [policy-map-name [class class-map-name]]</pre>	(Optional) Verifies your entries.
	Example:	
	Router(config)# show policy-map	
Step 14	copy running-config startup-config	(Optional) Saves your entries in the configuration file.
	Example:	
	Router(config)# copy running-config startup-config	

What to do next

If applicable to your QoS configuration, configure classification, policing, and marking of traffic on SVIs by using policy maps.

Configuring Switchport Blocking

- About Switchport Blocking, on page 165
- Configuring Switchport Blocking, on page 165

About Switchport Blocking

By default, the router floods packets with unknown destination MAC addresses to all ports. To prevent the forwarding of such traffic, you can configure a port to block unknown multicast or unicast packets.

Occasionally, unknown multicast or unicast traffic is flooded to a switch port because a MAC address has timed out or has not been learned by the switch. Security issues could arise if unknown multicast and unicast traffic is forwarded to a switch port. You can enable switchport blocking to guarantee that no multicast or unicast traffic is flooded to the port. The interface can be a physical interface or an EtherChannel group. When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port channel group.

Configuring Switchport Blocking

Follow these steps to configure switchport blocking. Blocking of unicast or multicast traffic is not automatically enabled on a switch port.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	<pre>interface {interface-id port-channel number}</pre>	Enters interface configuration mode.
	Example:	
	Router(config)# interface gigabitethernet 0/1/1	
Step 3	switchport mode access	Configures the interface as an access port.
	Example:	

Command or Action	Purpose
Router(config-if) # switchport mode access	
switchport access vlan vlan-id	Specifies the VLAN for which this access port
Example:	will carry traffic.
Router(config-if)# switchport access vlan 20	
[no] switchport block {multicast unicast}	Prevents the flooding of unknown multicast or
Example:	unicast packets on the specified interface.
Router(config-if)# switchport block	Use the no form of this command to resume
<pre>multicast Router(config-if)# switchport block unicast</pre>	normal forwarding on the port.
end	Returns to privileged EXEC mode.
Example:	
Router(config)# end	
(Optional) show interface { <i>interface-id</i>	(Optional) Displays the switchport blocking
<pre>port-channel number} switchport</pre>	configuration.
Example:	
Router# show interface gigabitethernet 0/1/1 switchport	
	Router (config-if) # switchport mode access switchport access vlan vlan-id Example: Router (config-if) # switchport access vlan 20 [no] switchport block {multicast unicast} Example: Router (config-if) # switchport block multicast Router (config) # end (Optional) show interface {interface-id port-channel number} switchport Example: Router # show interface gigabitethernet

Example

The following example shows how to block multicast and unicast flooding on GigabitEthernet interface 0/1/1 and how to verify the configuration:

```
Router# configure terminal
Router(config)# interface GigabitEthernet0/1/1
Router(config-if)# switchport access vlan 20
Router(config-if)# switchport mode access
Router(config-if)# switchport block multicast
Router(config-if)# switchport block unicast
Router(config-if)# exit
Router(config)# end
Router#
```

Following command shows the blocking state of unknown unicast and multicast on the interface:

```
Router#show interfaces gigabitEthernet 0/1/1 switchport
Name: Gi0/1/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dotlq
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 20 (VLAN0020)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: disabled
Voice VLAN: none
```

Administrative private-vlan host-association: none Administrative private-vlan mapping: none Administrative private-vlan trunk native VLAN: none Administrative private-vlan trunk Native VLAN tagging: enabled Administrative private-vlan trunk encapsulation: dotlq Administrative private-vlan trunk normal VLANs: none Administrative private-vlan trunk associations: none Administrative private-vlan trunk mappings: none Operational private-vlan: none Trunking VLANs Enabled: ALL Pruning VLANs Enabled: 2-1001 Capture Mode Disabled Capture VLANs Allowed: ALL

Protected: false Unknown unicast blocked: enabled Unknown multicast blocked: enabled Appliance trust: none Router#

Configuring Storm Control

- Information About Storm Control, on page 169
- Configuring Storm Control, on page 170

Information About Storm Control

A traffic storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. The traffic broadcast and multicast suppression (or storm control) feature prevents LAN ports from being disrupted by a broadcast, multicast and unicast traffic storm on physical interfaces.

A broadcast storm occurs when huge amount of broadcast, multicast, or unknown unicast packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation or in the network configuration can also cause a storm. The mechanism to prevent and control such events is known as storm control or broadcast suppression.

Broadcast and Multicast Suppression monitors incoming traffic levels over a 1-second traffic storm control interval and, during the interval compares the traffic level with the traffic storm control level configured. The traffic storm control threshold level is a percentage of the total available bandwidth of the port. Each port has different storm control levels for broadcast, multicast, and unicast type of traffic.

Storm control uses rising and falling thresholds to block and then restore the forwarding of broadcast, unicast, or multicast packets.

- The rising threshold is the traffic limit after which, that particular traffic is blocked.
- The falling threshold is the traffic limit below which, that particular starts forwarding again, if it was already blocked.

Note If a particular type of ingress traffic (unicast, broadcast and multicast) is more than the rising threshold configured on it, the interface goes to blocked state for that particular traffic.

Storm control prevents traffic on a LAN from being disrupted by a broadcast, multicast, or unicast storm on a port. Storm control is applicable for physical interfaces and is used to restrict the unicast, broadcast and multicast ingress traffic on the Layer2 interfaces.

Storm control for unicast is a combination of known unicast and unknown unicast traffic. When storm control for unicast is configured, and it exceeds the configured value, the storm will hit each type of traffic through

the hardware policer. The following example describes how the unicast traffic is filtered, when the configured storm is 10%:

- Incoming traffic is unknown unicast 8% + known unicast 7%. Total of 15% storm is not filtered in hardware by the hardware policer.
- Incoming traffic is unknown unicast 11% + known unicast 7%. Total of 18% storm will hit unknown unicast traffic type, and the hardware policer will filter unknown traffic that exceeds 11%.
- Incoming traffic is unknown unicast 11% + known unicast 11%. Total of 22% storm will hit unknown unicast traffic and known unicast traffic, and the hardware policer will filter both unknown and unknown unicast traffic.

Configuring Storm Control

You can set the percentage of total available bandwidth that the controlled traffic can use.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface interface-id	Enters interface configuration mode.
	Example:	
	<pre>Router(config)# interface gigabitethernet 0/1/1</pre>	
Step 4	<pre>storm-control {broadcast multicast unicast unknown-unicast} level {level [level-low] bps bps [bps-low] pps pps [pps-low]}</pre>	Configure broadcast, multicast, unicast or unknown-unicast control. By default, storm control is disabled.
	Example:	• For <i>level</i> , specify the rate limit for broadcast, multicast, or unicast traffic as a percentage of the bandwidth. The port suppresses traffic when the rising threshold is reached.
		For optional <i>level_low</i> , specify the low level of the rate limit, as a percentage of the bandwidth. When action SNMP trap is enabled, and the traffic rate exceeds the level then drops below the <i>level_low</i> , the port will send out an SNMP trap.

I

	Command or Action	Purpose
		NoteThe optional <i>level-low</i> will take affect only when storm control SNMP trap is enabled.
		The minimum acceptable level is 0.01, which means 0.01% of the bandwidth. If level 0 is configured, it will be converted to 0.01 internally.
		• For bps <i>bps</i> , specify the rising threshold level for broadcast, multicast, or unicast traffic in bits per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 1000000000.0.
		(Optional) For <i>bps-low</i> , specify the falling threshold level in bits per second (up to one decimal place). It can be less than or equal to the rising threshold level. The por forwards traffic when traffic drops below this level. The range is 0.0 to 10000000000.0.
		• For pps <i>pps</i> , specify the rising threshold level for broadcast, multicast, or unicast traffic in packets per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
		(Optional) For <i>pps-low</i> , specifies the falling threshold level in packets per second (up to one decimal place). It can be less than or equal to the rising threshol level. The port forwards traffic when traffic drops below this level. The range is 0.0 to 1000000000.0.
		Note Do not configure both storm-control unicast and storm-control unknown-unicast commands on an interface.
		For BPS and PPS settings, you can use metric suffixes such as k, m, and, g for large number thresholds.
Step 5	storm-control action {shutdown trap}	If none of shutdown or SNMP trap is
	Example:	configured, by default the traffic will be

Command or Action	Purpose
Router(config-if)# storm-control action trap	suppressed when traffic exceeds the threshold specified by <i>level</i> .
	If <i>shutdown</i> is configured, the interface will enter err-disable when traffic exceeds the threshold specified by <i>level</i> . If <i>trap</i> is configured, the interface will send SNMP trap when traffic exceeds the threshold specified by level. And when traffic drops below the <i>level_low</i> , another SNMP trap will be sent out.
end	Returns to privileged EXEC mode.
Example:	
Router(config-if)# end	
show storm-control [<i>interface-id</i>] [broadcast multicast unicast unknown-unicast]	Verify the storm control rate limit set on the interface for the specified traffic type.
exit	Returns the router to global configuration mode.
Example:	
Router(config)# exit	
	Router (config-if) # storm-control action trap end Example: Router (config-if) # end show storm-control [interface-id] [broadcast multicast unicast unknown-unicast] exit Example:

Configuring MAC Address Notification

- MAC Address Notification, on page 173
- Configuring MAC Address Notification, on page 173

MAC Address Notification

This feature enables the user or administrator to keep track of the MAC addresses that are learned or removed on the Layer 2 switch while forwarding the Ethernet frames. This feature is required to keep a history of the MAC addresses that are learned and deleted from the router and generate notifications to the NMS periodically.

Whenever a new MAC address is learned or an old MAC address is removed, a SNMP notification is generated and sent to the NMS. A history table is also maintained for every hardware port, so that NMS can collect information by querying the MIB for the history table. This is done to make sure even when the notifications are not delivered to the NMS properly; the data is preserved on the router for the NMS to collect.

Note

This feature will generate MAC notifications only for dynamic addresses. No notifications are generated for self, static, or multicast addresses.

Configuring MAC Address Notification

Follow these steps to configure MAC address notification:

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example: Router# configure terminal	
Step 2	[no] mac-address-table notification change mac-move [interval value] [historysize value] mac-move	Enable MAC notification feature. It is disabled by default.

I

	Command or Action	Purpose
		• interval <i>value</i> —Sets the notification trap interval in seconds. The switch will dispatch the notification trap only after this value is elapsed. Default is 1 second.
		 historysize value—Configures the maximum number of entries in the MAC notification history table. The old table will be deleted and a new table will be created when this command is issued. Default size is 1. mac-move—Enables MAC move
		notification.
Step 3	interface interface-id Example:	Enters interface configuration mode, and specifies the Layer 2 interface on which to enable the SNMP MAC address notification
	Router(config)# interface gigabitethernet 0/1/1	trap.
Step 4	[no] snmp trap mac-notification {added removed} Example:	After MAC notification is enabled globally, use this command to enable/disable MAC notification traps on a particular port. By default it is disabled.
	Router(config-if)# snmp trap mac-notification change added	• added—Enables MAC notification trap when an address is added on this port.
		• removed —Enables MAC notification trap when an address is removed from this port.
Step 5	end	Returns to privileged EXEC mode.
	Example: Router(config)# end	
Step 6	[no] snmp-server enable traps mac-notification	The actual notification traps will be sent only after this command is entered even if MAC notification is enabled globally and at the port. It is disabled by default.
Step 7	show mac-address-table notification [interface interface-id]	Verify if the feature is enabled or disabled, and display MAC notification interval and the history table.

Configuring Q-in-Q and Layer 2 Protocol Tunneling

This chapter describes how to configure IEEE 802.1Q-in-Q VLAN tunnels and Layer 2 protocol tunneling on the Cisco IR8340 Routers.

- Information About Q-in-Q Tunnels, on page 175
- Information About Layer 2 Protocol Tunneling, on page 176
- Configuring VLAN Mapping for Selective Q-in-Q on a 802.1Q Tunnel Port, on page 176
- Enabling the Layer 2 Protocol Tunnel, on page 178
- Configuring Thresholds for Layer 2 Protocol Tunnel Ports, on page 179
- Verifying the Q-in-Q Configuration, on page 180
- VLAN Translation One-to-One Mapping, on page 180

Information About Q-in-Q Tunnels

A Q-in-Q VLAN tunnel enables a service provider to segregate the traffic of different customers in their infrastructure, while still giving the customer a full range of VLANs for their internal use by adding a second 802.1Q tag to an already tagged frame.

Business customers of service providers often have specific requirements for VLAN IDs and the number of VLANs to be supported. The VLAN ranges required by different customers in the same service-provider network might overlap, and the traffic of customers through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed the VLAN limit of 4096 of the 802.1Q specification.

Using the 802.1Q tunneling feature, service providers can use a single VLAN to support customers who have multiple VLANs. Customer VLAN IDs are preserved and the traffic from different customers is segregated within the service-provider infrastructure even when they appear to be on the same VLAN. The 802.1Q tunneling expands the VLAN space by using a VLAN-in-VLAN hierarchy and tagging the tagged packets. A port configured to support 802.1Q tunneling is called a tunnel port. When you configure tunneling, you assign a tunnel port to a VLAN that is dedicated to tunneling. Each customer requires a separate VLAN, but that VLAN supports all of the customer's VLANs.

Customer traffic that is tagged in the normal way with appropriate VLAN IDs come from an 802.1Q trunk port on the customer device and into a tunnel port on the service-provider edge switch. The link between the customer device and the edge switch is an asymmetric link because one end is configured as an 802.1Q trunk port and the other end is configured as a tunnel port. You assign the tunnel port interface to an access VLAN ID that is unique to each customer.

Packets that enter the tunnel port on the service-provider edge switch, which are already 802.1Q-tagged with the appropriate VLAN IDs, are encapsulated with another layer of an 802.1Q tag that contains a VLAN ID that is unique to the customer. The original 802.1Q tag from the customer is preserved in the encapsulated packet. Therefore, packets that enter the service-provider infrastructure are double-tagged.

The outer tag contains the customer's access VLAN ID (as assigned by the service provider), and the inner VLAN ID is the VLAN of the incoming traffic (as assigned by the customer).

Information About Layer 2 Protocol Tunneling

Customers at different sites connected across a service-provider network need to run various Layer 2 protocols to scale their topology to include all remote sites, as well as the local sites. The Spanning Tree Protocol (STP) must run properly, and every VLAN should build a proper spanning tree that includes the local site and all remote sites across the service-provider infrastructure. The Cisco Discovery Protocol (CDP) must be able to discover neighboring Cisco devices from local and remote sites, and the VLAN Trunking Protocol (VTP) must provide consistent VLAN configuration throughout all sites in the customer network.

When protocol tunneling is enabled, edge switches on the inbound side of the service-provider infrastructure encapsulate Layer 2 protocol packets with a special MAC address and send them across the service-provider network. Core switches in the network do not process these packets, but forward them as normal packets. Bridge protocol data units (BPDUs) for CDP, STP, or VTP cross the service-provider infrastructure and are delivered to customer switches on the outbound side of the service-provider network. Identical packets are received by all customer ports on the same VLANs.

If protocol tunneling is not enabled on 802.1Q tunneling ports, remote switches at the receiving end of the service-provider network do not receive the BPDUs and cannot properly run STP, CDP, 802.1X, and VTP. When protocol tunneling is enabled, Layer 2 protocols within each customer's network are totally separate from those running within the service-provider network. Customer switches on different sites that send traffic through the service- provider network with 802.1Q tunneling achieve complete knowledge of the customer's VLAN.

Note Layer 2 protocol tunneling works by tunneling BPDUs in the software. A large number of BPDUs that come into the supervisor will cause the CPU load to go up. You might need to make use of software rate limiters to reduce the load on the supervisor CPU. See Configuring Thresholds for Layer 2 Protocol Tunnel Ports, on page 179.

Configuring VLAN Mapping for Selective Q-in-Q on a 802.1Q Tunnel Port

To configure VLAN mapping for selective Q-in-Q on a 802.1Q tunnel port, complete the following steps.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	[no] vlan dot1q tag native	Enable or disable native VLAN tagging on
	Example:	trunk port.
	Router(config) # vlan dotlq tag native	
Step 4	interface interface-id	Enters interface configuration mode for the
	Example:	interface connected to the service provider network.
	Router(config)# interface gigabitethernet 0/1/1	
Step 5	[no] switchport mode dot1q-tunnel	Configure the interface as an IEEE 802.1Q
	Example:	tunnel port.
	<pre>Router(config-if)# switchport mode dotlq-tunnel</pre>	
Step 6	[no] switchport access vlan vlan id	Configure default VLAN used as S-VLAN on
	Example:	dot1q-tunnel ports.
	Router(config-if)# switchport access vlam 20	
Step 7	[no] switchport vlan mapping default dot1q-tunnel <i>outer</i> vlan-id	Configure VLAN mapping so that all packets entering the port are bundled into the specified S-VLAN:
		• <i>outer vlan-id</i> —Enter the outer VLAN ID (S-VLAN) of the service provider network. The range is from 1 to 4094.
Step 8	[no] switchport vlan mapping vlan-id	Enters the VLAN IDs to be mapped:
	dot1q-tunnel outer vlan-id	• <i>vlan-id</i> —The customer VLAN ID (C-VLAN) entering the switch from the customer network. The range is from 1 to 4094. You can enter a string of VLAN-IDs.
		• <i>outer vlan-id</i> —Enter the outer VLAN ID (S-VLAN) of the service provider network. The range is from 1 to 4094.

I

	Command or Action	Purpose
Step 9	exit	Exits the configuration mode.
	Example:	
	Router(config-if)# exit	

Example

What to do next

Use the **no switchport vlan mapping all** command to remove the VLAN mapping configuration.

Enabling the Layer 2 Protocol Tunnel

You can enable protocol tunneling on the 802.1Q tunnel port.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface interface-id	Enters interface configuration mode.
	Example:	
	<pre>Router(config)# interface gigabitethernet 0/1/1</pre>	
Step 4	[no] l2protocol-tunnel [cdp vtp stp]	Enable or disable Layer 2 protocol tunneling.
	Example:	-
	Router(config-if)# 12protocol-tunnel stp Router(config-if)# no 12protocol-tunnel cdp	
Step 5	exit	Exits the configuration mode.
	Example:	
	Router(config-if)# exit	

Configuring Thresholds for Layer 2 Protocol Tunnel Ports

You can specify the port drop and shutdown value for a Layer 2 protocol tunneling port.

When a drop threshold is enabled on a tunneling interface, the interface will drop any incoming PDU after the specified threshold for that protocol is reached. Similarly, when a shutdown threshold is enabled, the interface will be error-disabled when the threshold is exceeded. That effectively stops the interface from forwarding any packet. To enable the interface again, a user has to do 'shut' and 'no shut' to the interface. The unit of measure of both the thresholds is the number of packets per second. The valid range for configuration is between 1 to 4096. Both shutdown threshold and drop threshold can be enabled on a same interface for a same protocol. But shutdown threshold must be larger than drop threshold there.

Command or Action Purpose Step 1 enable Enables privileged EXEC mode. • Enter your password if prompted. Example: Router> enable Step 2 configure terminal Enter global configuration mode. **Example:** Router# configure terminal Step 3 **interface** *interface-id* Enters interface configuration mode. Example: Router (config) # interface gigabitethernet 0/1/1 Step 4 [no] l2protocol-tunnel {drop-threshold | **drop-threshold**—Specifies the maximum shutdown-threshold { [cdp | vtp | stp] number of packets that can be processed on an interface before being dropped. packets-per-sec shutdown-threshold-Specifies the maximum Example: number of packets that can be processed on an Router(config-if) # 12protocol-tunnel shutdown-threshold stp 2000 interface. When the number of packets is Router(config-if)# 12protocol-tunnel exceeded, the port is put in error-disabled state. drop-threshold stp 2500 Optionally, you can specify CDP, STP, or VTP. Command rejected: protocol tunneling shutdown threshold must be greater tha Valid values for the packets are from 1 to 4096. or equal to the drop threshold. Router(config-if)# 12protocol-tunnel Use the **no** form of the command to resets the drop-threshold stp 1500 threshold values to 0 and disable the shutdown threshold. Step 5 exit Exits the configuration mode. Example: Router(config-if) # exit

Verifying the Q-in-Q Configuration

Command	Purpose
show dot1q-tunnel	Display all ports in dot1q-tunnel mode.
show vlan mapping [interface-id]	Display the VLAN mapping information for all interfaces or for the interface specified.

VLAN Translation One-to-One Mapping

VLAN translation provides the capability of carrying the customers traffic in single tagged packets across the service provider network. Since VLAN translation and selective QinQ are applied to a trunk port, the service provider gets the added benefit of being able to selectively drop or bundle all traffic that does not belong to a given set of C-VLANs and bridge accordingly in the trunk.

VLAN translation on trunk ports supports 1:1 C-VLAN to S-VLAN mapping. C-VLAN received on customer side trunk port is stripped and mapped S-VLAN is added.

The SP provides L2VPN service to two different customers, Customer A and Customer B. The SP needs to keep the data as well as control traffic between the two customers separate from each other and also from the SP's own control traffic. The SP network also needs to be transparent to the customer edge devices. Several mechanisms are available to keep the customer's VLAN ID space intact across the SP network.

IEEE802.1Q (Port-based QinQ) is one such mechanism wherein all the packets received on a *tunnel* port are tunneled through the SP network with the same outer tag. While such a mechanism is sufficient, it is rather restrictive and inflexible because it allows the SPs only port level granularity in providing the services.

The mechanisms described in the following sections and summarized in the following table give the SPs the ability to provide a more flexible and finer granular level of service. In all the following cases, the mappings of C-VLANs to S-VLANs at the ingress of the SP network and the correct mapping back from S-VLANs to C-VLANS at the egress of SP network relies on the proper configuration of the mappings and reverse mappings.

```
interface GigabitEthernet0/1/2
switchport mode trunk
switchport vlan mapping 10 100
switchport vlan mapping 5 150
interface GigabitEthernet0/1/2
switchport mode trunk
switchport vlan mapping 10 dotlq-tunnel 100
switchport vlan mapping 2-8 dotlq-tunnel 150
switchport vlan mapping default dotlq-tunnel 300
```


Power over Ethernet

- Power over Ethernet, on page 181
- Device Detection and Power Allocation, on page 182
- Configuring Power Over Ethernet, on page 182
- Configuring Universal PoE, on page 183
- PoE Debug Commands, on page 184

Power over Ethernet

Power over Ethernet (PoE) is typically used to power up devices such as Access points, IP Cameras and IP Phones connected to the device's Ethernet ports.

The Cisco IR8340 routers support standard Power over Ethernet (PoE), Power over Ethernet Plus (PoE+), Cisco Enhanced Power over Ethernet (EPoE), and Cisco Universal Power over Ethernet (UPoE) on all copper ports. The total PoE available power is 120 W to be shared by the four LAN ports.

The following features are supported:

- UPoE—Supported on LAN port 1 and 2 with a maximum of 60 watts of power on each port
- PoE+--Supported on all PoE ports (LAN port 1-4) with a maximum of 30 watts of power on each port
- PoE—Supported on all PoE ports (LAN port 1-4) with a maximum of 15 watts of power on each port
- Support both Cisco PD and IEEE802.3af/IEEE802.3 on all ports, with DC power disconnected.
- Per port power consumption measurement.
- Ability to specify max power consumption on every port.
- PoE power policing—Comprises the following two modes, which determines the action to take on the interface after a port shuts down because of an inline-power policing violation:
 - Logging—An error message is logged to the console and the interface restarts; the device powers up.
 - Errdisable (default)—In addition to logging an error message to the console, the interface is placed in an errdisable state so that the device attached to the port does not receive inline-power until you restart the port or configure an errdisable autorecovery mechanism.
- Static power allocation on ports.

· Load Shedding upon PSU removal or failure.

Device Detection and Power Allocation

The router will detect a Cisco Pre-standard or an IEEE-compliant PD when the PoE is enabled and the connected device is not being powered by an AC adapter.

After device detection, the router will determine the power requirements based on power classification class. Depending on the available power in the power budget, the router determines if a port can be powered. The router initially allocates this power when it detects and powers the device. Power negotiation using CDP/LLDP protocols happens thereafter. Supported protocols for power negotiation are CDP for Cisco PD, and LLDP for non-Cisco PDs. Maximum power budget for 1 WAN port at any time is 15.4 W. On reload the PoE ports are powered down until the unit reboots.

Configuring Power Over Ethernet

Each copper port on the router can auto detect one of following connected devices, and supply power to them properly:

- An IEEE 802.3af and IEEE 802.3at compliant power device
- Cisco EPOE and UPOE power device

To configure power over ethernet, use these commands:

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface interface-id	Specifies the physical port to be configured, and enters interface configuration mode.
	Example:	
	<pre>Router(config)# interface gigabitethernet0/1/0</pre>	
Step 3	power inline [auto max max-wattage] never	Configures the PoE mode on the port. The
	Example:	keywords have these meanings:
	Router(config-if)# power inline auto	• Auto—Enables powered-device detection. If enough power is available, automatically allocates power to the PoE port after device detection. This is the default setting.
		• Max max-wattage—Limits the power allowed on the port. The range for PoE+ ports is 4000 to 30000 mW. The range for Cisco UPOE ports is 4000 to 60000 mW.

	Command or Action	Purpose
		If no value is specified, the maximum is allowed.
		• Never—Disables device detection, and disable power to the port.
		Note If a port has a Cisco powered device connected to it, do not use the power inline never command to configure the port. A false link-up can occur, placing the port into the error-disabled state.
Step 4	end	Returns to privileged EXEC mode.
	<pre>Example: router(config-if)# end</pre>	

What to do next

Use the following commands to check the PoE port status:

Configuring Universal PoE

Cisco UPOE can provide a maximum of 60Watts power over both signal and spare pairs of RJ45 cable. UPOE capable switch port can enable spare pair and supply power to it through CDP or LLDP negotiations with UPOE power device automatically.

If end-point power device is capable to consume power on both signal and spare pairs but without corresponding CDP/LLDP negotiation mechanism available, following configurations can be used to manually force four-pair on specific port.

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 2	interface interface-id	Specifies the physical port to be configured,
	Example:	and enters interface configuration mode.
	<pre>Router(config)# interface gigabitethernet0/1/0</pre>	
Step 3	power inline four-pair forced	Forces power enabling on both signal and spa
	Example:	pairs from a switch port.
	<pre>Router(config-if)# power inline four-pair forced</pre>	
Step 4	end	Returns to privileged EXEC mode.
	Example:	
	<pre>router(config-if) # end</pre>	

Procedure

PoE Debug Commands

The following table shows the PoE debug commands:

Command	Description
debug ilpower controller	Display PoE controller debug messages.
debug ilpower event	Display PoE event debug messages.
debug ilpower port	Display PoE port management debug messages.
debug ilpower powerman	Display PoE power management debug messages.
debug ilpower cdp	Display PoE CDP debug messages.
debug ilpower registries	Display PoE registries debug messages.
debug ilpower scp	Display PoE scp debug messages.

Configuring the T1/E1 Network Interface Module

The Cisco T1/E1 Network Interface Modules (NIM) are inserted into the NIM slot on the router to provide T1, fractional T1, E1, and fractional E1 support for data applications.

- Information About T1/E1 Network Interface Module, on page 185
- Configuring T1/E1 Network Interface Module, on page 185

Information About T1/E1 Network Interface Module

The IR8340 router has two Network Interface Module (NIM) slots, 0/2 and 0/3. The T1/E1 Network Interface Module IRM-NIM-2T1E1 can be installed in these two slots. It is a 2-port channelized data module and supports 24/31 channel groups for T1/E1 per port. Each T1/E1 module has two ports, P0 and P1. Each port is linked to a controller in configuration as below:

- If the module is in slot 0/2, it has two controllers 0/2/0 and 0/2/1.
- If the Module is in slot 0/3, it has two controllers 0/3/0 and 0/3/1.

Use RJ-48 cables to connect the T1/E1 modules between two devices.

Configuring T1/E1 Network Interface Module

Configuring the Card Type

The T1/E1 network interface module will not be operational until a card type is configured.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	

I

	Command or Action	Purpose
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	card type {t1 e1} slot subslot	Specifies card type as T1 or E1 for the network
	Example:	interface module. In this example, the $T1/E1$ module is connected on $0/2$ slot.
	Router(config)# card type t1 0 2	

Changing the Card Type

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	no card type {t1 e1} slot subslot	(Optional) Removes the previous configuration.
	Example:	
	Router(config)# no card type t1 0 2	
Step 4	card type {t1 e1} slot subslot	Specifies T1 or E1 connectivity for the netwo
	Example:	interface module.
	Router(config)# card type e1 0 2	
Step 5	exit	Exits the card configuration mode and returns
	Example:	to global configuration mode.
	Router(config)# exit	
Step 6	write	Rebuilds the router configuration.
	Example:	
	Router(config)# write	
Step 7	reload	Reloads router so that changes can take effect.
	Example:	After this command executes, the router goes
	Router(config)# reload	into the ROM monitor (rommon) mode.

	Command or Action	Purpose
Step 8	boot	Boots the router with the configuration for the
	Example:	newly selected card type.
	Router(rommon) # boot	

Configuring the T1/E1 Network Interface Module for Data Support

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	controller {t1 e1} slot/subslot/port	Enters controller configuration mode for the network interface module.
	Example: Router(config)# controller t1 0/2/0	• Valid values for slot is 0, subslot is 2 or 3, and port is 0 or 1.
Step 4	Do one of the following: framing {sf esf} or framing {crc4 no-crc4} Example:	In T1 configurations, specifies super frame (sf) or extended super frame (esf) as the frame type for data lines. Default is esf.
	Router(config-controller)# framing esf Router(config-controller)# framing crc4	In E1 configurations, specifies cyclic redundancy check 4 (crc4) or no-crc4 as the frame type for data lines. Default is crc4 .
Step 5	Do one of the following: linecode {ami b8zs} or linecode {ami hdb3} Example:	In T1 configurations, specifies alternate mark inversion (AMI) or bipolar 8-zero substitution (b8zs) as the linecode. Default is b8zs .
	Example: Router(config-controller)# linecode b8zs	Note When using linecode AMI, we recommend that you select 56 kbps as the speed or make sure that the channel groups created do not contain all the timeslots. See step 11. This is to avoid exceeding the "15 zeroes" threshold specified by standards.
Step 6	fdl {att ansi both} Example: Router(config-controller)# fdl both	T1 only. Sets the facility data link (fdl) exchange standard for T1 interfaces using esf framing. You can select the ATT standard (ATT TR54016), the ANSI standard (ANSI

	Command or Action	Purpose
		T1.403), or both standards. Default is ansi . To disable fdl, enter the no fdl command.
Step 7	clock source {internal line [primary secondary] network}	Specifies the clock source. The options are a follows:
	<pre>Example: Router(config-controller)# clock source</pre>	• internal—Sets the controller framer as th clock master.
	network	The clock source i nternal command is only applicable with the channel-group command and the pri-group (for data) command.
		Note The pri-group command is supported on the NIM-xCE1T1-PRI for data without the keyword voice-dsp
		• line—Specifies the phase-locked loop (PLL) on a port. When both a primary port and a secondary port are configured and the primary port fails, the PLL switches over to the secondary. When the PLL on the primary port becomes active again, the PLL automatically switches to the primary port.
		 network—Sets the controller to sync to the TDMSW clock for both TDM voice and data support. This configures the fa end of the T1/E1 line as the clock line.
		Default is line.
Step 8	line-termination {75-ohm 120-ohm} Example:	E1 only. Sets the line termination on an E1 controller.
	Router(config-controller)# line-termination 75-ohm	• 75-ohm specifies 75-ohm unbalanced termination.
		• 120-ohm specifies 120-ohm balanced termination.
Step 9	loopback {diagnostic local {payload line } remote {iboc esf {payload line }}}	Sets the loopback method for testing the interface. Options are:
	Example: Router(config-controller)# loopback remote esf line	• diagnostic —Loops the transmit signal back to receive.

I

	Command or Action	Purpose
		• local —Puts the interface into local loopback mode at the payload or line level.
		• remote —Puts the interface into remote loopback mode through an inband bit oriented code (iboc) or, for T1 only, remote esf , which uses fdl codes to set payload or line levels.
Step 10	Do one of the following: cablelength long <i>db-loss-value</i> or cablelength short <i>length</i>	T1 only. The cablelength long command attenuates the pulse from the transmitter using
	Example: Router(config-controller)# cablelength	pulse equalization and line build-out. This command applies to cables longer than 660 feet. Loss values are:
	short 110	• 0db
		• -7.5db
		• -15db
		• -22.5db
		Default attenuation is 0db.
		The cablelength short command sets transmission attenuation for cable lengths of 660 feet or less. When you use the cablelength short command, specify the length as follows
		• 110 for cable lengths from 0 to 110 feet
		• 220 for cable lengths from 111 to 220 fee
		• 330 for cable lengths from 221 to 330 fee
		• 440 for cable lengths from 331 to 440 fee
		• 550 for cable lengths from 441 to 550 fee
		• 660 for cable lengths from 551 to 660 fee
		There is no default cable length.
Step 11	channel group <i>channel-group-number</i> { timeslots <i>range</i> [speed <i>kbps</i>] unframed }	Configures the serial WAN on a T1 or E1 interface by specifying channels and their timeslots.
	Example:	
	Router(config-controller)# channel group 1 timeslots 1-4	• channel-group-number is from 0 to 23.
		• timeslots range is from 1 to 24.

	Command or Action	Purpose
		• Default value of speed for T1 is 64 kbps. Configuration of speed is optional.
		For E1, values are as follows:
		• channel-group-number is from 0 to 30.
		• timeslots range is from 1 to 31.
		• Default value of speed for E1 is 64 kbps. Configuration of speed is optional.
		• unframed (E1 only) specifies that all 31 timeslots are to be used for data and that none are to be used for framing signals.
Step 12	national reserve N sa4 sa5 sa6 sa7 sa8	E1 only. Sets the six required national bits in
	Example:	E1 in the G.751 frame. Default is 1 1 1 1 1.
	Router(config-controller)# national reserve 0 1 1 1 1 0	
Step 13	crc-threshold value	T1 only. Defines a severely errored second by
	Example:	specifying the number of CRC errors that must occur in one second to reach the severely
	Router(config-controller)# crc-threshold 500	
Step 14	yellow {generation detection}	Enables generation and detection of yellow
	Example:	alarms. Default condition is that generation and detection of yellow alarms are enabled.
	Router(config-controller)# no yellow detection	Use the no form of the command to disable yellow alarm detection.
Step 15	bert pattern pattern interval time	(Optional) Activates the BERT with the chosen
	Example:	test pattern for a specified duration. Configure BERT patterns on the T1/E1 network interface
	Router(config-controller)# bert pattern 2^11 interval 1440	
		• When the linecode is AMI, use patterns 2^11, 2^15, or 2^20-QRSS.
		• When the linecode is b8zs or hdb3, use patterns 2^11, 2^15, 2^20-QRSS, or 2^20-0.153.
		• The interval time is from 1 to 14,400 minutes.

Example of T1/E1 Network Interface Module Configuration

The following example shows the configuration of the router with the T1/E1 NIM installed and configured for data.

```
card type t1 0 2
controller T1 0/2/0
framing esf
linecode b8zs
cablelength long 0db
channel-group 0 timeslots 1
channel-group 1 timeslots 2
channel-group 2 timeslots 3
interface Serial0/2/0:0
ip address 1.1.1.1 255.255.255.0
!
interface Serial0/2/0:1
ip address 2.2.2.1 255.255.255.0
1
interface Serial0/2/0:2
ip address 3.3.3.1 255.255.255.0
```


Configuring the Serial Network Interface Module

- About the Asynchronous/Synchronous Serial Network Interface Module, on page 193
- Configuring the Serial Interface to Sync or Async Mode, on page 193
- Configuring Synchronous Serial Ports, on page 194
- Configuring Asynchronous Serial Ports, on page 201

About the Asynchronous/Synchronous Serial Network Interface Module

The 8-port Asynchronous/Synchronous Network Interface Module (NIM) IRM-NIM-RS232 provides asynchronous/synchronous serial connections supporting EIA-RS232 for the Cisco IR8340 Router.

The IR8340 router has two NIM slots, 0/2 and 0/3. The serial NIMs can be installed in these two slots.

Each RS-232 Serial Module has 8 serial interfaces. The interface numers are:

- serial 0/2/0 serial 0/2/7—If the serial module is in slot 0/2.
- serial 0/3/0 serial 0/3/7—If the serial module is in slot 0/3.

The following features are supported:

- Supports DCE and DTE.
- Each serial port can be configured as either Asynchronous or Synchronous mode.
- A maximum speed of 256 kbps is supported for RS232 Synchronous port.
- A maximum speed of 230.4 kbps is supported for Asynchronous port.

Configuring the Serial Interface to Sync or Async Mode

By using the Physical Layer mode option, you can configure the serial interface to Synchronous or Asynchronous mode as needed. By default it will be in Synchronous mode. Use the following commands to configure the serial interface:

interface serial slot/subslot/port

physical-layer {async|sync}

```
Router(config)#interface Serial0/3/0
Router(config-if)#physical-layer ?
   async Configure asynchronous physical layer on serial interface
   sync Configure synchronous physical layer on serial interface
```

```
Router(config-if)#
```

Configuring Synchronous Serial Ports

After the serial port mode is configured as synchronous mode, connect the DCE type serial cable to one side and DTE cable on the other side. The serial link will come up.

Checking DCE and DTE Cable Type

After the serial port mode is configured as Sync, connect the DCE type serial cable to one side and DTE cable on the other side. The serial link will come up. Use the following command to check cable type:

```
Router1#show controllers Serial 0/3/0
```

```
Serial0/3/0 - (IRM-NIM-RS232) is administratively down
Encapsulation : HDLC
Cable type: RS-232 DCE
mtu 1500, max_buffer_size 1524, max_pak_size 1656 enc 132
 loopback: Off, crc: 16, invert data: Off
nrzi: Off, idle char: Flag
dce terminal timing enable: Off ignore dtr: Off
 tx clockrate: 64000bps, rx clockrate: 64000bps, serial clock index: 0
 serial_restartdelay:60000, serial_restartdelay_def:60000
     RTS up, CTS down, DTR up, DCD down, DSR down
Router1#
Router2#show controllers Serial 0/3/1
Serial0/3/1 - (IRM-NIM-RS232) is administratively down
Encapsulation : HDLC
Cable type: RS-232 DTE
mtu 1500, max buffer size 1524, max pak size 1656 enc 132
loopback: Off, crc: 16, invert data: Off
nrzi: Off, idle char: Flag
 tx invert clk: Off, ignore dcd: Off
 tx clockrate: 31998bps, rx clockrate: 31998bps, rx clock threshold: 0
 serial restartdelay:60000, serial restartdelay def:60000
     RTS down, CTS down, DTR down, DCD down, DSR down
Router2#
```

The **show interfaces serial0/3/0 controller** command can also be used to check the cable type.

Specifying Synchronous Serial Encapsulation

The synchronous serial interfaces support the following serial encapsulation methods:

Frame-Relay

- PPP (chap and pap)
- HDLC (default)

Use the following command to configure synchronous serial encapsulation. To remove the configuration, use the no form of the command.

[no] encapsulation {frame-relay|ppp|hdlc}

DCE and DTE Configuration for HDLC Encapsulation

The following examples show the basic DCE and DTE configuration for HDLC encapsulation.

```
Ul#show interfaces Serial0/3/1
```

Serial0/3/1 is up, line protocol is up Hardware is IRM-NIM-RS232 Internet address is 31.31.31.1/24 MTU 1500 bytes, BW 256 Kbit/sec, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 2/255 Encapsulation HDLC, loopback not set Keepalive not set Last input 00:00:31, output 00:00:09, output hang never

U1#ping 31.31.31.2

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 31.31.31.2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/8 ms

U2 configuration (DTE Side)

U2**#show running-config interface Serial0/3/1** Building configuration... Current configuration : 80 bytes ! interface Serial0/3/1 ip address 31.31.31.2 255.255.255.0 no keepalive end

U2#show interfaces Serial0/3/1

Serial0/3/1 is up, line protocol is up Hardware is IRM-NIM-RS232 Internet address is 31.31.31.2/24 MTU 1500 bytes, BW 2000 Kbit/sec, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation HDLC, loopback not set Keepalive not set Last input 00:00:33, output 00:00:10, output hang never

U2#ping 31.31.31.1

*Jan 26 15:29:49.206 IST: %LINK-3-UPDOWN: Interface Serial0/3/6, changed state to down Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 31.31.31.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 7/8/9 ms

DCE and DTE Configuration for PPP (CHAP) Encapsulation

The following examples show the basic DCE and DTE configuration for PPP (CHAP) encapsulation.

```
U1 configuration (DCE side)
_____
Ul#show running-config interface Serial0/3/2
Building configuration...
Current configuration : 118 bytes
interface Serial0/3/2
ip address 32.32.32.1 255.255.255.0
encapsulation ppp
no keepalive
clock rate 256000
end
Ul#show interfaces Serial0/3/2
Serial0/3/2 is up, line protocol is up
Hardware is IRM-NIM-RS232
Internet address is 32.32.32.1/24
MTU 1500 bytes, BW 256 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, LCP Open
Open: IPCP, CDPCP, loopback not set
Keepalive not set
Last input 00:00:13, output 00:00:13, output hang never
===configuration for ppp-chap authentication======
U1 (config) #username u1 secret userpassword
Ul#show running-config interface Serial0/3/1
Building configuration ...
Current configuration : 143 bytes
interface Serial0/3/1
ip address 31.31.31.2 255.255.255.0
encapsulation ppp
no keepalive
ppp authentication chap
clock rate 256000
end
U1#ping 32.32.32.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 32.32.32.2, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/8 ms
U2 configuration (DTE Side)
_____
U2#show running-config interface Serial0/3/2
Building configuration ...
Current configuration : 99 bytes
interface Serial0/3/2
ip address 32.32.32.2 255.255.255.0
encapsulation ppp
no keepalive
end
```

```
U2#show interfaces Serial0/3/2
Serial0/3/2 is up, line protocol is up
Hardware is IRM-NIM-RS232
Internet address is 32.32.32.2/24
MTU 1500 bytes, BW 2000 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, LCP Open
Open: IPCP, CDPCP, loopback not set
Keepalive not set
Last input 00:00:08, output 00:00:15, output hang never
===configuration for ppp-chap authentication======
U2 (config) #username U1 secret userpassword
U2#show running-config interface Serial0/3/1
Building configuration ...
Current configuration : 124 bytes
interface Serial0/3/1
ip address 31.31.31.2 255.255.255.0
encapsulation ppp
no keepalive
ppp authentication chap
end
```

```
U2#ping 32.32.32.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 32.32.32.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/9 ms
```

DCE and DTE Configuration for PPP (PAP) Encapsulation

The following examples show the basic DCE and DTE configuration for PPP (PAP) encapsulation.

```
U1 configuration (DCE side)
_____
Ul#show running-config interface Serial0/3/2
Building configuration ...
Current configuration : 118 bytes
interface Serial0/3/2
ip address 32.32.32.1 255.255.255.0
encapsulation ppp
no keepalive
clock rate 256000
end
Ul#show interfaces Serial0/3/2
Serial0/3/2 is up, line protocol is up
Hardware is IRM-NIM-RS232
Internet address is 32.32.32.1/24
MTU 1500 bytes, BW 256 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, LCP Open
Open: IPCP, CDPCP, loopback not set
Keepalive not set
Last input 00:00:13, output 00:00:13, output hang never
===configuration for ppp-pap authentication======
U1 (config) #username u1 secret userpassword
U1#show running-config interface Serial0/3/1
Building configuration...
Current configuration : 181 bytes
1
```

```
interface Serial0/3/1
ip address 31.31.31.1 255.255.255.0
encapsulation ppp
ppp authentication pap
ppp pap sent-username Sumatra-1 password 0 userpassword
clock rate 256000
end
U1#
U1#ping 32.32.32.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 32.32.32.2, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/8 ms
U2 configuration (DTE Side)
------
U2#show running-config interface Serial0/3/2
Building configuration ...
Current configuration : 99 bytes
interface Serial0/3/2
ip address 32.32.32.2 255.255.255.0
encapsulation ppp
no keepalive
end
U2#show interfaces Serial0/3/2
Serial0/3/2 is up, line protocol is up
Hardware is IRM-NIM-RS232
Internet address is 32.32.32.2/24
MTU 1500 bytes, BW 2000 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, LCP Open
Open: IPCP, CDPCP, loopback not set
Keepalive not set
Last input 00:00:08, output 00:00:15, output hang never
===configuration for ppp-pap authentication======
U2(config) #username U1 secret userpassword
U2#show running-config interface Serial0/3/1
Building configuration ...
Current configuration : 176 bytes
interface Serial0/3/1
ip address 31.31.31.2 255.255.255.0
encapsulation ppp
no keepalive
ppp authentication pap
ppp pap sent-username Sumatra-2 password 0 userpassword
end
112
U2#ping 32.32.32.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 32.32.32.1, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/9 ms
```

DCE and DTE Configuration for Frame Relay Encapsulation

The following examples show the basic DCE and DTE configuration for Frame Relay encapsulation.

```
U1 configuration (DCE side)
U1#show running-config interface Serial0/3/3
Building configuration ...
Current configuration : 158 bytes
interface Serial0/3/3
ip address 33.33.33.1 255.255.255.0
encapsulation frame-relay
no keepalive
clock rate 256000
frame-relay interface-dlci 100
end
Ul#show interfaces Serial0/3/3
Serial0/3/3 is up, line protocol is up
Hardware is IRM-NIM-RS232
Internet address is 33.33.33.1/24
MTU 1500 bytes, BW 256 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation FRAME-RELAY, loopback not set
Keepalive not set
FR SVC disabled, LAPF state down
Broadcast queue 0/64, broadcasts sent/dropped 1/0, interface broadcasts 0
Last input 00:00:16, output 00:00:16, output hang never
U1#ping 33.33.33.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 33.33.33.2, timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/9 ms
U2 configuration (DTE Side)
U2#show running-config interface Serial0/3/3
Building configuration...
Current configuration : 139 bytes
interface Serial0/3/3
ip address 33.33.33.2 255.255.255.0
encapsulation frame-relay
no keepalive
frame-relay interface-dlci 100
end
U2#show interfaces Serial0/3/3
Serial0/3/3 is up, line protocol is up
Hardware is IRM-NIM-RS232
Internet address is 33.33.33.2/24
MTU 1500 bytes, BW 2000 Kbit/sec, DLY 20000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation FRAME-RELAY, loopback not set
Keepalive not set
FR SVC disabled, LAPF state down
Broadcast queue 0/64, broadcasts sent/dropped 1/0, interface broadcasts 0
Last input 00:05:05, output 00:05:05, output hang never
U2#ping 33.33.33.1
Type escape sequence to abort.
```

```
Sending 5, 100-byte ICMP Echos to 33.33.33.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 8/8/8 ms
```

Serial Synchronous Show and Debug Commands

This section provides show and debug commands of the serial synchronous interfaces.

1. Connect to the NIM console using Telnet or Secure Shell (SSH) and open a session to the device using the **hw-module session** *slot/subslot* command in privileged EXEC mode.

To exit the session, press Ctrl-a and Ctrl-q from your keyboard.

- 2. show platform hardware subslot slot-number module device ge-stats
- 3. show platform hardware subslot slot-number module host-if status
- 4. show platform hardware subslot slot-number module host-if statistics
- 5. show platform hardware subslot slot-number module device ?
 - help: the current information
 - scc-info: module serial information
 - scc-stats: module serial stats
 - scc-stats-p<x>: module serial port stats
 - ge-info: module ge information
 - ge-stats: module ge stats
 - fpga: module fpga information
 - fpga-p<x>: module fpga port information
 - fc-p<x>: module port flow control information
 - mempool: module mempool information
- 6. debug hw-module subslot slot-number ?
 - · commands: Control plane configuration and commands
 - · errors: Error handling and race conditions
 - events: Control plane event notifications
 - ha: SPA Specific HA
 - interrupts: Interrupt handling
 - obfl: SPA Specific OBFL (on-board failure logging)
 - oir: SPA OIR information
 - periodic: Periodic processing (for example, plugin_one_sec)

7. show monitor event-trace spa all

8. Use show diag subslot *slot-number* eeprom detail to check NIM eeprom contents

Configuring Asynchronous Serial Ports

Configure the serial interface to Asynchronous mode by using these commands:

```
Router(config)#interface Serial0/3/0
Router(config-if)#physical-layer async
```

Specifying Asynchronous Serial Encapsulation

The asynchronous serial interfaces support the following serial encapsulation methods:

- Block Serial tunneling (BSTUN)
- Raw socket TCP (Raw-TCP)
- Raw socket UDP (Raw-UDP)
- SCADA

Use the following command to configure asynchronous serial encapsulation. To remove the configuration, use the no form of the command.

[no] encapsulation {bstun|raw-tcp|raw-udp|scada}

Example

```
Router(config)#interface Serial0/3/0
Router(config-if)#physical-layer async
Router(config-if)#encapsulation raw-tcp
Router(config-if)#end
Router#show running-config interface Serial0/3/0
Building configuration...
Current configuration : 89 bytes
!
interface Serial0/3/0
physical-layer async
no ip address
encapsulation raw-tcp
end
```

Router#

Encapsulation methods are set according to the type of protocol or application you configure in the Cisco IOS software.

Cellular Pluggable Interface Module Configuration Guide

The Cisco 4G LTE-Advanced Configuration chapter has been replaced by a new standalone guide called Cellular Pluggable Interface Module Configuration Guide. This guide contains updated information on all aspects of using the Cisco Cellular PIM.

Important

t The Pluggable Module is not hot swappable. The router must be reloaded after a new module is installed.

- Support for the P-5GS6-GL Pluggable Module on the ESR6300, on page 203
- Galileo Support on the LTE Pluggable Modules, on page 203

Support for the P-5GS6-GL Pluggable Module on the ESR6300

Support for the P-5GS6-GL Pluggable Module works the same on the ESR6300 as it does on the other IoT Routers. For details, see 5G Sub-6 GHz Pluggable Interface Module and Cellular Pluggable Interface Module Configuration Guide.

Galileo Support on the LTE Pluggable Modules

With Cisco IOS XE 17.11.1a and earlier, the only GNSS constellation supported was GPS. This release introduces support for Galileo.

Note Only ONE constellation can be enabled at a time.

There are new CLI options available to support the new constellation:

Configuration Commands

```
config# controller cellular <slot/port>
(config-controller)# <no> lte gps constellation <gps | galileo | gnss >
Example:
```

Cisco Catalyst IR8340 Rugged Series Router Software Configuration Guide, Cisco IOS XE Release 17.12.x

```
(config-controller)#lte gps constellation ?
  galileo select Galileo as active constellation
  gps select GPS as active constellation
  gnss select multiple GNSS as active constellation
```

Note The default setting is gps mode.

The new galileo and gnss options in the above CLI are used to configure Galileo and Multiple/Simultaneous GNSS (GPS + Galileo etc) respectively.

If you disable the GPS configuration, ensure there is no constellation configured, consistent with GPS mode configuration. For example:

```
config# controller Cellular 0/1/0
(config-controller)# no lte gps constellation gps
```

Show Commands

The following example shows the current GNSS constellation as Galileo:

```
#show cellular 0/1/0 gps detail
GPS Feature = enabled
GPS Mode Configured = standalone
Current Constellation Configured = galileo | gps | gnss
GPS Port Selected = Dedicated GPS port
GPS Status = GPS acquiring
```

Any changes made to the configuration will require the router to be rebooted.

More information is available in the Cellular Pluggable Interface Module Configuration Guide.

Information About SCADA

- SCADA Overview, on page 205
- Role of the IR8340, on page 205
- Key Terms, on page 206
- Protocol Translation Application, on page 206
- Prerequisites, on page 207
- Guidelines and Limitations, on page 208
- Default Settings, on page 208
- Configuring Protocol Translation, on page 208
- Configuring the T101 Protocol Stack, on page 210
- Configuring the T104 Protocol Stack, on page 212
- Configuration Example, on page 215
- Configuring the DNP3 Protocol Stacks, on page 217
- Starting and Stopping the Protocol Translation Engine, on page 221
- Verifying Configuration, on page 222
- Debug Commands, on page 223

SCADA Overview

SCADA refers to a control and management system employed in industries such as water management, electric power, and manufacturing. A SCADA system collects data from various types of equipment within the system and forwards that information back to a Control Center for analysis. Generally, individuals located at the Control Center monitor the activity on the SCADA system and intervene when necessary.

The Remote Terminal Unit (RTU) acts as the primary control system within a SCADA system. RTUs are configured to control specific functions within the SCADA system, which can be modified as necessary through a user interface.

Change the serial interface mode as async and then configure the interface.

Role of the IR8340

In the network, the Control Center always serves as the master in the network when communicating with the IR8340. The IR8340 serves as a proxy master station for the Control Center when it communicates with the RTU.

The IR8340 provides protocol translation to serve as a SCADA gateway to do the following:

- Receive data from RTUs and relay configuration commands from the Control Center to RTUs.
- Receive configuration commands from the Control Center and relay RTU data to the Control Center.
- Terminate incoming requests from the Control Center, when an RTU is offline.

The IR8340 performs Protocol Translation for the following protocols:

- IEC 60870 T101 to/from IEC 60870 T104
- DNP3 serial to DNP3 IP

Key Terms

The following terms are relevant when you configure the T101 and T104 protocol stacks on the IR8340:

- Channel—A channel is configured on each IR8340 serial port interface to provide a connection to a single RTU for each IP connection to a remote Control Center. Each connection transports a single T101 (RTU) or T104 (Control Center) protocol stack.
- Link Address—Refers to the device or station address.
- · Link Mode (Balanced and Unbalanced)-Refers to the modes of data transfer.
 - An Unbalanced setting refers to a data transfer initiated from the master.
 - A Balanced setting can refer to either a master or slave initiated data transfer.
- Sector—Refers to a single RTU within a remote site.
- Sessions—Represents a single connection to a remote site.

The following terms are relevant when you configure the DNP3 protocol stacks on the on the IR8340:

- Channel—A channel is configured on the IR8340 serial port interface to provide a connection to a single RTU for each IP connection to a remote Control Center. Each connection transports a single DNP3 serial (RTU) or DNP3 IP (Control Center) protocol stack.
- Link Address-Refers to the device or station address.
- Sessions—Represents a single connection to a remote site.

Protocol Translation Application

In the following figure, IR8340 (installed within a secondary substation of the Utility Network) employs Protocol Translation to provide secure, end-to-end connectivity between Control Centers and RTUs within a SCADA System.

The IR8340 connects to the RTU (slave) through a RS232 connection. To protect the traffic when forwarded over public infrastructures (for example, cellular), the IR8340 forwards SCADA data from the RTU to the Control Center in the SCADA system through an IPSec tunnel (FlexVPN site-to-site or hub and spoke). The IPSec tunnel protects all traffic between the IR8340 and the Head-end aggregation router. SCADA traffic can

be inspected through an IPS device positioned in the path of the SCADA traffic before it is forwarded to the proper Control Center.

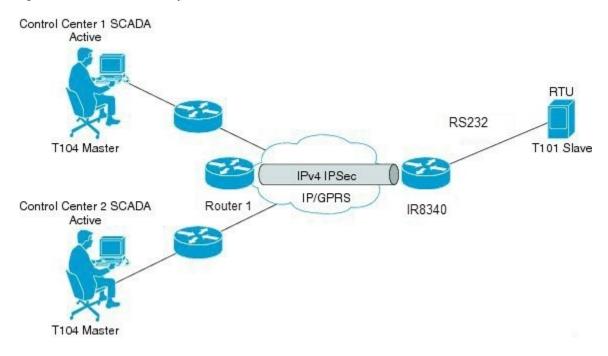


Figure 29: Routers Within a SCADA System

Prerequisites

RTUs must be configured and operating in the network.

For each RTU that connects to the IR8340, you will need the following information for T101/T104:

- Channel information
 - Channel name
 - Connection type: serial
 - Link transmission procedure setting: unbalanced or balanced
 - Address field of the link (number expressed in octets)
- Session information
 - Session name
 - Size of common address of Application Service Data Unit (ASDU) (number expressed in octets)
 - Cause of transmission (COT) size (number expressed in octets)
 - Information object address (IOA) size (number expressed in octets)
- Sector information
 - · Sector name

• ASDU address, (number expressed in octets)

For each RTU that connects to the IR8340, you will need the following information for DNP3:

- Channel information
 - Channel name
 - Connection type: serial
 - Link address
- · Session information
 - Session name

Guidelines and Limitations

Each channel supports only one session.

Each sessions supports only one sector.

Default Settings

T101/T104 Parameters	Default
Role for T101	Slave
Role for T104	Master

DNP3 Parameters	Default
Unsolicited Response (DNP3-serial)	Not Enabled
Send Unsolicited Message (DNP3-IP)	Enabled

Configuring Protocol Translation

Before making any configuration changes to a IR8340 operating with Protocol Translation, please review the section on Starting and Stopping the Protocol Translation Engine, on page 221.

Enabling the IR8340 Serial Port and SCADA Encapsulation

Before you can enable and configure Protocol Translation on the IR8340, you must first enable the serial port on the IR8340 and enable SCADA encapsulation on that port.

Before you begin

Determine availability of serial port on the IR8340.

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters the global configuration mode.
Step 2	interface serial slot/port/interface	Enters the interface command mode for the serial slot/port/interface. <i>slot</i> –value of 0
		<i>port</i> –value of 2 or 3
		interface -value of 0
Step 3	physical-layer async	Configure the serial interface to Asynchronous mode.
Step 4	no shutdown	Brings up the port, administratively.
Step 5	encapsulation scada	Enables encapsulation on the serial port for protocol translation and other SCADA protocols.

EXAMPLE

This example shows how to enable serial port 0/2/0 and how to enable encapsulation on that interface to support SCADA protocols.

```
router# configure terminal
router(config)# interface serial 0/2/0
router(config-if)# physical-layer async
router(config-if)# no shutdown
router(config-if)# encapsulation scada
```

Configuring T101 and T104 Protocol Stacks

You can configure T101 and T104 protocol stacks, which allow end-to-end communication between Control Centers (T104) and RTUs (T101) within a SCADA system.

- Configuring the T101 Protocol Stack, on page 210
- Configuring the T104 Protocol Stack, on page 212
- Starting and Stopping the Protocol Translation Engine, on page 221

Prerequisites

Ensure that you have gathered all the required configuration information.

Enable the serial port and SCADA encapsulation.

Configuring the T101 Protocol Stack

Configure the channel, session, and sector parameters for the T101 protocol stack.

Before you begin

Ensure that you have gathered all the required configuration information. (See Prerequisites, on page 207.)

Enable the serial port and SCADA encapsulation. (See Enabling the IR8340 Serial Port and SCADA Encapsulation, on page 208.)

Procedure	
-----------	--

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	scada-gw protocol t101	Enters the configuration mode for the T101 protocol.
Step 3	channel channel_name	Enters the channel configuration mode for the T101 protocol.
		<i>channel_name</i> –Identifies the channel on which the serial port of the IR8340 communicates to the RTU.
		Note When the entered channel name does not already exist, the router creates a new channel.
		Entering the no form of this command deletes an existing channel. However, all sessions must be deleted before you can delete a channel.
Step 4	role master	Assigns the master role to the T101 protocol channel (default).
Step 5	link-mode {balanced unbalanced}	Configures the link-mode as either balanced or unbalanced.
		unbalanced–Refers to a data transfer initiated from the master.
		balanced–Refers to either a master or slave data transfer.
Step 6	link-addr-size {none one two}	Defines the link address size in octets.
Step 7	bind-to-interface serial <i>slot/port/interface</i>	Defines the IR8340 serial interface on which the system sends its T101 protocol traffic.
		<i>slot</i> –Value of 0
		<i>port</i> –Value of 2

I

	Command or Action	Purpose
		<i>interface</i> –Value of 0
Step 8	exit	Ends configuration of the channel and exits the channel configuration mode. Saves all settings.
Step 9	session session_name	Enters the session configuration mode and assigns a name to the session.
Step 10	attach-to-channel channel_name	Attaches the session to the channel.
		Enter the same channel name that you entered in Step 3.
		<i>channel_name</i> –Identifies the channel.
Step 11	common-addr-size {one two three}	Defines the common address size in octets.
Step 12	cot size {one two three}	Defines the cause of transmission such as spontaneous or cyclic data schemes in octets.
Step 13	info-obj-addr-size {one two three}	Defines the information object element address size in octets.
Step 14	link-addr-size {one two three}	Defines the link address size in octets.
Step 15	link-addr link_address	Refers to the link address of the RTU.
		Note The link address entered here must match the value set on the RTU to which the serial port connects.
		link_address –Range of 0-65535.
Step 16	exit	Exits the session configuration mode.
Step 17	sector sector_name	Enters the sector configuration mode and assigns a name to the sector for the RTU.
		sector_name -Identifies the sector.
Step 18	attach-to-session session_name	Attaches the RTU sector to the session.
		Enter the same session name that you entered in Step 9.
		session_name- Identifies the session.
Step 19	asdu-addr asdu_address	Refers to the ASDU structure address of the RTU.
Step 20	exit	Exits the sector configuration mode.
Step 21	exit	Exits the protocol configuration mode.

EXAMPLE

This example shows how to configure the parameters for the T101 protocol stack.

```
router# configure terminal
router(config) # scada-gw protocol t101
router(config-t101)# channel rtu channel
router(config-t101-channel)# role master
router(config-t101-channel)# link-mode unbalanced
router(config-t101-channel)# link-addr-size one
router(config-t101-channel)# bind-to-interface serial 0/2/0
router(config-t101-channel)# exit
router(config-t101) # session rtu_session
router(config-t101-session)# attach-to-channel rtu_channel
router(config-t101-session)# common-addr-size two
router(config-t101-session)# cot-size one
router(config-t101-session)# info-obj-addr-size two
router(config-t101-session)# link-addr 3
router(config-t101-session)# exit
router(config-t101) # sector rtu sector
router(config-t101-sector)# attach-to-session rtu_session
router(config-t101-sector)# asdu-addr 3
router(config-t101-sector)# exit
router(config-t101) # exit
router(config)#
```

Configuring the T104 Protocol Stack

Follow the steps below for each Control Center that you want to connect to over a T104 protocol.

Before you begin

Ensure that you have gathered all the required configuration information. (See Prerequisites, on page 207.)

Enable the serial port and SCADA encapsulation. (See Enabling the IR8340 Serial Port and SCADA Encapsulation, on page 208.)

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
Step 2	scada-gw protocol t104	Enters the configuration mode for the T104 protocol.
Step 3	channel channel_name	Enters the channel configuration mode for the T104 protocol. <i>channel_name</i> –Identifies the channel on which the router communicates with the
		Control Center. Note When the entered channel name does not already exist, the router creates a new channel.

I

	Command or Action	Purpose	
		Entering the no form of this command deletes an existing channel. However, all sessions must be deleted before you can delete a channel.	
Step 4	k-value value	Sets the maximum number of outstanding Application Protocol Data Units (APDUs) for the channel.	
		Note An APDU incorporates the ASDU and a control header.	
		<i>value</i> –Range of values from 1 to 32767. Default value is 12 APDUs.	
Step 5	w-value value	Sets the maximum number of APDUs for the channel.	
		<i>value</i> –Range of values from 1 to 32767. Default value is 8 APDUs.	
Step 6	t0-timeout value	Defines the t0-timeout value for connection establishment of the T104 channel.	
Step 7	t1-timeout value	Defines the t1-timeout value for send or test APDUs on the T104 channel.	
Step 8	t2-timeout value	Defines the t2-timeout value for acknowledgements when the router receives no data message.	
		Note The t2 value must always be set to a lower value than the t1 value on the T104 channel.	
Step 9	t3-timeout value	Defines the t3-timeout value for sending s-frames in case of a long idle state on the T104 channel.	
		Note The t3 value must always be set to a higher value than the t1 value on the T104 channel.	
Step 10	tcp-connection {0 1} local-port {port_number default} remote-ip {A.B.C.D A.B.C.D/LEN any} [vrf WORD]	In a configuration where there are redundant Control Centers, sets the connection value for the secondary Control Center as defined on the primary Control Center.	
		port-number –value between 2000 and 65535.	
		default-value of 2404.	
		A.B.C.D –single host.	
		A.B.C.D/nn –subnet A.B.C.D/LEN.	

	Command or Action	Purpose
		any-any remote hosts 0.0.0/0.
		WORD-VRF name.
Step 11	exit	Exits the channel configuration mode.
Step 12	session session_name	Enters the session configuration mode and assigns a name to the session.
		session_name –Use the same name that you assigned to the channel in Step 3.
Step 13	attach-to-channel channel_name	Defines the name of the channel that transports the session traffic.
Step 14	cot size {one two three}	Defines the cause of transmission (cot), such as spontaneous or cyclic data schemes in octets.
Step 15	exit	Exits the session configuration mode.
Step 16	sector sector_name	Enters the sector configuration mode and assigns a name to the sector for the Control Center.
Step 17	attach-to-session session_name	Attaches the Control Center sector to the channel.
		<i>session_name</i> –Use the same name that you assigned to the channel in Step 3.
Step 18	asdu-addr asdu_address	Refers to the ASDU structure address. Value entered here must match the ASDU value on the RTU.
		<i>asdu_address –asdu_address –</i> Value of 1 or 2.
Step 19	map-to-sector sector_name	Maps the Control Center (T104) sector to the RTU (T101) sector.
Step 20	Return to Step 1.	Repeat all steps in this section for each Control Center active in the network.

EXAMPLE

This example shows how to configure the parameters for the T104 protocol stack on *Control Center 1* and *Control Center 2*, both of which are configured as *masters*, and how to map the T104 sector to the T101 sector.

To configure Control Center 1 (cc_master1), enter the following commands.

router# configure terminal

```
router(config) # scada-gw protocol t104
router(config-t104)# channel cc_master1
router(config-t104-channel)# k-value 12
router(config-t104-channel)# w-value 8
router(config-t104-channel)# t0-timeout 30
router(config-t104-channel)# t1-timeout 15
router(config-t104-channel)# t2-timeout 10
router(config-t104-channel)# t3-timeout 30
router(config-t104-channel)# tcp-connection 0 local-port 2050 remote-ip 209.165.200.225
router(config-t104-channel)# tcp-connection 1 local-port 2051 remote-ip 209.165.201.25
router(config-t104-channel)# exit
router(config-t104) # session cc master1
router(config-t104-session)# attach-to-channel cc master1
router(config-t104-session)# cot-size two
router(config-t104-session) # exit
router(config-t104) # sector cc_master1-sector
router(config-t104-sector)# attach-to-session cc master1
router(config-t104-sector)# asdu-adr 3
router(config-t104-sector)# map-to-sector rtu_sector
router(config-t104) # exit
router(config)#
```

To configure Control Center 2 (cc_master2), enter the following commands.

```
router(config)# scada-gw protocol t104
router(config-t104) # channel cc master2
router(config-t104-channel)# k-value 12
router(config-t104-channel)# w-value 8
router(config-t104-channel)# t0-timeout 30
router(config-t104-channel)# t1-timeout 15
router(config-t104-channel)# t2-timeout 10
router(config-t104-channel)# t3-timeout 30
router(config-t104-channel)# tcp-connection 0 local-port 2060 remote-ip 209.165.201.237
router (config-t104-channel) # tcp-connection 1 local-port 2061 remote-ip 209.165.200.27
router(config-t104-channel)# exit
router(config-t104)# session
cc_master2
router(config-t104-session)# attach-to-channel cc_master2
router(config-t104-session)# cot-size two
router(config-t104-session)# exit
router(config-t104)# sector cc_master2-sector
router(config-t104-sector)# attach-to-session cc_master2
router(config-t104-sector)# asdu-adr 3
router(config-t104-sector) # map-to-sector rtu_sector
router(config-t104-sector)# exit
router(config-t104) # exit
router(config)#
```

Configuration Example

The following example shows how to configure the serial port interface for T101 connection, configure T101 and T104 protocol stacks, and starts the Protocol Translation Engine on the IR8340.

```
router# configure terminal
router(config)# interface serial 0/2/0
router (config-if)# no shutdown
router (config-if)# encapsulation scada
router (config-if)# exit
```

router(config)# scada-gw protocol t101 router(config-t101) # channel rtu_channel router(config-t101-channel)# role master router(config-t101-channel)# link-mode unbalanced router(config-t101-channel)# link-addr-size one router(config-t101-channel)# bind-to-interface serial 0/2/0 router(config-t101-channel)# exit router(config-t101) # session rtu session router(config-t101-session)# attach-to-channel rtu_channel router(config-t101-session) # common-addr-size two router(config-t101-session)# cot-size one router(config-t101-session) # info-obj-addr-size two router(config-t101-session)# link-addr 3 router(config-t101-session)# exit router(config-t101)# sector rtu_sector router(config-t101-sector)# attach-to-session rtu session router(config-t101-sector)# asdu-addr 3 router(config-t101-sector)# exit router(config-t101)# exit router(config) # scada-gw protocol t104 router(config-t104) # channel cc master1 router(config-t104-channel)# k-value 12 router(config-t104-channel)# w-value 8 router(config-t104-channel)# t0-timeout 30 router(config-t104-channel)# t1-timeout 15 router(config-t104-channel)# t2-timeout 10 router(config-t104-channel)# t3-timeout 30 router(config-t104-channel)# tcp-connection 0 local-port 2050 remote-ip any router(config-t104-channel)# tcp-connection 1 local-port 2051 remote-ip any router(config-t104-channel)# exit router(config-t104) # session cc master1 router(config-t104-session)# attach-to-channel cc_master1 router(config-t104-session)# cot-size two router(config-t104-session)# exit router(config-t104)# sector cc master1-sector router(config-t104-sector)# attach-to-session cc_master1 router(config-t104-sector)# asdu-adr 3 router(config-t104-sector) # map-to-sector rtu sector router(config-t104)# exit router(config-t104)# session cc master2 router(config-t104-session)# attach-to-channel cc_master2 router(config-t104-session) # cot-size two router(config-t104-session) # exit router(config-t104) # sector cc_master2-sector router (config-t104-sector) # attach-to-session cc master2 router(config-t104-sector)# asdu-adr 3 router(config-t104-sector) # map-to-sector rtu_sector router(config-t104-sector) # exit router(config-t104)# exit router(config) # scada-gw enable

This example configures end-to-end communication between Control Centers and RTUs within a SCADA system using the DNP3 protocol stacks and starts the Protocol Translation Engine on the IR8340:

```
router# configure terminal
router(config)# interface serial 0/2/0
router (config-if)# no shutdown
router (config-if)# encapsulation scada
router (config-if)# exit
router(config)# scada-gw protocol dnp3-serial
router(config-dnp3s)# channel rtu_channel
```

```
router(config-dnp3s-channel)# bind-to-interface serial 0/2/0
router(config-dnp3s-channel)# link-addr source 3
router(config-dnp3s-channel) # unsolicited-response enable
router(config-dnp3s-channel)# exit
router(config-dnp3s)# session rtu session
router(config-dnp3s-session)# attach-to-channel rtu_channel
router(config-dnp3s-session)# link-addr dest 3
router(config-dnp3s-session)# exit
router(config-dnp3s)# exit
router(config) # scada-gw protocol dnp3-ip
router(config-dnp3n)# channel cc_channel
router(config-dnp3n-channel)# link-addr dest 3
router(config-dnp3n-channel) # tcp-connection local-port default remote-ip any
router(config-dnp3n-channel)# exit
router(config-dnp3n) # session cc_session
router(config-dnp3n-session)# attach-to-channel cc channel
router(config-dnp3n-session)# link-addr source 3
router(config-dnp3n-session) # map-to-session rtu_session
router(config-dnp3n)# exit
router(config) # exit
router(config) # scada-gw enable
```


Note IOA addresses obtained from T101 side are sent to T104 side without any modification by the SCADA Gateway

Configuring the DNP3 Protocol Stacks

You can configure the DNP3 serial and DNP3 IP protocol stacks, which allow end-to-end communication between Control Centers and RTUs within a SCADA system.

Configuring DNP3 Serial

Configure the channel and session parameters for the DNP serial communication with an RTU.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	scada-gw protocol dnp3-serial	Enters configuration mode for the DNP3 serial protocol.
Step 3	channel channel_name	Enters channel configuration mode for the DNP3 serial protocol.
		<i>channel_name</i> –Identifies the channel on which the router serial port communicates to the RTU.

I

	Command or Action	Purpose
		Note: When the entered channel name does not already exist, the router creates a new channel
		Entering the no form of this command deletes an existing channel. However, all sessions must be deleted before you can delete a channel.
Step 4	bind-to-interface serial 0/2/0	Defines the router async interface on which the system sends its DNP3 protocol traffic.
Step 5	link-addr source source_address	Refers to the link address of the master.
		<i>source_address</i> –Range of values from 1 to 65535.
Step 6	unsolicited-response enable	(Optional) Allows unsolicited responses.
		Entering the no form of this command disables unsolicited responses.
		The default is disabled.
Step 7	exit	Ends configuration of the channel and exits channel configuration mode. Saves all settings.
Step 8	session session_name	Enters session configuration mode and assigns a name to the session.
		Note: When the entered session name does not already exist, the router creates a new session.
		Entering the no form of this command deletes an existing session.
Step 9	attach-to-channel channel_name	Attaches the session to the channel.
		Note: Enter the same channel name that you entered in Step 3 above
		<i>channel_name</i> –Identifies the channel.
Step 10	link-addr dest destination_address	Refers to the link address of the slave.
		<i>destination_address</i> –Range of values from 1 to 65535.
Step 11	exit	Exits session configuration mode.
Step 12	exit	Exits protocol configuration mode.

EXAMPLE

This example shows how to configure the parameters for the DPN3-serial protocol stack:

L

```
router# configure terminal
router(config)# scada-gw protocol dnp3-serial
router(config-dnp3s)# channel rtu_channel
router(config-dnp3s-channel)# bind-to-interface serial 0/2/0
router(config-dnp3s-channel)# link-addr source 3
router(config-dnp3s-channel)# unsolicited-response enable
router(config-dnp3s-channel)# exit
router(config-dnp3s)# session rtu_session
router(config-dnp3s)# session rtu_session
router(config-dnp3s-session)# attach-to-channel rtu_channel
router(config-dnp3s-session)# link-addr dest 3
router(config-dnp3s-session)# exit
router(config-dnp3s)# exit
router(config-dnp3s)# exit
```

Configuring DNP3 IP

Follow the steps below for the Control Center that you want to connect to over DNP3 IP. For redundancy, you can create multiple connections that share the same session configuration under the same session.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
Step 2	scada-gw protocol dnp3-ip	Enters configuration mode for the DNP-IP protocol.
Step 3	channel channel_name	Enters channel configuration mode for the DNP-IP protocol.
		<i>channel_name</i> –Identifies the channel on which the router communicates with the Control Center.
		Note: When the entered channel name does not already exist, the router creates a new channel.
		Entering the no form of this command deletes an existing channel. However, all sessions must be deleted before you can delete a channel.
Step 4	link-addr dest destination_address	Refers to the link address of the master.
		<i>destination_address</i> –Range of values from 1 to 65535.
Step 5	send-unsolicited-msg enable	(Optional) Allow unsolicited messages.
		The default is enabled.
Step 6	tcp-connection local-port [default local_port] remote-ip [any remote_ip remote_subnet]	Configures the local port number and remote IP address for the TCP connection: • default–20000.

I

	Command or Action	Purpose
		• <i>local_port</i> –Range of values from 2000 to 65535.
		• any–Any remote hosts 0.0.0/0
		• <i>remote_ip</i> –Single host: A.B.C.D
		• remote_subnet –Subnet: A.B.C.D/LEN
		If remote_subnet is specified, when two channels have the same local ports, the remote subnets cannot overlap each other.
		Note: Every <local-port, remote-ip=""> must be unique per channel. If remote_subnet is specified, when two channels have the same local ports, the remote subnets cannot overlap each other.</local-port,>
Step 7	exit	Exits channel configuration mode.
Step 8	session session_name	Enters session configuration mode and assigns a name to the session.
		Note: When the entered session name does not already exist, the router creates a new session.
		Entering the no form of this command deletes an existing session.
Step 9	attach-to-channel channel_name	Attaches the session to the channel.
		Enter the same channel name that you entered in Step 3.
		channel_name –Identifies the channel.
Step 10	link-addr source source_address	Refers to the link address of the slave.
		source_address –Value of 1-65535.
Step 11	map-to-session session_name	Maps the dnp3-ip session to an existing dnp3-serial session.
		Note: One dnp3-ip session can be mapped to only one dnp3-serial session.
Step 12	exit	Exits session configuration mode.
Step 13	exit	Exits protocol configuration mode.

EXAMPLE

This example shows how to configure the DNP3 IP parameters:

```
router# configure terminal
router(config)# scada-gw protocol dnp3-ip
router(config-dnp3n)# channel cc_channel
router(config-dnp3n-channel)# link-addr dest 3
router(config-dnp3n-channel)# tcp-connection local-port default remote-ip any
router(config-dnp3n-channel)# exit
router(config-dnp3n)# session cc_session
router(config-dnp3n-session)# attach-to-channel cc_channel
router(config-dnp3n-session)# attach-to-channel cc_channel
router(config-dnp3n-session)# link-addr source 4
router(config-dnp3n-session)# map-to-session rtu_session
router(config-dnp3n)# exit
router(config-dnp3n)# exit
```

Starting and Stopping the Protocol Translation Engine

You must start the Protocol Translation Engine to use Protocol Translation on the IR8340.

Starting–After enabling SCADA encapsulation on the IR8340 serial port and configuring the T101 and T104 protocols on the IR8340, you can start the Protocol Translation Engine.

Stopping–Before you can make any configuration changes to Protocol Translation on the IR8340 with an active Protocol Translation Engine, you must stop the engine.

Before you begin

Before **starting** the Protocol Translation Engine on the router for the **first time**, make sure you complete the following items:

Enabling the IR8340 Serial Port and SCADA Encapsulation, on page 208

Configuring T101 and T104 Protocol Stacks, on page 209

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	[no] scada-gw enable	Starts (scada-gw enable) or stops (no scada-gw enable) the Protocol Translation Engine on the IR8340.

EXAMPLE

To start the protocol translation engine on the router, enter the following commands:

```
router# configure terminal
router(config)# scada-gw enable
```

To stop the protocol translation engine on the router, enter the following commands:

```
router# configure terminal
router(config)# no
scada-gw enable
```

Verifying Configuration

Command	Purpose
show running-config	Shows the configuration of the router including active features and their settings.
show scada database	Displays details on the SCADA database.
show scada statistics	Shows statistics for the SCADA gateway, including the number of messages sent and received, timeouts, and errors.
show scada tcp	Displays TCP connections associated with the SCADA gateway.

This example shows the output from the show scada tcp and show scada statistics commands:

Router#show scada tcp

```
DNP3 network channel [test]: 4 max simultaneous connections
conn: local-ip: 3.3.3.21 local-port 20000 remote-ip 3.3.3.15 data-socket
1
Total:
1 current client connections
0 total closed connections
```

Router#show scada statistics

DNP3 network Channel [test]: 5 messages sent, 2 messages received 0 timeouts, 0 aborts, 0 rejections 2 protocol errors, 2 link errors, 0 address errors DNP3 serial Channel [test]: 152 messages sent, 152 messages received 1 timeouts, 0 aborts, 0 rejections 0 protocol errors, 0 link errors, 0 address errors

Router#show scada database

```
----- Scada Gateway Database -----
Configuration Root
  State -- 0x3
  MaxEvents -- 0x258
  Retry -- 0x3
  DegradedFrequency -- 0x2710
  Timeout -- 0x2710
   PointsAvailableToAlloc -- 0x470
  From Master
     IEC 104
        Line(2) status:DOWN
           Link(2) status:DOWN InUse(0)
           Request(-99):NOT running
              function(1)id(1)Triggered(0)MustRun(0)Attempt(4)diff(3604)Freq(100)
              RTU(101) status:DOWN InUse(0) Online(0)
                 Object(Single Input)
                    DT (100)
                       Value -- 0x0
                       Quality -- 0x4
                    DI(101)
                       Value -- 0x0
                       Quality -- 0x4
                    DI(102)
                       Value -- 0x0
                       Quality -- 0x4
```

Debug Commands

This section lists some debug commands that are helpful when troubleshooting.

• SCADA device to trace debug commands:

#debug scada device ?

network none	Network device to trace No device to trace
serial	Serial device to trace
· -	a device network ? Address of device to trace
#debug scada <cr>> <cr>></cr></cr>	a device none ?

#debug scada device serial ?
 <0-65535> Address of device to trace

• SCADA function level debug commands:

#debug scada function ?

analog	analog ouput trace
clock	clock trace
config	config trace
control	control trace
datalink	datalink trace
driver-event	Driver event debug
driver-packet	Driver Packet debug
error	error trace
event	event trace
file	file trace
freeze	freeze trace
general	general debug
physical	physical trace
poll	poll trace
protocol	protocol trace
request	request trace
stack	stack trace
status	status trace
tcp-event	TCP event debug
timer	timer trace
transport	transport trace
umode	umode trace

Raw Socket Transport

Raw Socket Transport transports streams of characters from one serial interface to another over an IP network for utility applications.

This document describes Raw Socket Transport for the IR8340 and provides a reference section describing the Raw Socket Transport commands.

This document includes the following sections:

- Information About Raw Socket Transport, on page 225
- Prerequisites, on page 228
- Guidelines and Limitations, on page 228
- Default Settings, on page 228
- Configuring Raw Socket Transport, on page 228
- Verifying Configuration, on page 234
- Configuration Example, on page 235
- Show Line Details for Configuring Raw-TCP/UDP, on page 238
- Raw-Socket Show and Debug Commands, on page 239

Information About Raw Socket Transport

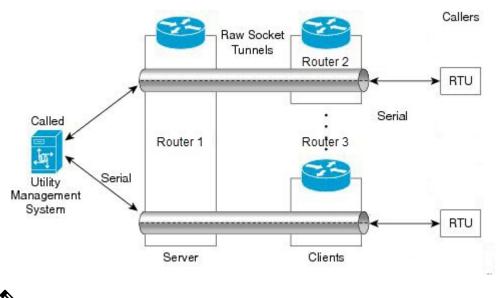
Raw Socket is a method for transporting serial data through an IP network. The feature can be used to transport Supervisory Control and Data Acquisition (SCADA) data from Remote Terminal Units (RTUs). This method is an alternative to the Block Serial Tunnel (BSTUN) protocol.

Raw Socket Transport supports TCP or UDP as the transport protocol. An interface can be configured to use either protocol but not both at the same time. TCP transport is suitable for applications such as control applications that require acknowledged and sequenced delivery of data. For latency-sensitive applications such as line SEL relays, UDP transport provides faster transport of serial data than TCP.

Raw Socket Transport supports the following for the asynchronous serial interface:

- TCP as the transport protocol, with built-in auto TCP connection retry mechanism.
- Up to 32 TCP sessions and 32 UDP sessions.
- Interface configuration as a server, client, or a combination of both.
- One server interface, but multiple clients.

• VRF-awareness, which enables the router to send Raw Socket Transport traffic to a server host connected through a Virtual Private Network (VPN) Virtual Routing and Forwarding (VRF) interface.


This section includes the following topics:

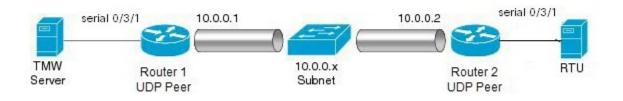
TCP Transport

TCP Raw Socket transport uses a client-server model. At most one server and multiple clients can be configured on a single asynchronous serial line. In client mode, the IR8340 can initiate up to 32 TCP sessions to Raw Socket servers, which can be other IR8340 routers or third-party devices.

The following figure shows a sample Raw Socket TCP configuration. In this example, serial data is transferred between RTUs and a utility management system across an IP network that includes several IR8340 routers. One IR8340 router (Router 1) acts as a Raw Socket server, listening for TCP connection requests from the other IR8340 routers (Router 2 and Router 3), which are configured as Raw Socket clients.

A Raw Socket client receives streams of serial data from the RTUs and accumulates this data in its buffer, then places the data into packets, based on user-specified packetization criteria. The Raw Socket client initiates a TCP connection with the Raw Socket server and sends the packetized data across the IP network to the Raw Socket server, which retrieves the serial data from the packets and sends it to the serial interface, and on to the utility management system.

Ŵ


Note When you configure the serial link interface on the router as a server, the interface's peer is the serial link interface on the client router and vice versa.

UDP Transport

UDP transport uses a peer-to-peer model. Multiple UDP connections can be configured on an asynchronous serial line. IR8340 can support up to 32 UDP sessions.

The following figure shows a sample Raw Socket UDP configuration. In this example, serial data is transferred between RTUs and a utility management system across an IP network that includes two routers that are configured as Raw Socket UDP peers.

In this example, the Raw Socket UDP peer receives streams of serial data from the RTUs and accumulates this data in its buffer, then places the data into packets, based on user-specified packetization criteria. The Raw Socket UDP peer sends the packetized data across the IP network to the Raw Socket peer at the other end, which retrieves the serial data from the packets and sends it to the serial interface, and on to the utility management system.

Serial Data Processing

When the default serial protocol, Asynchronous Communication Protocol, is used, the streams of serial data received by a Raw Socket peer can be packetized based on the following criteria:

- **Packet length**–You can specify a packet length that triggers the IR8340 to transmit the serial data to the peer. Once the IR8340 collects this much data in its buffer, it packetizes the accumulated data and forwards it to the Raw Socket peer.
- **Packet-timer value**—The packet timer specifies the amount of time the IR8340 waits to receive the next character in a stream. If a character is not received by the time the packet timer expires, the data the IR8340 has accumulated in its buffer is packetized and forwarded to the Raw Socket peer.
- Special character–You can specify a character that will trigger the IR8340 to packetize the data accumulated in its buffer and send it to the Raw Socket peer. When the special character (for example, a CR/LF) is received, the IR8340 packetizes the accumulated data and sends it to the Raw Socket peer.

See Configuring Common Raw Socket Line Options, on page 229 for information about configuring the processing options.

VRF-Aware Raw Socket

The VRF-aware Raw Socket Transport feature enables you to isolate Raw Socket traffic using a VRF for efficient management and control of serial data. After configuring a VRF, you can associate the serial interface configured for Raw Socket Transport with the VRF. See Raw Socket VRF, on page 237 for a configuration example.

Prerequisites

Determine how you want Raw Socket traffic transported in your network, including the network devices and interfaces to use, how the router packetizes the serial data, and whether to use VRF.

Guidelines and Limitations

Typically, UDP traffic is blocked by firewalls in the network. If the network has such firewalls, make sure to configure pinholes to allow the raw socket UDP traffic.

Default Settings

Feature	Default Setting	
Raw Socket Transport	Disabled.	
Packet length	No packet length is configured.	
Serial Protocol	Asynchronous Communication Protocol	
Packet timeout	15 ms.	
Special character	No special character is configured.	
Raw Socket mode	Best-effort mode is off, not supported on the IR8340.	
TCP idle timeout	5 minutes.	

Configuring Raw Socket Transport

This section includes the following topics:

Enabling Raw Socket Transport on the Serial Interface

To enable Raw Socket Transport on the IR8340 router, you must first enable an asynchronous serial port and enable Raw Socket TCP or UDP encapsulation for that port.

Before you begin

Determine availability of the serial port on the IR8340.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.

	Command or Action	Purpose
Step 2	interface serial slot/subslot/port	Enters the interface command mode for the serial interface.
Step 3	physical-layer async	Configure the serial interface to Asynchronous mode.
Step 4	no ip address	Disables IP processing on the interface.
Step 5	Do one of the following: • encapsulation raw-tcp • encapsulation raw-udp	Enables Raw Socket TCP encapsulation or UDP encapsulation for the serial port.

Example

```
router# configure terminal
router(config)# interface serial 0/3/2
router(config)# physical-layer async
router(config-if)# no ip address
router(config-if)# encapsulation raw-tcp
router(config-if)# exit
```

Configuring Common Raw Socket Line Options

You can configure options common to all connections on a line. The common options apply to both TCP and UDP.

Before you begin

Enable Raw Socket Transport as described in Enabling Raw Socket Transport on the Serial Interface, on page 228.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	line 0/slot /port	Enters line command mode for the serial slot/port.
Step 3	raw-socket packet-length length	Specifies the packet size that triggers the IR8340 to transmit the data to the peer. When the IR8340 accumulates this much data in its buffer, it packetizes the data and forwards it to the Raw Socket peer.length— 2 to 1400 bytes.By default, the packet-length trigger is disabled.

	Command or Action	Purpose
Step 4	raw-socket packet-timer timeout	Specifies the maximum time in milliseconds the IR8340 waits to receive the next character in a stream. If a character is not received by the time the packet-timer expires, the accumulated data is packetized and forwarded to the Raw Socket peer. <i>timeout</i> —3 to 1000 ms. The default is 15 ms.
Step 5	raw-socket spec-char ascii_char	Specifies a character that will trigger the IR8340to packetize the data accumulated in its bufferand send it to the Raw Socket peer.ascii_char— 0 to 255.By default, the special character trigger isdisabled.

Example

```
router# configure terminal
router(config)# line 0/3/2
router(config-line)# raw-socket packet-length 32
router(config-line)# raw-socket packet-timer 500
router(config-line)# raw-socket special-char 3
router(config-line)# parity even
router(config-line)# stopbits 1
router(config-line)# speed 9600
```

What to do next

Use the no form of these commands to return to the default values.

Configuring Raw Socket TCP

After enabling Raw Socket TCP encapsulation, you configure the TCP server and/or clients.

Configuring the Raw Socket TCP Server

Before you begin

Enable a serial port and Raw Socket TCP encapsulation for that port, as described in Enabling Raw Socket Transport on the Serial Interface, on page 228.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
Step 2	line 0/slot /port	Enters line command mode for the serial slot/port.
Step 3	<pre>raw-socket tcp server port [ip_address]</pre>	Starts the Raw Socket Transport TCP server for an asynchronous line interface. In Raw Socket server mode, the IR8340 listens for incoming connection requests from Raw Socket clients.
		port –Port number the server listens on.
		<i>ip_address</i> –(Optional) Local IP address on which the server listens for connection requests.
Step 4	raw-socket tcp idle-timeout session_timeout	Sets the Raw Socket Transport TCP session timeout for the asynchronous line interface. If no data is transferred between the client and server over this interval, then the TCP session closes. The client then automatically attempts to reestablish the TCP session with the server.
		This timeout setting applies to all Raw Socket Transport TCP sessions under this particular line.
		<i>session_timeout</i> –Currently configured session idle timeout in minutes. The default is 5 minutes.

Procedure

Example

router# configure terminal

```
router(config) # line 0/3/2
router(config-line) # raw-socket tcp server 4000 10.0.0.1
router(config-line) # raw-socket tcp idle-timeout 10
router(config-line) # exit
router(config) #
```

What to do next

To remove a Raw Socket TCP server, use the no raw-socket tcp server command.

Configuring the Raw Socket TCP Client

Before you begin

Enable a serial port and Raw Socket TCP encapsulation for that port, as described in Enabling Raw Socket Transport on the Serial Interface, on page 228.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
Step 2	line 0/slot /port	Enters line command mode for the serial slot/port.
Step 3	raw-socket tcp client <i>dest_ip_address dest_port</i> [<i>local_ip_address</i>] [<i>local_port</i>]	Specifies settings for Raw Socket Transport TCP client sessions.
		<i>dest_ip_address</i> –Destination IP address of the remote Raw Socket server.
		<i>dest_port</i> –Destination port number to use for the TCP connection to the remote server.
		<i>local_ip_address</i> –(Optional) Local IP address that the client can also bind to.
		<i>local_port</i> –(Optional) Local port number that the client can also bind to.
Step 4	raw-socket tcp idle-timeout session_timeout	Sets the Raw Socket Transport TCP session timeout for the asynchronous line interface. If no data is transferred between the client and server over this interval, then the TCP session is closed. The client then automatically attempts to reestablish the TCP session with the server.
		This timeout setting applies to all Raw Socket Transport TCP sessions under this particular line.
		<i>session_timeout</i> –Currently configured session idle timeout in minutes. The default is 5 minutes.
Step 5	raw-socket tcp keepalive interval	Sets the Raw Socket Transport TCP session keepalive interval for the asynchronous line interface. The router sends keepalive messages based on the configured interval. You may need to configure this interval, for example, when sending raw TCP traffic over a cellular interface.

Command or Action	Purpose
	<i>interval</i> –Currently configured keepalive interval in seconds. Range is 1-864000 seconds. The default is 1 second.

Example

This example shows how to configure a Raw Socket TCP client for an asynchronous serial line. The IR8340 (router), serving as a Raw Socket client, initiates TCP sessions with a Raw Socket server and forwards packetized serial data to it. The router collects streams of serial data in its buffer; when it accumulates 827 bytes in its buffer, the router packetizes the data and forwards it to the Raw Socket server. If the router and the Raw Socket server do not exchange any data for 10 minutes, then the TCP session with the Raw Socket server closes, and the router attempts to reestablish the session with the Raw Socket server.

```
router# configure terminal
```

```
router(config)# line 0/3/2
router(config-line)# raw-socket tcp client 10.0.0.1 4000
router(config-line)# raw-socket packet-length 827
router(config-line)# raw-socket tcp idle-timeout 10
router(config-line)# exit
router(config)#
```

What to do next

To remove a Raw Socket TCP client, use the no raw-socket tcp client command.

Configuring a Raw Socket UDP Peer-to-Peer Connection

After enabling Raw Socket UDP encapsulation and the common line options, you configure the Raw Socket UDP peer-to-peer connection. The local port on one end of the connection should be the destination port on the other end.

Before you begin

Enable a serial port and Raw Socket UDP encapsulation for that port, as described in Enabling Raw Socket Transport on the Serial Interface, on page 228.

	Command or Action	Purpose
Step 1	configure terminal	Enters configuration mode.
Step 2	line 0/slot /port	Enters line command mode for the serial slot/port.
Step 3	raw-socket udp connection dest_ip_address dest_port local_port [local_ip_address]	Specifies settings for Raw Socket Transport UDP connections.

Command or Action	Purpose
	<i>dest_ip_address</i> –Destination IP address to use for the UDP connection.
	<i>dest_port</i> –Destination port number to use for the UDP connection.
	<i>local_port</i> –Local port number for the UDP connection.
	<i>local_ip_address –</i> (Optional) Local IP address for the UDP connection.

Example

This example shows how to configure a Raw Socket UDP connection between router A (local IP address 192.168.0.8) and router B (local IP address 192.168.0.2).

Router A

```
router# configure terminal
router(config)# line 0/2/0
router(config-line)# raw-socket udp connection 192.168.0.2 5000 7000
router(config-line)# exit
router(config)#
```

Router B

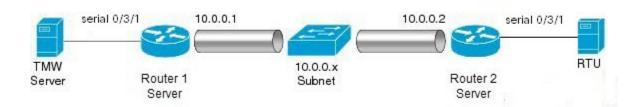
```
router# configure terminal
router(config)# line 0/2/0
router(config-line)# raw-socket udp connection 192.168.0.8 7000 5000
router(config-line)# exit
router(config)#
```

What to do next

To remove a Raw Socket UDP connection, use the no raw-socket udp connection command.

Verifying Configuration

Command	Purpose
show running-config	Shows the configuration of the IR8340, including those features that are active and their settings.
show raw-socket tcp detail	Displays information about Raw Socket Transport TCP activity.
show raw-socket tcp sessions	Displays information about Raw Socket Transport TCP sessions.
show raw-socket tcp statistics	Displays Raw Socket Transport TCP statistics for each asynchronous serial line.


Command	Purpose
show raw-socket udp detail	Displays information about Raw Socket Transport UDP activity.
show raw-socket udp sessions	Displays information about Raw Socket Transport UDP sessions.
show raw-socket udp statistics	Displays Raw Socket Transport UDP statistics for each asynchronous serial line.
clear raw-socket statistics	Clears Raw Socket Transport statistics for a specific TTY interface or for all asynchronous serial lines.

Configuration Example

The following sections include Raw Socket Transport configuration examples:

Raw Socket TCP

The following example shows a Raw Socket Transport configuration in which an IR8340 router (Router 1) acts as the server, and another IR8340 (Router 2) acts as the client.

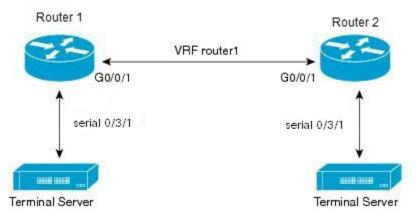
The following table displays the configuration of the server and client IR8340s highlighted in the above figure:

IR8340 Server Configuration	IR8340 Client Configuration			
interface serial 0/3/1	interface serial 0/3/1			
physical-layer async	physical-layer async			
no ip address	no ip address			
encapsulation raw-tcp	encapsulation raw-tcp			
!	!			
	interface serial 0/3/2			
line 0/3/1	physical-layer async			
raw-socket tcp server 5000 10.0.0.1	no ip address			
	encapsulation raw-tcp			
raw-socket packet-timer 3	!			
raw-socket tcp idle-timeout 5				
	line 0/3/1			
	raw-socket tcp client 10.0.0.1 5000 10.0.0.2 9000			
	raw-socket packet-length 32			
	raw-socket tcp idle-timeout 5			
	line 0/3/2			
	raw-socket tcp client 10.0.0.1 5000 10.0.0.2 9001			
	raw-socket packet-length 32			
	raw-socket tcp idle-timeout 5			

Raw Socket UDP

This example shows the configuration for a Raw Socket UDP connection between two IR8340 routers:

From Router1


```
interface GigabitEthernet 0/1/1
ip address 192.168.0.8 255.255.255.0
duplex auto
speed auto
interface serial 0/3/2
physical-layer async
no ip address
encapsulation raw-udp
line 0/3/2
raw-socket udp connection 192.168.0.2 4000 4000
```

From Router2

```
interface GigabitEthernet0/1/2
ip address 192.168.0.2 255.255.255.0
load-interval 60
duplex auto
speed auto
no keepalive
interface serial 0/3/2
physical-layer async
no ip address
encapsulation raw-udp
line 0/3/2
raw-socket udp connection 192.168.0.8 4000 4000
```

Raw Socket VRF

The following example shows a Raw Socket VRF configuration in which two routers, configured for Raw Socket Transport, connect through a VRF. Router1 is an IR8340, serves as the Raw Socket TCP server, and Router2 is an IR8340 serves as the Raw Socket TCP client.

Following are the configurations of Router1 and Router2 as shown in the above figure:

Router1 Configuration

Defining VRF on the router:

```
vrf definition router1
rd 100:1
route-target export 100:3
route-target import 100:3
!
address-family ipv4
exit-address-family
```

Applying VRF configuration on the interface:

```
interface GigabitEthernet0/0/1
vrf forwarding router1
ip address 100.100.100.2 255.255.255.0
duplex auto
speed auto
```

Applying raw-tcp on the serial interface:

```
interface serial 0/3/1
physical-layer async
vrf forwarding router1
no ip address
encapsulation raw-tcp
```

Applying raw-tcp on the line:

```
line 0/3/1
raw-socket tcp server 5000 4.4.4.4
```

Router2 Configuration

Defining VRF on the router:

```
vrf definition router1
rd 100:1
route-target export 100:3
route-target import 100:3
!
address-family ipv4
exit-address-family
```

Applying VRF configuration on the interface:

```
interface GigabitEthernet0/0/1
vrf forwarding router1
ip address 100.100.100.1 255.255.255.0
duplex auto
speed auto
```

Applying raw-tcp on the serial interface:

```
interface serial 0/3/1
physical-layer async
vrf forwarding router1
no ip address
encapsulation raw-tcp
```

Applying raw-tcp on line:

TT1#abass line

```
line 0/3/1
raw-socket tcp client 4.4.4.4 5000
```

Show Line Details for Configuring Raw-TCP/UDP

The **show line** command shows all TTY line summary information. The output contains information about mapping between async interface and line number, the line speed, uses, noise, and so on. The line that begins with the asterisk "*" indicates that the line is in use.

By enabling the physical layer Async on the serial port, the corresponding line will be activated and it will be displayed in the **show line** output. In the following example, 0/3/0 and 0/3/4 are configured as async mode and displayed.

U1	#show	line											
	Tty I	Line 1	Гур	Tx/Rx	A Mo	dem	Roty Ac	cO Ac	сI	Uses	Noise O	verruns	Int
*	0	0	CTY		-	-	-	-	-	0	0	0/0	-
	1	1	AUX	9600/9600	-	-	_	-	-	0	0	0/0	-
	0/3/0	50	TTY	9600/9600	-	-	-	-	-	0	17	0/0	Se0/3/0
	0/3/4	54	TTY	9600/9600	-	-	_	-	-	0	0	0/0	Se0/3/4
	866	866	VTY		-	-	-	-	-	3	0	0/0	-
	867	867	VTY		-	-	_	-	-	0	0	0/0	-
	868	868	VTY		-	-	-	-	-	0	0	0/0	-
	869	869	VTY		-	-	_	-	-	0	0	0/0	-
	870	870	VTY		-	-	-	-	-	0	0	0/0	-
	871	871	VTY		-	-	_	-	-	0	0	0/0	-
	872	872	VTY		-	-	_	-	-	0	0	0/0	-
	873	873	VTY		-	-	-	-	-	0	0	0/0	-
	874	874	VTY		-	-	_	-	-	0	0	0/0	-
	875	875	VTY		-	-	-	-	-	0	0	0/0	-
	876	876	VTY		-	-	_	-	-	0	0	0/0	-
	877	877	VTY		-	-	-	-	-	0	0	0/0	-
	878	878	VTY		-	-	-	-	-	0	0	0/0	-
	879	879	VTY		-	-	-	-	-	0	0	0/0	-
	880	880	VTY		-	-	-	-	-	0	0	0/0	-
т -	$n \circ (a)$	not ·		una modo o		+ h n	o hordre			~+ •			

```
2-49, 51-53, 55-865
U1#
```

Raw-Socket Show and Debug Commands

Use the following show commands for the verification:

- show raw-socket {tcp|udp} session
- show raw-socket {tcp|udp} statistic

Use the following commands to debug:

```
debug raw-socket ?
  driver
            Driver level debug
  transport Raw-socket over any transport
debug raw-socket driver ?
  event
          Driver event trace
  packet Driver packet trace
debug raw-socket driver event ?
  <cr>> <cr>>
debug raw-socket driver packet ?
 line Serial/Async line
  <cr>> <cr>>
debug raw-socket driver packet line ?
  <0-726> First Line range
  console Primary terminal line
  tty
          Terminal controller
          Virtual terminal
 vty
  x/y/z
        Slot/Subslot/Port for Modems
debug raw-socket transport ?
          TCP or UDP event trace
  event
  packet TCP or UDP packet trace
debug raw-socket transport event ?
 <cr>> <cr>>
debug raw-socket transport packet ?
 line Serial/Async line
  <cr>> <cr>>
debug raw-socket transport packet line ?
  <0-726> First Line range
  console Primary terminal line
          Terminal controller
  tty
```

- vty Virtual terminal
- x/y/z Slot/Subslot/Port for Modems

Configuring MODBUS TCP

This chapter provides the following sections:

- Understanding MODBUS TCP, on page 241
- Configuring the Router as the MODBUS TCP Server, on page 243
- MODBUS TCP Registers, on page 243

Understanding MODBUS TCP

Use Modicon Communication Bus (MODBUS) TCP over an Ethernet network when connecting the router to devices such as intelligent electronic devices (IEDs), distributed controllers, substation routers, Cisco IP Phones, Cisco Wireless Access Points, and other network devices such as redundant substation routeres.

MODBUS is a serial communications protocol for client-server communication between a router (server) and a device in the network running MODBUS client software (client). You can use MODBUS to connect a computer to a remote terminal unit (RTU) in supervisory control and data acquisition (SCADA) systems.

The client can be an IED or a human machine interface (HMI) application that remotely configure and manage devices running MODBUS TCP. The router functions as the server.

The router encapsulates a request or response message in a MODBUS TCP application data unit (ADU). A client sends a message to a TCP port on the router. The default port number is 502.

Note For information about the registers that a client can query on the router that functions as a MODBUS TCP server, see MODBUS TCP Registers, on page 243.

MODBUS and Security

If a firewall or other security services are enabled, the router TCP port might be blocked, and the router and the client cannot communicate.

If a firewall and other security services are disabled, a denial-of-service attack might occur on the router.

To configure quality of service (QoS) to set the rate-limit for MODBUS TCP traffic, create an access-list that only permits traffic sending to port number 502 that is reserved for MODBUS communication. Then attach the access-list to the input class-map and attach it to the interface and set the rate limit to permit traffic via default port 502 and prioritize SCADA packets.

```
DUT-1:
1
class-map match-any Modbus-out-Traffic
match qos-group 1
class-map match-any Modbus-In-Traffic
match access-group 101
T.
policy-map Modbus-In
class Modbus-In-Traffic
 set qos-group 1
policy-map Modbus-Out
 class Modbus-out-Traffic
 police 10000000
 priority
T.
T.
interface GigabitEthernet0/1/1
 switchport mode access
service-policy input Modbus-In
T.
interface GigabitEthernet0/1/2
 switchport mode access
 service-policy output Modbus-Out
1
interface Vlan1
no ip address
 ip access-group 101 in
 rate-limit input access-group 101 8000 8000 conform-action transmit exceed-action
drop
!
T.
!
access-list 101 permit tcp 10.10.10.0 0.0.0.255 any eq 502
DUT-2:
interface Vlan1
 ip address 192.168.1.2 255.255.255.0
This example shows that 133 SCADA packets were classified.
DUT-1#show policy-map interface GigabitEthernet0/1/2
```

```
GigabitEthernet0/1/2
Service-policy output: Modbus-Out
Class-map: Modbus-out-Traffic (match-any)
133 packets
Match: qos-group 1
police cir 10000000 bc 312500
conform-action transmit
exceed-action drop
conform: 133 (packets) exceed: 0 (packets)
Priority
Output Queue:
Max queue-limit default threshold: 272
Tail Packets Drop: 0
```

Multiple Request Messages

The router can receive multiple request messages from clients and respond to them simultaneously.

You can set the number of client connections from 1 to 5. The default is 1.

Configuring the Router as the MODBUS TCP Server

Defaults

The router is not configured as a MODBUS TCP server.

The TCP port number is 502.

The number of simultaneous connection requests is 1.

Enabling MODBUS TCP on the Switch

Beginning in privileged EXEC mode:

Procedure

	Command or Action	Purpose				
Step 1	configure terminal	Enter global configuration mode.				
	Example:					
	Router# configure terminal					
Step 2	scada modbus tcp server	Enables MODBUS TCP on the router.				
Step 3	scada modbus tcp server [port tcp-port-number]	(Optional) Sets the TCP port to which clients send messages. The range for <i>tcp-port-number</i> is 1 to 65535. The default is 502.				
Step 4	scada modbus tcp server [connection connection-requests]	(Optional) Sets the number of simultaneous connection requests sent to the router. The range for <i>connection-requests</i> is 1 to 5. The default is 1.				
Step 5	end	Returns to privileged EXEC mode.				
	Example:					
	Router(config)# end					

To disable MODBUS on the router and return to the default settings, enter the **no scada modbus tcp server** global configuration command.

To add security when using MODBUS TCP, configure an ACL to permit traffic from specific clients or configure QoS to rate-limit traffic.

MODBUS TCP Registers

This section lists the read-only MODBUS registers. MODBUS clients use them to communicate with a MODBUS server (i.e., the IR8340 router). There are no writable registers.

System Information Registers

Memory address spaces 0x0800 through 0x0FFF are system information registers. Clients use the 0x03 Read Multiple Registers MODBUS function code. The system-information register mapping is as follows:

Table 15: System Information Registers

Address	# of Registers	Description	R/W	Format
0x0800	64	Product ID	R	Text
0x0840	64	Software image name	R	Text
0x0880	64	Software image version	R	Text
0x08C0	64	Host name	R	Text
0x0900	1	Number of Gigabit Ethernet ports	R	Uint16
CPU Core Ten	nperature Related Reg	isters		-
0x0901	1	CPU core-0 temperature (in Celsius)	R	Uint16
0x0902	1	CPU core-1 temperature (in Celsius)	R	Uint16
0x0903	1	CPU core-2 temperature (in Celsius)	R	Uint16
0x0904	1	CPU core-3 temperature (in Celsius)	R	Uint16
0x0905	1	CPU core-4 temperature (in Celsius)	R	Uint16
0x0906	1	CPU core-5 temperature (in Celsius)	R	Uint16
0x0907	1	CPU core-6 temperature (in Celsius)	R	Uint16
0x0908	1	CPU core-7 temperature (in Celsius)	R	Uint16

Port Information Registers

Memory address spaces 0x1000 through 0x3FFF are read-only interface registers. Clients use the 0x03 Read Multiple Registers MODBUS function code to access the registers.

The following table shows the memory map for all interface registers, with 64-bit counters (address space 0x1000 - 0x2FFF, 8K registers):

Table 16: System Information Registers

Address	# of Registers	Description	R/W	Format
0x1000	64	WAN Port 1 name	R	Text
0x1040	64	WAN Port 2 name	R	Text
0x1080	64	LAN Port 1 name	R	Text
0x10C0	64	LAN Port 2 name	R	Text
0x1100	64	LAN Port 3 name	R	Text
0x1140	64	LAN Port 4 name	R	Text
0x1180	64	LAN Port 5 name	R	Text
0x11C0	64	LAN Port 6 name	R	Text
0x1200	64	LAN Port 7 name	R	Text
0x1240	64	LAN Port 8 name	R	Text
0x1280	64	LAN Port 9 name	R	Text
0x12C0	64	LAN Port 10 name	R	Text
0x1300	64	LAN Port 11 name	R	Text
0x1340	64	LAN Port 12 name	R	Text
0x1380	1	WAN Port 1 state	R	Uint16
0x1381	1	WAN Port 2 state	R	Uint16
0x1382	1	LAN Port 1 state	R	Uint16
0x1383	1	LAN Port 2 state	R	Uint16
0x1384	1	LAN Port 3 state	R	Uint16
0x1385	1	LAN Port 4 state	R	Uint16
0x1386	1	LAN Port 5 state	R	Uint16
0x1387	1	LAN Port 6 state	R	Uint16
0x1388	1	LAN Port 7 state	R	Uint16
0x1389	1	LAN Port 8 state	R	Uint16
0x138A	1	LAN Port 9 state	R	Uint16
0x138B	1	LAN Port 10 state	R	Uint16

Address	# of Registers	Description	R/W	Format
0x138C	1	LAN Port 11 state	R	Uint16
0x138D	1	LAN Port 12 state	R	Uint16
Values for 64-H	Bit Counters			
0x138E	4	WAN Port 1 Statistics – Number of packets received	R	Uint64
0x1392	4	WAN Port 2 Statistics – Number of packets received	R	Uint64
0x1396	4	LAN Port 1 Statistics – Number of packets received	R	Uint64
0x139A	4	LAN Port 2 Statistics – Number of packets received	R	Uint64
0x139E	4	LAN Port 3 Statistics – Number of packets received	R	Uint64
0x13A2	4	LAN Port 4 Statistics – Number of packets received	R	Uint64
0x13A6	4	LAN Port 5 Statistics – Number of packets received	R	Uint64
0x13AA	4	LAN Port 6 Statistics – Number of packets received	R	Uint64
0x13AE	4	LAN Port 7 Statistics – Number of packets received	R	Uint64
0x13B2	4	LAN Port 8 Statistics – Number of packets received	R	Uint64
0x13B6	4	LAN Port 9 Statistics – Number of packets received	R	Uint64
0x13BA	4	LAN Port 10 Statistics – Number of packets received	R	Uint64

Address	# of Registers	Description	R/W	Format
0x13BE	4	LAN Port 11 Statistics – Number of packets received	R	Uint64
0x13C2	4	LAN Port 12 Statistics – Number of packets received	R	Uint64
0x13C6	4	WAN Port 1 Statistics – Number of packets sent	R	Uint64
0x13CA	4	WAN Port 2 Statistics – Number of packets sent	R	Uint64
0x13CE	4	LAN Port 1 Statistics – Number of packets sent	R	Uint64
0x13D2	4	LAN Port 2 Statistics – Number of packets sent	R	Uint64
0x13D6	4	LAN Port 3 Statistics – Number of packets sent	R	Uint64
0x13DA	4	LAN Port 4 Statistics – Number of packets sent	R	Uint64
0x13DE	4	LAN Port 5 Statistics – Number of packets sent	R	Uint64
0x13E2	4	LAN Port 6 Statistics – Number of packets sent	R	Uint64
0x13E6	4	LAN Port 7 Statistics – Number of packets sent	R	Uint64
0x13EA	4	LAN Port 8 Statistics – Number of packets sent	R	Uint64
0x13EE	4	LAN Port 9 Statistics – Number of packets sent	R	Uint64
0x13F2	4	LAN Port 10 Statistics – Number of packets sent	R	Uint64

Address	# of Registers	Description	R/W	Format
0x13F6	4	LAN Port 11 Statistics – Number of packets sent	R	Uint64
0x13FA	4	LAN Port 12 Statistics – Number of packets sent	R	Uint64
0x13FE	4	WAN Port 1 Statistics – Number of bytes received	R	Uint64
0x1402	4	WAN Port 2 Statistics – Number of bytes received	R	Uint64
0x1406	4	LAN Port 1 Statistics – Number of bytes received	R	Uint64
0x140A	4	LAN Port 2 Statistics – Number of bytes received	R	Uint64
0x140E	4	LAN Port 3 Statistics – Number of bytes received	R	Uint64
0x1412	4	LAN Port 4 Statistics – Number of bytes received	R	Uint64
0x1416	4	LAN Port 5 Statistics – Number of bytes received	R	Uint64
0x141A	4	LAN Port 6 Statistics – Number of bytes received	R	Uint64
0x141E	4	LAN Port 7 Statistics – Number of bytes received	R	Uint64
0x1422	4	LAN Port 8 Statistics – Number of bytes received	R	Uint64
0x1426	4	LAN Port 9 Statistics – Number of bytes received	R	Uint64
0x142A	4	LAN Port 10 Statistics – Number of bytes received	R	Uint64

Address	# of Registers	Description	R/W	Format
0x142E	4	LAN Port 11 Statistics – Number of bytes received	R	Uint64
0x1432	4	LAN Port 12 Statistics – Number of bytes received	R	Uint64
0x1436	4	WAN Port 1 Statistics – Number of bytes sent	R	Uint64
0x143A	4	WAN Port 2 Statistics – Number of bytes sent	R	Uint64
0x143E	4	LAN Port 1 Statistics – Number of bytes sent	R	Uint64
0x1442	4	LAN Port 2 Statistics – Number of bytes sent	R	Uint64
0x1446	4	LAN Port 3 Statistics – Number of bytes sent	R	Uint64
0x144A	4	LAN Port 4 Statistics – Number of bytes sent	R	Uint64
0x144E	4	LAN Port 5 Statistics – Number of bytes sent	R	Uint64
0x1452	4	LAN Port 6 Statistics – Number of bytes sent	R	Uint64
0x1456	4	LAN Port 7 Statistics – Number of bytes sent	R	Uint64
0x145A	4	LAN Port 8 Statistics – Number of bytes sent	R	Uint64
0x145E	4	LAN Port 9 Statistics – Number of bytes sent	R	Uint64
0x1462	4	LAN Port 10 Statistics – Number of bytes sent	R	Uint64

Address	# of Registers	Description	R/W	Format
0x1466	4	LAN Port 11 Statistics – Number of bytes sent	R	Uint64
0x146A	4	LAN Port 12 Statistics – Number of bytes sent	R	Uint64
Values for 32-	Bit Counters			·
0x146E	2	WAN Port 1 Statistics – Number of packets received	R	Uint32
0x1470	2	WAN Port 1 Statistics – Number of packets received	R	Uint32
0x1472	2	LAN Port 1 Statistics – Number of packets received	R	Uint32
0x1474	2	LAN Port 2 Statistics – Number of packets received	R	Uint32
0x1476	2	LAN Port 3 Statistics – Number of packets received	R	Uint32
0x1478	2	LAN Port 4 Statistics – Number of packets received	R	Uint32
0x147A	2	LAN Port 5 Statistics – Number of packets received	R	Uint32
0x147C	2	LAN Port 6 Statistics – Number of packets received	R	Uint32
0x147E	2	LAN Port 7 Statistics – Number of packets received	R	Uint32
0x1480	2	LAN Port 8 Statistics – Number of packets received	R	Uint32
0x1482	2	LAN Port 9 Statistics – Number of packets received	R	Uint32

Address	# of Registers	Description	R/W	Format
0x1484	2	LAN Port 10 Statistics – Number of packets received	R	Uint32
0x1486	2	LAN Port 11 Statistics – Number of packets received	R	Uint32
0x1488	2	LAN Port 12 Statistics – Number of packets received	R	Uint32
0x148A	2	WAN Port 1 Statistics – Number of packets sent	R	Uint32
0x148C	2	WAN Port 2 Statistics – Number of packets sent	R	Uint32
0x148E	2	LAN Port 1 Statistics – Number of packets sent	R	Uint32
0x1490	2	LAN Port 2 Statistics – Number of packets sent	R	Uint32
0x1492	2	LAN Port 3 Statistics – Number of packets sent	R	Uint32
0x1494	2	LAN Port 4 Statistics – Number of packets sent	R	Uint32
0x1496	2	LAN Port 5 Statistics – Number of packets sent	R	Uint32
0x1498	2	LAN Port 6 Statistics – Number of packets sent	R	Uint32
0x149A	2	LAN Port 7 Statistics – Number of packets sent	R	Uint32
0x149C	2	LAN Port 8 Statistics – Number of packets sent	R	Uint32
0x149E	2	LAN Port 9 Statistics – Number of packets sent	R	Uint32

Address	# of Registers	Description	R/W	Format
0x14A0	2	LAN Port 10 Statistics – Number of packets sent	R	Uint32
0x14A2	2	LAN Port 11 Statistics – Number of packets sent	R	Uint32
0x14A4	2	LAN Port 12 Statistics – Number of packets sent	R	Uint32
0x14A6	2	WAN Port 1 Statistics – Number of bytes received	R	Uint32
0x14A8	2	WAN Port 2 Statistics – Number of bytes received	R	Uint32
0x14AA	2	LAN Port 1 Statistics – Number of bytes received	R	Uint32
0x14AC	2	LAN Port 2 Statistics – Number of bytes received	R	Uint32
0x14AE	2	LAN Port 3 Statistics – Number of bytes received	R	Uint32
0x14B0	2	LAN Port 4 Statistics – Number of bytes received	R	Uint32
0x14B2	2	LAN Port 5 Statistics – Number of bytes received	R	Uint32
0x14B4	2	LAN Port 6 Statistics – Number of bytes received	R	Uint32
0x14B6	2	LAN Port 7 Statistics – Number of bytes received	R	Uint32
0x14B8	2	LAN Port 8 Statistics – Number of bytes received	R	Uint32
0x14BA	2	LAN Port 9 Statistics – Number of bytes received	R	Uint32

Address	# of Registers	Description	R/W	Format
0x14BC	2	LAN Port 10 Statistics – Number of bytes received	R	Uint32
0x14BE	2	LAN Port 11 Statistics – Number of bytes received	R	Uint32
0x14C0	2	LAN Port 12 Statistics – Number of bytes received	R	Uint32
0x14C2	2	WAN Port 1 Statistics – Number of bytes sent	R	Uint32
0x14C4	2	WAN Port 2 Statistics – Number of bytes sent	R	Uint32
0x14C6	2	LAN Port 1 Statistics – Number of bytes sent	R	Uint32
0x14C8	2	LAN Port 2 Statistics – Number of bytes sent	R	Uint32
0x14CA	2	LAN Port 3 Statistics – Number of bytes sent	R	Uint32
0x14CC	2	LAN Port 4 Statistics – Number of bytes sent	R	Uint32
0x14CE	2	LAN Port 5 Statistics – Number of bytes sent	R	Uint32
0x14D0	2	LAN Port 6 Statistics – Number of bytes sent	R	Uint32
0x14D2	2	LAN Port 7 Statistics – Number of bytes sent	R	Uint32
0x14D4	2	LAN Port 8 Statistics – Number of bytes sent	R	Uint32
0x14D6	2	LAN Port 9 Statistics – Number of bytes sent	R	Uint32

I

Address	# of Registers	Description	R/W	Format
0x14D8	2	LAN Port 10 Statistics – Number of bytes sent	R	Uint32
0x14DA	2	LAN Port 11 Statistics – Number of bytes sent	R	Uint32
0x14DC	2	LAN Port 12 Statistics – Number of bytes sent	R	Uint32

Interpreting the Port State

Table 17: Interpreting the Port State

Address	Description	Value
0x1380 to 0x138D	Port state information	The upper byte represents the interface state:
		 0x0: Interface is down 0x1: Interface is going down 0x2: Interface is in the initializing state 0x3: Interface is coming up 0x4: Interface is up and running 0x5: Interface is reset by the user 0x6: Interface is shut down by the user 0x7: Interface is being deleted
		The lower byte represents the line protocol state:
		 0x0: Line protocol state is down 0x1: Line protocol state is up

VLAN Access Control Lists

This chapter provides information about VLAN Access Control Lists (ACLs) and how to configure them.

- Information About VLAN Access Control Lists, on page 255
- Configuring VACLs, on page 255

Information About VLAN Access Control Lists

VLAN access control lists (VACLs) or VLAN maps are used to control network traffic within a VLAN. VACLs are configured globally, and the rules are applied on VLANs. VACLs are supported in both ingress and egress directions. In ingress direction VACLs are applied after Port ACL and before Routed ACL. In egress direction VACLs are applied after Routed ACL and before Port ACL. VLAN map is applied to both routed and switched traffic. VLAN map can contain both IP and MAC ACLs to be applied to IP and non-IP traffic respectively.

VLAN Maps

VLAN ACLs or VLAN maps are used to control network traffic within a VLAN. You can apply VLAN maps to all packets that are bridged within a VLAN in the switch or switch stack. VACLs are strictly for security packet filtering and for redirecting traffic to specific physical interfaces. VACLs are not defined by direction (ingress or egress).

All non-IP protocols are access-controlled through MAC addresses and Ethertype using MAC VLAN maps. (IP traffic is not access controlled by MAC VLAN maps.) You can enforce VLAN maps only on packets going through the switch; you cannot enforce VLAN maps on traffic between hosts on a hub or on another switch connected to this switch.

With VLAN maps, forwarding of packets is permitted or denied, based on the action specified in the map.

Configuring VACLs

VACL allows you to define VLAN maps and attach them to VLANs. This allows the ability to apply a single access policy across the VLAN and have different policies across different VLANs.

- VLAN map is attached using vlan filter <word> vlan-list <vlanid> command
- VLAN map is defined using vlan access-map < word> command

- In this mode, a match for IP Access-lists is specified using **match ip address** command. This will filter the traffic based on L3/L4 fields specified in the IP ACL. Match for IPv6 access lists can be configured using **match ipv6 address** command. This will filter traffic based on L3/L4 fields specified in IPv6 ACL
- A match for MAC Access-lists is specified using **match mac address** command. This will filter the traffic based on L2 fields specified in the MAC ACL.
- Each VLAN map sequence has an action forward or drop specified which specifies what should happen when the traffic matches a specified match criteria in the VLAN map.

Defining a VLAN Access Map

To define a VLAN access map, perform this task:

Command	Purpose
Router(config)# vlan access-map map_name [0-65535]	Defines the VLAN access map. Optionally, you can specify the VLAN access map sequence number.
Router(config)# no vlan access-map map_name 0-65535	Deletes a map sequence from the VLAN access map.
Router(config)# no vlan access-map map_name	Deletes the VLAN access map.

When defining a VLAN access map, note the following information:

- To insert or modify an entry, specify the map sequence number.
- If you do not specify the map sequence number, a number is automatically assigned.
- You can specify only one match clause and one action clause per map sequence.
- Use the **no** keyword with a sequence number to remove a map sequence.
- Use the **no** keyword without a sequence number to remove the map.

Configuring a Match Clause in a VLAN Access Map Sequence

To configure a match clause in a VLAN access map sequence, perform this task:

Command	Purpose
Router (config-access-map)# match {ip address {1-199 1300-2699 acl_name} {mac address acl_name}}	Configures the match clause in a VLAN access map sequence.
Router (config-access-map)# no match {ip address {1-199 1300-2699 acl_name} {mac address acl_name}}	Deletes the match clause in a VLAN access map sequence.

When configuring a match clause in a VLAN access map sequence, note the following information:

• You can select one or more ACLs.

L

• Use the no keyword to remove a match clause or specified ACLs in the clause.

Configuring an Action Clause in a VLAN Access Map Sequence

To configure an action clause in a VLAN access map sequence, perform this task:

Command	Purpose
Router (config-access-map)# action {drop [log]} {forward [capture vlan vlan_ID]} {redirect {{ethernet fastethernet gigabitethernet tengigabitethernet} slot/port} {port-channel channel_id}}	Configures the action clause in a VLAN access map sequence.
Router (config-access-map)# no action {drop [log]} {forward [capture vlan vlan_ID]} {redirect {{ethernet fastethernet gigabitethernet tengigabitethernet} slot/port} {port-channel channel_id}}	Deletes the action clause in from the VLAN access map sequence.

Applying a VLAN Access Map

To apply a VLAN access map, perform this task:

Command	Purpose
Router(config)# vlan filter map_name {vlan-list vlan_list interface type number}	Applies the VLAN access map to the specified VLANs or WAN interfaces.

Verifying VLAN Access Map Configuration

To verify VLAN access map configuration, perform this task:

Command	Purpose
Router# show vlan access-map [map_name]	Verifies VLAN access map configuration by displaying the content of a VLAN access map.
Router# show vlan filter [access-map map_name vlan vlan_id interface type number]	Verifies VLAN access map configuration by displaying the mappings between VACLs and VLANs.
Router# show platform software fed 0/1 acl info	Verifies that VACL is installed correctly.
Router# show platform software fed 0/1 acl cam	Verifies that VACL is installed correctly on TCAM.

Debugging VACLs

To enable debugs for ACl/VACL, perform this task:

I

Command	Purpose
Router# set platform software trace fed 0/1 acl	Enable debug for FED ACL.
Router# set platform software trace forwarding-manager RP/FP active vlan-acl <level></level>	Enable debug for Forward-mgr VACL.

Configuring MACsec

This section describes how to configure MACsec on Cisco IR8340 Routers.

- MACsec Encryption Overview, on page 259
- Limitations and Restrictions, on page 259
- Media Access Control Security and MACsec Key Agreement, on page 260
- Configuring MACsec Encryption, on page 261

MACsec Encryption Overview

MACsec is the IEEE 802.1AE standard for authenticating and encrypting packets between two MACsec-capable devices. Cisco IR8340 Router supports 802.1AE encryption with MACsec Key Agreement (MKA) on switch-to-host links for encryption between the switch and host device. IR8340 also supports MACsec encryption for switch-to-switch (inter-network device) security using MKA-based key exchange protocol.

Note

HSEC license is required to configure MACsec encryption.

Table 18: MACsec Support on Switch Ports

Connections	MACsec support
Switch-to-host	MACsec MKA encryption
Switch-to-switch	MACsec MKA encryption

MKA is supported on switch-to-host facing links. Host-facing links typically use flexible authentication ordering for handling heterogeneous devices with or without IEEE 802.1x, and can optionally use MKA-based MACsec encryption.

Limitations and Restrictions

• MACsec configuration is not supported on WAN ports.

- MACsec configuration is not supported on EtherChannel ports. Instead, MACsec configuration can be applied/removed on the individual member ports of an EtherChannel. To add/remove MACsec configuration, you must first unbundle the member ports from the EtherChannel.
- Configure either MACsec or PRP/HSR on the ports.
- Until PCH is available, MACsec and PTP are mutually exclusive.
- Packet number based rekey is not supported.
- Certificate based MKA (switch to switch) is not supported.
- VLAN Tag-in-clear is not supported.
- Legacy Cisco SAP (switch to switch) is not supported.
- Extended Packet Numbering (XPN) is not supported.

Media Access Control Security and MACsec Key Agreement

MACsec, defined in 802.1AE, provides MAC-layer encryption over wired networks by using out-of-band methods for encryption keying. The MACsec Key Agreement (MKA) Protocol provides the required session keys and manages the required encryption keys. MKA and MACsec are implemented after successful authentication using certificate-based MACsec or Pre Shared Key (PSK) framework.

A device using MACsec accepts either MACsec or non-MACsec frames, depending on the policy associated with the MKA peer. MACsec frames are encrypted and protected with an integrity check value (ICV). When the device receives frames from the MKA peer, it decrypts them and calculates the correct ICV by using session keys provided by MKA. The device compares that ICV to the ICV within the frame. If they are not identical, the frame is dropped. The device also encrypts and adds an ICV to any frames sent over the secured port (the access point used to provide the secure MAC service to a MKA peer) using the current session key.

The MKA Protocol manages the encryption keys used by the underlying MACsec protocol. The basic requirements of MKA are defined in 802.1x-REV. The MKA Protocol extends 802.1x to allow peer discovery with confirmation of mutual authentication and sharing of MACsec secret keys to protect data exchanged by the peers.

The EAP framework implements MKA as a newly defined EAP-over-LAN (EAPOL) packet. EAP authentication produces a master session key (MSK) shared by both partners in the data exchange. Entering the EAP session ID generates a secure connectivity association key name (CKN). The device acts as the key server for both uplink and downlink; and acts as the authenticator for downlink. It generates a random secure association key (SAK), which is sent to the client partner. The client is never a key server and can only interact with a single MKA entity, the key server. After key derivation and generation, the device sends periodic transports to the partner at a default interval of 2 seconds.

The packet body in an EAPOL Protocol Data Unit (PDU) is referred to as a MACsec Key Agreement PDU (MKPDU). MKA sessions and participants are deleted when the MKA lifetime (6 seconds) passes with no MKPDU received from a participant. For example, if a MKA peer disconnects, the participant on the device continues to operate MKA until 6 seconds have elapsed after the last MKPDU is received from the MKA peer.

Note

Integrity check value (ICV) indicator in MKPDU is optional. ICV is not optional when the traffic is encrypted.

EAPoL Announcements indicate the use of the type of keying material. The announcements can be used to announce the capability of the supplicant as well as the authenticator. Based on the capability of each side, the largest common denominator of the keying material could be used.

Configuring MACsec Encryption

Configuring MKA and MACsec

MACsec is disabled by default. No MKA policies are configured.

Configuring an MKA Policy

Follow these steps to configure an MKA policy.

Note

After changing any MKA policy or MACsec configuration for active sessions, execute the **shutdown** command, and then the **no shutdown** command on a port, so that the changes are applied to active sessions.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mka policy policy name	Identifies an MKA policy, and enters MKA
-	Example:	policy configuration mode. The maximum
	Router(config)# mka policy mka_policy	policy name length is 16 characters.
		Note The default MACsec cipher suite in the MKA policy will always be GCM-AES-128.
Step 4	macsec-cipher-suite {gcm-aes-128 gcm-aes-256}	Configures a cipher suite for deriving SAK with 128-bit or 256-bit encryption.
	Example:	
	Router(config-mka-policy)# macsec-cipher-suite gcm-aes-128	
Step 5	end	Exit enters MKA policy configuration mode
	Example:	and returns to privileged EXEC mode.

I

	Command or Action	Purpose		
	Router(config-mka-policy)# end			
Step 6	show mka policy	Displays MKA policy configuration		
	Example:	information.		
	Router# show mka policy			

Configuring MACsec MKA using PSK

Procedure

	Command or Action	Purpose		
Step 1	enable	Enables privileged EXEC mode.		
	Example:	• Enter your password if prompted.		
	Router> enable			
Step 2	configure terminal	Enter global configuration mode.		
	Example:			
	Router# configure terminal			
Step 3	key chain key-chain-name macsec	Configures a key chain and enters the key chain		
	Example:	configuration mode.		
	Router(config)# key chain keychain1 macsec			
Step 4	key hex string	Configures a unique identifier for each key in		
	Example:	the keychain and enters the keychain's key configuration mode.		
	Router(config-key-chain)# key 1000	Note For 128-bit encryption, use any value between 1 and 32 hex digit key-string. For 256-bit encryption, use 64 hex digit key-string.		
Step 5	cryptographic-algorithm {aes-128-cmac aes-256-cmac}	Set cryptographic authentication algorithm wit 128-bit or 256-bit encryption.		
	Example:			
	Device(config-key-chain)# cryptographic-algorithm aes-128-cmac			
Step 6	key-string { [0 6 7] <i>pwd-string</i> <i>pwd-string</i> }	Sets the password for a key string. Only hex characters must be entered.		
	Example:			
	Device(config-key-chain)# key-string 12345678901234567890123456789012			
Step 7	end	Exits key chain configuration mode and return to privileged EXEC mode.		
	Example:			

 Command or Action	Purpose
Router(config-key-chain)# end	

Configuring MACsec MKA on an Interface using PSK

Procedure

	Command or Action	Purpose		
Step 1	enable	Enables privileged EXEC mode.		
	Example:	• Enter your password if prompted.		
	Router> enable			
Step 2	configure terminal	Enter global configuration mode.		
	Example:			
	Router# configure terminal			
Step 3	interface interface-id	Enters interface configuration mode.		
	Example:			
	<pre>Router(config)# interface GigabitEthernet 0/1/4</pre>			
Step 4	switchport mode access	Sets the switchport mode to access.		
	Example:			
	Router(config-if) # switchport mode access			
Step 5	switchport access vlan vlan-id	Specifies the VLAN for which this access por will carry traffic.		
	Example:			
	Router(config-if)# switchport access vlan 203			
Step 6	macsec network-link	Enables MACsec on the interface.		
	Example:			
	<pre>Router(config-if)# macsec network-link</pre>			
Step 7	mka policy policy name	Configures an MKA policy.		
-	Example:			
	<pre>Router(config-if) # mka policy MKA_128</pre>			
Step 8	mka pre-shared-key key-chain key-chain-name	Configures an MKA pre-shared-key key-chain name.		
	Example:	Note The MKA pre-shared key can be		
	Router(config-if)# mka pre-shared-key key-chain KEY128	configured on either physical interface or sub-interfaces and not on both.		

	Command or Action	Purpose
Step 9	end	Exits interface configuration mode and returns
	Example:	to privileged EXEC mode.
	Router(config-if)# end	

Example: Sample Configuration of Switch-to-Switch MACsec

This section shows sample configuration of switch-to-switch MACsec.

Device 1 Configuration

```
configure terminal
mka policy MKA 128
macsec-cipher-suite gcm-aes-128
key chain KEY128 macsec
key 1111
cryptographic-algorithm aes-128-cmac
end
configure terminal
interface Vlan203
ip address 22.1.1.1 255.255.255.0
end
configure terminal
interface GigabitEthernet0/1/4
switchport mode access
switchport access vlan 203
mka policy MKA 128
mka pre-shared-key key-chain KEY128
macsec network-link
no shutdown
end
Device 2 Configuration
configure terminal
mka policy MKA_128
macsec-cipher-suite gcm-aes-128
key chain KEY128 macsec
key 1111
cryptographic-algorithm aes-128-cmac
end
configure terminal
interface Vlan203
ip address 22.1.1.2 255.255.255.0
end
configure terminal
interface GigabitEthernet0/1/4
switchport mode access
switchport access vlan 203
mka policy MKA 128
mka pre-shared-key key-chain KEY128
macsec network-link
no shutdown
end
```

Example: Sample Configuration of Switch-to-Host MACsec

This section shows sample configuration of switch-to-host MACsec.

```
aaa new-model
1
!
aaa authentication dot1x default group radius
aaa authorization network default group radius
aaa authorization auth-proxy default group radius
aaa accounting network default start-stop group radius
aaa accounting system default start-stop group radius
1
aaa server radius dynamic-author
client <radius-server ip> server-key <key>
port 3799
aaa session-id common
1
ip dhcp-server 17.0.0.1
ip dhcp pool VLAN17
network 17.0.0.0 255.255.255.0
default-router 17.0.0.1
1
1
device-tracking policy DEVICE MACSEC
no protocol udp
tracking enable
1
authentication critical recovery delay 300
service-template DEFAULT LINKSEC POLICY MUST SECURE
linksec policy must-secure
!
dot1x system-auth-control
1
class-map type control subscriber match-all DOT1X
match method dot1x
Т
class-map type control subscriber match-all DOT1X FAILED
match method dot1x
match result-type method dot1x authoritative
class-map type control subscriber match-all DOT1X MEDIUM PRIO
match authorizing-method-priority gt 20
1
class-map type control subscriber match-all DOT1X NO RESP
match method dot1x
match result-type method dot1x agent-not-found
1
class-map type control subscriber match-all DOT1X TIMEOUT
match method dot1x
match result-type method dot1x method-timeout
class-map type control subscriber match-all LINKSEC FAIL DOT1X
match authorization-fail linksec-failed
match method dot1x
class-map type control subscriber match-all LINKSEC FAIL MAB
match authorization-fail linksec-failed
match method mab
```

```
class-map type control subscriber match-all MAB_FAILED
match method mab
match result-type method mab authoritative
1
policy-map type control subscriber POLICY MUSTSECURE
event session-started match-all
10 class always do-until-failure
10 authenticate using dot1x priority 10
event authentication-failure match-first
5 class DOT1X FAILED do-until-failure
10 terminate dot1x
20 authenticate using mab priority 20
10 class DOT1X NO RESP do-until-failure
10 terminate dot1x
20 authenticate using mab priority 20
20 class MAB FAILED do-until-failure
10 terminate mab
20 authentication-restart 60
40 class always do-until-failure
10 terminate dot1x
20 terminate mab
30 authentication-restart 60
event agent-found match-all
10 class always do-until-failure
10 terminate mab
20 authenticate using dot1x priority 10
event authentication-success match-all
10 class always do-until-failure
10 activate service-template DEFAULT LINKSEC POLICY MUST SECURE
interface GigabitEthernet0/1/1
switchport access vlan 17
switchport mode access
device-tracking attach-policy DEVICE MACSEC
macsec
access-session host-mode multi-host
access-session closed
access-session port-control auto
dot1x pae authenticator
service-policy type control subscriber POLICY SHOULDSECURE
1
radius-server attribute 8 include-in-access-req
radius-server dead-criteria time 20 tries 2
radius-server timeout 20
radius-server deadtime 5
radius-server key <radius key>
radius server ACS
address ipv4 <radius-server ip> auth-port 1812 acct-port 1813
!
```

Verifying the Configuration

Use the following command to display MKA sessions on the interface:

```
# show mka sessions interface GigabitEthernet0/1/4
```

Summary of All Currently Active MKA Sessions on Interface GigabitEthernet0/1/4...

L

Interface	Local-TxSCI	Policy-Name	Inherited	Key-Server
Port-ID	Peer-RxSCI	MACsec-Peers	Status	CKN
Gi0/1/4	b08b.d071.86ac/000e		NO	YES
14	b08b.d071.86ac/0000		Init	1000

Use the following command to display MACsec status on the interface:

```
# show macsec status interface GigabitEthernet0/1/5
```

```
MACsec is enabled
 Replay protect : enabled
 Replay window : 0
 Include SCI : yes
 Use ES Enable : no
 Use SCB Enable : no
 Admin Pt2Pt MAC : forceTrue(1)
 Pt2Pt MAC Operational : no
 Cipher : GCM-AES-128
Confidentiality Offset : 0
Capabilities
 ICV length : 16
 Data length change supported: yes
Max. Rx SA : 16
 Max. Tx SA : 16
Max. Rx SC : 8
 Max. Tx SC : 8
 Validate Frames : strict
 PN threshold notification support : Yes
 Ciphers supported : GCM-AES-128
                     GCM-AES-256
```

Use the following command to display MACsec statistics on the interface:

```
# show macsec statistics interface GigabitEthernet0/1/5
```

```
Transmit Secure Channels
SCI : B08BD07186AD000F
SC state : inUse(1)
 Elapsed time : 00:00:18
 Start time : 7w0d
 Current AN: 0
 Previous AN: -
 Next PN: 14
 SA State: inUse(1)
 Confidentiality : yes
 SAK Unchanged : yes
 SA Create time : 00:11:21
 SA Start time : 7w0d
 SC Statistics
  Auth-only Pkts : 0
  Auth-only Bytes : 0
  Encrypt Pkts : 0
  Encrypt Bytes : 0
  SA Statistics
  Auth-only Pkts : 0
  Encrypt Pkts : 13
 Port Statistics
 Egress untag pkts 0
 Egress long pkts 0
Receive Secure Channels
SCI : 0C75BDCC84A40007
SC state : inUse(1)
```

Elapsed time : 00:00:18 Start time : 7w0d Current AN: 0 Previous AN: -Next PN: 23 RX SA Count: 0 SA State: inUse(1) SAK Unchanged : yes SA Create time : 00:11:19 SA Start time : 7w0d SC Statistics Notvalid pkts 0 Invalid pkts 0 Valid pkts 0 Valid bytes 0 Late pkts 0 Uncheck pkts 0 Delay pkts 0 UnusedSA pkts 0 NousingSA pkts 0 Decrypt bytes 0 SA Statistics Notvalid pkts 0 Invalid pkts 0 Valid pkts 21 UnusedSA pkts 0 NousingSA pkts 0 Port Statistics Ingress untag pkts 0 Ingress notag pkts 9 Ingress badtag pkts 0 Ingress unknownSCI pkts 0 Ingress noSCI pkts 0 Ingress overrun pkts 0

Use the following command to display detailed status for MKA session:

show mka session interface GigabitEthernet0/1/5 detail

```
MKA Detailed Status for MKA Session
_____
Status: SECURED - Secured MKA Session with MACsec
Local Tx-SCI..... b08b.d071.86ad/000f
Interface MAC Address.... b08b.d071.86ad
MKA Port Identifier..... 15
Interface Name..... GigabitEthernet0/1/5
Audit Session ID.....
CAK Name (CKN)..... 1111
Member Identifier (MI)... CBA23DA1D3D77DF725CD43BB
Message Number (MN)..... 10
EAP Role..... NA
Key Server..... NO
MKA Cipher Suite..... AES-128-CMAC
Latest SAK Status..... Rx & Tx
Latest SAK AN..... 0
Latest SAK KI (KN)..... AD657F4EB0D237F5AFF9186F00000001 (1)
Old SAK Status..... FIRST-SAK
Old SAK AN..... 0
Old SAK KI (KN)..... FIRST-SAK (0)
SAK Transmit Wait Time... Os (Not waiting for any peers to respond)
```

Priority Installed

```
SAK Retire Time..... Os (No Old SAK to retire)
SAK Rekey Time..... Os (SAK Rekey interval not applicable)
MKA Policy Name..... Policy 128
Key Server Priority..... 0
Delay Protection..... NO
Delay Protection Timer..... 0s (Not enabled)
Confidentiality Offset... 0
Algorithm Agility..... 80C201
SAK Rekey On Live Peer Loss..... NO
Send Secure Announcement.. DISABLED
SCI Based SSCI Computation.... NO
SAK Cipher Suite..... 0080C20001000001 (GCM-AES-128)
MACsec Capability...... 3 (MACsec Integrity, Confidentiality, & Offset)
MACsec Desired..... YES
# of MACsec Capable Live Peers..... 1
# of MACsec Capable Live Peers Responded.. 0
Live Peers List:
                                        KS RxSA
 ΜI
                    MN Rx-SCI (Peer)
                                                              SSCI
                                             Priority Installed
 _____
 AD657F4EB0D237F5AFF9186F 8
                            0c75.bdcc.84a4/0007 0 YES
                                                               0
Potential Peers List:
                    MN
                            Rx-SCI (Peer)
                                             KS
                                                     RxSA
                                                              SSCI
 ΜI
                                             Priority Installed
 _____
                                                    ------
Dormant Peers List:
                                             KS RxSA
 ΜI
                    MN
                        Rx-SCI (Peer)
                                                              SSCI
```

WAN MACSEC and MKA Support Enhancements

The WAN MACsec and MKA feature introduces MACsec support on WAN, and uplink support and Pre-shared key support for the Macsec Key Agreement protocol (MKA).

- MACsec and MKA Overview, on page 271
- Benefits of WAN MACsec and MKA Support Enhancements, on page 272
- Best Practices for Implementing WAN MACsec and MKA Support Enhancements, on page 272
- MKA Policy Inheritance, on page 273
- Key Lifetime and Hitless Key Rollover, on page 273
- Encryption Algorithms for Protocol Packets, on page 273
- Access Control Option for Smoother Migration, on page 274
- Extensible Authentication Protocol over LAN Destination Address, on page 274
- How to Configure WAN MACsec and MKA Support Enhancements, on page 275

MACsec and MKA Overview

MACsec is an IEEE 802.1AE standards based Layer 2 hop-by-hop encryption that provides data confidentiality and integrity for media access independent protocols.

MACsec, provides MAC-layer encryption over wired networks by using out-of-band methods for encryption keying. The MACsec Key Agreement (MKA) Protocol provides the required session keys and manages the required encryption keys. Only host facing links (links between network access devices and endpoint devices such as a PC or IP phone) can be secured using MACsec.

The 802.1AE encryption with MACsec Key Agreement (MKA) is supported on downlink ports for encryption between the routers or switches and host devices.

MACsec encrypts the entire data except for the Source and Destination MAC addresses of an Ethernet packet.

To provide MACsec services over the WAN, service providers offer Layer 2 transparent services such as E-Line or E-LAN using various transport layer protocols such as Ethernet over Multiprotocol Label Switching (EoMPLS) and L2TPv3.

The packet body in an EAP-over-LAN (EAPOL) Protocol Data Unit (PDU) is referred to as a MACsec Key Agreement PDU (MKPDU). When no MKPDU is received from a participants after 3 hearbeats (each hearbeat is of 2 seconds), peers are deleted from the live peer list For example, if a client disconnects, the participant on the switch continues to operate MKA until 3 heartbeats have elapsed after the last MKPDU is received from the client.

The MKA feature support provides tunneling information such as VLAN tag (802.1Q tag) in the clear so that the service provider can provide service multiplexing such that multiple point to point or multipoint services can co-exist on a single physical interface and differentiated based on the now visible VLAN ID.

In addition to service multiplexing, VLAN tag in the clear also enables service providers to provide quality of service (QoS) to the encrypted Ethernet packet across the SP network based on the 802.1P (CoS) field that is now visible as part of the 802.1Q tag.

Benefits of WAN MACsec and MKA Support Enhancements

- Support for Point-to-point (P2P) deployment models.
- Support for Point-to-Multipoint (P2MP) deployment models.
- Support for multiple P2P and P2MP deployments on the same physical interface.
- Support for 128- and 256-bit Advanced Encryption Standard–Galois Counter Mode (AES-GCM) encryption for data packets.
- Support for 128- and 256-bit Advanced Encryption Standard-Cipher-based Message Authentication Code (AEC-CMAC) encryption for control packets.
- Support for VLAN tag in the clear option to enable Carrier Ethernet Service Multiplexing.
- Support for coexisting of MACsec and Non-MACsec subinterfaces.
- Support for configurable Extensible Authentication Protocol over LAN (EAPoL) destination address.
- Support for configurable option to change the EAPoL Ethernet type.
- Support for configurable replay protection window size to accommodate packet reordering in the service provider network.

Best Practices for Implementing WAN MACsec and MKA Support Enhancements

- Ensure basic Layer 2 Ethernet connectivity is established and verified before attempting to enable MACsec. Basic ping between the customer edge devices must work.
- When you are configuring WAN MACsec for the first time, ensure that you have out of band connectivity to the remote site to avoid locking yourself out after enabling MACsec, if the session fails to establish.
- We recommend that you configure the **access-control should-secure** command while enabling MACsec for the first time and subsequently remove the command to change to default **access-control must-secure**, once the session establishment is successful, unless it is needed for migration.
- We recommend that you configure an interface MTU, adjusting it for MACsec overhead, for example, 32 bytes. Although MACsec encryption and decryption occurs at the physical level and MTU is size does not effect the source or destination router, it may effect the intermediate service provider router. Configuring an MTU value at the interface allows for MTU negotiation that includes MACsec overhead.

MKA Policy Inheritance

On WAN routers, MKA policy is inherited and also it has a default value. When a new session is started, the following rules apply:

- If an MKA policy is configured on a subinterface, it will be applied when an MKA session is started.
- If an MKA policy is not configured on a subinterface, a policy that is configured on the physical interface is be applied at session start.
- If a MKA policy is not configured on a subinterface or physical interface, default policy is applied at session start.

Key Lifetime and Hitless Key Rollover

A MACsec key chain can have multiple pre-shared keys (PSK) each configured with a key id and an optional lifetime. A key lifetime specifies at which time the key expires. In the absence of a lifetime configuration, the default lifetime is unlimited. When a lifetime is configured, MKA rolls over to the next configured pre-shared key in the key chain after the lifetime is expired. Time zone of the key can be local or UTC. Default time zone is UTC.

Use the key chain name macsec to configure the MACsec key chain.

You can Key rolls over to the next key within the same key chain by configuring a second key in the key chain and configuring a lifetime for the first key. When the lifetime of the first key expires, it automatically rolls over to the next key in the list. If the same key is configured on both sides of the link at the same time, then the key rollover is hitless, that is, key rolls over without traffic interruption.

Note

The lifetime of the keys need to be overlapped in order to achieve hitless key rollover.

Encryption Algorithms for Protocol Packets

Cryptographic Algorithm selection for MKA control protocol packets encryption is as follows:

- Cryptographic Algorithm to encrypt MKA control protocol packets is configured as part of the key chain. There can be only one cryptographic algorithm configured per key chain.
- A key server uses the configured MKA cryptographic algorithm from the key chain that is used.
- All nonkey servers must use the same cryptographic algorithm as the key server.

If an MKA cryptographic algorithm is not configured, a default cryptographic algorithm of AES-CMAC-128 (Cipher-based Message Authentication Code with 128-bit Advanced Encryption Standard) is used.

Encryption algorithm for Data packets:

```
mka policy p1
macsec-cipher-suite [gcm-aes-128 | gcm-aes-256
```

Encryption algorithm for MKA Control packets

```
key chain <name> macsec
key 01
key-string <Hex string>
cryptographic-algorithm [aes-256-cmac | aes-128-cmac]
```

It is recommended to change data packets cipher suite in the key server for the cipher suite rollover to be seamless, if the nonkey servers have the same cipher-suite configured in the list or is with default configuration.

Access Control Option for Smoother Migration

When MACsec is enabled on an interface, the entire interface traffic is secured, by default. MACsec does not allow any unencrypted packets to be transmitted or received from the same physical interface. However, to enable MACsec on selected subinterfaces, an additional Cisco proprietary extension has been implemented to allow unencrypted packets to be transmitted or received from the same physical interface.

Use the **macsec access-control** {**must-secure** | **should-secure**} command to control the behavior of unencrypted packets.

- The **should-secure** keyword allows unencrypted packets from the physical interface or subinterfaces to be transmitted or received.
- The **must-secure** keyword does not allow unencrypted packets from physical interface or subinterfaces to be transmitted or received. All such packets are dropped except for MKA control protocol packets
- If MACsec is enabled only on selected subinterfaces, configure the should-secure keyword option on the corresponding interface.

The default configuration for MACsec on subinterfaces is **macsec access-control must-secure**. This option is enabled by default when the **macsec** command is configured on an interface.

```
Note
```

The **macsec access-control should-secure** command can be configured only at the interface level and not the subinterface. Configuring this command allows unencrypted traffic on a secured MACsec session.

Ø

Note For non-MACsec subinterface, you must configure the should-secure option for traffic to pass.

Extensible Authentication Protocol over LAN Destination Address

Before establishing a MACsec secure session, MKA (MACsec Key Agreement) is used as the control protocol. MKA selects the cipher suite to be used for encryption and to exchange the required keys and parameters between peers.

MKA uses Extensible Authentication Protocol over LAN (EAPoL) as the transport protocol to transmit MKA messages. By default, EAPoL uses a destination multicast MAC address of 01:80:c2:00:00:03 to multicast packets to multiple destinations. EAPoL is a standards-based protocol and other authentication mechanisms

such as IEEE 802.1X also use the same protocol. Devices in the service provider cloud might consume this packet (based on the destination multicast MAC address), and try to process the EAPoL packet and eventually drop the packet. This causes MKA session to fail.

Use the **eapol destination-address** command to change the destination MAC address of an EAPoL packet that is transmitted on an interface towards the service provider. This ensures that the service provider tunnels the packet like any other data packet instead of consuming them.

Note The EAPoL destination address can be configured independently on either physical or subinterface level. If it is configured on the physical interface, it is automatically inherited by the subinterfaces. Explicit configuration on the subinterface overrides the inherited value or policy for that subinterface.

Replay Protection Window Size

Replay protection is a feature provided by MACsec to counter replay attacks. Each encrypted packet is assigned a unique sequence number and the sequence is verified at the remote end. Frames transmitted through a Metro Ethernet service provider network are highly susceptible to reordering due to prioritization and load balancing mechanisms used within the network.

A replay window is necessary to support use of MACsec over provider networks that reorder frames. Frames within the window can be received out of order, but are not replay protected. The default window size is set to 64. Use the **macsec replay-protection window-size** command to change the replay window size. The range for window size is 0 to 4294967295.

The replay protection window may be set to zero to enforce strict reception ordering and replay protection.

Note

A replay protection window can be configured independently on either physical interface or subinterface. If it is configured on the physical interface, it is automatically inherited by the subinterfaces. Explicit configuration on subinterface overrides the inherited value or policy for that sub-interface.

How to Configure WAN MACsec and MKA Support Enhancements

Configuring MKA

The MACsec Key Agreement (MKA) enables configuration and control of keying parameters. Perform the following task to configure MKA.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.

	Command or Action	Purpose
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mka policy policy-name	Configures an MKA policy.
	Example:	
	Router(config) # mka policy MKAPolicy	
Step 4	include-icv-indicator	(Optional) Includes ICV indicator in MKPDU.
	Example:	
	<pre>Device(config-mka-policy)# include-icv-indicator</pre>	
Step 5	key-server priority key-server-priority	(Optional) Configures MKA key server priority.
	Example:	
	Router(config-mka-policy)# key-server priority 200	
Step 6	macsec-cipher-suite {gcm-aes-128 gcm-aes-256}	(Optional) Configures cipher suite(s) for secure association key (SAK) derivation. Each of the
	Example:	cipher suite options can be repeated only once,
	Router(config-mka-policy)# macsec-cipher-suite gcm-aes-128 gcm-aes-256	but they can be used in any order.
Step 7	sak-rekey interval interval	(Optional) Sets the SAK rekey interval (in
	Example:	seconds). The range is from 30 to 65535, and the default value is 0. The SAK rekey timer
	Device(config-mka-policy)# sak-rekey interval 30	does not start by default until it is configured.
		• To stop the SAK rekey timer, use the no sak-rekey interval command under the defined MKA policy.
Step 8	confidentiality-offset value	(Optional) Configures confidentiality offset for
	Example:	MACsec operation.
	<pre>Router(config-mka-policy)# confidentiality-offset 30</pre>	
Step 9	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-mka-policy)# end	

Configuring MKA Pre-Shared Key

Perform the following task to configure MACsec Key Agreement (MKA) pre-shared key.

Command or Action Purpose enable Step 1 Enables privileged EXEC mode. Example: • Enter your password if prompted. Router> enable Step 2 configure terminal Enter global configuration mode. Example: Router# configure terminal Step 3 Key chain key-chain-name [macsec] Configures a key chain and enters keychain configuration mode. Example: Router(config) # Key chain keychain1 macsec Step 4 Configures a key and enters keychain key key hex string configuration mode. Example: Router(config-keychain) # key 9ABCD Step 5 cryptographic-algorithm {gcm-aes-128 | Set cryptographic authentication algorithm. gcm-aes-256} Example: Router(config-keychain-key)# cryptographic-algorithm gcm-aes-128 Step 6 **key-string** {**[0 | 6]** *pwd-string* | **7** | *pwd-string*} Sets the password for a key string. Example: Router(config-keychain-key)# key-string 0 pwd Step 7 **lifetime local** *{{day month year* **duration** Sets the lifetime for a key string. The range you can specify for the duration is between 1 and seconds} 864000 seconds. **Example:** Device(config-keychain-key) # lifetime local 16:00:00 Nov 9 2014 duration 6000 Step 8 end Returns to privileged EXEC mode. Example:

Procedure

Router(config-keychain-key) # end

Configuring an Option to Change the EAPoL Ethernet Type

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type number	Enters interface configuration mode.
	Example:	
	<pre>Router(config)# interface GigabitEthernet 0/0/1</pre>	
Step 4	eapol eth-type	Configures an ethernet type (Hexadecimal) for
	Example:	the EAPoL Frame on the interface.
	Router(config-if)# eapol eth-type 876F	
Step 5	exit	Exits interface configuration mode and returns
	Example:	to global configuration mode.
	Router(config-if)# exit	

Sample Configuration for Point-to-Point WAN MACsec

Example: Port Based WAN MACsec

Device1:

Device2:

Example: VLAN Based WAN MACsec

Device1:

```
configure terminal
   key chain test128 macsec
   kev 1111
  cryptographic-algorithm aes-128-cmac
  exit
  mka policy test
  macsec-cipher-suite gcm-aes-128 gcm-aes-256
  exit
  interface GigabitEthernet0/0/0
  eapol destination-address broadcast-address
  mka policy test
  macsec dot1q-in-clear 1
  interface GigabitEthernet0/0/0.1
  encapsulation dot1g 10
  ip address 1.1.1.1 255.255.255.0
  mka pre-shared-key key-chain test128
   macsec
   exit
```

Device2:

```
macsec dot1q-in-clear 1
interface GigabitEthernet0/0/0.1
encapsulation dot1q 10
ip address 1.1.1.2 255.255.255.0
mka pre-shared-key key-chain test128
macsec
exit
```

Sample Show Command Output for Port Based WAN MACsec

#show mka sessions

```
Total MKA Sessions..... 1
     Secured Sessions... 1
     Pending Sessions... 0
Interface Local-TxSCI
                                 Policv-Name
                                                   Inherited
                                                                      Kev-Server
Port-ID
              Peer-RxSCI
                                  MACsec-Peers
                                                    Status
                                                                      CKN
                                                                             _____
Gi0/0/0
             b08b.d071.86a0/0007 test
                                                   NO
                                                                      YES
7
              b08b.d079.8a10/0007 1
                                                    Secured
                                                                     1111
```

#show mka sessions detail

MKA Detailed Status for MKA Session Status: SECURED - Secured MKA Session with MACsec Local Tx-SCI..... b08b.d071.86a0/0007 Interface MAC Address.... b08b.d071.86a0 MKA Port Identifier..... 7 Interface Name..... GigabitEthernet0/0/0 Audit Session ID..... CAK Name (CKN) 1111 Member Identifier (MI)... 58D1ED5150ED8811970C4DB9 Message Number (MN)..... 18 EAP Role..... NA Key Server..... YES MKA Cipher Suite..... AES-128-CMAC Latest SAK Status..... Rx & Tx Latest SAK AN..... 0 Latest SAK KI (KN)..... 58D1ED5150ED8811970C4DB900000001 (1) Old SAK Status..... FIRST-SAK Old SAK AN..... 0 Old SAK KI (KN)..... FIRST-SAK (0) SAK Transmit Wait Time... Os (Not waiting for any peers to respond) SAK Retire Time..... Os (No Old SAK to retire) SAK Rekey Time..... Os (SAK Rekey interval not applicable) MKA Policy Name..... test Key Server Priority..... 0 Delay Protection..... NO Delay Protection Timer..... Os (Not enabled)

Confidentiality Offset 0 Algorithm Agility 80C201 SAK Rekey On Live Peer Loss NO Send Secure Announcement DISABLED SCI Based SSCI Computation NO SAK Cipher Suite 0080C20001000001 (GCM-AES-128) MACsec Capability 3 (MACsec Integrity, Confidentiality, & Offset) MACsec Desired YES					
<pre># of MACsec Capable Live Pe # of MACsec Capable Live Pe</pre>					
Live Peers List: MI		Rx-SCI (Peer)	Priority	Installed	
5225C3DE8DD5F35A3B55830C					0
Potential Peers List: MI		Rx-SCI (Peer)	Priority	Installed	
Dormant Peers List: MI		Rx-SCI (Peer)	Priority	RxSA Installed	SSCI

show macsec statistics interface gigabitEthernet 0/0/0

MACsec Statistics for Gigab	itEthernet0/0/0
SecY Counters	
Ingress Untag Pkts:	0
Ingress No Tag Pkts:	0
Ingress Bad Tag Pkts:	0
Ingress Unknown SCI Pkts:	0
Ingress No SCI Pkts:	0
Ingress Overrun Pkts:	0
Ingress Validated Octets:	0
Ingress Decrypted Octets:	966
Egress Untag Pkts:	1
Egress Too Long Pkts:	0
Egress Protected Octets:	0
Egress Encrypted Octets:	1387
Controlled Port Counters	
IF In Octets:	1086
IF In Packets:	10
IF In Discard:	0
IF In Errors:	0
IF Out Octets:	1519
IF Out Packets:	11
IF Out Errors:	0
Transmit SC Counters (SCI:	B08BD07186700007)
Out Pkts Protected:	0
Out Pkts Encrypted:	11
Transmit SA Counters (AN 0)	
Out Pkts Protected:	0
Out Pkts Encrypted:	11
out theo incrypted.	± ±

```
Receive SA Counters (SCI: B08BD0798A100007 AN 0)
In Pkts Unchecked:
                         0
In Pkts Delayed:
                         0
In Pkts OK:
                         10
In Pkts Invalid:
                         0
 In Pkts Not Valid:
                         0
In Pkts Not using SA:
                         0
In Pkts Unused SA:
                          0
In Pkts Late:
                          0
```

Sample Show Command Output for VLAN Based WAN MACsec

#show mka sessions

```
Total MKA Sessions..... 1
Secured Sessions... 1
Pending Sessions... 0
```

Interface	Local-TxSCI	Policy-Name	Inherited	Key-Server
Port-ID	Peer-RxSCI	MACsec-Peers	Status	CKN
Gi0/0/0.1	b08b.d071.86a0/0024		YES	YES
36	b08b.d079.8a10/001a	1	Secured	1111

#show mka sessions detail

```
MKA Detailed Status for MKA Session
_____
Status: SECURED - Secured MKA Session with MACsec
Local Tx-SCI..... b08b.d071.86a0/0024
Interface MAC Address.... b08b.d071.86a0
MKA Port Identifier..... 36
Interface Name..... GigabitEthernet0/0/0.1
Audit Session ID.....
CAK Name (CKN)..... 1111
Member Identifier (MI)... 920AF42A7C0F5D2BDC0CBB99
Message Number (MN)..... 35
EAP Role..... NA
Key Server..... YES
MKA Cipher Suite..... AES-128-CMAC
Latest SAK Status..... Rx & Tx
Latest SAK AN..... 1
Latest SAK KI (KN)..... 920AF42A7C0F5D2BDC0CBB9900000002 (2)
Old SAK Status..... No Rx, No Tx
Old SAK AN..... 0
Old SAK KI (KN)..... RETIRED (1)
SAK Transmit Wait Time... Os (Not waiting for any peers to respond)
SAK Retire Time..... Os (No Old SAK to retire)
SAK Rekey Time..... 0s (SAK Rekey interval not applicable)
MKA Policy Name..... test (inherited)
Key Server Priority..... 0
Delay Protection..... NO
Delay Protection Timer..... 0s (Not enabled)
```

```
Confidentiality Offset... 0
Algorithm Agility..... 80C201
SAK Rekey On Live Peer Loss..... NO
Send Secure Announcement.. DISABLED
SCI Based SSCI Computation.... NO
SAK Cipher Suite..... 0080C20001000001 (GCM-AES-128)
MACsec Capability...... 3 (MACsec Integrity, Confidentiality, & Offset)
MACsec Desired..... YES
# of MACsec Capable Live Peers..... 1
# of MACsec Capable Live Peers Responded.. 1
Live Peers List:
                          Rx-SCI (Peer)
                                        KS RxSA
                                                         SSCI
 ΜT
                   MN
                                         Priority Installed
        -----
                                                _____
 E500D4C281BE01C8777901D4 18
                          b08b.d079.8a10/001a 0
                                                YES
                                                           0
Potential Peers List:
                                         KS RxSA
                                                         SSCI
 МT
                  MN
                          Rx-SCI (Peer)
                                         Priority Installed
 _____
Dormant Peers List:
 ΜI
                   MN
                           Rx-SCI (Peer)
                                          KS
                                                RxSA
                                                          SSCT
                                         Priority Installed
                                                 ------
  _____
```

#show macsec statistics interface gigabitEthernet 0/0/0.1

MACsec Statistics for GigabitEthernet0/0/0.1 SecY Counters Ingress Untag Pkts: 0 Ingress No Tag Pkts: 0 Ingress Bad Tag Pkts: 0 Ingress Unknown SCI Pkts: 0 Ingress No SCI Pkts: 0 Ingress Overrun Pkts: 0 Ingress Validated Octets: 0 Ingress Decrypted Octets: 4038 1 Egress Untag Pkts: 0 Egress Too Long Pkts: Egress Protected Octets: 0 Egress Encrypted Octets: 4476 Controlled Port Counters IF In Octets: 4926 74 IF In Packets: IF In Discard: 0 IF In Errors: 0 5460 IF Out Octets: 82 IF Out Packets: IF Out Errors: 0 Transmit SC Counters (SCI: B08BD07186A00024) Out Pkts Protected: 0 Out Pkts Encrypted: 82 Transmit SA Counters (AN 1) Out Pkts Protected: 0 Out Pkts Encrypted: 82 Receive SA Counters (SCI: B08BD0798A10001A AN 1)

In	Pkts	Unchecked:	
In	Pkts	Delayed:	0
In	Pkts	OK:	74
In	Pkts	Invalid:	0
In	Pkts	Not Valid:	0
In	Pkts	Not using SA:	0
In	Pkts	Unused SA:	0
In	Pkts	Late:	0

Configuring IPv6 First Hop Security

- IPv6 First Hop Security Overview, on page 285
- Configuring an IPv6 DHCP Guard Policy, on page 286
- Configuring an IPv6 Router Advertisement Guard Policy, on page 288

IPv6 First Hop Security Overview

First Hop Security in IPv6 (FHS IPv6) is a set of IPv6 security features, whose policies can be attached to an interface or a VLAN. The following IPv6 policies are supported:

- DHCPv6 Guard
- IPv6 Router Advertisement (RA) Guard

Overview of DHCPv6 Guard

The DHCPv6 Guard feature blocks reply and advertisement messages that come from unauthorized DHCPv6 servers and relay agents. IPv6 DHCP guard can prevent forged messages from being entered in the binding table and block DHCPv6 server messages when they are received on ports that are not explicitly configured as facing a DHCPv6 server or DHCP relay. To use this feature, configure a policy and attach it to an interface or a VLAN.

To debug DHCP guard packets, use the following privileged EXEC command.

debug ipv6 snooping dhcp-guard [filter <name>] [interface <interface-id>] [vlan <vlanid>]

Restrictions of DHCPv6 Guard

The DHCPv6 guard feature is not supported on EtherChannel ports.

Overview of IPv6 RA Guard

The IPv6 Router Advertisement (RA) guard feature enables the network administrator to block or reject unwanted or rogue RA guard messages that arrive at the network device platform. RAs are used by devices to announce themselves on the link. The RA Guard feature analyzes the RAs and filters out bogus RAs sent by unauthorized devices. In host mode, all router advertisement and router redirect messages are disallowed on the port. The RA guard feature compares configuration information on the Layer 2 device with the

information found in the received RA frame. Once the Layer 2 device has validated the content of the RA frame and router redirect frame against the configuration, it forwards the RA to its unicast or multicast destination. If the RA frame content is not validated, the RA is dropped.

To debug RA guard packets, use the following privileged EXEC command.

debug ipv6 snooping raguard [filter <name>] [interface <interface-id>] [vlan <vlanid>]

Limitations and Restrictions of IPv6 RA Guard

- The IPv6 RA Guard feature does not offer protection in environments where IPv6 traffic is tunneled.
- This feature is supported only in hardware when the ternary content addressable memory (TCAM) is programmed.
- This feature can be configured on a switch port interface in the ingress direction.
- This feature supports host mode and router mode.
- This feature is supported only in the ingress direction; it is not supported in the egress direction.
- This feature is not supported on EtherChannel and EtherChannel port members.
- This feature is not supported on trunk ports with merge mode.
- This feature is supported on auxiliary VLANs and private VLANs (PVLANs). In the case of PVLANs, primary VLAN features are inherited and merged with port features.
- Packets dropped by the IPv6 RA Guard feature can be spanned.
- If the **platform ipv6 acl icmp optimize neighbor-discovery** command is configured, the IPv6 RA Guard feature cannot be configured and an error message will be displayed. This command adds default global Internet Control Message Protocol (ICMP) entries that will override the RA guard ICMP entries.

Configuring an IPv6 DHCP Guard Policy

Beginning in privileged EXEC mode, follow these steps to configure an IPv6 DHCP (DHCPv6) Guard policy:

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	<pre>ipv6 dhcp guard policy policy-name Example: Router(config)# ipv6 dhcp guard policy policy1</pre>	Specifies the DHCPv6 Guard policy name and enters DHCPv6 Guard Policy configuration mode.
Step 4	<pre>device-role {client monitor server} Example: Router(config-dhcp-guard)# device-role server</pre>	 (Optional) Filters out DHCPv6 replies and DHCPv6 advertisements on the port that are not from a device of the specified role. Default is client. client—Default value, specifies that the attached device is a client. Server messages are dropped on this port. server—Specifies that the attached device is a DHCPv6 server. Server messages are allowed on this port.
Step 5	<pre>trusted-port Example: Router(config-dhcp-guard)# trusted-port</pre>	 (Optional) trusted-port—Sets the port to a trusted mode. No further policing takes place on the port. Note If you configure a trusted port then the device-role option is not available.
Step 6	end Example: Router(config-dhcp-guard)# end	Exits DHCPv6 Guard Policy configuration mode and returns to privileged EXEC mode.
Step 7	<pre>show ipv6 dhcp guard policy policy_name Example: Router# show ipv6 dhcp guard policy policy1</pre>	(Optional) Displays the configuration of the IPv6 DHCP guard policy. Omitting the <i>policy_name</i> variable displays all DHCPv6 policies.

Attaching an IPv6 DHCP Guard Policy to an Interface or a VLAN

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	

Procedure

I

	Command or Action	Purpose
Step 3	<pre>interface type number Example: Router(config)# interface gigabitethernet 0/1/0</pre>	Specifies an interface type and identifier, and enters interface configuration mode.
Step 4	<pre>ipv6 dhcp guard [attach-policy policy_name] Example: Router(config-if)# ipv6 dhcp guard attach-policy policy1</pre>	Attaches the DHCP Guard policy to the interface or the specified VLAN.
Step 5	end Example: Router(config-if)# end	Exits interface configuration mode and returns to privileged EXEC mode.
Step 6	show ipv6 dhcp guard policy policy_name Example: Router# show ipv6 dhcp guard policy1	(Optional) Displays the policy configuration as well as all the interfaces where the policy is applied.

Configuring an IPv6 Router Advertisement Guard Policy

Beginning in privileged EXEC mode, follow these steps to configure an IPv6 Router Advertisement policy:

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	ipv6 nd raguard policy policy-name	Specifies the RA guard policy name and enters
	Example:	RA guard policy configuration mode.
	<pre>Router(config)# ipv6 nd raguard policy example_policy</pre>	
Step 4	device-role {host monitor router switch}	1
	Example:	port. The default is host .

I

	Command or Action	Purpose
	Router(config-nd-raguard)# device-role switch	Note For a network with both host-facing ports and router-facing ports, along with a RA guard policy configured with device-role host on host-facing ports or vlan, it is mandatory to configure a RA guard policy with device-role router on router-facing ports to allow the RA Guard feature to work properly.
Step 5	hop-limit {maximum minimum} value	Enables filtering of Router Advertisement
	<pre>Example: Router(config-nd-raguard)# hop-limit maximum 33</pre>	messages by the Hop Limit value. A rogue RA message may have a low Hop Limit value (equivalent to the IPv4 Time to Live) that when accepted by the host, prevents the host from generating traffic to destinations beyond the rogue RA message generator. An RA message with an unspecified Hop Limit value is blocked.
		(1–255) Range for Maximum and Minimum Hop Limit values.
		If not configured, this filter is disabled. Configure minimum to block RA messages with Hop Limit values lower than the value you specify. Configure maximum to block RA messages with Hop Limit values greater than the value you specify.
Step 6	<pre>managed-config-flag {off on} value Example: Router(config-nd-raguard)# managed-config-flag on</pre>	Enables filtering of Router Advertisement messages by the managed address configuration, or "M" flag field. A rouge RA message with an M field of 1 can cause a host to use a rogue DHCPv6 server. If not configured, this filter is disabled.
		On —Accepts and forwards RA messages with an M value of 1, blocks those with 0.
		Off —Accepts and forwards RA messages with an M value of 0, blocks those with 1.
Step 7	<pre>other-config-flag {on off} Example: Device(config-ra-guard)# other-config-flag on</pre>	(Optional) Enables verification of the advertised "other" configuration parameter.
Step 8	router-preference maximum {high medium low} Example:	Enables filtering of Router Advertisement messages by the router preference flag. If not configured, this filter is disabled.

	Command or Action	Purpose
	Router(config-nd-raguard)# router-preference maximum high	• high—Accepts RA messages with the router preference set to high, medium, or low.
		• medium —Blocks RA messages with the router preference set to high.
		• low—Blocks RA messages with the router preference set to medium and high.
Step 9	match {ipv6 access-list <i>list</i> ra prefix-list <i>list</i> }	Matches a specified prefix list or access list.
	Example:	
	Router(config-nd-raguard)# match ipv6 access-list example_list	
Step 10	trusted-port Example: Router(config-nd-raguard)# trusted-port	When configured as a trusted port, all attached devices are trusted, and no further message verification is performed.
Step 11	end Example: Router(config-nd-raguard)# end	Exits RA Guard policy configuration mode and returns to privileged EXEC mode.
Step 12	show ipv6 nd raguard policy policy_name Example: Router# show ipv6 nd raguard policy example_policy	(Optional)—Displays the ND guard policy configuration.

Attaching an IPv6 Router Advertisement Guard Policy to an Interface or a VLAN

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Router Advertisement policy to an interface or to VLANs on the interface :

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	interface type number	Specifies an interface type and identifier; enters the interface configuration mode.
	Example:	
	<pre>Router(config)# interface gigabitethernet 0/1/1</pre>	
Step 4	<pre>ipv6 nd raguard [attach-policy policy_name]</pre>	Attaches the Neighbor Discovery Inspection
	Example:	policy to the interface or the specified VLANs on that interface. The default policy is attached if the attach-policy option is not used.
	Router(config-if)# ipv6 nd raguard	
	<pre>attach-policy example_policy Router(config-vlan-config)# ipv6 nd</pre>	
	raguard attach-policy example_policy	
Step 5	end	Exits interface configuration mode and returns
	Example:	to privileged EXEC mode.
	Router(config-if)# end	

Configuring IP Device Tracking

This chapter provides details about configuring IP Device Tracking (IPDT) on the IR8340 Router.

- Information About IP Device Tracking, on page 293
- Overview of SISF-Based Device Tracking, on page 294
- Options to Enable SISF-Based Device Tracking, on page 294
- How to Configure SISF-Based Device Tracking, on page 295

Information About IP Device Tracking

The main IPDT task is to keep track of connected hosts (association of MAC and IP address). In order to do this, it sends unicast Address Resolution Protocol (ARP) probes with a default interval of 30 seconds; these probes are sent to the MAC address of the host connected on the other side of the link, and use Layer 2 (L2) as the default source the MAC address of the physical interface out of which the ARP goes and a sender IP address of 0.0.0.0, based on the ARP Probe definition listed in RFC 5227.

In this document, the term 'ARP Probe' is used to refer to an ARP Request packet, broadcast on the local link, with an all-zero 'sender IP address'. The 'sender hardware address' MUST contain the hardware address of the interface sending the packet. The 'sender IP address' field MUST be set to all zeroes, to avoid polluting ARP caches in other hosts on the same link in the case where the address turns out to be already in use by another host. The 'target IP address' field MUST be set to the address being probed. An ARP Probe conveys both a question ("Is anyone using this address?") and an implied statement ("This is the address I hope to use.").

The purpose of IPDT is for the switch to obtain and maintain a list of devices that are connected to the switch via an IP address. The probe does not populate the tracking entry; it is simply used in order to maintain the entry in the table after it is learned through an ARP request/reply from the host.

IP ARP Inspection is enabled automatically when IPDT is enabled; it detects the presence of new hosts when it monitors ARP packets. If dynamic ARP inspection is enabled, only the ARP packets that it validates are used in order to detect new hosts for the Device Tracking table.

IP DHCP Snooping, if enabled, detects the presence or removal of new hosts when DHCP assigns or revokes their IP addresses.

IPDT is a feature that has always been available. However, on more recent Cisco IOS releases, its interdependencies are enabled by default (see Cisco bug ID CSCuj04986). It can be extremely useful when its database of IP/MAC hosts associations is used in order to populate the source IP of dynamic Access Control Lists (ACLs), or to maintain a binding of an IP address to a security group tag.

The ARP probe is sent under two circumstances:

- The link associated with a current entry in the IPDT database moves from a DOWN to an UP state, and the ARP entry has been populated.
- A link already in the UP state that is associated with an entry in the IPDT database has an expired probe interval.

Overview of SISF-Based Device Tracking

The Switch Integrated Security Features based (SISF-based) device tracking feature is part of the suite of first-hop security features.

The main role of the feature is to track the presence, location, and movement of end-nodes in the network. SISF snoops traffic received by the switch, extracts device identity (MAC and IP address), and stores them in a binding table. Many features, such as, Cisco TrustSec, IEEE 802.1X, LISP, and web authentication depend on the accuracy of this information to operate properly.

SISF-based device tracking supports both IPv4 and IPv6.

Even with the introduction of SISF-based device tracking, the legacy device tracking CLI (IP Device Tracking (IPDT) and IPv6 Snooping CLI) continues to be available. When you bootup the switch, the set of commands that is available depends on existing configuration, and only one of the following is available:

- · SISF-based device tracking CLI, or
- IPDT and IPv6 Snooping CLI

SISF-based device tracking can be enabled manually (by using **device-tracking** commands), or programmatically (which is the case when providing device tracking services to other features).

Options to Enable SISF-Based Device Tracking

SISF-based device tracking is disabled by default.

You can enable it by defining a device tracking policy and attaching the policy to a specific target.

Note The target could be an interface or a VLAN.

Manually Enabling SISF-Based Device Tracking

• Option 1: Apply the **default** device tracking policy to a target.

Enter the **device-tracking** command in the interface configuration mode or in the VLAN configuration mode. The system then attaches the **default** policy it to the interface or VLAN.

Note The **default** policy is a built-in policy with default settings; you cannot change any of the attributes of the **default** policy. In order to be able to configure device tracking policy attributes you must create a custom policy. See *Option 2: Create a custom policy with custom settings*.

• Option 2: Create a custom policy with custom settings.

Enter the device-tracking policy command in global configuration mode and enter a custom policy name. The system creates a policy with the name you specify. You can then configure the available settings, in the device tracking configuration mode (config-device-tracking), and attach the policy to a specified target.

Programmatically Enabling SISF-Based Device Tracking

Some features rely on device tracking and utilize the trusted database of binding entries that SISF-based device tracking builds and maintains. These features, also called device tracking clients, enable device tracking programmatically (create and attach the device tracking policy).

Note

The exceptions here are IEEE 802.1X, web authentication, Cisco TrustSec, and IP Source Guard (IPSG) - they also rely on device tracking, but they do not enable it. For these device tracking clients, you must enter the **ip dhcp snooping vlan** vlan command, to programmatically enable device tracking on a particular target.

Note the following about programmatically enabling SISF-based device tracking:

A device tracking client requires device tracking to be enabled.

There are several device tracking clients, therefore, multiple programmatic policies could be created. The settings of each policy differ depending on the device tracking client that creates the policy.

• The policy that is created, and its settings, are system-defined.

Configurable policy attributes are available in the device tracking configuration mode (config-device-tracking) and vary from one release to another. If you try to modify an attribute that is not configurable, the configuration change is rejected and an error message is displayed.

How to Configure SISF-Based Device Tracking

Manually Enabling SISF-Based Device Tracking

Applying the Default Device Tracking Policy to a Target

Beginning in privileged EXEC mode, follow these steps to apply the default device tracking policy to an interface or VLAN:

I

Procedure

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enter global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	Specify an interface or a VLAN.	interface type number—Specifies the interface	
	• interface type number	and enters interface configuration mode. The device tracking policy will be attached to the specified interface.	
	• vlan configuration vlan_list		
	Example:	vlan configuration <i>vlan_list</i> —Specifies the	
	Device (config) # interface gigabitethernet 0/1/0	VLANs and enters VLAN feature configuration	
	07170 OR	mode. The device tracking policy will be	
	Device(config) # vlan configuration 100	attached to the specified VLAN.	
Step 4	device-tracking	Enables SISF-based device tracking and	
	Example:	attaches the default policy it to the interface of VLAN.	
	Device(config-if)# device-tracking		
	OR Device(config-vlan-config)#	The default policy is a built-in policy with default settings; none of the attributes of the	
	device-tracking	default policy can be changed.	
Step 5	end	Exits interface configuration mode and returns	
	Example:	to privileged EXEC mode.	
	Device(config-if)# end	Exits VLAN feature configuration mode and	
	OR Device(config-vlan-config)# end	returns to privileged EXEC mode.	
Step 6	show device-tracking policy policy-name	Displays device-tracking policy configuration.	
-	Example:	and all the targets it is applied to.	
	Device# show device-tracking policy default		

Creating a Custom Device Tracking Policy with Custom Settings

Beginning in privileged EXEC mode, follow these steps to create and configure a device tracking policy:

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.

I

	Command or Action	Purpose
	Device> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example: Device# configure terminal	
Step 3	<pre>[no] device-tracking policy policy_name Example: Device(config)# device-tracking policy example_policy</pre>	Creates the policy and enters device-tracking configuration mode.
Step 4	[data-glean default destination-glean device-role distribution-switch exit limit no prefix-glean protocol security-level tracking trusted-port vpc]	Enter the question mark (?) at the system prompt to obtain a list of available options in this mode. You can configure the following for both IPv4 and IPv6:
	Example: Device(config-device-tracking)# security-level glean	• (Optional) data-glean —Enables learning of addresses from a data packet snooped from a source inside the network and populates the binding table with the data traffic source address. Enter one of these options:
		 log-only —Generates a syslog message upon data packet notification
		 recovery —Uses a protocol to enab binding table recovery. Enter NDP or DHCP.
		• (Optional) default —Sets the policy attribute to its default value. You can se these policy attributes to their default values: data-glean , destination-glean device-role , limit , prefix-glean , protocol , security-level , tracking , trusted-port .
		• (Optional) destination-glean —Populate the binding table by gleaning data traffic destination address. Enter one of these options:
		 log-only —Generates a syslog message upon data packet notification
		• recovery —Uses a protocol to enab binding table recovery. Enter DHC
		• (Optional) device-role —Sets the role of the device attached to the port. It can be

Command or Action	Purpose
	node or a switch. Enter one of these options:
	• node —Configures the attached device as a node. This is the defaul option.
	• switch —Configures the attached device as a switch.
	• (Optional) distribution-switch —Although visible on the CLI, this option is not supported. Any configuration settings you make will not take effect.
	• exit —Exits the device-tracking policy configuration mode.
	• limit address-count —Specifies an address count limit per port. The range i 1 to 32000.
	• no —Negates the command or sets it to defaults.
	• (Optional) prefix-glean —Enables learning of prefixes from either IPv6 Router Advertisements or from DHCP-PI You have the following option:
	• (Optional) only —Gleans only prefixes and not host addresses.
	• (Optional) protocol —Sets the protocol glean; by default, all are gleaned. Enter one of these options:
	• arp [prefix-list <i>name</i>] —Gleans addresses in ARP packets. Optionall enter the name of prefix-list that is be matched.
	• dhcp4 [prefix-list <i>name</i>] —Glean addresses in DHCPv4 packets. Optionally, enter the name of prefix-list that is to be matched.
	• dhcp6 [prefix-list <i>name</i>] —Glean addresses in DHCPv6 packets. Optionally, enter the name of prefix-list that is to be matched.
	• ndp [prefix-list <i>name</i>] —Glean addresses in NDP packets.

I

Command or Action	Purpose
	Optionally, enter the name of prefix-list that is to be matched.
	• udp [prefix-list <i>name</i>] —Although visible on the CLI, this option is not supported. Any configuration settings you make will not take effect.
	• (Optional) security-level —Specifies the level of security enforced by the feature. Enter one of these options:
	• glean —Gleans addresses passively
	• guard —Inspects and drops un-authorized messages. This is the default.
	• inspect —Gleans and validates messages.
	• (Optional) tracking —Specfies a tracking option. Enter one of these options:
	• disable [stale-lifetime [1-86400-seconds infinite]] — Turn of device-tracking.
	Optionally, you can enter the duratio for which the entry is kept inactive before deletion, or keep it permanently inactive.
	• enable [reachable-lifetime [1-86400-seconds infinite]] — Turn on device-tracking.
	Optionally, you can enter the duratio for which the entry is kept reachable or keep it permanently reachable.
	• (Optional) trusted-port —Sets up a trusted port. Disables the guard on applicable targets. Bindings learned through a trusted port have preference ove bindings learned through any other port. A trusted port is given preference in case of a collision while making an entry in th table.
	• (Optional) vpc —Although visible on th CLI, this option is not supported. Any

I

	Command or Action	Purpose
		configuration settings you make will not take effect.
• 1	Exits device-tracking configuration mode and	
	Example:	returns to privileged EXEC mode.
	<pre>Device(config-device-tracking)# end</pre>	
Step 6	show device-tracking policy policy-name	Displays the device-tracking policy configuration.
	Example:	
	Device# show device-tracking policy default	

Attaching a Device Tracking Policy to an Interface

Beginning in privileged EXEC mode, follow these steps to attach a device tracking policy to an interface:

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	• Enter your password if prompted.	
	Device> enable		
Step 2	configure terminal	Enter global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	interface interface-id	Specifies an interface and enters interface	
	Example:	configuration mode.	
	Device(config)# interface gigabitethernet 0/1/0		
Step 4	device-tracking attach-policy policy_name	Attaches the device tracking policy to the	
	EXAMPIC: Device(config-if)# device-tracking	interface. Device tracking is also supported o EtherChannels.	
		Note SISF based device-tracking policies can be disabled only if they are custom policies. Programmatically created policies can be removed only if the corresponding device-tracking client feature configuration is removed.	
Step 5	end	Exits device-tracking configuration mode and	
	Example:	returns to privileged EXEC mode.	
	Device(config-if)# end		

	Command or Action	Purpose
Step 6	show device-tracking policies [interfaceinterface-id]	Displays device-tracking policy configuration, and all the targets it is applied to.
	Example:	
	Device# show device-tracking policies interface gigabitethernet 0/1/0	

Attaching a Device Tracking Policy to a VLAN

Beginning in privileged EXEC mode, follow these steps to attach a device-tracking policy to VLANs across multiple interfaces:

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	vlan configuration vlan_list	Specifies an interface and enters interface configuration mode.
	Example:	
	Device(config)# vlan configuration 100	
Step 4	device-tracking attach-policy policy_name	Attaches the device tracking policy to the
	<pre>Example: Device(config-vlan-config)# device-tracking attach-policy example_policy</pre>	specified VLANs across all switch interfaces
		Note SISF based device-tracking policies can be disabled only if they are custon policies. Programmatically created policies can be removed only if the corresponding device-tracking client feature configuration is removed.
Step 5	end	Exits device-tracking configuration mode and returns to privileged EXEC mode.
	Example:	
	Device(config-if)# end	
Step 6	show device-tracking policies [vlanvlan-id]	Verifies that the policy is attached to the specified VLAN, without exiting the VLAN interface configuration mode.
	Example:	
	Device# show device-tracking policies vlan 100	
		l

Configuring a Multi-Switch Network to Stop Creating Binding Entries from a Trunk Port

In a multi-switch network, SISF-based device tracking provides the capability to distribute binding table entries between switches running the feature. Binding entries are only created on the switches where the host appears on an access port. No entry is created for a host that appears over a trunk port. This is achieved by configuring a policy with the **trusted-port** and **device-role switch** options, and attaching it to the trunk port.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enter global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	device-tracking policy policy_name	Enters device-tracking policy configuration
	Example:	mode, for the specified policy.
	Device(config)# device-tracking policy DT_trunk_policy	
Step 4	device-role switch	Specifies the role of the device attached to the port. Default is node. Enter the device-role switch option to stop the creation of binding entries for the port.
	Example:	
	<pre>Device(config-device-tracking)# device-role switch</pre>	
Step 5	trusted-ports	Sets up a trusted port. Disables the guard on
	Example:	applicable targets. Bindings learned through a trusted port have preference over bindings
	Device(config-device-tracking)# trusted-port	learned through any other port. A trusted port is given preference in case of a collision while making an entry in the table.
Step 6	end	Exits device-tracking policy configuration mode and returns to global configuration mode.
	Example:	
	Device(config-device-tracking)# end	
Step 7	interface interface-id	Specifies a trunk interface and enters interface configuration mode.
	Example:	
	<pre>Device(config)# interface gigabitethernet 0/1/0</pre>	

	Command or Action	Purpose
Step 8	device-tracking attach-policy policy_name	Attaches a device tracking policy to the interface or the specified VLANs on the interface.
	Example:	
	<pre>Device(config-if)# device-tracking attach-policy DT_trunk_policy</pre>	
Step 9	end	Exits interface configuration mode and returns to privileged EXEC mode.
	Example:	
	Device(config-if)# end	

Enabling SISF Syslogs

To enable syslogs of binding table events (such as create, delete, or modify entries), the following commands need to be executed:

device-tracking binding logging

If appropriate syslog level (6 - informational) need to be adjusted, execute:

logging console informational

To direct it to buffer:

logging buffered informational

to generate syslogs for MAC and/or IP theft events:

device-tracking logging theft

To generate syslogs for events when any of the SISF features decides to drop the packet for any reason:

device-tracking logging packet drop

to generate syslogs for events related to destination guard events:

device-tracking logging resolution-veto

the following command could be used to enable syslogs for all three event types listed above (but not to binding table events):

device-tracking logging

Example: DHCP Snooping Auto Enabling DT PROGRAMMATIC Policy

```
configure terminal
device-tracking policy Poo@12345
security-level glean
device-role node
limit address-count 10
tracking enable
end
Switch(confg)#ip dhcp snooping
Switch(confg)#ip dhcp snooping vlan 100
Switch(confg)#end
configure terminal
interface Gi0/1/0
device-tracking attach-policy Poo@12345
end
```

Use the following show commands to display the status of device tracking:

```
router#show device-tracking policies
                                               Feature
                                                              Target range
Target
                    Type Policy
Gi0/1/0
                     PORT Poo@12345
                                               Device-tracking vlan all
                    VLAN DT-PROGRAMMATIC
vlan 100
                                               Device-tracking vlan all
router#
router#show device-tracking policy DT-PROGRAMMATIC
Device-tracking policy DT-PROGRAMMATIC configuration:
security-level glean
device-role node
gleaning from Neighbor Discovery
gleaning from DHCP6
gleaning from ARP
gleaning from DHCP4
NOT gleaning from protocol unkn
limit address-count for IPv4 per mac 1
tracking (downlink only) enable
Policy DT-PROGRAMMATIC is applied on the following targets:
Target
                    Type Policy
                                               Feature
                                                              Target range
vlan 100
                    VLAN DT-PROGRAMMATIC
                                               Device-tracking vlan all
router#
router#show device-tracking policy Poo@12345
Device-tracking policy Poo@12345 configuration:
security-level glean
device-role node
gleaning from Neighbor Discovery
gleaning from DHCP6
 gleaning from ARP
gleaning from DHCP4
 gleaning from protocol unkn
limit address-count 10
tracking enable
Policy Poo@12345 is applied on the following targets:
Target
                    Type Policv
                                               Feature
                                                             Target range
                    PORT Poo@12345
Gi0/1/0
                                               Device-tracking vlan all
Router#show device-tracking database
Binding Table has 11 entries, 11 dynamic (limit 100000)
Codes: L - Local, S - Static, ND - Neighbor Discovery, ARP - Address Resolution Protocol,
DH4 - IPv4 DHCP, DH6 - IPv6 DHCP, PKT - Other Packet, API - API created
Preflevel flags (prlvl):
0001:MAC and LLA match
                          0002:Orig trunk
                                                     0004:Orig access
0008:Orig trusted trunk
                          0010:Orig trusted access
                                                     0020:DHCP assigned
                          0080:Cert authenticated
                                                     0100:Statically assigned
0040:Cga authenticated
Network Layer Address
                                        Link Layer Address
                                                              Interface vlan
                                                                                   prlvl
                           Time left
    age
           state
ARP 100.1.1.1
                                            ac4a.6763.5a51
                                                                   Gi0/1/10
                                                                              100
                     REACHABLE 143 s try 0
0005
         169s
DH4 100.0.0.14
                                            0013.0100.0004
                                                                   Gi0/1/0
                                                                              100
         53s
                     REACHABLE 259 s(31535947 s)
0024
DH4 100.0.0.13
                                            0013.0100.0003
                                                                   Gi0/1/0
                                                                              100
0024
       53s
                     REACHABLE 262 s(31535946 s)
DH4 100.0.0.12
                                            0013.0100.0002
                                                                   Gi0/1/0
                                                                              100
                 REACHABLE 250 s(31535947 s)
0024 52s
```


Configuring Security for VPNs with IPsec

This chapter describes how to configure basic IPsec VPNs. IPsec is a framework of open standards developed by the IETF. It provides security for the transmission of sensitive information over unprotected networks such as the Internet. IPsec acts at the network layer, protecting and authenticating IP packets between participating IPsec devices ("peers"), such as Cisco routers.

Note

- Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.
- Information About Configuring Security for VPNs with IPsec, on page 305
- How to Configure IPsec VPNs, on page 308

Information About Configuring Security for VPNs with IPsec

Supported Standards

Cisco implements the following standards with this feature:

• IPsec—IPsec is a framework of open standards that provides data confidentiality, data integrity, and data authentication between participating peers. IPsec provides these security services at the IP layer; IPsec uses IKE to handle negotiation of protocols and algorithms based on the local policy, and generate the encryption and authentication keys to be used by IPsec. IPsec can be used to protect one or more data flows between a pair of hosts, between a pair of security gateways, or between a security gateway and a host.

Note The term IPsec is sometimes used to describe the entire protocol of IPsec data services and IKE security protocols, and is also sometimes used to describe only the data services.

• IKE (IKEv1 and IKEv2)—A hybrid protocol that implements Oakley and SKEME key exchanges inside the Internet Security Association and Key Management Protocol (ISAKMP) framework. While IKE is

used with other protocols, its initial implementation is with the IPsec protocol. IKE provides authentication of IPsec peers, negotiates IPsec security associations, and establishes IPsec keys.

The component technologies implemented for IPsec include:

- **Note** Cisco no longer recommends using DES, 3DES, MD5 (including HMAC variant), and Diffie-Hellman (DH) groups 1, 2 and 5; instead, you should use AES, SHA and DH Groups 14 or higher. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.
 - AES—Advanced Encryption Standard. A cryptographic algorithm that protects sensitive, unclassified information. AES is a privacy transform for IPsec and IKE and has been developed to replace DES. AES is designed to be more secure than DES. AES offers a larger key size, while ensuring that the only known approach to decrypt a message is for an intruder to try every possible key. AES has a variable key length—the algorithm can specify a 128-bit key (the default), a 192-bit key, or a 256-bit key.
 - DES—Data Encryption Standard. An algorithm that is used to encrypt packet data. Cisco software
 implements the mandatory 56-bit DES-CBC with Explicit IV. Cipher Block Chaining (CBC) requires
 an initialization vector (IV) to start encryption. The IV is explicitly given in the IPsec packet. For
 backwards compatibility, Cisco IOS IPsec also implements the RFC 1829 version of ESP DES-CBC.

Cisco IOS also implements Triple DES (168-bit) encryption, depending on the software versions available for a specific platform. Cisco no longer recommends Triple DES (3DES).

Note Cisco IOS images with strong encryption (including, but not limited to 56-bit data encryption feature sets) are subject to United States government export controls, and have a limited distribution. Images to be installed outside the United States require an export license. Customer orders might be denied or subject to delay due to United States government regulations. Contact your sales representative or distributor for more information, or send an e-mail to export@cisco.com.

- SHA-2 and SHA-1 family (HMAC variant)—Secure Hash Algorithm (SHA) 1 and 2. Both SHA-1 and SHA-2 are hash algorithms used to authenticate packet data and verify the integrity verification mechanisms for the IKE protocol. HMAC is a variant that provides an additional level of hashing. SHA-2 family adds the SHA-256 bit hash algorithm and SHA-384 bit hash algorithm. This functionality is part of the Suite-B requirements that comprises four user interface suites of cryptographic algorithms for use with IKE and IPSec that are described in RFC 4869. Each suite consists of an encryption algorithm, a digital signature algorithm, a key agreement algorithm, and a hash or message digest algorithm. See the Configuring Security for VPNs with IPsec feature module for more detailed information about Cisco IOS Suite-B support. SHA-2 for ISAKMP is supported in Cisco IOS XE 15.3(3)S and later.
- Diffie-Hellman—A public-key cryptography protocol that allows two parties to establish a shared secret over an unsecure communications channel. Diffie-Hellman is used within IKE to establish session keys. It supports 768-bit (the default), 1024-bit, 1536-bit, 2048-bit, 3072-bit, and 4096-bit DH groups. It also supports a 2048-bit DH group with a 256-bit subgroup, and 256-bit and 384-bit elliptic curve DH (ECDH). Cisco recommends using 2048-bit or larger DH key exchange, or ECDH key exchange.
- MD5 (Hash-based Message Authentication Code (HMAC) variant)—Message digest algorithm 5 (MD5) is a hash algorithm. HMAC is a keyed hash variant used to authenticate data.

IPsec as implemented in Cisco software supports the following additional standards:

- AH—Authentication Header. A security protocol, which provides data authentication and optional anti-replay services. AH is embedded in the data to be protected (a full IP datagram).
- ESP—Encapsulating Security Payload. A security protocol, which provides data privacy services and
 optional data authentication, and anti-replay services. ESP encapsulates the data to be protected.

Supported Encapsulation

IPsec works with the following serial encapsulations: Frame Relay, High-Level Data-Links Control (HDLC), and PPP.

IPsec also works with Generic Routing Encapsulation (GRE) and IPinIP Layer 3, Data Link Switching+ (DLSw+), and Source Route Bridging (SRB) tunneling protocols; however, multipoint tunnels are not supported. Other Layer 3 tunneling protocols may not be supported for use with IPsec.

IPsec Functionality Overview

IPsec provides the following network security services. (In general, the local security policy dictates the use of one or more of these services.)

- Data confidentiality—The IPsec sender can encrypt packets before transmitting them across a network.
- Data integrity—The IPsec receiver can authenticate packets sent by the IPsec sender to ensure that the data has not been altered during transmission.
- Data origin authentication—The IPsec receiver can authenticate the source of the sent IPsec packets. This service is dependent upon the data integrity service.
- Anti-replay—The IPsec receiver can detect and reject replayed packets.

IPsec provides secure *tunnels* between two peers, such as two routers. You define which packets are considered sensitive and should be sent through these secure tunnels, and you define the parameters that should be used to protect these sensitive packets by specifying the characteristics of these tunnels. When the IPsec peer recognizes a sensitive packet, the peer sets up the appropriate secure tunnel and sends the packet through the tunnel to the remote peer. (The use of the term *tunnel* in this chapter does not refer to using IPsec in tunnel mode.)

More accurately, these *tunnels* are sets of security associations (SAs) that are established between two IPsec peers. The SAs define the protocols and algorithms to be applied to sensitive packets and specify the keying material to be used by the two peers. SAs are unidirectional and are established per security protocol (AH or ESP).

Once established, the set of SAs (outbound to the peer) is then applied to the triggering packet and to subsequent applicable packets as those packets exit the router. "Applicable" packets are packets that match the same access list criteria that the original packet matched. For example, all applicable packets could be encrypted before being forwarded to the remote peer. The corresponding inbound SAs are used when processing the incoming traffic from that peer.

Multiple IPsec tunnels can exist between two peers to secure different data streams, with each tunnel using a separate set of SAs. For example, some data streams only need to be authenticated, while other data streams must both be encrypted and authenticated.

IKEv1 Transform Sets

An Internet Key Exchange version 1 (IKEv1) transform set represents a certain combination of security protocols and algorithms. During the IPsec SA negotiation, the peers agree to use a particular transform set for protecting a particular data flow.

IKEv2 Transform Sets

An Internet Key Exchange version 2 (IKEv2) proposal is a set of transforms used in the negotiation of IKEv2 SA as part of the IKE_SA_INIT exchange. An IKEv2 proposal is regarded as complete only when it has at least an encryption algorithm, an integrity algorithm, and a Diffie-Hellman (DH) group configured. If no proposal is configured and attached to an IKEv2 policy, then the default proposal is used in the negotiation. The default proposal is a collection of commonly used algorithms which are as follows:

```
encryption aes-cbc-128 3des
integrity shal md5
group 5 2
```

Although the **crypto ikev2 proposal** command is similar to the **crypto isakmp policy priority** command, the IKEv2 proposal differs as follows:

- An IKEv2 proposal allows configuration of one or more transforms for each transform type.
- An IKEv2 proposal does not have any associated priority.

Note

To use IKEv2 proposals in negotiation, they must be attached to IKEv2 policies. If a proposal is not configured, then the default IKEv2 proposal is used with the default IKEv2 policy.

How to Configure IPsec VPNs

Creating Crypto Access Lists

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	Do one of the following: access-list access-list-number {deny permit} protocol source source-wildcard destination	Specifies conditions to determine which IP packets are protected.

	Command or Action	Purpose
	<pre>destination-wildcard [log] or ip access-list extended name Example: Router(config)# access-list 100 permit ip 10.0.68.0 0.0.0.255 10.1.1.0 0.0.0.255 Router(config)# ip access-list extended vpn-tunnel</pre>	a named access list
Step 4	Repeat Step 3 for each crypto access list you want to create.	

What to do next

After at least one crypto access list is created, a transform set needs to be defined as described in Configuring Transform Sets for IKEv1 and IKEv2 Proposals, on page 309.

Next the crypto access lists need to be associated to particular interfaces when you configure and apply crypto map sets to the interfaces. (Follow the instructions in Creating Crypto Map Sets, on page 313 and Applying Crypto Map Sets to Interfaces, on page 321).

Configuring Transform Sets for IKEv1 and IKEv2 Proposals

Perform this task to define a transform set that is to be used by the IPsec peers during IPsec security association negotiations with IKEv1 and IKEv2 proposals.

Restrictions

If you are specifying SEAL encryption, note the following restrictions:

- Your router and the other peer must not have a hardware IPsec encryption.
- Your router and the other peer must support IPsec.
- Your router and the other peer must support the k9 subsystem.
- SEAL encryption is available only on Cisco equipment. Therefore, interoperability is not possible.
- Unlike IKEv1, the authentication method and SA lifetime are not negotiable in IKEv2, and because of this, these parameters cannot be configured under the IKEv2 proposal.

Configuring Transform Sets for IKEv1

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	crypto ipsec transform-set transform-set-name transform1 [transform2 [transform3]]	Defines a transform set and enters crypto transform configuration mode.
	Example: Router(config)# crypto ipsec transform-set aesset esp-aes 256 esp-sha-hmac	• There are complex rules defining the entries that you can use for transform arguments. These rules are explained in the command description for the crypto ipsec transform-set command, and the table in "About Transform Sets" section provides a list of allowed transform combinations.
Step 4	<pre>mode [tunnel transport] Example: Router(cfg-crypto-tran) # mode transport</pre>	 (Optional) Changes the mode associated with the transform set. The mode setting is applicable only to traffic whose source and destination addresses are the IPsec peer addresses; it is ignored for all other traffic. (All other traffic is in tunnel mode only.)
Step 5	end Example: Router(cfg-crypto-tran)# end	Exits crypto transform configuration mode and enters privileged EXEC mode.
Step 6	<pre>clear crypto sa [peer {ip-address peer-name} sa map map-name sa entry destination-address protocol spi] Example:</pre>	(Optional) Clears existing IPsec security associations so that any changes to a transform set takes effect on subsequently established security associations.
	Router# clear crypto sa	Manually established SAs are reestablished immediately.
		• Using the clear crypto sa command without parameters clears out the full SA database, which clears out active securit sessions.

	Command or Action	Purpose
		• You may also specify the peer , map , or entry keywords to clear out only a subset of the SA database.
Step 7	<pre>show crypto ipsec transform-set [tag transform-set-name]</pre>	(Optional) Displays the configured transform sets.
	Example: Router# show crypto ipsec transform-set	

What to do next

After you have defined a transform set, you should create a crypto map as specified in Creating Crypto Map Sets, on page 313.

Configuring Transform Sets for IKEv2

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	crypto ikev2 proposal proposal-name	Specifies the name of the proposal and enters
	Example: Router(config)# crypto ikev2 proposal proposal-1	 crypto IKEv2 proposal configuration mode. The proposals are referred in IKEv2 policies through the proposal name.
Step 4	encryption transform1 [transform2] Example:	(Optional) Specifies one or more transforms of the following encryption type:
	Router(config-ikev2-proposal)# encryption aes-cbc-128	 AES-CBC 128—128-bit AES-CBC AES-CBC 192—192-bit AES-CBC AES-CBC 256—256-bit AES-CBC 3DES—168-bit DES (No longer recommended. AES is the recommended encryption algorithm).
Step 5	integrity transform1 [transform2]	(Optional) Specifies one or more transforms of the following integrity type:
	Example:	lie fonowing integrity type.

I

	Command or Action	Purpose
	<pre>Router(config-ikev2-proposal) # integrity sha1</pre>	• The sha256 keyword specifies SHA-2 family 256-bit (HMAC variant) as the hash algorithm.
		• The sha384 keyword specifies SHA-2 family 384-bit (HMAC variant) as the hash algorithm.
		• The sha512 keyword specifies SHA-2 family 512-bit (HMAC variant) as the hash algorithm
		• The sha1 keyword specifies the SHA-1 (HMAC variant) as the hash algorithm.
		• The md5 keyword specifies MD5 (HMAC variant) as the hash algorithm. (No longer recommended. SHA-1 is the recommended replacement.)
Step 6	group transform1 [transform2]	(Optional) Specifies one or more transforms of the possible DH group type:
	Example: Router(config-ikev2-proposal)# group 14	• 1—768-bit DH (No longer recommended.)
	Nouter (config inevel proposal) " group 1	• 2—1024-bit DH (No longer recommended)
		• 5—1536-bit DH (No longer recommended)
		• 14—Specifies the 2048-bit DH group.
		• 15—Specifies the 3072-bit DH group.
		• 16—Specifies the 4096-bit DH group.
		• 19 —Specifies the 256-bit elliptic curve DH (ECDH) group.
		• 20 —Specifies the 384-bit ECDH group.
		• 24—Specifies the 2048-bit DH/DSA group.
Step 7	end	Exits crypto IKEv2 proposal configuration
	<pre>Example: Router(config-ikev2-proposal)# end</pre>	mode and returns to privileged EXEC mode.
Step 8	show crypto ikev2 proposal Example:	(Optional) Displays the parameters for each IKEv2 proposal.
	Router# show crypto ikev2 proposal	

Creating Crypto Map Sets

Creating Static Crypto Maps

When IKE is used to establish SAs, the IPsec peers can negotiate the settings they use for the new security associations. This means that you can specify lists (such as lists of acceptable transforms) within the crypto map entry.

Perform this task to create crypto map entries that use IKE to establish SAs. To create IPv6 crypto map entries, you must use the **ipv6** keyword with the **crypto map** command. For IPv4 crypto maps, use the **crypto map** command without the **ipv6** keyword.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	crypto map [ipv6] map-name seq-num [ipsec-isakmp]	Creates or modifies a crypto map entry, and enters crypto map configuration mode.
	Example:	• For IPv4 crypto maps, use the command
	Router(config)# crypto map static-map 1 ipsec-isakmp	without the ipv6 keyword.
Step 4	match address access-list-id	Names an extended access list.
	Example:	• This access list determines the traffic that
	Router(config-crypto-m) # match address	should be protected by IPsec and the
	vpn-tunnel	traffic that should not be protected by IPsec security in the context of this crypto
		map entry.
Step 5	set-peer {hostname ip-address}	Specifies a remote IPsec peer—the peer to
	Example:	which IPsec protected traffic can be forwarded.
	Router(config-crypto-m)# set-peer 192.168.101.1	• Repeat for multiple remote peers.

	Command or Action	Purpose
Step 6	<pre>crypto ipsec security-association dummy {pps rate seconds seconds} Example: Router(config-crypto-m) # set security-association dummy seconds 5</pre>	Enables generating dummy packets. These dummy packets are generated for all flows created in the crypto map.
Step 7	<pre>set transform-set transform-set-name1 [transform-set-name2transform-set-name6] Example: Router(config-crypto-m) # set transform-set aesset</pre>	 Specifies the transform sets that are allowed for this crypto map entry. List multiple transform sets in the order of priority (highest priority first).
Step 8	<pre>set security-association lifetime {seconds seconds kilobytes kilobytes kilobytes disable} Example: Router(config-crypto-m) # set security-association lifetime seconds 2700</pre>	 (Optional) Specifies a SA lifetime for the crypto map entry. By default, the SAs of the crypto map are negotiated according to the global lifetimes, which can be disabled.
Step 9	<pre>set security-association level per-host Example: Router(config-crypto-m)# set security-association level per-host</pre>	 (Optional) Specifies that separate SAs should be established for each source and destination host pair. By default, a single IPsec "tunnel" can carry traffic for multiple source hosts and multiple destination hosts. Caution Use this command with care because multiple streams between given subnets can rapidly consume resources.
Step 10	<pre>set pfs [group1 group14 group15 group16 group19 group2 group20 group24 group5] Example: Router(config-crypto-m)# set pfs group14</pre>	 (Optional) Specifies that IPsec either should ask for password forward secrecy (PFS) when requesting new SAs for this crypto map entry or should demand PFS in requests received from the IPsec peer. Group 1 specifies the 768-bit Diffie-Hellman (DH) identifier (default). (No longer recommended). Group 2 specifies the 1024-bit DH identifier. (No longer recommended). Group 5 specifies the 1536-bit DH identifier. (No longer recommended) Group 14 specifies the 2048-bit DH identifier.

	Command or Action	Purpose
		 Group 15 specifies the 3072-bit DH identifier. Group 16 specifies the 4096-bit DH identifier.
		• Group 19 specifies the 256-bit elliptic curve DH (ECDH) identifier.
		• Group 20 specifies the 384-bit ECDH identifier.
		• Group 24 specifies the 2048-bit DH/DSA identifier
		• By default, PFS is not requested. If no group is specified with this command, group 1 is used as the default.
Step 11	end	Exits crypto map configuration mode and
	Example:	returns to privileged EXEC mode.
	Router(config-crypto-m)# end	
Step 12	show crypto map [interface interface tag map-name]	Displays your crypto map configuration.
	Example:	
	Router# show crypto map	

Certain configuration changes take effect only when negotiating subsequent SAs. If you want the new settings to take immediate effect, you must clear the existing SAs so that they are reestablished with the changed configuration. If the router is actively processing IPsec traffic, clear only the portion of the SA database that would be affected by the configuration changes (that is, clear only the SAs established by a given crypto map set). Clearing the full SA database should be reserved for large-scale changes, or when the router is processing very little other IPsec traffic.

To clear IPsec SAs, use the **clear crypto sa** command with appropriate parameters. (Omitting all parameters clears out the full SA database, which clears active security sessions.)

What to do next

After you have successfully created a static crypto map, you must apply the crypto map set to each interface through which IPsec traffic flows. To complete this task, see Applying Crypto Map Sets to Interfaces, on page 321.

Creating Dynamic Crypto Maps

Dynamic crypto map entries specify crypto access lists that limit traffic for which IPsec SAs can be established. A dynamic crypto map entry that does not specify an access list is ignored during traffic filtering. A dynamic crypto map entry with an empty access list causes traffic to be dropped. If there is only one dynamic crypto map entry in the crypto map set, it must specify the acceptable transform sets. Perform this task to create dynamic crypto map entries that use IKE to establish the SAs.

IPv6 addresses are not supported on dynamic crypto maps.

Note Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	crypto dynamic-map dynamic-map-name dynamic-seq-num	Creates a dynamic crypto map entry and enters crypto map configuration mode.
	Example:	
	Router(config)# crypto dynamic-map test-map 1	
Step 4	set transform-set transform-set-name1 [transform-set-name2transform-set-name6]	Specifies the transform sets allowed for the crypto map entry.
	Example:	• List multiple transform sets in the order
	Router(config-crypto-m)# set transform-set aesset	of priority (highest priority first). This is the only configuration statement required in dynamic crypto map entries.
Step 5	match address access-list-id	(Optional) Specifies the list number or name
	Example:	of an extended access list.
	Router(config-crypto-m)# match address 101	• This access list determines which traffic should be protected by IPsec and which traffic should not be protected by IPsec security in the context of this crypto map entry.
		Note Although access lists are optional for dynamic crypto maps, they are highly recommended.

I

	Command or Action	Purpose
		• If an access list is configured, the data flow identity proposed by the IPsec peer must fall within a permit statement for this crypto access list.
		• If an access list is not configured, the device accepts any data flow identity proposed by the IPsec peer. However, if an access list is configured but the specified access list does not exist or is empty, the device drops all packets. This is similar to static crypto maps, which require access lists to be specified.
		• Care must be taken if the any keyword is used in the access list, because the access list is used for packet filtering as well as for negotiation.
		• You must configure a match address; otherwise, the behavior is not secure, and you cannot enable TED because packets are sent in the clear (unencrypted.)
Step 6	<pre>set-peer {hostname ip-address}</pre>	(Optional) Specifies a remote IPsec peer. Repeat this step for multiple remote peers.
	<pre>Example: Router(config-crypto-m)# set-peer 192.168.101.1</pre>	Note This is rarely configured in dynamic crypto map entries. Dynamic crypto map entries are often used for unknown remote peers.
Step 7	set security-association lifetime {seconds seconds kilobytes kilobytes kilobytes disable}	(Optional) Overrides (for a particular crypto map entry) the global lifetime value, which is used when negotiating IP Security SAs.
	Example: Router(config-crypto-m)# set security-association lifetime seconds 720	Note To minimize the possibility of packet loss when rekeying in high bandwidth environments, you can disable the rekey request triggered by a volume lifetime expiry.
Step 8	<pre>set pfs [group1 group14 group15 group16 group19 group2 group20 group24 group5] Example: Router (config-crypto-m) # set pfs group14</pre>	 (Optional) Specifies that IPsec should ask for PFS when requesting new security associations for this crypto map entry or should demand PFS in requests received from the IPsec peer. Group 1 specifies the 768-bit Diffie-Hellman (DH) identifier (default). (No longer recommended).

	Command or Action	Purpose
		• Group 2 specifies the 1024-bit DH identifier. (No longer recommended).
		• Group 5 specifies the 1536-bit DH identifier. (No longer recommended)
		• Group 14 specifies the 2048-bit DH identifier.
		• Group 15 specifies the 3072-bit DH identifier.
		• Group 16 specifies the 4096-bit DH identifier.
		• Group 19 specifies the 256-bit elliptic curve DH (ECDH) identifier.
		• Group 20 specifies the 384-bit ECDH identifier.
		• Group 24 specifies the 2048-bit DH/DSA identifier
		• By default, PFS is not requested. If no group is specified with this command, group1 is used as the default.
Step 9	exit	Exits crypto map configuration mode and
-	Example:	returns to global configuration mode.
	Router(config-crypto-m)# exit	
Step 10	exit	Exits global configuration mode.
	Example:	
	Router(config)# exit	
Step 11	show crypto dynamic-map [tag map-name]	(Optional) Displays information about dynamic
-	Example:	crypto maps.
	Router# show crypto dynamic-map	
Step 12	configure terminal	Enters global configuration mode.
-	Example:	
	Router# configure terminal	
Step 13	crypto map map-name seq-num ipsec-isakmp dynamic dynamic-map-name [discover]	(Optional) Adds a dynamic crypto map to a crypto map set.
	Example:	• You should set the crypto map entries
	Router(config)# crypto map static-map 1 ipsec-isakmp dynamic test-map discover	referencing dynamic maps to the lowest

	Command or Action	Purpose
		Note You must enter the discover keyword to enable TED.
Step 14	exit	Exits global configuration mode.
	Example:	
_	Router(config)# exit	

Certain configuration changes take effect only when negotiating subsequent SAs. If you want the new settings to take immediate effect, you must clear the existing SAs so that they are reestablished with the changed configuration. If the router is actively processing IPsec traffic, clear only the portion of the SA database that would be affected by the configuration changes (that is, clear only the SAs established by a given crypto map set). Clearing the entire SA database must be reserved for large-scale changes, or when the router is processing minimal IPsec traffic.

To clear IPsec SAs, use the **clear crypto sa** command with appropriate parameters. (Omitting all parameters clears the full SA database, which clears active security sessions.)

What to do next

After you have successfully created a crypto map set, you must apply the crypto map set to each interface through which IPsec traffic flows. To complete this task, see Applying Crypto Map Sets to Interfaces, on page 321.

Creating Crypto Map Entries to Establish Manual SAs

Perform this task to create crypto map entries to establish manual SAs (that is, when IKE is not used to establish the SAs). To create IPv6 crypto maps entries, you must use the **ipv6** keyword with the **crypto map** command. For IPv4 crypto maps, use the **crypto map** command without the **ipv6** keyword.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	crypto map [ipv6] map-name seq-num	Specifies the crypto map entry to be created
	[ipsec-manual]	or modified and enters crypto map
	Example:	configuration mode.
	Router(config) # crypto map mymap 10 ipsec-manual	• For IPv4 crypto maps, use the crypto map command without the ipv6 keyword.
	-	

	Command or Action	Purpose
Step 4	<pre>match address access-list-id Example: Router(config-crypto-m)# match address 102</pre>	Names an IPsec access list that determines which traffic should be protected by IPsec and which traffic should not be protected by IPsec in the context of this crypto map entry. • The access list can specify only one
Step 5	set peer {hostname ip-address}	permit entry when IKE is not used. Specifies the remote IPsec peer. This is the
	<pre>Example: Router(config-crypto-m)# set peer 10.0.0.5</pre>	peer to which IPsec protected traffic should be forwarded.Only one peer can be specified when IKE is not used.
Step 6	set transform-set transform-set-name	Specifies which transform set should be used.
	Example: Router(config-crypto-m)# set transform-set someset	• This must be the same transform set that is specified in the remote peer's corresponding crypto map entry.
		Note Only one transform set can be specified when IKE is not used.
Step 7	Do one of the following: set session-key inbound ah <i>spi hex-key-string</i> or set session-key outbound ah <i>spi hex-key-string</i>	Sets the AH security parameter indexes (SPIs) and keys to apply to inbound and outbound protected traffic if the specified transform set includes the AH protocol.
	<pre>Example: Router(config-crypto-m)# set session-key inbound ah 256 98765432109876549876543210987654 Router(config-crypto-m)# set session-key outbound ah 256 fedcbafedcbafedcfedcbafedc</pre>	association to be used with protected traffic.
Step 8	Do one of the following: set session-key inbound ah esp spi cipher hex-key-string [authenticator hex-key-string] or set session-key outbound ah esp spi cipher hex-key-string [authenticator hex-key-string]	Sets the Encapsulating Security Payload (ESP) Security Parameter Indexes (SPI) and keys to apply to inbound and outbound protected traffic if the specified transform set includes the ESP protocol.
	Example:	Or
	<pre>Router(config-crypto-m)# set session-key inbound esp 256 cipher 0123456789012345 Router(config-crypto-m)# set session-key outbound esp 256 cipher abcdefabcdefabcd</pre>	includes an FSP cinher algorithm Specifies
		• This manually specifies the ESP security association to be used with protected traffic.

	Command or Action	Purpose
Step 9	exit	Exits crypto map configuration mode and
	Example:	returns to global configuration mode.
	Router(config-crypto-m)# exit	
Step 10	exit	Exits global configuration mode.
	Example:	
	Router(config)# exit	
Step 11	<pre>show crypto map [interface interface tag map-name]</pre>	Displays your crypto map configuration.
	Example:	
	Router# show crypto map	

For manually established SAs, you must clear and reinitialize the SAs for the changes to take effect. To clear IPsec SAs, use the **clear crypto sa** command with appropriate parameters. (Omitting all parameters clears the entire SA database, which clears active security sessions.)

What to do next

After you have successfully created a crypto map set, you must apply the crypto map set to each interface through which IPsec traffic flows. To complete this task, see Applying Crypto Map Sets to Interfaces, on page 321.

Applying Crypto Map Sets to Interfaces

You must apply a crypto map set to each interface through which IPsec traffic flows. Applying the crypto map set to an interface instructs the device to evaluate the interface's traffic against the crypto map set and to use the specified policy during connection or security association negotiation on behalf of traffic to be protected by the crypto map.

Perform this task to apply a crypto map to an interface.

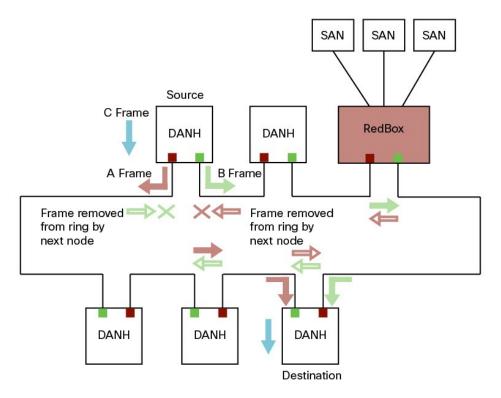
	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type/number	Configures an interface and enters interface
	Example:	configuration mode.

Command or Action	Purpose	
Router# (config)# interface Gi 0/0/1		
crypto map map-name	Applies a crypto map set to an interface.	
Example:		
Router(config-if)# crypto map mymap		
exit	Exits interface configuration mode and returns	
Example:	to global configuration mode.	
Router(config-if)# exit		
crypto map map-name local-address	(Optional) Permits redundant interfaces to share	
interface-id	the same crypto map using the same local	
Example:	identity.	
Router(config)# crypto map mymap		
local-address loopback0		
exit	(Optional) Exits global configuration mode.	
Example:		
Router(config)# exit		
show crypto map [interface interface]	Displays your crypto map configuration.	
Example:		
Router# show crypto map		
	Router# (config)# interface Gi 0/0/1 crypto map map-name Example: Router (config-if)# crypto map mymap exit Example: Router (config-if)# exit crypto map map-name local-address interface-id Example: Router (config)# crypto map mymap local-address loopback0 exit Example: Router (config)# exit Show crypto map [interface interface] Example:	

Configuring High-availability Seamless Redundancy (HSR)

This chapter provides details about configuring High-availability Seamless Redundancy (HSR) on the Cisco IR8340 Router.

- Information About HSR, on page 323
- Configuring an HSR Ring, on page 326
- Clearing All Node Table and VDAN Table Dynamic Entries , on page 327
- Verifying Configuration, on page 327


Information About HSR

High-availability Seamless Redundancy (HSR) is defined in International Standard IEC 62439-3-2016 clause 5. HSR is similar to Parallel Redundancy Protocol (PRP) but is designed to work in a ring topology. Instead of two parallel independent networks of any topology (LAN-A and LAN-B), HSR defines a ring with traffic in opposite directions. Port-A sends traffic counter clockwise in the ring, and Port-B sends traffic clockwise in the ring.

The HSR packet format is also different from PRP. To allow the router to determine and discard duplicate packets, additional protocol specific information is sent with the data frame. For PRP, this is sent as part of a trailer called the redundancy control trailer (RCT), whereas for HSR this is sent as part of the header called the HSR header. Both the RCT and HSR header contain a sequence number, which is the primary data used to determine if the received frame is the first instance or a duplicate instance.

The non-switching nodes with two interfaces attached to the HSR ring are referred to as Doubly Attached Nodes implementing HSR (DANHs). Similar to PRP, Singly Attached Nodes (SANs) are attached to the HSR ring through a device called a RedBox (Redundancy Box). The RedBox acts as a DANH for all traffic for which it is the source or the destination. The router implements RedBox functionality using Gigabit Ethernet port connections to the HSR ring.

The following figure shows an example of an HSR ring as described in IEC 62439-3. In this example, the RedBox is an IR8340.

Figure 30: Example of HSR Ring Carrying Unicast Traffic

Devices that do not support HSR out of the box (for example, laptops and printers) cannot be attached to the HSR ring directly because all HSR capable devices must be able to process the HSR header on packets received from the ring and add the HSR header to all packets sent into the ring. These nodes are attached to the HSR ring through a RedBox. As shown in the figure above, the RedBox has two ports on the DANH side. Non-HSR SAN devices are attached to the upstream switch ports. The RedBox generates the supervision frames on behalf of these devices so that they are seen as DANH devices on the ring. Because the RedBox emulates these as DANH, they are called Virtual Doubly Attached Nodes (VDAN).

Loop Avoidance

To avoid loops and use network bandwidth effectively, the RedBox does not transmit frames that are already transmitted in same direction. When a node injects a packet into the ring, the packet is handled as follows to avoid loops:

- Unicast packet with destination inside the ring: When the unicast packet reaches the destination node, the packet is consumed by the respective node and is not forwarded.
- Unicast packet with destination not inside the ring: Because this packet does not have a destination node in the ring, it is forwarded by every node in the ring until it reaches the originating node. Because every node has a record of the packet it sent, along with the direction in which it was sent, the originating node detects that packet has completed the loop and drops the packet.
- Multicast packet: A multicast packet is forwarded by each node because there can be more than one consumer of this packet. For this reason a multicast packet always reaches the originating node. However, every node will check whether it has already forwarded the received packet through its outgoing interface.

Once the packet reaches the originating node, the originating node determines that it already forwarded this packet and drops the packet instead of forwarding it again.

HSR RedBox Modes of Operation

An HSR RedBox can operate in one of the following modes that define how HSR handles packets in different scenarios:

- HSR-SAN—This is the most basic mode. In this mode, the RedBox connects SAN devices to an HSR Ring. No other PRP or HSR network is involved in this configuration. In this mode, the traffic on the upstream switch port does not have HSR/PRP tags, and the RedBox represents the SAN device as a VDAN in the ring.
- HSR-PRP—This configuration is used to bridge HSR and PRP networks. The RedBox extracts the data
 from the PRP frame and generates the HSR frame using this data, and it performs the reverse operation
 for packets in the opposite direction.

More than one PRP network can be bridged to one HSR ring and vice versa.

• HSR-HSR—In this mode, two HSR rings are connected through a four-port device called a QuadBox. In this mode, two of the ports on the switch are associated with one HSR ring, and the other two ports are associated with the second HSR ring. The remaining ports on the switch are shut down.

Note

Only HSR-SAN mode is supported on IR8340 in Cisco IOS XE Release 17.8.x.

HSR-SAN Mode

In HSR-SAN mode, the RedBox inserts the HSR tag on behalf of the host and forwards the ring traffic, except for frames sent by the node itself, duplicate frames, and frames for which the node is the unique destination. In this mode, packets are handled as follows:

- A source DANH sends a frame passed from its upper layers ("C" frame), prefixes it with an HSR tag to identify frame duplicates, and sends the frame over each port ("A" frame and "B" frame).
- A destination DANH receives two identical frames from each port within a certain interval. The destination DANH removes the HSR tag of the first frame before passing it to its upper layers and discards any duplicate.
- Each node in the HSR ring forwards frames received from one port to the other port of the HSR pair. A node will not forward frames received on one port to the other under the following conditions:
 - The received frame returns to the originating node in the ring.
 - The frame is a unicast frame with a destination MAC address of a node upstream of the receiving node.
 - The node had already sent the same frame in the same direction. This rule prevents a frame from spinning in the ring in an infinite loop.

Note

Maximum of 512 entries of node table and 512 entries of VDAN table is supported.

HSR-SAN Interfaces

One HSR ring can be configured on the following specific port pairs:

- Gi0/1/4, Gi0/1/5
- Gi0/1/6, Gi0/1/7

Configuring an HSR Ring

Use the hsr-ring command to configure an HSR ring.

```
Router (config) #hsr-ring 1 ?
  entryForgetTime
                                    Time to clear an entry from duplicate discard table
  fpgamode-DualUplinkEnhancement
                                    Set FPGA register for source mac filtering
  nodeForgetTime
                                    Time to clear node entry from node table
                                    Time to remain silent after reboot
 nodeRebootInterval
 pauseFrameTime
                                   HSR pause frame time
  proxyNodeTableForgetTime
                                    Time to clear node entry from vdan table
  supervisionFrameLifeCheckInterval HSR supervision frame life check interval
  supervisionFrameOption
                                    HSR supervision frame option
  supervisionFrameRedboxMacaddress HSR Supervision Frame Redbox mac address
  supervisionFrameTime
                                    HSR Inter supervision frame time
Router(config) #hsr-ring 1 nodeforgetTime ?
  <0-65535> Node Forget time value
Router(config) #hsr-ring 1 proxyNodeTableForgetTime ?
  <0-65535> Proxy Node table Forget time value
Router(config) #hsr-ring 1 supervisionFrameOption ?
  mac-da
             MAC DA last two bit
  vlan-cfi
              Enable CFI for the VLAN tagged frame
             COS value for the VLAN tag
 vlan-cos
  vlan-tagged Enable VLAN tagging
Router(config) #hsr-ring 1 supervisionFrameLifeCheckInterval ?
  <0-65535> life check interval value for supervision frames
Router(config) #hsr-ring 1 supervisionFrameTime ?
  <0-65535> time value between supervision frames
Router(config)#hsr-ring 1 supervisionFrameRedboxMacaddress ?
  H.H.H 48 bit redbox mac address
```

Configuring Interface Sub-Mode

Use the following commands to configure the physical ports, which are part of the HSR ring. Once you configure a physical port to be part of an HSR ring, a new interface "HSR-ring" will be created.

```
Router(config)#interface GigabitEthernet 1/1
Router(config-if)#hsr-ring 1
```

Clearing All Node Table and VDAN Table Dynamic Entries

To clear all dynamic entries in the node table, enter

clear hsr node-table

To clear all dynamic entries in the VDAN table, enter

clear hsr vdan-table

Verifying Configuration

Command	Purpose
show hsr ring	Displays HSR ring information.
show hsr statistics	Displays statistics for HSR components.Note To clear HSR statistics information, enter the command clear hsr statistics.
show hsr node-table	Displays HSR node table.
show hsr vdan-table	Displays HSR Virtual Doubly Attached Node (VDAN) table.
show hsr supervisionFrameLifeCheckInterval	Displays supervision frame life check interval.
show hsr supervisionFrameOption	Displays supervision frame option.
show hsr supervisionFrameRedboxMacaddress	Displays supervision Redbox MAC Address.
show hsr supervisionFrameTime	Displays supervision frame time.

Configuring Parallel Redundancy Protocol (PRP)

This chapter provides details about configuring Parallel Redundancy Protocol (PRP) on the Cisco IR8340 Router.

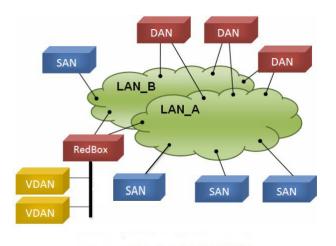
- Information About PRP, on page 329
- Creating a PRP Channel and Group, on page 330
- Clearing All Node Table and VDAN Table Dynamic Entries, on page 332
- Disabling the PRP Channel and Group, on page 332
- PRP Mode LED, on page 333
- Verifying Configuration, on page 333

Information About PRP

Parallel Redundancy Protocol (PRP) is defined in the International Standard IEC 62439-3. PRP is designed to provide hitless redundancy (zero recovery time after failures) in Ethernet networks.

To recover from network failures, redundancy can be provided by network elements connected in mesh or ring topologies using protocols like RSTP, REP, or MRP, where a network failure causes some reconfiguration in the network to allow traffic to flow again (typically by opening a blocked port). These schemes for redundancy can take between a few milliseconds to a few seconds for the network to recover and traffic to flow again.

PRP uses a different scheme, where the end nodes implement redundancy (instead of network elements) by connecting two network interfaces to two independent, disjointed, parallel networks (LAN-A and LAN-B). Each of these Dually Attached Nodes (DANs) then have redundant paths to all other DANs in the network.


The DAN sends two packets simultaneously through its two network interfaces to the destination node. A redundancy control trailer (RCT), which includes a sequence number, is added to each frame to help the destination node distinguish between duplicate packets. When the destination DAN receives the first packet successfully, it removes the RCT and consumes the packet. If the second packet arrives successfully, it is discarded. If a failure occurs in one of the paths, traffic continues to flow over the other path uninterrupted, and zero recovery time is required.

Non-redundant endpoints in the network that attach only to either LAN-A or LAN-B are known as Singly Attached Nodes (SANs).

A Redundancy Box (RedBox) is used when an end node that does not have two network ports and does not implement PRP needs to implement redundancy. Such an end node can connect to a RedBox, which provides connectivity to the two different networks on behalf of the device. Because a node behind a RedBox appears

for other nodes like a DAN, it is called a Virtual DAN (VDAN). The RedBox itself is a DAN and acts as a proxy on behalf of its VDANs.

Figure 31: PRP Redundant Network

PRP Channels

PRP channel or channel group is a logical interface that aggregates two Gigabit Ethernet interfaces (access, trunk, or routed) into a single link. In the channel group, the lower numbered Gigabit Ethernet member port is the primary port and connects to LAN_A. The higher numbered port is the secondary port and connects to LAN_B. The PRP channel remains up as long as at least one of these member ports remains up and sends traffic. When both member ports are down, the channel is down. The total number of supported PRP channel groups is 2 per router, and the interfaces that can be utilized for each group are fixed.

- PRP channel group 1 always uses Gi0/1/4 for LAN_A and Gi0/1/5 for LAN_B
- \bullet PRP channel group 2 always uses Gi0/1/6 for LAN_A and Gi0/1/7 for LAN_B

Creating a PRP Channel and Group

To create and enable a PRP channel and group, follow these steps:

Step 1 Enter global configuration mode: configure terminal Step 2 Assign two Gigabit Ethernet interfaces to the PRP channel group: interface {GigabitEthernet 0/1/4 | GigabitEthernet 0/1/5}

I

	Use the no interface prp-channel 1 2 command to disable PRP on the defined interfaces and shut down th interfaces.		
	Note	You must apply the Gi $0/1/4$ interface before the Gi $0/1/5$ interface. So, we recommend using the interface range command. Similarly, you must apply the Gi $0/1/6$ interface before the Gi $0/1/7$ interface.	
Step 3	(Optio	onal) For Layer 2 traffic, enter switchport. (Default):	
	switc	hport	
	Note	For Layer 3 traffic, enter no switchport .	
Step 4	(Optio	onal) Set a non-trunking, non-tagged single VLAN Layer 2 (access) interface:	
	switc	hport mode access	
Step 5	(Optio	onal) Create a VLAN for the Gi 0/1/4 and Gi 0/1/5 interfaces:	
	swite	hport access vlan <value></value>	
	Note	Only required for Layer 2 traffic.	
Step 6	(Optio	onal) Disable Precision Time Protocol (PTP) on the switch:	
	no pt	p enable	
	PTP i	s enabled by default. You can disable it if you do not need to run PTP.	
Step 7	Disable loop detection for the redundancy channel:		
	no ke	epalive	
Step 8	Disab	le UDLD for the redundancy channel:	
	udld j	port disable	
Step 9	Enter	sub-interface mode and create a PRP channel group:	
	prp-c	hannel-group prp-channel group	
	prp-ci	hannel group—Value of 1 or 2	
	The ty	wo interfaces that you assigned in step 2 are assigned to this channel group.	
	The n	o form of this command is not supported.	
Step 10	Bring	up the PRP channel:	
	no sh	utdown	
Step 11	Speci	fy the PRP interface and enter interface mode:	
	interf	face prp-channel prp-channel-number	
	prp-ci	hannel-number—Value of 1 or 2	
Step 12	Confi	gure bpdufilter on the prp-channel interface:	
	spanr	ning-tree bpdufilter enable	

Spanning-tree BPDU filter drops all ingress/egress BPDU traffic. This command is required to create independent spanning-tree domains (zones) in the network.

Step 13 (Optional) Configure LAN-A/B ports to quickly get to FORWARD mode:

spanning-tree portfast edge trunk

This command is optional but highly recommended. It improves the spanning-tree convergence time on PRP RedBoxes and LAN-A and LAN-B switch edge ports. It is also highly recommended to configure this command on the LAN_A/LAN_B ports directly connected to a RedBox PRP interface.

Clearing All Node Table and VDAN Table Dynamic Entries

To clear all dynamic entries in the node table, enter

clear prp node-table [channel-group group]

To clear all dynamic entries in the VDAN table, enter

clear prp vdan-table [channel-group group]

If you do not specify a channel group, the dynamic entries are cleared for all PRP channel groups.

Note

The clear prp node-table and clear prp vdan-table commands clear only dynamic entries. To clear static entries, use the **no** form of the **nodeTableMacaddress** or **vdanTableMacaddress** commands.

Disabling the PRP Channel and Group

Step 1	Enter global configuration mode:	
	configure terminal	
Step 2	Disable the PRP channel:	
	no interface prp-channel prp-channel-number	
	prp-channel number— Value of 1 or 2	
Step 3	Exit interface mode:	
	exit	

PRP Mode LED

The REDUN (Redundancy status) LED is on the faceplate. The router supports the following states.

Label Description	Color and State	Description
REDUN (Redundancy status)	Green (solid)	Redundancy protocols are configured and active.
	Amber (solid)	Redundancy fault detected.

Verifying Configuration

Command	Purpose
show prp control {ptpLanOption ptpProfile supervisionFrameLifeCheckInterval supervisionFrameOption supervisionFrameRedboxMacaddress supervisionFrameTime nodeForgetTime entryForgetTime nodeRebootIntervalTime pauseFrameTime}	Displays PRP control information and supervision frame information.
show prp statistics {egressPacketStatistics ingressPacketStatistics nodeTableStatistics pauseFrameStatistics ptpPacketStatistics }	

Configuring Resilient Ethernet Protocol (REP)

Resilient Ethernet Protocol (REP) is a Cisco proprietary protocol that provides an alternative to Spanning Tree Protocol (STP) to control network loops, handle link failures, and improve convergence time.

For detailed information on configuring REP, see the Configuring Resilient Ethernet Protocol chapter in *Redundancy Protocol Configuration Guide, Cisco Catalyst IE3x00 Rugged, IE3400 Heavy Duty, and ESS3300 Series Switches.*

Note The following features are not supported on IR8340:

- REP Fast
- REP Day Zero
- REP Segment Id Auto Discovery
- REP Negotiated

System Messages

This chapter contains the following sections:

- Information About Process Management, on page 337
- How to Find Error Message Details, on page 337

Information About Process Management

You can access system messages by logging in to the console through Telnet protocol and monitoring your system components remotely from any workstation that supports the Telnet protocol.

Starting and monitoring software is referred to as process management. The process management infrastructure for a router is platform independent, and error messages are consistent across platforms running on Cisco IOS XE. You do not have to be directly involved in process management, but we recommend that you read the system messages that refer to process failures and other issues.

How to Find Error Message Details

To show further details about a process management or a syslog error message, enter the error message into the Error Message Decoder tool at: https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi.

For example, enter the message %PMAN-0-PROCESS_NOTIFICATION into the tool to view an explanation of the error message and the recommended action to be taken.

The following are examples of the description and the recommended action displayed by the Error Message Decoder tool for some of the error messages.

Error Message: %PMAN-0-PROCESS_NOTIFICATION : The process lifecycle notification component failed because [chars]

Explanation	Recommended Action

The process lifecycle notification component failed, preventing proper detection of a process start and stop. This problem is likely the result of a software defect in the software subpackage.	kernel error message logs to learn more about the
	Cisco technical support representative.

Error Message: %PMAN-0-PROCFAILCRIT A critical process [chars] has failed (rc [dec])

Explanation	Recommended Action
A process important to the functioning of the router has failed.	Note the time of the message and investigate the error message logs to learn more about the problem. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.

Error Message: %PMAN-3-PROCFAILOPT An optional process [chars] has failed (rc [dec])

Explanation	Recommended Action

has failed. has failed. kernel error message problem. Although tra receiving this message may be disabled becau should be investigated indicate a problem yo message exactly as it system log. Research using the tools and ut http://www.cisco.com tools and utilities will Search for resolved so Search Tool at: http://tools.cisco.com require assistance, op Assistance Center at: http://tools.cisco.com contact your Cisco tee and provide the repre you have gathered. A to your case in nonzip output of the show lo	a/tac. With some messages, these l supply clarifying information. oftware issues using the Bug a/cisco/psn/bssprt/bss. If you still been a case with the Technical
---	--

Error Message: %PMAN-3-PROCFAIL The process [chars] has failed (rc [dec])

Explanation	Recommended Action
The process has failed as the result of an error.	This message will appear with other messages related to the process. Check the other messages to determine the reason for the failures and see if corrective action can be taken. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, on contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.

Error Message: %PMAN-3-PROCFAIL_IGNORE [chars] process exits and failures are being ignored due to debug settings. Normal router functionality will be affected. Critical router functions like RP switchover, router reload, FRU resets, etc. may not function properly.

Explanation	Recommended Action
A process failure is being ignored due to the user-configured debug settings.	If this behavior is desired and the debug settings are set according to a user's preference, no action is needed. If the appearance of this message is viewed as a problem, change the debug settings. The router is not expected to behave normally with this debug setting. Functionalities such as SSO switchover, router reloads, FRU resets, and so on will be affected. This setting should only be used in a debug scenario. It is not normal to run the router with this setting.

 $Error \ Message: \texttt{PMAN-3-PROCHOLDDOWN} \ \texttt{The process [chars] has been helddown (rc [dec])}$

Explanation	Recommended Action
The process was restarted too many times with repeated failures and has been placed in the hold-down state.	This message will appear with other messages related to the process. Check the other messages to determine the reason for the failures and see if corrective action can be taken. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.

Error Message: %PMAN-3-RELOAD_RP_SB_NOT_READY : Reloading: [chars]

Explanation	Recommended Action
The route processor is being reloaded because there is no ready standby instance.	Ensure that the reload is not due to an error condition.
Error Message: %PMAN-3-RELOAD_RP : Reloading: [chars]	
Explanation	Recommended Action

L

The RP is being reloaded.	Ensure that the reload is not due to an error condition.
	If it is due to an error condition, collect information
	requested by the other log messages.

Error Message: %PMAN-3-RELOAD SYSTEM : Reloading: [chars]

Explanation	Recommended Action
The system is being reloaded.	Ensure that the reload is not due to an error condition. If it is due to an error condition, collect information requested by the other log messages.

Error Message: %PMAN-3-PROC_BAD_EXECUTABLE : Bad executable or permission problem with process [chars]

Explanation	Recommended Action
The executable file used for the process is bad or has permission problem.	Ensure that the named executable is replaced with the correct executable.

Error Message: %PMAN-3-PROC_BAD_COMMAND:Non-existent executable or bad library used for process <process name>

Explanation	Recommended Action
The executable file used for the process is missing, or a dependent library is bad.	Ensure that the named executable is present and the dependent libraries are good.
Error Message: %PMAN-3-PROC EMPTY EXEC FILE :	Empty executable used for process [chars]

Explanation	Recommended Action
The executable file used for the process is empty.	Ensure that the named executable is non-zero in size.

Error Message: %PMAN-5-EXITACTION : Process manager is exiting: [chars]

Explanation	Recommended Action
The process manager is exiting.	Ensure that the process manager is not exiting due to an error condition. If it is due to an error condition, collect information requested by the other log messages.

Error Message: %PMAN-6-PROCSHUT : The process [chars] has shutdown

Explanation	Recommended Action
The process has gracefully shut down.	No user action is necessary. This message is provided for informational purposes only.
Error Message: %PMAN-6-PROCSTART : The process [chars] has started	

Explanation	Recommended Action
-------------	--------------------

The process has launched and is operating properly.	No user action is necessary. This message is provided for informational purposes only.
Error Message: %PMAN-6-PROCSTATELESS : The pr	ocess [chars] is restarting stateless

Explanation	Recommended Action
The process has requested a stateless restart.	No user action is necessary. This message is provided for informational purposes only.

Environmental Monitoring

This chapter contains the following sections:

- Environmental Monitoring, on page 343
- Environmental Monitoring and Reporting Functions, on page 343
- Environmental Monitoring Functions, on page 344
- Environmental Reporting Functions, on page 345
- Additional References, on page 345

Environmental Monitoring

The router provides a robust environment-monitoring system with several sensors that monitor the system temperatures. The following are some of the key functions of the environmental monitoring system:

- Monitoring temperature of CPUs and Motherboard
- · Recording abnormal events and generating notifications
- Monitoring Simple Network Management Protocol (SNMP) traps
- · Generating and collecting Onboard Failure Logging (OBFL) data
- · Sending call home event notifications
- · Logging system error messages
- · Displaying present settings and status

Environmental Monitoring and Reporting Functions

Monitoring and reporting functions allow you to maintain normal system operation by identifying and resolving adverse conditions prior to loss of operation.

- Environmental Monitoring Functions, on page 344
- Environmental Reporting Functions, on page 345

Environmental Monitoring Functions

Environmental monitoring functions use sensors to monitor the temperature of the cooling air as it moves through the chassis.

The router is expected to meet the following environmental operating conditions

- Operating Temperature: -40°F to 140°F (-40°C to 60°C)
- Operating Humidity: 5% to 95% relative humidity (non-condensing)
- Operating Altitude: Up to 10,000 ft (3048 m)

Note Refer to the *Cisco Catalyst IR8340 Rugged Series Router Harware Installation Guide* for restricted ranges of the environmental operating conditions for exceptions which is specially applicable for harsh industrial deployments.

The following table displays the levels of status conditions used by the environmental monitoring system.

Status Level	Description
Normal	All monitored parameters are within normal tolerance.
Warning	The system has exceeded a specified threshold. The system continues to operate, but operator action is recommended to bring the system back to a normal state.
Critical	An out-of-tolerance temperature or voltage condition exists. Although the system continues to operate, it is approaching shutdown. Immediate operator action is required.

Table 19: Levels of Status Conditions Used by the Environmental Monitoring System

The environmental monitoring system sends system messages to the console, for example, when the conditions described here are met:

Temperature and Voltage Exceed Max/Min Thresholds

The following example shows the warning messages indicating the maximum and minimum thresholds of the temperature or voltage:

```
Warnings :
------
For all the temperature sensors (name starting with "Temp:") above,
the critical warning threshold is 100C (100C and higher)
the warning threshold is 80C (range from 80C to 99C)
the low warning threshold is 1C (range from -inf to 1C).
For all voltage sensors (names starting with "V:"),
the high warning threshold starts at that voltage +10%. (voltage + 10% is warning)
the low warning threshold starts at the voltage -10%. (voltage - 10% is warning)
```

L

Environmental Reporting Functions

You can retrieve and display environmental status reports using the following commands:

- show diag all eeprom
- show environment
- show environment all
- show inventory
- show platform
- show platform diag
- show platform software status control-processor
- show diag slot R0 eeprom detail
- show version
- show power

These commands show the current values of parameters such as temperature and voltage.

The environmental monitoring system updates the values of these parameters every 60 seconds.

Additional References

The following sections provide references related to the power efficiency management feature.

MIBs	MIBs Link
	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use the Cisco MIB Locator at: http://www.cisco.com/go/mibs.

I

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/cisco/web/support/index.html
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

IOx Application Hosting

This section contains the following topics:

- Application Hosting, on page 347
- Information About Application Hosting, on page 347
- Application Hosting on the IR8340 Router, on page 349
- How to Configure Application Hosting, on page 351
- Installing and Uninstalling Apps, on page 356
- Overriding the App Resource Configuration, on page 357
- Verifying the Application Hosting Configuration, on page 358
- IOx Configuration with ERSPAN, on page 360
- Configuration Examples for Application Hosting, on page 361
- Signed Application Support, on page 362
- Cisco Cyber Vision, on page 362

Application Hosting

A hosted application is a software as a service solution, and it can be run remotely using commands. Application hosting gives administrators a platform for leveraging their own tools and utilities.

This chapter describes the Application Hosting feature and how to enable it.

Information About Application Hosting

This section provides information about Application Hosting.

Need for Application Hosting

The move to virtual environments has given rise to the need to build applications that are reusable, portable, and scalable. Application hosting gives administrators a platform for leveraging their own tools and utilities. An application, hosted on a network device, can serve a variety of purposes. This ranges from automation, configuration management monitoring, and integration with existing tool chains.

Cisco devices support third-party off-the-shelf applications built using Linux tool chains. Users can run custom applications cross-compiled with the software development kit that Cisco provides.

IOx Overview

IOx is a Cisco-developed end-to-end application framework that provides application hosting capabilities for different application types on Cisco network platforms.

From Cisco IOS-XE Release 17.8.1, IOx installation on IR8340 requires Cisco supported mSATA to be the storage device. There are two partitions on the mSATA. One for IOS, and the other for IOx. The IOS partition will be mounted on **/mnt/msata** and IOx partition will be mounted on **/vol/harddisk**. OIR is not supported for mSATA device. When mSATA is inserted to the router, the router needs to be reloaded to have two partitions. If mSATA is not present, bootflash is used for application hosting.

In Cisco IOS XE Release 17.7.x, SD card is used as storage device for IOx. Any upgrade from 17.7.x to 17.8.x requires all applications to be reinstalled.

Cisco Application Hosting Overview

The IR8340 allows you to deploy applications using the application hosting CLI commands. You can also deploy applications using the Local Manager.

Application hosting provides the following services:

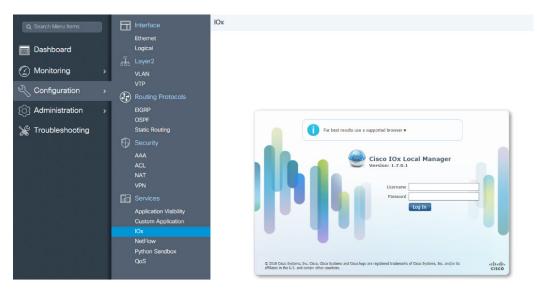
- Launches designated applications in containers.
- Checks available resources (memory, CPU, and storage), and allocates and manages them.
- Provides support for console logging.
- Provides a CLI endpoint.
- Provides an application hosting infrastructure referred to as Cisco Application Framework (CAF).
- Helps in the setup of platform-specific networking (packet-path) via VirtualPortGroup and management interfaces.

The container is referred to as the virtualization environment provided to run the guest application on the host operating system. The Cisco IOS-XE virtualization services provide manageability and networking models for running guest applications. The virtualization infrastructure allows the administrator to define a logical interface that specifies the connectivity between the host and the guest. IOx maps the logical interface into the Virtual Network Interface Card (vNIC) that the guest application uses.

Applications to be deployed in the containers are packaged as TAR files. The configuration that is specific to these applications is also packaged as part of the TAR file.

The management interface on the device connects the application hosting network to the IOS management interface. The Layer 3 interface of the application receives the Layer 2 bridged traffic from the IOS management interface. The management interface connects through the management bridge to the container/application interface. The IP address of the application must be on the same subnet as the management interface IP address.

IOXMAN


IOXMAN is a process that establishes a tracing infrastructure to provide logging or tracing services for guest applications, except Libvirt, that emulates serial devices. IOXMAN is based on the lifecycle of the guest application to enable and disable the tracing service, to send logging data to IOS syslog, to save tracing data to IOx tracelog, and to maintain IOx tracelog for each guest application.

Application Hosting on the IR8340 Router

This section describes the application hosting characteristics specific to the IR8340 router.

Application hosting can be achieved using the application hosting CLI commands as well as using Local Manager. Application hosting using Local Manager is done through WebUI. To deploy the applications using Local Manager, enable WebUI and then log in to Local Manager.

Figure 32: Local Manager

- 1. From WebUI, click on **Configuration > Services > IOx**
- 2. Log in using the username and password configured.
- 3. Follow the steps for the application lifecycle in the Cisco IOx Local Manager Reference Guide.

The next section explains the deployment of an application using the application hosting CLI commands.

Application Hosting on Layer 2 and Layer 3 Interfaces

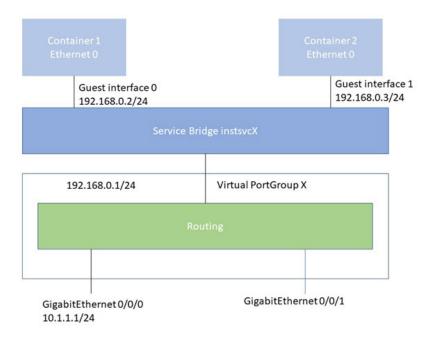
The application configurations have two interfaces to support L2 and L3 traffic from the LAN and WAN ports respectively.

For application hosting, you can configure the L2 and L3 interfaces as following:

• L2 interfaces are configured with AppGigabitEthernet and VLAN with IP address in the same VLAN network, which are used or forwarding the L2 app traffic. Dedicated VLAN range 2340 - 2349 must be used for configuring L2 interfaces of application and to communicate the application for L2 traffic.

You should configure the AppGigEthernet interface as a trunk interface.

• L3 interfaces or gateway interfaces are configured with Virtual port group, and IP address in the same network as VPG, which are used for forwarding the L3 traffic to applications.


VirtualPortGroup

The VirtualPortGroup is a software construct on Cisco IOS that maps to a Linux bridge IP address. As such, the VirtualPortGroup represents the switch virtual interface (SVI) of the Linux container. Each bridge can contain multiple interfaces; each mapping to a different container. Each container can also have multiple interfaces.

VirtualPortGroup interfaces are configured by using the interface virtualportgroup command. Once these interfaces are created, IP address and other resources are allocated.

The VirtualPortGroup interface connects the application hosting network to the IOS routing domain. The Layer 3 interface of the application receives routed traffic from IOS. The VirtualPortGroup interface connects through the SVC Bridge to the container/application interface.

The following graphic helps to understand the relationship between the VirtualPortGroup and other interfaces.

Figure 33: Virtual Port Group Mapping

vNIC

For the container life cycle management, the Layer 3 routing model that supports one container per internal logical interface is used. This means that a virtual Ethernet pair is created for each application; and one interface of this pair, called vNIC is part of the application container. The other interface, called vpgX is part of the host system.

NIC is the standard Ethernet interface inside the container that connects to the platform dataplane for the sending and receiving of packets. IOx is responsible for the gateway (VirtualPortGroup interface), IP address, and unique MAC address assignment for each vNIC in the container.

The vNIC inside the container/application are considered as standard Ethernet interfaces.

How to Configure Application Hosting

The following sections provide information about the various tasks that comprise the configuration of application hosting.

Enabling IOx

Perform this task to enable access to the IOx Local Manager. The IOx Local Manager provides a web-based user interface that you can use to manage, administer, monitor, and troubleshoot apps on the host system, and to perform a variety of related activities.

Note In the steps that follow, IP HTTP commands do not enable IOx, but allow the user to access the WebUI to connect the IOx Local Manager.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	iox	Enables IOx.
	Example:	
	Router(config)# iox	
Step 4	ip http server	Enables the HTTP server on your IP or IPv6
	Example:	system.
	Router(config)#ip http server	
Step 5	ip http secure-server	Enables a secure HTTP (HTTPS) server.
	Example:	
	Router(config) #ip http secure-server	
Step 6	username <i>name</i> privilege <i>level</i> secret { 0 7 <i>user-password</i> } <i>encrypted-password</i>	Establishes a username-based authentication system and privilege level for the user.
	Example: Router(config)#username cisco privilege 15 secret 0 cisco	The username privilege level must be configured as 15.

Cisco Catalyst IR8340 Rugged Series Router Software Configuration Guide, Cisco IOS XE Release 17.12.x

I

	Command or Action	Purpose
Step 7	end	Exits interface configuration mode and returns
	Example:	to privileged EXEC mode.
	Router(config)# end	

Configuring Application Hosting to Layer 2 Interfaces

Follow these steps to configure application hosting to Layer 2 interfaces.

Procedure

	Command or Action	Purpose
Step 1	enable Example: Device>enable	Enables privileged EXEC mode. Enter your password if prompted.
Step 2	configure terminal Example: Device#configure terminal	Enters global configuration mode.
Step 3	interface AppGigEthernet number Example: Device (config) #interface AppGigabitEthernet 0/1/1	Configures the AppGigabitEthernet and enters interface configuration mode.
Step 4	switchport mode trunk Example: Device (config-if) #switchport mode trunk	Sets the interface into permanent trunking mode and negotiates to convert the neighboring link into a trunk link.
Step 5	exit Example: Device (config-if) #exit	Exits interface configuration mode and returns to global configuration mode.
Step 6	<pre>app-hosting appid name Example: Device(config)# app-hosting appid iperf_3</pre>	Configures the application and enters the application hosting configuration mode.
Step 7	app-vnic AppGigabitEthernet trunk Example: Device(config-app-hosting)# app-vnic AppGigabitEthernet trunk	Configures a trunk port for an application, and enters application-hosting trunk-configuration mode.

	Command or Action	Purpose
Step 8	<pre>vlan vlan-ID guest-interface guest-interface-number Example: Device(config-app-hosting-trunk)# vlan 2340 guest-interface 1</pre>	Configures a VLAN guest interface and enters application-hosting VLAN-access IP configuration mode.
Step 9	guest-ipaddress ip-address netmask netmask Example: Device (config-app-hosting-vlan-access-ip)# guest-ipaddress 20.1.1.2 netmask 255.255.255.0	
Step 10	end Example: Device (config-config-app-hosting-vlan-access-ip) # end	Exits application-hosting VLAN-access IP configuration mode and returns to privileged EXEC mode.

Configuring a VirtualPortGroup to a Layer 3 Data Port

Multiple Layer 3 data ports can be routed to one or more VirtualPortGroups or containers. VirutalPortGroups and Layer 3 data ports must be on different subnets.

Enable the **ip routing** command to allow external routing on the Layer 3 data-port.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode. Enter your
	Example:	password if prompted.
	Device>enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device#configure terminal	
Step 3	ip routing	Enables IP routing.
	Example:	The ip routing command must be enabled to
	Device(config) #ip routing	allow external routing on Layer 3 data ports.
Step 4	interface type number	Configures an interface and enters interface
	Example:	configuration mode
	Device(config)#interface gigabitethernet 0/0/0	

	Command or Action	Purpose
Step 5	no switchport Example: Device (config-if) #no switchport	Places the interface in Layer 3 mode, and makes it operate more like a router interface rather than a switch port.
0.0		
Step 6	<pre>ip address ip-address mask Example: Device(config-if)#ip address 10.1.1.1 255.255.255.0</pre>	Configures an IP address for the interface.
Step 7	exit Example: Device(config-if)#exit	Exits interface configuration mode and returns to global configuration mode.
Step 8	interface type number Example: Device (config) #interface virtualportgroup 0	Configures an interface and enters interface configuration mode.
Step 9	<pre>ip address ip-address mask Example: Device(config-if)#ip address 20.1.2.1 255.255.255.0</pre>	Configures an IP address for the interface.
Step 10	end Example: Device(config-if)#end	Exits interface configuration mode and returns to privileged EXEC mode.
Step 11	configure terminal Example: Device#configure terminal	Enters global configuration mode.
Step 12	interface vlan vlan-id Example: Device(config-if)#interface vlan 2340	Configure the SVI interface for supporting L2 traffic. VLAN range: 2340 - 2349.
Step 13	<pre>ip address ip-address mask Example: Device(config-if)#ip address 20.1.1.1 255.255.255.0</pre>	Configures an IP address and IP subnet mask.
Step 14	end Example: Device(config-if)#end	Exits interface configuration mode and returns to privileged EXEC mode.

	Command or Action	Purpose
Step 15	configure terminal	Enters global configuration mode.
	Example:	
	Device#configure terminal	
Step 16	app-hosting appid name	Configures the application and enters the
	Example:	application hosting configuration mode.
	Device(config)#app-hosting appid iperf_3	
Step 17	app-vnic gateway2 virtualportgroup 0 guest-interface 2	Configures the application interface and the gateway of the application. You can create
	Example:	multiple interfaces with different virtualportgroups.
	Device(config-app-hosting)#app-vnic gateway2 virtualportgroup 0 guest-interface 2	virtualportgroups.
Step 18	guest-ipaddress ip-address netmask netmask	• • • • • • • • • • • • • • • • • • • •
	Example:	ip address.
	Device (config-app-hosting-gateway0) #guest-ipathress 20.1.2.2 netmask 255.255.255.0	
Step 19	app-default-gateway <i>ip-address</i> guest-interface 2	Configures the default gateway for the application. Only one gateway is supported.
		application. Only one gateway is supported.
	Example:	
	Device (config-app-hosting-gateway0) #app-default-gateway 20.1.2.1 guest-interface 2	
Step 20	end	Exits global configuration mode and returns
	Example:	to privileged EXEC configuration mode.
	Device# end	

Configuring Docker Run Time Options

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Device >enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device#configure terminal	

	Command or Action	Purpose			
Step 3	<pre>app-hosting appid name Example: Router(config)#app-hosting appid app1</pre>	Enables application hosting and enters application hosting configuration mode.			
Step 4	app-hosting docker Example: Device(config-app-hosting)# app-resource docker	Enters application-hosting docker-configuration mode to specify application resource updates. Application start-up scripts are activated.			
Step 5	<pre>run-opts options Example: Device (config-app-hosting-docker)# run-opts 1 "-v \$(APP_DATA):/data"</pre>	Specifies the Docker run time options.			
Step 6	<pre>end Example: Device(config-app-hosting-docker)# end</pre>	Exits application-hosting docker-configuration mode and returns to privileged EXEC mode.			

Example

```
app-hosting appid app1
app-resource docker
run-opts 1 "--tmpfs /tmp:rw,size=128m"
```

Installing and Uninstalling Apps

Follow these steps to install or uninstall apps:

Procedure

	Command or Action	Purpose			
Step 1	enable	Enables privileged EXEC mode.			
	Example:	Enter your password if prompted.			
	Device >enable				
Step 2	app-hosting install appid <i>application-name</i> package <i>package-path</i>	Installs an app from the specified location.			
	Example:	The app can be installed from any local storage location such as, flash, bootflash, and usbflash0.			
	Device# app-hosting install appid lxc_app package flash:my_iox_app.tar				
Step 3	app-hosting activate appid application-name	Activates the application.			
	Example:				

Command or Action	Purpose		
Device# app-hosting activate appid app1	This command validates all application resource requests, and if all resources are available the application is activated; if not, the activation fails.		
app-hosting start appid application-name	Starts the application.		
Example:	Application start-up scripts are activated.		
Device# app-hosting start appid app1			
app-hosting stop appid application-name	Stops the application.		
Example:			
Device#app-hosting stop appid app1			
app-hosting deactivate appid application-name	Deactivates all resources allocated for the application.		
Example:			
Device# app-hosting deactivate appid app1			
app-hosting uninstall appid application-name	Uninstalls the application.		
Example:	Uninstalls all packaging and images stored.		
Device# app-hosting uninstall appid app1	All changes and updates to the application are also removed.		
	Device# app-hosting activate appid appl app-hosting start appid application-name Example: Device# app-hosting start appid appl app-hosting stop appid application-name Example: Device#app-hosting stop appid appl app-hosting deactivate appid app-hosting deactivate appid app-hosting uninstall appid application-name Example: Device# app-hosting deactivate appid appl		

What to do next

Note The app traffic to VirtualPortGroup interfaces will be blocked after you uninstall the app and reinstall it again with the same IP addresses, because the ARP entry for VirtualPortGroup interface is not updated after the app is reinstalled. You must clear the ARP cache for those IP addresses to be manually refreshed for the ARP.

Overriding the App Resource Configuration

Resource changes will take effect only after the app-hosting activate command is configured.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	

	Command or Action	Purpose				
Step 2	configure terminal	Enters global configuration mode.				
	Example:					
	Router# configure terminal					
Step 3	app-hosting appid name	Enables application hosting and enters				
	Example:	application hosting configuration mode.				
	Router(config)#app-hosting appid app1					
Step 4	app-resource profile name	Configures the custom application resource				
	Example:	profile, and enters custom application resource profile configuration mode.				
	Router (config-app-hosting) #app-resource	Only the custom profile name is supported.				
	profile custom	Only the custom prome name is supported.				
Step 5	cpu unit	Changes the default CPU allocation for the application.				
	Example:					
	Router(config-app-resource-profile-custom)#	Resource values are application-specific, and any adjustment to these values must ensure that the application can run reliably with the changes.				
Step 6	memory memory	Changes the default memory allocation.				
	Example:					
	<pre>Router(config-app-resource-profile-custom) # memory 512</pre>					
Step 7	vcpu number	Changes the virtual CPU (vCPU) allocation for				
	Example:	the application.				
	Router(config-app-resource-profile-custom)# vcpu 2					
Step 8	end	Exits custom application resource profile				
	Example:	configuration mode and returns to privileged EXEC mode.				
	Router(config-app-resource-profile-custom)#					

Verifying the Application Hosting Configuration

1. enable

Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device>enable

2. show iox-service

Displays the status of all IOx services

Example:

3. show app-hosting detail

IPv4 address : 20.1.2.2 IPv6 address : :: Network name : VPG0

IPv4 address : 20.1.1.2

MAC address : 52:54:dd:f2:29:67

eth1:

Displays detailed information about the application.

Example:

```
Device#show app-hosting detail appid iperf 3
App id : iperf_3
Owner : iox
State : RUNNING
Application
Type : docker
Name : networkstatic/iperf3
Version : latest
Description :
Author : Brent
Path : bootflash:iperf3x86.tar
URL Path :
Activated profile name : custom
Resource reservation
Memory : 500 MB
Disk : 500 MB
CPU : 173 units
CPU-percent : 5 %
VCPU : 1
Platform resource profiles
Profile Name CPU(unit) Memory(MB) Disk(MB)
_____
                                       _____
Attached devices
Type Name Alias
_____
serial/shell iox console shell serial0
serial/aux iox console aux serial1
serial/syslog iox syslog serial2
serial/trace iox_trace serial3
Network interfaces
_____
eth0:
MAC address : 52:54:dd:67:81:6f
IPv6 address : ::
Network name : mgmt-bridge300
eth3:
MAC address : 52:54:dd:b2:4d:86
```

```
IPv6 address : 2001:1::5054:ddff:fef2:2967
Network name : mgmt-bridge-v2340
Docker
-----
Run-time information
Command :
Entry-point : /bin/sleep 10000
Run options in use : --entrypoint '/bin/sleep 10000'
Package run options :
Application health information
Status : 0
Last probe error :
Last probe output :
```

Device#

4. show app-hosting list

Displays the list of applications and their status.

Example:

```
Device#show app-hosting list
App id State
app1 RUNNING
```

IOx Configuration with ERSPAN

The traffic can be spanned to IOX applications with the ERSPAN configurations on LAN or WAN ports. ACL can be applied on traffic like ERSPAN with FSPAN.

Procedure

```
Step 1 Create ACL like any extended access-list.
```

Example:

ip access-list extended ACL120
10 permit ip host 120.1.1.1 host 120.120.120.120

Step 2 Configure ERSPAN session for LAN or WAN ports to span data to the application.

Configure ERSPAN session for LAN ports to span data to the application.

Note ERSPAN Session ID 1 - 4 are only supported on LAN ports.

```
monitor session 1 type erspan-source
source interface Gi0/1/10 rx
filter access-group ACL120
destination
erspan-id 1
ip address 20.1.2.2 <== Ip address of L2/VLAN interface on APP
origin ip address 68.68.68
```

· configuring ERSPAN session for WAN ports to span data to the application.

```
monitor session 1 type erspan-source
source interface Gi0/0/0 rx
filter access-group ACL120
destination
erspan-id 1
ip address 20.1.1.2 <== Ip address of L3 interface on APP
origin ip address 68.68.68
```

Configuration Examples for Application Hosting

See the following examples:

Example: Enabling IOx

```
Device> enable
Device# configure terminal
Device(config)# iox
Device(config)# ip http server
Device(config)# ip http secure-server
Device(config)# username cisco privilege 15 secret 0 cisco
Device(config)# end
```

Example: Configuring a VirtualPortGroup to a Layer 3 Data Port

```
Device> enable
Device# configure terminal
Device(config)# ip routing
Device(config)# interface gigabitethernet 0/0/0
Device(config-if)# no switchport
Device(config-if)# ip address 10.1.1.1 255.255.255.0
Device(config)# interface virtualportgroup 0
Device(config-if)# ip address 192.168.0.1 255.255.255.0
Device(config-if)# end
```

Example: Installing and Uninstalling Apps

```
Device> enable
Device# app-hosting install appid app1 package flash:my_iox_app.tar
Device# app-hosting activate appid app1
Device# app-hosting start appid app1
Device# app-hosting stop appid app1
Device# app-hosting deactivate appid app1
Device# app-hosting uninstall appid app1
```

Example: Overriding the App Resource Configuration

Device# configure terminal

```
Device(config)# app-hosting appid app1
Device(config-app-hosting)# app-resource profile custom
Device(config-app-resource-profile-custom)# cpu 800
Device(config-app-resource-profile-custom)# memory 512
Device(config-app-resource-profile-custom)# vcpu 2
Device(config-app-resource-profile-custom)# end
```

Signed Application Support

To install a signed application, signed verification has to be enabled on the device. Signed verification can be enabled or disabled by the following command:

app-hosting verification {enable|disable}

The signed verification enabled or disabled status can be verified by the **show app-hosting infra** command:

```
# show app-hosting infra
IOX version: 2.7.0.0
App signature verification: disabled
Internal working directory: /vol/harddisk/iox
Application Interface Mapping
AppGigabitEthernet Port # Interface Name Port Type Bandwidth
1 AppGigabitEthernet0/1/1 KR Port - Internal 10G
CPU:
```

```
Quota: 99(Percentage)
Available: 99(Percentage)
Quota: 3465(Units)
Available: 0(Units)
```

When signed verification is enabled, any unsigned app can not be activated, and signed app can move to different states irrespective of the app sign verification enabled or disabled.

After enabling the signed verification, follow the instructions in Installing and Uninstalling Apps, on page 356 to install the application.

Cisco Cyber Vision

Cisco Cyber Vision Center (CVC) gives more visibility into Industrial IoT networks across Industrial Control Systems (ICS) with real-time monitoring of control and data networks. On IoT IOS-XE platforms beginning with release 17.4, integration of CVC is supported by deploying IOX Cyber Vision sensor. With this sensor deployed on IoT Routers, the platform can forward the traffic from IOX applications to Cyber Vision Center for real-time monitoring and we can forward any captured PCAP files to Vision center from IOX application. The minimum Cyber Vision release is 4.1.1 to work with the IR8340. For more information about CVC, see the release notes in the following URL:

https://www.cisco.com/c/en/us/support/security/cyber-vision/products-release-notes-list.html

For more information about CVC installation and ERSPAN with CVC, see the following:

https://www.cisco.com/c/en/us/td/docs/routers/access/1101/software/configuration/guide/b_IR1101config/m-new-features-17-4-1.html

ROM Monitor Overview

- ROM Monitor Overview, on page 363
- Access ROM Monitor Mode, on page 364
- Displaying the Configuration Register Setting, on page 366
- Environment Variable Settings, on page 367
- Exiting ROM Monitor Mode, on page 368

ROM Monitor Overview

The *ROM Monitor* is a bootstrap program that initializes the hardware and boots the Cisco IOS XE software when you power on or reload a router. When you connect a terminal to the router that is in ROM Monitor mode, the ROM Monitor (rommon 1>) prompt is displayed.

During normal operation, users do not use ROM Monitor mode. ROM Monitor mode is used only in special circumstances, such as reinstalling the entire software set, resetting the router password, or specifying a configuration file to use at startup.

The *ROM Monitor software* is known by many names. It is sometimes called *ROMMON* because of the CLI prompt in ROM Monitor mode. The ROM Monitor software is also called the *boot software*, *boot image*, or *boot helper*. Although it is distributed with routers that use the Cisco IOS XE software, ROM Monitor is a separate program from the Cisco IOS XE software. During normal startup, the ROM Monitor initializes the router, and then control passes to the Cisco IOS XE software. After the Cisco IOS XE software takes over, the ROM Monitor is no longer in use.

Environmental Variables and the Configuration Register

Two primary connections exist between ROM Monitor and the Cisco IOS XE software: the ROM Monitor environment variables and the configuration register.

The ROM Monitor environment variables define the location of the Cisco IOS XE software and describe how to load it. After the ROM Monitor has initialized the router, it uses the environment variables to locate and load the Cisco IOS XE software.

∕!∖

Caution

Be caucious to change ROMMON variables, because it may cause unexpected consequences.

The *configuration register* is a software setting that controls how a router starts up. One of the primary uses of the configuration register is to control whether the router starts in ROM Monitor mode or Administration

EXEC mode. The configuration register is set in either ROM Monitor mode or Administration EXEC mode as needed. Typically, you set the configuration register using the Cisco IOS XE software prompt when you need to use ROM Monitor mode. When the maintenance in ROM Monitor mode is complete, you change the configuration register so the router reboots with the Cisco IOS XE software.

Accessing ROM Monitor Mode with a Terminal Connection

When the router is in ROM Monitor mode, you can access the ROM Monitor software only from a terminal connected directly to the console port of the card. Because the Cisco IOS XE software (EXEC mode) is not operating, nonmanagement interfaces are not accessible. Basically, all Cisco IOS XE software resources are unavailable. The hardware is available, but no configuration exists to make use of the hardware.

Network Management Access and ROM Monitor Mode

It is important to remember that ROM Monitor mode is a router mode, not a mode within the Cisco IOS XE software. It is best to remember that ROM Monitor software and the Cisco IOS XE software are two separate programs that run on the same router. At any given time, the router runs only one of these programs.

One area that can be confusing when using ROM Monitor and the Cisco IOS XE software is the area that defines the IP configuration for the Management Ethernet interface. Most users are comfortable with configuring the Management Ethernet interface in the Cisco IOS XE software. When the router is in ROM Monitor mode, however, the router does not run the Cisco IOS XE software, so that Management Ethernet interface configuration is not available.

When you want to access other devices, such as a TFTP server, while in ROM Monitor mode on the router, you must configure the ROM Monitor variables with IP access information.

Note

TFTP access variables are currently not supported on the IR8340 platform.

Access ROM Monitor Mode

The following sections describe how to enter the ROMMON mode, and contains the following sections:

Checking the Current ROMMON Version

To display the version of ROMmon running on a router, use the **show rom-monitor** command . To show all variables that are set in ROMmon, use show romvar.

```
DISABLE_CC_AUTH = 1

DISABLE_SD_FLASH = no

PASSWD_RECOVERY = no

ENABLE_BREAK = no

ENABLE_FLASH_PRIMARY_BOOT = no

BAUD = 9600

LICENSE_BOOT_LEVEL =

SKIP_CHIPGUARD = 1

RET_2_RTS =

BOOT =

flash:ir8340-universalk9.HD_RIARIS_DEV_IATEST_20210322_153228.SSA.bin,12; flash:ir8340-universalk9.HD_RIARIS_DEV_IATEST_20210323_184154.SSA.bin,12;

BSI = 0

RET_2_RCALTS =

RANDOM_NUM = 404654831
```

If your configuration register was set to hex value 0x0 or 0x1820, reload operation will bring you to the ROMmon mode command prompt (rommon 1>). Invoking the set command at the prompt (rommon 1> set) will display the same information as "show romvar" above in IOS/XE exec mode.

```
rommon 2 >set
BOOT=flash:ir8340-universalk9.BLD_POLARIS_DEV_LATEST_20210710_191629_V17_7_0_60.SSA.bin,12;
BSI=0
CRYPTO_BI_THPUT=50000
DEVICE_MANAGED_MODE=autonomous
LICENSE_BOOT_LEVEL=
PS1=rommon ! >
RANDOM_NUM=1822515242
RET_2_RCALTS=1630484680
RET_2_RTS=
SKIP_CHIPGUARD=1
TEMPLATE=advanced
rommon 3 >
```

Commonly Used ROM Monitor Commands

The following table summarizes the commands commonly used in ROM Monitor. For specific instructions on using these commands, refer to the relevant procedure in this document.

ROMMON Command	Description			
boot image	Manually boots a Cisco IOS XE software image.			
boot image –o config-file-path	Manually boots the Cisco IOS XE software with a temporary alternative administration configuration file.			
confreg	Changes the config-register setting.			
dev	Displays the available local storage devices.			
dir	Displays the files on a storage device.			
reset	Resets the node.			
set	Displays the currently set ROM Monitor environmental settings.			
sync	Saves the new ROM Monitor environmental settings.			

Table 20: Commonly Used ROM Monitor Commands

ROMMON Command Description		Description
	unset	Removes an environmental variable setting.

Examples

The following example shows what appears when you enter the ? command on a router:

```
rommon 3 >?
alias set and/or display command aliases
boot boot up an external process
cpuinfo display processor information
confreg configuration register utility
ctchallenge Generate a challenge for dev key install
ctinstkey Parse the response and install dev key
ctiskeyinstalled checks if devkey installed and display it
ctremkey Remove the devkey from Aikido
ctrespsave Store parts of incoming response
dev display the device table
dir list files in a file system
efi shell launch the UEFI SHELL enviroment
flwr burn new BIOS onto the bootrom
help monitor built-in command(s) help
history display monitor command history
meminfo display main memory information
repeat repeat a monitor command
reset system reset
set display the monitor environment
showmon display currently selected ROM monitor
sync write monitor environment to NVRAM
token display board's unique token identifier
unalias unset an alias
unset unset a variable from the monitor environment
rommon 4 >
```

Changing the ROM Monitor Prompt

You can change the prompt in ROM Monitor mode by using the **PS1**= command as shown in the following example:

```
rommon 4 >PS1="IR8340 rommon ! >"
IR8340 rommon 5 >
```

Changing the prompt is useful if you are working with multiple routers in ROM Monitor at the same time. This example specifies that the prompt should be "IR8340 rommon", followed by the line number, and then followed by "> " by the line number.

Displaying the Configuration Register Setting

To display the current configuration register setting, enter the **showmon** command without parameters as follows:

IR8340 rommon 8 >showmon

System Bootstrap, Version v0.33, DEVELOPMENT SOFTWARE

Copyright (c) 1994-2021 by cisco Systems, Inc. Compiled Mon Jul 12 18:53:57 2021 by root !!! DEBUG SECURE-BOOT CPLD Version Installed. For INTERNAL USE ONLY !!! Current image running : Boot ROMO Last reset cause (0x00000002): LocalSoft IR8340-K9 platform with 8388608 Kbytes of main memory IR8340 rommon 9 >

The configuration register setting is labeled *Virtual Configuration Register*. Enter the **no** command to avoid changing the configuration register setting.

Environment Variable Settings

The ROM Monitor environment variables define the attributes of the ROM Monitor. Environmental variables are entered like commands and are always followed by the equal sign (=). Environment variable settings are entered in capital letters, followed by a definition. For example:

IP ADDRESS=10.0.0.2

Under normal operating conditions, you do not need to modify these variables. They are cleared or set only when you need to make changes to the way ROM Monitor operates.

This section includes the following topics:

Frequently Used Environmental Variables

The following table shows the main ROM Monitor environmental variables. For instructions on how to use these variables, see the relevant instructions in this document. The IR8340 boot loader does not support netboot, so any setting like environment variables IP_ADDRESS, IP_SUBNET_MASK, DEFAULT_GATEWAY, TFTP_SERVER, TFTP_FILE are not used.

Table 21: Frequently Used ROM Monitor Environmental Variables

Environmental variable	Description				
BOOT=path/file	Identifies the boot software for a node. This variable is usually set automatically when the router boots.				

Displaying Environment Variable Settings

To display the current environment variable settings, enter the set command :

```
IR8340 rommon 8 >showmon
```

```
System Bootstrap, Version v0.33, DEVELOPMENT SOFTWARE
Copyright (c) 1994-2021 by cisco Systems, Inc.
Compiled Mon Jul 12 18:53:57 2021 by root
```

!!! DEBUG SECURE-BOOT CPLD Version Installed. For INTERNAL USE ONLY !!!
Current image running : Boot ROM0
Last reset cause (0x00000002): LocalSoft
IR8340-K9 platform with 8388608 Kbytes of main memory
IR8340 rommon 9 >

Entering Environment Variable Settings

Environment variable settings are entered in capital letters, followed by a definition. The following example shows the environmental variables that can be configured in ROMmon mode.:

```
rommon 1 > confreg 0x0
rommon 1> BOOT_WDOG = DISABLE
rommon 1> BOOT = IR8340-K9 image name
```

Saving Environment Variable Settings

To save the current environment variable settings, enter the sync command:

```
rommon > sync
```

Note Environmental values that are not saved with the **sync** command are discarded whenever the system is reset or booted.

Exiting ROM Monitor Mode

To exit ROM Monitor mode, you must change the configuration register and reset the router.

Procedure

	Command or Action	Purpose			
Step 1	confreg	Initiates the configuration register configuration			
	Example:	prompts.			
	rommon 1> confreg				
Step 2	Respond to each prompt as instructed.	See the example that follows this procedure for more information.			
Step 3	reset	Resets and initializes the router.			
	Example:				
	rommon 2> reset				

Configuration Example

```
rommon 3 > confreq
          Configuration Summary
   (Virtual Configuration Register: 0x0)
enabled are:
 [ 0 ] break/abort has effect
 [ 1 ] console baud: 9600
boot: ..... the ROM Monitor
do you wish to change the configuration? y/n [n]: y
enable "diagnostic mode"? y/n [n]:
enable "use net in IP bcast address"? y/n [n]:
enable "load rom after netboot fails"? y/n [n]:
enable "use all zero broadcast"? y/n [n]:
disable "break/abort has effect"? y/n [n]:
enable "ignore system config info"? y/n [n]:
change console baud rate? y/n [n]:
change the boot characteristics? y/n [n]:
          Configuration Summary
   (Virtual Configuration Register: 0x0)
enabled are:
[ 0 ] break/abort has effect
 [ 1 ] console baud: 9600
boot: ..... the ROM Monitor
do you wish to change the configuration? y/n [n]:
```

Upgrading the ROMmon for a Router

ROMmon upgrade on the IR8340-K9 router is automatically done when the image is booted. The latest version of the ROMmon is bundled with the IOSXE image. An algorithm detects if the current running version is older than the bundled version, if so, it is automatically upgraded. If the current running version is equal to the bundled version no upgrade is executed. For every successful upgrade, the router is automatically rebooted in order for the new version to get loaded and executed.:

Procedure

Step 1	(Optional) Run the show rom-monitor slot command on the router to see the current release numbers of
	ROMmon on the hardware. See the Checking the Current ROMMON Version, on page 364 for information about interpreting the output of the command that you run.
Step 2	If autoboot has not been enabled by using the config-register 0x2102 command, run the boot <i>filesystem:/file-location</i> command at the ROMmon prompt to boot the Cisco IOS XE image, where
	<i>filesystem:/file-location</i> is the path to the consolidated package file. The ROMmon upgrade is not permanent for any piece of hardware until the Cisco IOS XE image is booted.
Step 3	Run the enable command at the user prompt to enter the privileged EXEC mode after the boot is complete.
Step 4	Run the show rom-monitor slot command to verify whether the ROMmon has been upgraded.

Process Health Monitoring

This chapter describes how to manage and monitor the health of various components of your router. It contains the following sections:

- Monitoring Control Plane Resources, on page 371
- Monitoring Hardware Using Alarms, on page 383

Monitoring Control Plane Resources

The following sections explain the details of memory and CPU monitoring from the perspective of the Cisco IOS process and the overall control plane:

- Avoiding Problems Through Regular Monitoring, on page 371
- Cisco IOS Process Resources, on page 371
- Overall Control Plane Resources, on page 381

Avoiding Problems Through Regular Monitoring

Processes should provide monitoring and notification of their status/health to ensure correct operation. When a process fails, a syslog error message is displayed and either the process is restarted or the router is rebooted. A syslog error message is displayed when a monitor detects that a process is stuck or has crashed. If the process can be restarted, it is restarted; else, the router is restarted.

Monitoring system resources enables you to detect potential problems before they occur, thus avoiding outages. It also establishes a baseline for a normal system load. You can use this information as a basis for comparison, when you upgrade hardware or software to see if the upgrade has affected resource usage.

Cisco IOS Process Resources

You can view CPU utilization statistics on active processes and see the amount of memory being used in these processes using the **show memory** command and the **show process cpu** command. These commands provide a representation of memory and CPU utilization from the perspective of only the Cisco IOS process; they do not include information for resources on the entire platform. When the **show memory** command is used in a system with 4 GB RAM running a single Cisco IOS process, the following memory usage is displayed:

Router# **show memory** Tracekey : 1#ac03ca5b9748c51baa2971d7a417e55e

Head Total(b) Used(b) Free(b) Lowest(b) Largest(b) Processor 7F74107C4048 3807080396 239658308 3567422088 661095820 3145727908 reserve P 7F74107C40A0 102404 92 102312 102312 102312 lsmpi_io 7F740259B1A8 6295128 6294304 824 824 412 Dynamic heap limit(MB) 3000 Use(MB) 0

Processor memory

	_				
Address Bytes Prev Next	Ref PrevF Nez	xtF what Allo	c PC		
7F74107C4048 0000102408	00000000 7F74	4107DD0A8 001		 *In:	it*
:559FB88BD000+5E73061					
7F74107DD0A8 000000056	7F74107C4048	7F74107DD138	001	 	*Init*
:559FB88BD000+5E7307F					
7F74107DD138 0000008224	7F74107DD0A8	7F74107DF1B0	001	 	*Init*
:559FB88BD000+5E7309A					
7F74107DF1B0 000000296	7F74107DD138	7F74107DF330	001	 	*Init*
:559FB88BD000+9093511					
7F74107DF330 000000568	7F74107DF1B0	7F74107DF5C0	001	 	*Init*
:559FB88BD000+9099C4A					
7F74107DF5C0 0000032776	7F74107DF330	7F74107E7620	001	 	Managed Chunk O
:559FB88BD000+90832BF					5 ~
7F74107E7620 000000056	7F74107DF5C0	7F74107E76B0	001	 	*Tnit*
:559FB88BD000+5EC98DD	11,110,01000	11,110,12,020	001		1111.0
7F74107E76B0 0000032776	757410757620	757410755710	001	 	Oueue Pair - O
:559FB88BD000+90B02EF	11,110,11,020	/1/110/11/10	001		gueue rurr g
	757/10757600	757/10752070	0.01	 	* Toit*
7F74107EF710 0000012808 :559FB88BD000+13BF988B	/F/410/E/0D0	/ / 410 / 229 / 0	001	 	IIII (
	707410700710		0.01		Tiet Dlemente
7F74107F2970 0000032776 :559FB88BD000+904DB29	/ / / 4 10 / E / 10	/E/410/EA9D0	001	 	LIST Elements
	70741070070	707410000320	0.01		Tist Heedewe
7F74107FA9D0 0000032776	/E./410/E.29/0	/E/410802A30	001	 	List Headers
:559FB88BD000+904DB77			0.01		
7F7410802A30 0000032776	/F /410/FA9D0	/F/41080AA90	001	 	IOSXE Process S
:559FB88BD000+A664348					
7F741080AA90 0000032776	7F7410802A30	7F7410812AF0	001	 	IOSXE Queue Pro
:559FB88BD000+A66438A					
7F7410812AF0 0000065544	7F741080AA90	7F7410822B50	001	 	IOSXE Queue Bal
:559FB88BD000+A6643C5					
7F7410822B50 000000328	7F7410812AF0	7F7410822CF0	001	 	*Init*
:559FB88BD000+13BF1567					
7F7410822CF0 000000328	7F7410822B50	7F7410822E90	001	 	*Init*
:559FB88BD000+13BF1567					
7F7410822E90 0000000192	7F7410822CF0	7F7410822FA8	001	 	*Init*
:559FB88BD000+90C3F74					
7F7410822FA8 0000036872	7F7410822E90	7F741082C008	001	 	*Init*
:559FB88BD000+A65A3A8					
7F741082C008 0000010008	7F7410822FA8	7F741082E778	001	 	Platform VM Pag
:559FB88BD000+A68A8A3					-
7F741082E778 0000002008	7F741082C008	7F741082EFA8	001	 	*Init*
iosd crb crankshaft uniz	x:7F7460E22000	0+7D8CB			
7F741082EFA8 0000200712			001	 	Interrupt Stack
:559FB88BD000+A65A3A8					÷
7F7410860008 000000328	7F741082EFA8	7F74108601A8	001	 	*Init*
:559FB88BD000+13BF1567					
7F74108601A8 0000003008	7F7410860008	7F7410860DC0	001	 	Watched Semapho
:559FB88BD000+90BBCE8					· · · · · · · · · · · · · · · · · · ·
7F7410860DC0 0000000400	7F7410860128	777410860728	001	 	*Tnit*
:559FB88BD000+13BF1567	.1,1100001A0	. 1 , 1100001A0	001		
7F7410860FA8 0000036872	777410860000	7〒7410862008	001	 	*Tnit*
,I, HIGGODING 0000000072		, _ , I I U U U U U U U U U U U	UUT		1111 C

. 5 5 0 F D O O D D O O O I A C 5 A 2 A O						
:559FB88BD000+A65A3A8 7F741086A008 000000328	7F7410860FA8	7F741086A1A8	001			*Init*
:559FB88BD000+13BF1567 7F741086A1A8 0000000184	7F741086A008	7F741086A2B8	001			*Init*
:559FB88BD000+90A4B10						
7F741086A2B8 0000000184 :559FB88BD000+90A4B10	7F741086A1A8	7F741086A3C8	001			*Init*
7F741086A3C8 0000000184	7F741086A2B8	7F741086A4D8	001			*Init*
:559FB88BD000+90A4B10 7F741086A4D8 0000000184	7F741086A3C8	7F741086A5E8	001			*Init*
:559FB88BD000+90A4B10						
7F741086A5E8 0000000184 :559FB88BD000+90A4B10	7F741086A4D8	7F741086A6F8	001			*Init*
7F741086A6F8 000000096	7F741086A5E8	7F741086A7B0	001			*Init*
:559FB88BD000+90A4AA4 7F741086A7B0 0000000152	7F741086A6F8	7F741086A8A0	001			Crvpto CA
:559FB88BD000+98E58BF						
7F741086A8A0 000000152 :559FB88BD000+98E58BF	7F741086A7B0	7F741086A990	001			Crypto CA
7F741086A990 0000000152	7F741086A8A0	7F741086AA80	001			Crypto CA
:559FB88BD000+98E58BF						
7F741086AA80 000000152 :559FB88BD000+98E58BF	7F741086A990	7F741086AB70	001			Crypto CA
7F741086AB70 0000000176	7F741086AA80	7F741086AC78	001			Crypto CA
:559FB88BD000+98E58BF 7F741086AC78 000000272	757410863870	777410862070	001			Crypto CA
:559FB88BD000+98E5875						
7F741086ADE0 000000096	7F741086AC78	7F741086AE98	000	7F741C306	5070 7F741	15EC2CE8 (fragment)
:559FB88BD000+98E5875 7F741086AE98 000000184	7F741086ADE0	7F741086AFA8	001			Init
:559FB88BD000+52443C9						
7F741086AFA8 0000036872 :559FB88BD000+A65A3A8	7F741086AE98	7F7410874008	001			*Init*
7F7410874008 000000328	7F741086AFA8	7F74108741A8	001			*Init*
:559FB88BD000+13BF1567 7F74108741A8 0000000184	7F7410874008	7F74108742B8	001			*Init*
:559FB88BD000+90A4B10						
7F74108742B8 000000064 :559FB88BD000+5D90EDA	7F74108741A8	7F7410874350	001			Parser Linkage
7F7410874350 0000000216	7F74108742B8	7F7410874480	001			IPv4 FIB subblo
:559FB88BD000+5A2947A						
7F7410874480 0000000224 :559FB88BD000+9060A7C	/ 14108/4350	/1/4108/4588	001			^1N1U^
7F74108745B8 000000224	7F7410874480	7F74108746F0	001			*Init*
:559FB88BD000+9060A7C 7F74108746F0 000000328	7F74108745B8	7F7410874890	001			*Init*
:559FB88BD000+9060A7C						
7F7410874890 000000328 :559FB88BD000+9060A7C	7F74108746F0	7F7410874A30	001			*Init*
7F7410874A30 000000328	7F7410874890	7F7410874BD0	001			*Init*
:559FB88BD000+9060A7C 7F7410874BD0 000000896	757410074320	757410074530	0.0.1			* T ~ - + +
:559FB88BD000+9060A7C						
7F7410874FA8 0000200712	7F7410874BD0	7F74108A6008	001			Interrupt Stack
:559FB88BD000+A65A3A8 7F74108A6008 000000968	7F7410874FA8	7F74108A6428	001			*Tnit.*
iosd crb crankshaft uni:	x:7F7460E22000)+3AC76				
7F74108A6428 0000002008 :559FB88BD000+90BBD7B	7F74108A6008	7F74108A6C58	001			Watcher Message
7F74108A6C58 000000360	7F74108A6428	7F74108A6E18	001			Process Events
:559FB88BD000+90B6840						
7F74108A6E18 000000096 :559FB88BD000+5324CAA	74108A6C58	/ Ε / 4ΙΟΧΑΘΕΌΟ	UUT			SMIDR SR LLL
7F74108A6ED0 000000128	7F74108A6E18	7F74108A6FA8	001			*Init*

:559FB88BD000+9060A7C						
7F74108A6FA8 0000036872	7F74108A6ED0	7F74108B0008	001			*Tnit*
:559FB88BD000+A65A3A8	11 / 11001101100	1111100000000	001			11110
7F74108B0008 0000002840	7F74108A6FA8	7F74108B0B78	001			*Init*
:559FB88BD000+B529B9D						
7F74108B0B78 000000984	7F74108B0008	7F74108B0FA8	001			Watched Message
:559FB88BD000+90BBD4A						
7F74108B0FA8 0000200712	7F74108B0B78	7F74108E2008	001			Interrupt Stack
:559FB88BD000+A65A3A8						
7F74108E2008 0000002336	7F74108B0FA8	7F74108E2980	001			Process Array
:559FB88BD000+90C3DC0						
7F74108E2980 000000360	7F74108E2008	7F74108E2B40	001			Process Events
:559FB88BD000+90B6840						
7F74108E2B40 000000328	7F74108E2980	7F74108E2CE0	001			*Init*
:559FB88BD000+13BF1567						
7F74108E2CE0 0000000120	7F74108E2B40	7F74108E2DB0	001			*Init*
:559FB88BD000+90A4347	707410000000	757410050500	0.01			47.'I4
7F74108E2DB0 0000000184	/F/4108E2CE0	/F/4108EZECU	001			^init^
:559FB88BD000+90A4B10	757/10052000	757/10052570	0.0.1			*Tp:+*
7F74108E2EC0 0000000144 :559FB88BD000+4FFE35D	/F/4100E2DB0	/F/4100EZFA0	001			~ 1II1 U ~
7F74108E2FA8 0000036872	757410852500	7F74108EC008	001			*Tni+*
:559FB88BD000+A65A3A8	11 1 1 1 0 0 0 2 0 0 0	111410000000	001			11110
7F74108EC008 0000001232	7F74108E2FA8	7F74108EC530	001			Process
:559FB88BD000+90C3F05	, 1 , 1100221110	12,120020000	001			1100000
7F74108EC530 0000001232	7F74108EC008	7F74108ECA58	001			Process
:559FB88BD000+90C3F05						
7F74108ECA58 000000096	7F74108EC530	7F74108ECB10	001			Init
:559FB88BD000+8FF0694						
7F74108ECB10 000000184	7F74108ECA58	7F74108ECC20	001			*Init*
:559FB88BD000+90A4B10						
7F74108ECC20 000000184	7F74108ECB10	7F74108ECD30	001			*Init*
:559FB88BD000+90A4B10						
7F74108ECD30 000000184	7F74108ECC20	7F74108ECE40	001			*Init*
:559FB88BD000+90A4B10						
7F74108ECE40 0000000272	7F74108ECD30	7F74108ECFA8	001			*Init*
:559FB88BD000+90A4B10						
7F74108ECFA8 0000200712	7E74108ECE40	717410912008	001			Interrupt Stack
:559FB88BD000+A65A3A8	78741008080	707410010110	0.01			+ T L +
7F741091E008 0000000184 :559FB88BD000+90A4B10	/F/4108ECFA8	/ / / 410916118	001			^INIL^
	757/10015009	757410015530	0.0.1			Pog Function Ii
7F741091E118 0000003008 :559FB88BD000+905FC68	/ / 110012000	/ / / 10 / 16 0 50	001			Reg function bi
7F741091ED30 000000064	7F741091E118	7F741091EDC8	001			Parser Linkage
:559FB88BD000+5D90C9A	11 / 110 / 11110	1111100110000	001			rarber brinkage
7F741091EDC8 000000064	7F741091ED30	7F741091EE60	001			Parser Linkage
:559FB88BD000+5D90EDA						
7F741091EE60 000000064	7F741091EDC8	7F741091EEF8	001			Parser Linkage
:559FB88BD000+5D90C9A						
7F741091EEF8 000000088	7F741091EE60	7F741091EFA8	001			*Init*
:559FB88BD000+5EC98DD						
7F741091EFA8 0000036872	7F741091EEF8	7F7410928008	001			*Init*
:559FB88BD000+A65A3A8						
7F7410928008 000000184	7F741091EFA8	7F7410928118	001			*Init*
:559FB88BD000+90A4B10						
7F7410928118 0000001504	/F/410928008	/F/410928750	001			Reg Function Se
:559FB88BD000+905FCC2	707410000110	7074100000000	0.01			Den Frist' C
7F7410928750 0000001504	1410928118	1410928088	UUI			Reg runction Ca
:559FB88BD000+905FCEF 7F7410928D88 000000064	7〒7410928750	7〒7410028〒20	001			Parsor Linkago
:559FB88BD000+5D90C9A	, r , i i i u j 20 / JU	, r / f 10 520E2U	UUI	· 	· _	rarser minkaye
7F7410928E20 0000000064	777410928088	777410928728	001			Parser Linkage
:559FB88BD000+5D90EDA			001			Laroor Dinkaye
7F7410928EB8 0000000152	7F7410928E20	7F7410928FA8	001			Init

:559FB88BD000+500508B	707410000000	707410053000	0.01		T
7F7410928FA8 0000200712 :559FB88BD000+A65A3A8	/F/410928EB8	/E/41095A008	001	 	Interrupt Stack
7F741095A008 000006888	7F7410928FA8	7F741095BB48	001	 	TTY data
:559FB88BD000+8F75806	, 1 , 1100201110	,1,11000000010	001		111 0000
7F741095BB48 0000004104	7F741095A008	7F741095CBA8	001	 	TTY Input Buf
:559FB88BD000+8F77B6F					
7F741095CBA8 0000004104	7F741095BB48	7F741095DC08	001	 	TTY Output Buf
:559FB88BD000+8F77BC7					
7F741095DC08 0000024584	7F741095CBA8	7F7410963C68	001	 	proc_hist_lmt_v
:559FB88BD000+D06DC00	707410050000	707410065000	0.01		una bist lat .
7F7410963C68 0000008200 :559FB88BD000+D06DC48	/ / / 410950000	/ / 410905000	001	 	proc_msc_mc_v
7F7410965CC8 000008200	7F7410963C68	7F7410967D28	001	 	prochist lmt v
:559FB88BD000+D06DC82					· ··_ ··_ ·_
7F7410967D28 0000005008	7F7410965CC8	7F7410969110	001	 	messages
:559FB88BD000+90BBBB5					
7F7410969110 0000005008	7F7410967D28	7F741096A4F8	001	 	Watched message
:559FB88BD000+90BBBED	707410000110	707410060270	0.01		Watahad Outsus
7F741096A4F8 0000020008 :559FB88BD000+90BBC1E	/1/410969110	/1/4109613/8	001	 	watched Queue
7F741096F378 0000065544	7F741096A4F8	7F741097F3D8	001	 	Watched Queue I
:559FB88BD000+90BBC55	, 1 , 1100 01111 0	,1,1100,1000	001		natonica gacaci 1
7F741097F3D8 0000020008	7F741096F378	7F7410984258	001	 	Watched Boolean
:559FB88BD000+90BBC86					
7F7410984258 0000020008	7F741097F3D8	7F74109890D8	001	 	Watched Bitfiel
:559FB88BD000+90BBCB7	777410004050	222410000040	0.01		
7F74109890D8 0000010008 :559FB88BD000+90BBD19	/1./410984258	/F./41098B848	001	 	Watcher Info
7F741098B848 0000010008	777410989008	7F741098DFB8	001	 	Read/Write Lock
:559FB88BD000+90BBDAC	111110505050	11,110,0001,00	001		neud, milee book
7F741098DFB8 000000184	7F741098B848	7F741098E0C8	001	 	*Init*
:559FB88BD000+90A4B10					
7F741098E0C8 000000064	7F741098DFB8	7F741098E160	001	 	Init
:559FB88BD000+98AD5C3					
7F741098E160 0000000576 :559FB88BD000+9060A7C	/F/41098E0C8	/F./41098E3F8	001	 	*lnit*
7F741098E3F8 0000000400	7F741098E160	7F741098E5E0	001	 	*Tnit*
:559FB88BD000+9060A7C	11111000001000	11,110,000,000,000	001		11110
7F741098E5E0 0000001240	7F741098E3F8	7F741098EB10	001	 	*Init*
:559FB88BD000+9060A7C					
7F741098EB10 0000000488	7F741098E5E0	7F741098ED50	001	 	*Init*
:559FB88BD000+9060A7C					
7F741098ED50 000000072 :559FB88BD000+98DB044	7F741098EB10	7F741098EDF0	001	 	Init
7F741098EDF0 000000056	777410987050	757410985580	001	 	Tnit
:559FB88BD000+5D94FF6	11/11000000000	/1/4109000000	001		11110
7F741098EE80 0000000208	7F741098EDF0	7F741098EFA8	001	 	*Init*
:559FB88BD000+C1E0292					
7F741098EFA8 0000028104	7F741098EE80	7F7410995DC8	001	 	Process Stack
:559FB88BD000+A65A3A8					
7F7410995DC8 000000152	7F741098EFA8	7F7410995EB8	001	 	*Init*
:559FB88BD000+90C3F74 7F7410995EB8 0000000152	757/10005008	757/10005578	001	 	*Tnit*
:559FB88BD000+9060A7C	111410555000	/F/HIOJJJFAO	001		INIC
7F7410995FA8 0000016104	7F7410995EB8	7F7410999EE8	001	 	Process Stack
:559FB88BD000+A65A3A8					
7F7410999EE8 0000032776	7F7410995FA8	7F74109A1F48	001	 	List Elements
:559FB88BD000+904DF98	777410000	777410070	0.01		
7F74109A1F48 0000032776 :559FB88BD000+904DF98	/F./4T0333EE8	/ F. / 4 T O A A F. A 8	100	 	LIST Elements
7F74109A9FA8 0000032776	7〒7410921〒49	7F74109B2008	001	 	List Elements
:559FB88BD000+904DF98	, 110 91111 40	, 110922000	001		
7F74109B2008 0000032776	7F74109A9FA8	7F74109BA068	001	 	List Elements

:559FB88BD000+904DF98 7F74109BA068 0000032776 7F74109B2008 7F74109C20C8 001 ------ List Elements :559FB88BD000+904DF98 7F74109C20C8 0000032776 7F74109BA068 7F74109CA128 001 ----- List Elements :559FB88BD000+904DF98 7F74109CA128 0000032776 7F74109C20C8 7F74109D2188 001 ----- List Element

The show process cpu command displays Cisco IOS CPU utilization average:

Router# show process cpu

CPU utilization for five seconds: 1%/0%; one minute: 1%; five minutes: 1% PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process 1 3 21 142 0.00% 0.00% 0.00% 0 Chunk Manager 2 166 399 416 0.00% 0.00% 0.00% 0 Load Meter 3 0 1 0 0.00% 0.00% 0.00% 0 PKI Trustpool 4 0 1 0 0.00% 0.00% 0.00% 0 Retransmission o 5 0 1 0 0.00% 0.00% 0.00% 0 IPC ISSU Dispatc 6 17 14 1214 0.00% 0.00% 0.00% 0 RF Slave Main Th 7 0 1 0 0.00% 0.00% 0.00% 0 EDDRI MAIN 8 0 1 0 0.00% 0.00% 0.00% 0 RO Notify Timers 9 1017 304 3345 0.47% 0.06% 0.03% 0 Check heaps 10 5 34 147 0.00% 0.00% 0.00% 0 Pool Manager 11 0 1 0 0.00% 0.00% 0.00% 0 DiscardQ Backgro 12 1 2 500 0.00% 0.00% 0.00% 0 Timers 13 0 53 0 0.00% 0.00% 0.00% 0 WATCH AFS 14 0 1 0 0.00% 0.00% 0.00% 0 MEMLEAK PROCESS 15 4 18 222 0.00% 0.00% 0.00% 0 ARP Input 16 37 2132 17 0.00% 0.00% 0.00% 0 ARP Background 17 0 2 0 0.00% 0.00% 0.00% 0 ATM Idle Timer 18 0 1 0 0.00% 0.00% 0.00% 0 ATM ASYNC PROC 19 0 1 0 0.00% 0.00% 0.00% 0 CEF MIB API 20 0 1 0 0.00% 0.00% 0.00% 0 AAA SERVER DEADT 21 0 1 0 0.00% 0.00% 0.00% 0 Policy Manager 22 0 2 0 0.00% 0.00% 0.00% 0 DDR Timers 23 130 50 2600 0.00% 0.00% 0.00% 0 Entity MIB API 24 179 83 2156 0.00% 0.00% 0.00% 0 PrstVbl 25 2 247 8 0.00% 0.00% 0.00% 0 Serial Backgroun 26 0 1 0 0.00% 0.00% 0.00% 0 RMI RM Notify Wa 27 0 2 0 0.00% 0.00% 0.00% 0 ATM AutoVC Perio 28 0 2 0 0.00% 0.00% 0.00% 0 ATM VC Auto Crea 29 10 1000 10 0.00% 0.00% 0.00% 0 IOSXE heartbeat 30 31 1023 30 0.00% 0.00% 0.00% 0 DB Lock Manager 31 33 1989 16 0.00% 0.00% 0.00% 0 GraphIt 32 0 1 0 0.00% 0.00% 0.00% 0 DB Notification 33 0 1 0 0.00% 0.00% 0.00% 0 IPC Apps Task 34 0 1 0 0.00% 0.00% 0.00% 0 ifIndex Receive 35 5 401 12 0.00% 0.00% 0.00% 0 IPC Event Notifi 36 32 1952 16 0.00% 0.00% 0.00% 0 IPC Mcast Pendin 37 0 1 0 0.00% 0.00% 0.00% 0 Platform appsess 38 0 34 0 0.00% 0.00% 0.00% 0 IPC Dynamic Cach 39 1 401 2 0.00% 0.00% 0.00% 0 IPC Service NonC 40 0 1 0 0.00% 0.00% 0.00% 0 IPC Zone Manager 41 16 1952 8 0.00% 0.00% 0.00% 0 IPC Periodic Tim 42 19 1952 9 0.00% 0.00% 0.00% 0 IPC Deferred Por 43 0 1 0 0.00% 0.00% 0.00% 0 IPC Process leve 44 0 1 0 0.00% 0.00% 0.00% 0 IPC Seat Manager 45 0 115 0 0.00% 0.00% 0.00% 0 IPC Check Oueue 46 0 1 0 0.00% 0.00% 0.00% 0 IPC Seat RX Cont 47 0 1 0 0.00% 0.00% 0.00% 0 IPC Seat TX Cont 48 10 201 49 0.00% 0.00% 0.00% 0 IPC Keep Alive M 49 33 401 82 0.00% 0.00% 0.00% 0 IPC Loadometer 50 0 1 0 0.00% 0.00% 0.00% 0 IPC Session Deta 51 0 1 0 0.00% 0.00% 0.00% 0 SENSOR-MGR event 52 2 201 9 0.00% 0.00% 0.00% 0 Compute SRP rate

53 0 1 0 0.00% 0.00% 0.00% 0 IFS Agent Manage 54 0 1 0 0.00% 0.00% 0.00% 0 License TPC stat 55 0 1 0 0.00% 0.00% 0.00% 0 License IPC serv 56 0 7 0 0.00% 0.00% 0.00% 0 Net Input 57 0 2 0 0.00% 0.00% 0.00% 0 Dialer event 58 0 1 0 0.00% 0.00% 0.00% 0 SERIAL A'detect 59 0 1 0 0.00% 0.00% 0.00% 0 IOSXE signals IO 60 0 1 0 0.00% 0.00% 0.00% 0 client entity se 61 1 1 1000 0.00% 0.00% 0.00% 0 RF SCTPthread 62 0 1 0 0.00% 0.00% 0.00% 0 CHKPT RG SCTPthr 63 0 2 0 0.00% 0.00% 0.00% 0 XML Proxy Client 64 0 1 0 0.00% 0.00% 0.00% 0 ARP Snoop 65 28 1999 14 0.00% 0.00% 0.00% 0 Dynamic ARP Insp 66 1216 110 11054 0.00% 0.00% 0.00% 0 crypto sw pk pro 67 0 2 0 0.00% 0.00% 0.00% 0 License Client N 68 0 1 0 0.00% 0.00% 0.00% 0 Image License br 69 24 133 180 0.00% 0.00% 0.00% 0 SAEventLog 70 11 2 5500 0.00% 0.00% 0.00% 0 SAStorage 71 1 4 250 0.00% 0.00% 0.00% 0 SASConnect 72 41 1165 35 0.00% 0.00% 0.00% 0 SASRcvWQ 73 2 5 400 0.00% 0.00% 0.00% 0 SACConnect 74 30 1183 25 0.00% 0.00% 0.00% 0 SACRcvWQ 75 8 68 117 0.00% 0.00% 0.00% 0 Licensing Auto U 76 0 1 0 0.00% 0.00% 0.00% 0 License HA Consi 77 0 1 0 0.00% 0.00% 0.00% 0 Token Daemon 78 0 1 0 0.00% 0.00% 0.00% 0 Critical Bkgnd 79 221 1374 160 0.00% 0.00% 0.00% 0 Net Background 80 0 3 0 0.00% 0.00% 0.00% 0 IDB Work 81 8 101 79 0.00% 0.00% 0.00% 0 Logger 82 71 1985 35 0.00% 0.00% 0.00% 0 TTY Background 83 53 24 2208 0.00% 0.00% 0.00% 0 CTS CORE 84 1 3 333 0.00% 0.00% 0.00% 0 SXP CORE 85 56 1164 48 0.00% 0.00% 0.00% 0 SASRcvWQWrk1 86 3 14 214 0.00% 0.00% 0.00% 0 IF-MGR control p 87 0 28 0 0.00% 0.00% 0.00% 0 IF-MGR event pro 88 0 2 0 0.00% 0.00% 0.00% 0 CTS HA 89 0 2 0 0.00% 0.00% 0.00% 0 CTS HA IPC flow 90 0 1 0 0.00% 0.00% 0.00% 0 CTS HA operation 91 5357 18052 296 0.15% 0.20% 0.20% 0 IOSD ipc task 92 213 5786 36 0.00% 0.00% 0.00% 0 IOSD chasfs task 93 0 2 0 0.00% 0.00% 0.00% 0 Crimson interfac 94 274 19 14421 0.00% 0.00% 0.00% 0 Crimson Database 95 681 2548 267 0.00% 0.02% 0.00% 0 Crimson flush tr 96 4 287 13 0.00% 0.00% 0.00% 0 REDUNDANCY FSM 97 0 1 0 0.00% 0.00% 0.00% 0 Punt FP Stats Du 98 171 953 179 0.00% 0.00% 0.00% 0 PuntInject Keepa 99 0 16 0 0.00% 0.00% 0.00% 0 ESG MATM Learnin 100 141 401 351 0.00% 0.00% 0.00% 0 CMAN RP Msg Proc 101 118 1998 59 0.00% 0.00% 0.00% 0 Environmental Mo 102 42 1998 21 0.00% 0.00% 0.00% 0 RP HA Periodic 103 0 2 0 0.00% 0.00% 0.00% 0 cpf msg holdq pr 104 0 1 0 0.00% 0.00% 0.00% 0 cpf msg rcvq pro 105 0 1 0 0.00% 0.00% 0.00% 0 cpf process tpQ 106 0 1 0 0.00% 0.00% 0.00% 0 CEF RRP RF waite 107 0 1 0 0.00% 0.00% 0.00% 0 CONSOLE helper p 108 175 50 3500 0.00% 0.00% 0.00% 0 DBAL EVENTS 109 0 1 0 0.00% 0.00% 0.00% 0 XDR RRP RF waite 110 50 1999 25 0.00% 0.00% 0.00% 0 REDUNDANCY peer 111 337 19959 16 0.00% 0.00% 0.00% 0 100ms check 112 0 1 0 0.00% 0.00% 0.00% 0 CWAN APS HA Proc 113 1 34 29 0.00% 0.00% 0.00% 0 RF CWAN HA Proce 114 0 1 0 0.00% 0.00% 0.00% 0 CWAN IF EVENT HA 115 0 4 0 0.00% 0.00% 0.00% 0 ANCP HA 116 0 2 0 0.00% 0.00% 0.00% 0 ANCP HA IPC flow

117 0 1 0 0.00% 0.00% 0.00% 0 QoS HA ID RETAIN 118 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 119 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 120 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 121 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 122 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 123 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 124 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 125 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 126 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 127 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 128 0 1 0 0.00% 0.00% 0.00% 0 CHKPT Test clien 129 0 1 0 0.00% 0.00% 0.00% 0 DHCPC HA 130 0 1 0 0.00% 0.00% 0.00% 0 DHCPD HA 131 0 1 0 0.00% 0.00% 0.00% 0 DHCPv6 Relay HA 132 0 1 0 0.00% 0.00% 0.00% 0 DHCPv6 Server HA 133 0 2 0 0.00% 0.00% 0.00% 0 SISF HA Process 134 0 5 0 0.00% 0.00% 0.00% 0 ARP HA 135 0 1 0 0.00% 0.00% 0.00% 0 IOSXE-RP Punt Se 136 0 1 0 0.00% 0.00% 0.00% 0 IOSXE-RP Punt IP 137 0 1 0 0.00% 0.00% 0.00% 0 ACL Log Punt Ser 138 0 1 0 0.00% 0.00% 0.00% 0 ACL deny punt se 139 1576 124342 12 0.07% 0.06% 0.07% 0 L2 LISP Punt Pro 140 0 1 0 0.00% 0.00% 0.00% 0 OFSDN Punject Pr 141 1653 124341 13 0.15% 0.08% 0.07% 0 SIS Punt Process 142 0 1 0 0.00% 0.00% 0.00% 0 IOSXE-RP SPA TSM 143 0 1 0 0.00% 0.00% 0.00% 0 TOSXE-RP OFP HA 144 0 1 0 0.00% 0.00% 0.00% 0 Network-rf Notif 145 0 1 0 0.00% 0.00% 0.00% 0 DHCP Snooping cl 146 1 18 55 0.00% 0.00% 0.00% 0 DHCP Snooping 147 0 1 0 0.00% 0.00% 0.00% 0 DHCP Snooping db 148 0 1 0 0.00% 0.00% 0.00% 0 IKE HA Mgr 149 0 1 0 0.00% 0.00% 0.00% 0 IPSEC HA Mgr 150 0 1 0 0.00% 0.00% 0.00% 0 Crypto PKI-HA 151 3 12 250 0.00% 0.00% 0.00% 0 RF Master Main T 152 0 7 0 0.00% 0.00% 0.00% 0 RF Master Status 153 39 1009 38 0.00% 0.00% 0.00% 0 SACRcvWQWrk1 154 28 1009 27 0.00% 0.00% 0.00% 0 SACRevWOWrk2 155 103 1185 86 0.00% 0.00% 0.00% 0 SACRcvWQWrk3 156 0 1 0 0.00% 0.00% 0.00% 0 BACK CHECK 157 323 210 1538 0.00% 0.00% 0.00% 0 SAMsgThread 158 25 202 123 0.00% 0.00% 0.00% 0 Compute load avg 159 515 107 4813 0.00% 0.02% 0.00% 0 Per-minute Jobs 160 167 2009 83 0.00% 0.00% 0.00% 0 Per-Second Jobs 161 0 1 0 0.00% 0.00% 0.00% 0 Transport Port A 162 167 9 18555 0.00% 0.00% 0.00% 0 ACT2 Crypto Engi 163 0 1 0 0.00% 0.00% 0.00% 0 AggMgr Process 164 0 4 0 0.00% 0.00% 0.00% 0 EEM ED MAT 165 4 73 54 0.00% 0.00% 0.00% 0 EEM ED ND 166 0 1 0 0.00% 0.00% 0.00% 0 MACSEC POST rest 167 0 1 0 0.00% 0.00% 0.00% 0 MACSEC POST hand 168 0 1 0 0.00% 0.00% 0.00% 0 MACSEC POST hand 169 0 1 0 0.00% 0.00% 0.00% 0 IOSXE-RP FastPat 170 0 6 0 0.00% 0.00% 0.00% 0 NGIO BRI POLL DE 171 0 1 0 0.00% 0.00% 0.00% 0 ASYNC Input 172 21 2001 10 0.00% 0.00% 0.00% 0 IR8340 Alarm Con 173 0 2 0 0.00% 0.00% 0.00% 0 dialer isdn sess 174 0 1 0 0.00% 0.00% 0.00% 0 DSX3MIB 11 handl 175 29 1961 14 0.00% 0.00% 0.00% 0 fanrp 12fib 176 0 1 0 0.00% 0.00% 0.00% 0 POS APS Event Pr 177 0 2 0 0.00% 0.00% 0.00% 0 netclk process 178 0 1 0 0.00% 0.00% 0.00% 0 netclk ha proces

Router#show process cpu platform sorted

CPU utilization for five seconds: 21%, one minute: 22%, five minutes: 22% Core 0: CPU utilization for five seconds: 4%, one minute: 5%, five minutes: 5% Core 1: CPU utilization for five seconds: 2%, one minute: 5%, five minutes: 5% Core 2: CPU utilization for five seconds: 4%, one minute: 6%, five minutes: 6% Core 3: CPU utilization for five seconds: 4%, one minute: 6%, five minutes: 6% Core 4: CPU utilization for five seconds: 5%, one minute: 5%, five minutes: Core 5: CPU utilization for five seconds: 2%, one minute: 2%, five minutes: 2% Core 6: CPU utilization for five seconds: 41%, one minute: 42%, five minutes: 43% Core 7: CPU utilization for five seconds: 100%, one minute: 100%, five minutes: 100% Pid PPid 5Sec 1Min 5Min Status Size Name -----------15435 15419 158% 158% 157% S 226748 ucode pkt PPE0 16998 16972 7% 6% 7% S 14252 btman 56 2 3% 5% 5% S 0 ksmd 15179 15139 2% 2% 2% S 171524 fman fp image 3821 3807 2% 3% 3% S 584524 linux iosd-imag 26565 26536 1% 1% 1% S 52764 fman cc 29044 2 0% 0% 0% I 0 kworker/u32:0-events 26536 16605 0% 0% 0% S 3788 pman 25912 25906 0% 0% 0% S 116208 fed main event 25906 16605 0% 0% 0% S 3796 pman 25689 25684 0% 0% 0% S 5036 nginx 25688 25684 0% 0% 0% S 5868 nginx 25684 25678 0% 0% 0% S 9980 nginx 25678 2784 0% 0% 0% S 3792 pman 25359 25349 0% 0% 0% S 8448 ngiolite 25349 16605 0% 0% 0% S 3792 pman 25048 25043 0% 0% 0% S 9876 ngiolite 25043 16605 0% 0% 0% S 3792 pman 24784 24779 0% 0% 0% S 12352 ngiolite 24779 16605 0% 0% 0% S 3824 pman 24713 2 0% 0% 0% I 0 kworker/1:2H 24688 24446 0% 0% 0% S 432 sleep 24446 1 0% 0% 0% S 2100 memory monitor. 24341 24333 0% 0% 0% S 12300 ngiolite 24333 16605 0% 0% 0% S 3824 pman 24164 2 0% 0% 0% S 0 SarIosdMond 22339 2 0% 0% 0% I 0 gobisetpower-2-22338 2 0% 0% 0% I 0 gobireadcb-2-2-22337 2 0% 0% 0% I 0 gobiprobe-2-2-3 22139 22129 0% 0% 0% S 62172 iomd 22129 16605 0% 0% 0% S 3768 pman 21734 21723 0% 0% 0% S 62064 iomd 21723 16605 0% 0% 0% S 3768 pman 21566 2 0% 0% 0% I 0 kworker/1:3-gobiread 21466 21458 0% 0% 0% S 61992 iomd 21458 16605 0% 0% 0% S 3768 pman 21135 2 0% 0% 0% I 0 gobisetpower-1-21131 2 0% 0% 0% I 0 gobireadcb-1-2-21129 2 0% 0% 0% I 0 gobiprobe-1-2-2 21128 2 0% 0% 0% I 0 gobisetpower-0-21127 2 0% 0% 0% I 0 gobireadcb-0-2-21126 2 0% 0% 0% I 0 gobiprobe-0-2-2 21120 21113 0% 0% 0% S 74960 iomd 21113 16605 0% 0% 0% S 3820 pman 20788 20780 0% 0% 0% S 63312 iomd 20780 16605 0% 0% 0% S 3768 pman 19604 19582 0% 0% 0% S 18360 btman 19582 16605 0% 0% 0% S 3772 pman 19136 2 0% 0% 0% I 0 kworker/7:2H 18966 18953 0% 0% 0% S 23472 cmcc 18953 16605 0% 0% 0% S 3768 pman 18687 18674 0% 0% 0% S 12420 hman 18674 16605 0% 0% 0% S 3768 pman

18341 18320 0% 0% 0% S 7020 pttcd 18320 2784 0% 0% 0% S 3776 pman 18046 18031 0% 0% 0% S 78104 pubd 18031 2784 0% 0% 0% S 3776 pman 17396 2 0% 0% 0% I 0 kworker/5:0H 17301 16605 0% 0% 0% S 712 inotifywait 17057 1 0% 0% 0% S 3356 rotee 16972 14118 0% 0% 0% S 3768 pman 16605 1 0% 0% 0% S 8020 pvp.sh 16567 16545 0% 0% 0% S 19688 cman fp 16545 14118 0% 0% 0% S 3768 pman 16331 16317 0% 0% 0% S 170672 cpp_cp_svr 16317 14118 0% 0% 0% S 3768 pman 16108 16095 0% 0% 0% S 66440 cpp driver 16095 14118 0% 0% 0% S 3768 pman 15888 15873 0% 0% 0% S 70160 cpp_ha_top_leve 15873 14118 0% 0% 0% S 3772 pman 15660 15646 0% 0% 0% S 80592 cpp sp svr 15646 14118 0% 0% 0% S 3768 pman 15419 14118 0% 0% 0% S 3772 pman 15139 14118 0% 0% 0% S 3768 pman 14861 14844 0% 0% 0% S 12420 hman 14844 14118 0% 0% 0% S 3768 pman 14745 14731 0% 0% 0% S 1676 sort_files_by_i 14731 2784 0% 0% 0% S 3756 pman 14405 14118 0% 0% 0% S 712 inotifywait 14282 1 0% 0% 0% S 3356 rotee 14118 1 0% 0% 0% S 7988 pvp.sh 13169 13160 0% 0% 0% S 4224 flash check.sh 13160 2784 0% 0% 0% S 3764 pman 12444 12435 0% 0% 0% S 14176 lman 12435 2784 0% 0% 0% S 3772 pman 12306 5095 0% 0% 0% S 3108 journalctl 10703 2784 0% 0% 0% S 712 inotifywait 10439 10345 0% 0% 0% S 712 inotifywait 10431 1 0% 0% 0% S 3360 rotee 10347 1 0% 0% 0% S 1180 xinetd 10346 1 0% 0% 0% S 1188 xinetd 10345 1 0% 0% 0% S 12168 rollback timer. 10343 1 0% 0% 0% S 2068 auxinit.sh 9415 1 0% 0% 0% S 1012 xinetd 9412 1 0% 0% 0% S 1176 xinetd 9150 2 0% 0% 0% I 0 kworker/2:2H-kblockd 8448 1 0% 0% 0% S 6240 dhcpd 8198 8176 0% 0% 0% S 6784 tam svcs esg cf 8176 2784 0% 0% 0% S 3776 pman 7929 7914 0% 0% 0% S 8432 tamd proc 7914 2784 0% 0% 0% S 3776 pman 7673 7658 0% 0% 0% S 7904 tams_proc 7658 2784 0% 0% 0% S 3776 pman 7422 7405 0% 0% 0% S 32684 btman 7405 2784 0% 0% 0% S 3772 pman 7127 7106 0% 0% 0% S 26272 cli agent 7106 2784 0% 0% 0% S 3780 pman 6878 6862 0% 1% 1% S 27788 cmand 6862 2784 0% 0% 0% S 3776 pman 6600 6583 0% 0% 0% S 92300 dbm 6583 2784 0% 0% 0% S 3772 pman 6059 6025 0% 0% 0% S 84992 fman rp 6025 2784 0% 0% 0% S 3772 pman 5779 2 0% 0% 0% S 0 lfts sar aux 5778 5763 0% 0% 0% R 15868 hman 5763 2784 0% 0% 0% S 3772 pman 5568 5103 0% 0% 0% S 712 inotifywait

```
5560 1 0% 0% 0% S 3356 rotee

5412 5388 0% 0% 0% S 11452 keyman

5388 2784 0% 0% 0% S 3772 pman

5287 1 0% 0% 0% S 3360 rotee

5103 1 0% 0% 0% S 5640 iptbl.sh

5095 5086 0% 0% 0% S 10900 plogd

5086 2784 0% 0% 0% S 3780 pman

5054 13169 0% 0% 0% S 440 sleep

5043 4729 0% 0% 0% S 716 inotifywait

5030 14745 0% 0% 0% S 432 sleep

4940 1 0% 0% 0% S 3424 rotee
```

Router#

Overall Control Plane Resources

Control plane memory and CPU utilization on each control processor allows you to keep a tab on the overall control plane resources. You can use the **show platform software status control-processor brief** command (summary view) or the **show platform software status control-processor command** (detailed view) to view control plane memory and CPU utilization information.

All control processors should show status, Healthy. Other possible status values are Warning and Critical. Warning indicates that the router is operational, but that the operating level should be reviewed. Critical implies that the router is nearing failure.

If you see a Warning or Critical status, take the following actions:

- Reduce the static and dynamic loads on the system by reducing the number of elements in the configuration or by limiting the capacity for dynamic services.
- Reduce the number of routes and adjacencies, limit the number of ACLs and other rules, and so on.

The following sections describe the fields in the **show platform software status control-processor** command output.

Load Average

Load average represents the process queue or process contention for CPU resources. For example, on a single-core processor, an instantaneous load of 7 would mean that seven processes are ready to run, one of which is currently running. On a dual-core processor, a load of 7 would mean that seven processes are ready to run, two of which are currently running.

Memory Utilization

Memory utilization is represented by the following fields:

- Total—Total system memory
- Used—Consumed memory
- Free—Available memory
- · Committed—Virtual memory committed to processes

CPU Utilization

CPU utilization is an indication of the percentage of time the CPU is busy, and is represented by the following fields:

- CPU—Allocated processor
- User—Non-Linux kernel processes
- System—Linux kernel process
- Nice—Low-priority processes
- Idle—Percentage of time the CPU was inactive
- IRQ—Interrupts
- SIRQ—System Interrupts
- IOwait-Percentage of time CPU was waiting for I/O

Example: show platform software status control-processor Command

The following are some examples of using the **show platform software status control-processor** command:

```
Router# show platform software status control-processor
RPO: online, statistics updated 2 seconds ago
Load Average: healthy
1-Min: 2.07, status: healthy, under 9.30
5-Min: 2.03, status: healthy, under 9.30
15-Min: 1.92, status: healthy, under 9.30
Memory (kb): healthy
Total: 8000724
Used: 2565652 (32%), status: healthy
Free: 5435072 (68%)
Committed: 3263176 (41%), under 90%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 0.80, System: 4.00, Nice: 0.00, Idle: 95.19
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 2.50, System: 1.60, Nice: 0.00, Idle: 95.90
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 2.90, System: 1.80, Nice: 0.00, Idle: 95.30
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 1.49, System: 7.79, Nice: 0.00, Idle: 90.70
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU4: CPU Utilization (percentage of time spent)
User: 4.60, System: 1.80, Nice: 0.00, Idle: 93.59
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU5: CPU Utilization (percentage of time spent)
User: 0.99, System: 1.89, Nice: 0.00, Idle: 97.10
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU6: CPU Utilization (percentage of time spent)
User: 24.10, System: 18.30, Nice: 0.00, Idle: 57.60
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU7: CPU Utilization (percentage of time spent)
User: 92.50, System: 7.50, Nice: 0.00, Idle: 0.00
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
```

```
Router#
Router# show platform software status control-processor brief
Load Average
Slot Status 1-Min 5-Min 15-Min
RP0 Healthy 2.01 2.01 1.91
Memory (kB)
Slot Status Total Used (Pct) Free (Pct) Committed (Pct)
RPO Healthy 8000724 2565240 (32%) 5435484 (68%) 3263124 (41%)
CPU Utilization
Slot CPU User System Nice Idle IRQ SIRQ IOwait
RPO 0 0.70 3.30 0.00 96.00 0.00 0.00 0.00
1 4.39 7.39 0.00 88.11 0.00 0.09 0.00
2 4.80 9.30 0.00 85.80 0.00 0.10 0.00
3 3.39 8.69 0.00 87.91 0.00 0.00 0.00
4 4.40 1.80 0.00 93.80 0.00 0.00 0.00
5 1.00 1.90 0.00 97.10 0.00 0.00 0.00
6 24.64 23.54 0.00 51.80 0.00 0.00 0.00
7 92.60 7.40 0.00 0.00 0.00 0.00 0.00
Router#
```

Monitoring Hardware Using Alarms

Router Design and Monitoring Hardware

The router sends alarm notifications when problems are detected, allowing you to monitor the network remotely. You do not need to use **show** commands to poll devices on a routine basis; however, you can perform onsite monitoring if you choose.

BootFlash Disk Monitoring

The bootflash disk must have enough free space to store two core dumps. This condition is monitored, and if the bootflash disk is too small to store two core dumps, a syslog alarm is generated, as shown in the following example:

```
Oct 6 14:10:56.292: %FLASH_CHECK-3-DISK_QUOTA: R0/0: flash_check: Flash disk quota exceeded [free space is 1429020 kB] - Please clean up files on bootflash.
```

Approaches for Monitoring Hardware Alarms

Viewing the Console or Syslog for Alarm Messages

The network administrator can monitor alarm messages by reviewing alarm messages sent to the system console or to a system message log (syslog).

Enabling the logging alarm Command

The **logging alarm** command must be enabled for the system to send alarm messages to a logging device, such as the console or a syslog. This command is not enabled by default.

You can specify the severity level of the alarms to be logged. All the alarms at and above the specified threshold generate alarm messages. For example, the following command sends only critical alarm messages to logging devices:

Router(config) # logging alarm critical

If alarm severity is not specified, alarm messages for all severity levels are sent to logging devices.

Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP

The SNMP is an application-layer protocol that provides a standardized framework and a common language used for monitoring and managing devices in a network.

SNMP provides notification of faults, alarms, and conditions that might affect services. It allows a network administrator to access router information through a network management system (NMS) instead of reviewing logs, polling devices, or reviewing log reports.

To use SNMP to get alarm notification, use the following MIBs:

- ENTITY-MIB, RFC4133 (required for the CISCO-ENTITY-ALARM-MIB, ENTITY-STATE-MIB and CISCO-ENTITY-SENSOR-MIB to work)
- CISCO-ENTITY-ALARM-MIB
- ENTITY-STATE-MIB
- CISCO-ENTITY-SENSOR-MIB (for transceiver environmental alarm information, which is not provided through the CISCO-ENTITY-ALARM-MIB)

Troubleshooting

- Troubleshooting, on page 385
- Understanding Diagnostic Mode, on page 385
- Before Contacting Cisco or Your Reseller, on page 386
- show interfaces Troubleshooting Command, on page 386
- Software Upgrade Methods, on page 386
- Change the Configuration Register, on page 387
- Recovering a Lost Password, on page 390

Troubleshooting

This section describes the troubleshooting scenarios.

Before troubleshooting a software problem, you must connect a PC to the router via the console port. With a connected PC, you can view status messages from the router and enter commands to troubleshoot a problem.

You can also remotely access the interface by using Telnet. The Telnet option assumes that the interface is up and running.

Understanding Diagnostic Mode

The router boots up or accesses diagnostic mode in the following scenarios:

- The IOS process or processes fail, in some scenarios. In other scenarios, the system resets when the IOS
 process or processes fail.
- A user-configured access policy was configured using the **transport-map** command that directs the user into the diagnostic mode.
- A send break signal (Ctrl-C or Ctrl-Shift-6) was entered while accessing the router, and the router was configured to enter diagnostic mode when a break signal was sent.

In the diagnostic mode, a subset of the commands that are available in user EXEC mode are made available to the users. Among other things, these commands can be used to:

- Inspect various states on the router, including the IOS state.
- Replace or roll back the configuration.

- Provide methods of restarting the IOS or other processes.
- Reboot hardware, such as the entire router, a module, or possibly other hardware components.
- Transfer files into or off of the router using remote access methods such as FTP, TFTP, and SCP.

The diagnostic mode provides a more comprehensive user interface for troubleshooting than previous routers, which relied on limited access methods during failures, such as ROMMON, to diagnose and troubleshoot Cisco IOS problems. The diagnostic mode commands can work when the Cisco IOS process is not working properly. These commands are also available in privileged EXEC mode on the router when the router is working normally.

Before Contacting Cisco or Your Reseller

If you cannot locate the source of a problem, contact your local reseller for advice. Before you call, you should have the following information ready:

- Chassis type and serial number
- Maintenance agreement or warranty information
- · Type of software and version number
- Date you received the hardware
- · Brief description of the problem
- · Brief description of the steps you have taken to isolate the problem

show interfaces Troubleshooting Command

Use the **show interfaces** command to display the status of all physical ports and logical interfaces on the router. describes messages in the command output.

The IR8340 supports the following interfaces:

- GigabitEthernet 0/0/0 and 0/0/1
- Cellular 0/4/0, Cellular 0/4/1, Cellular 0/5/0, and Cellular 0/5/1
- msata

Software Upgrade Methods

Several methods are available for upgrading software on the Cisco IR1840H Routers, including:

- Copy the new software image to flash memory over the WAN interface when the existing Cisco IOS software image is in use.
- Copy the new software image over the console port while in ROM monitor mode.

• From ROM monitor mode, boot the router from a software image that is loaded on a TFTP server. To boot the image from the TFTP server, the TFTP server must be on the same network as the router.

Change the Configuration Register

To change a configuration register, follow these steps:

Procedure

Step 1 Connect a PC to the CONSOLE port on the router.

Step 2 At the privileged EXEC prompt (*router_name #*), enter the **show version** command to display the existing configuration register value (shown in bold at the bottom of this output example):

Example:

```
Router# show version
Cisco IOS XE Software, Version BLD_V177_THROTTLE_LATEST_20210827_030512_V17_7_0_91
Cisco IOS Software [Bengaluru], ir8340 Software (X86_64_LINUX_IOSD-UNIVERSALK9_IOT-M),
Experimental Version 17.7.20210827:033430
[S2C-build-v177_throttle-289-/nobackup/mcpre/BLD-BLD_V177_THROTTLE_LATEST_20210827_030512
154]
Copyright (c) 1986-2021 by Cisco Systems, Inc.
Compiled Fri 27-Aug-21 15:58 by mcpre
```

Cisco IOS-XE software, Copyright (c) 2005-2021 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: v0.33

Router uptime is 1 week, 1 day, 23 hours, 9 minutes Uptime for this control processor is 1 week, 1 day, 23 hours, 10 minutes System returned to ROM by Reload Command System image file is "flash:ir8340-universalk9.BLD_V177_THROTTLE_LATEST_20210827_030512_V17_7_0_91.SSA.bin" Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

```
If you require further assistance please contact us by sending email to
export@cisco.com.
Technology Package License Information:
Technology Type Technology-package Technology-package
Current Next Reboot
  ------
                         -----
Smart License Perpetual network-advantage network-advantage
Smart License Subscription None None
The current crypto throughput level is 250000 kbps
Smart Licensing Status: Registration Not Applicable/Not Applicable
cisco IR8340-K9 (2RU) processor with 3717851K/6147K bytes of memory.
Processor board ID FD02502JF0L
Router operating mode: Autonomous
1 Virtual Ethernet interface
14 Gigabit Ethernet interfaces
8 Serial interfaces
8 terminal lines
2 Cellular interfaces
32768K bytes of non-volatile configuration memory.
8388608K bytes of physical memory.
7574982K bytes of flash memory at bootflash:.
33554432K bytes of mSATA at msata:.
929715K bytes of sdcard flash at sdcard:.
30031856K bytes of USB flash at usb0:.
Configuration register is 0x0
Router#
Record the setting of the configuration register.
```

Step 4 To enable the break setting (indicated by the value of bit 8 in the configuration register), enter the **config-register** *<value>*command from privileged EXEC mode.

- Break enabled—Bit 8 is set to 0.
- Break disabled (default setting)—Bit 8 is set to 1.

Configuring the Configuration Register for Autoboot

Step 3

Note Altering the configuration register is only for advanced troubleshooting and should only be done with guidance from Cisco support.

The configuration register can be used to change router behavior. This includes controlling how the router boots. Set the configuration register to 0x0 to boot into ROM, by using one of the following commands:

In Cisco IOS configuration mode, use the config-reg 0x0 command.

• From the ROMMON prompt, use the confreg 0x0 command.

Note Setting the configuration register to 0x2102 will set the router to autoboot the Cisco IOS XE software.

Reset the Router

To reset the router, follow these steps:

Procedure

Step 1 If the break is disabled, turn off the router, wait for 5 seconds and turn the router back on. Within 60 seconds push the Reset button.

The terminal displays the Rommon prompt.

Example:

rommon 1>

Step 2 Enter **confreg 0x2142** to ignore the running config.

Example:

rommon 2> confreg 0x142

Step 3 Sync the configuration changes with the **sync** command.

Example:

rommon 3>**sync**

Step 4 Reset the router to apply confreg. The router will reload with the reset.

Example:

rommon 4>**reset**

resetting...

Step 5 Verify that the correct confreg 0x2142 was applied, and entern when asked if you want to change the configuration.

Example:

```
rommon 1> confreg
Configuration Summary
(Virtual Configuration Register: 0x2142)
enabled are:
[ 0 ] console baud: 9600
boot:..... image specified by the boot system commands
do you wish to change the configuration? y/n [n]: n
```

Step 6 Boot the image with the confreg 0x2142.

Example:

```
rommon 2> boot
flash:ir8340-universalk9.BLD_V177_THROTTLE_LATEST_20210827_030512_V17_7_0_91.SSA.bin
```

Recovering a Lost Password

To recover a lost password, follow these steps. Refer to Reset the Router, on page 389 for details.

- **1.** Reset the router.
- 2. Change the confreg to 0x2142.
- **3.** Boot the router with confreg 0x2142 from Rommon.
- 4. If you used the reset button, add the license:

```
Router#config term
Router#license smart reservation
```

```
Note
```

Recovering a lost password is only possible when you are connected to the router through the console port. These procedures cannot be performed through a Telnet session.

Reset the Configuration Register Value

To reset the configuration register value after you have recovered or reconfigured a password, follow these steps:

	Proce	dure		
Step 1	Enter the configure terminal command to enter global configuration mode:			
	Exam	ple:		
	Route	er# configure terminal		
Step 2	Enter	the configure register command and the original configuration register value that you recorded.		
	Example:			
	Route <i>value</i>	er(config)# config-reg		
Step 3	Enter exit to exit configuration mode:			
	Example:			
	Route	er(config)# exit		
	Note	To return to the configuration being used before you recovered the lost enable password, do not save the configuration changes before rebooting the router.		

Step 4 Reboot the router, and enter the recovered password.

Configuring a Console Port Transport Map

This task describes how to configure a transport map for a console port interface on the router.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	transport-map type console transport-map-name	Creates and names a transport map for handling console connections, and enters transport map configuration mode.
	Example:	
	Router(config)# transport-map type console consolehandler	
Step 4	connection wait [allow [interruptible] none [disconnect]]	Specifies how a console connection will be handled using this transport map.
	<pre>Example: Router(config-tmap)# connection wait none</pre>	• allow interruptible—The console connection waits for a Cisco IOS VTY line to become available, and also allows users to enter diagnostic mode by interrupting a console connection that is waiting for a Cisco IOS VTY line to become available This is the default setting.
		Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6 .
		• none —The console connection immediately enters diagnostic mode.
Step 5	(Optional) banner [diagnostic wait] banner-message	(Optional) Creates a banner message that will be seen by users entering diagnostic mode or
	Example:	waiting for the Cisco IOS VTY line because of the console transport map configuration.
	Router(config-tmap)# banner diagnostic	

Cisco Catalyst IR8340 Rugged Series Router Software Configuration Guide, Cisco IOS XE Release 17.12.x

	Command or Action	Purpose
	X Enter TEXT message. End with the character 'X'. Welcome to Diagnostic Mode X	• diagnostic —Creates a banner message seen by users directed to diagnostic mode because of the console transport map configuration.
	Router(config-tmap)#	Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.
		• wait—Creates a banner message seen by users waiting for Cisco IOS VTY to become available.
		• <i>banner-message</i> —Banner message, which begins and ends with the same delimiting character.
Step 6	exit	Exits transport map configuration mode to re-enter global configuration mode.
	Example:	
	Router(config-tmap)# exit	
Step 7	transport type console console-line-number input transport-map-name Example:	Applies the settings defined in the transport map to the console interface. The <i>transport-map-name</i> for this command must match the <i>transport-map-name</i> defined in the transport-map type console command.
	Router(config)# transport type console 0 input consolehandler	

Examples

The following example shows how to create a transport map to set console port access policies and attach to console port 0:

```
Router(config)# transport-map type console consolehandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to diagnostic mode--
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS vty line
X
Router(config-tmap)# exit
Router(config-tmap)# exit
Router(config)# transport type console 0 input consolehandler
```

Viewing Console Port, SSH, and Telnet Handling Configurations

Use the following commands to view console port, SSH, and Telnet handling configurations:

- show transport-map
- show platform software configuration access policy

Use the show transport-map command to view transport map configurations.

show transport-map [all | name transport-map-name | type [console]]

This command can be used either in user EXEC mode or privileged EXEC mode.

Example

The following example shows transport maps that are configured on the router: console port (consolehandler):

Router# show transport-map all Transport Map: Name: consolehandler Type: Console Transport

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for the IOS CLI bshell banner: Welcome to Diagnostic Mode

Router# show transport-map type console Transport Map: Name: consolehandler

REVIEW DRAFT - CISCO CONFIDENTIAL

Type: Console Transport

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for the IOS CLI Bshell banner: Welcome to Diagnostic Mode

Router# show transport-map type persistent ssh Transport Map: Name: consolehandler Type: Console Transport

Connection: Wait option: Wait Allow Interruptable Wait banner:

Waiting for the IOS CLI Bshell banner: Welcome to Diagnostic Mode

Use the **show platform software configuration access policy** command to view the current configurations for handling the incoming console port, SSH, and Telnet connections. The output of this command provides

the current wait policy for each type of connection (Telnet, SSH, and console), as well as information on the currently configured banners.

Unlike the **show transport-map** command, the **show platform software configuration access policy** command is available in diagnostic mode so that it can be entered in scenarios where you need transport map configuration information, but cannot access the Cisco IOS CLI.

Example

The following example shows the **show platform software configuration access policy** command.

```
Router# show platform software configuration access policy
The current access-policies
Method : telnet
Rule : wait with interrupt Shell banner:
Welcome to Diagnostic Mode
Wait banner :
Waiting for IOS Process
Method : ssh Rule : wait Shell banner: Wait banner :
Method : console
Rule : wait with interrupt Shell banner:
Wait banner :
```

Using the factory reset Commands

The **factory reset** commands are used to remove all the customer specific data on a router/switch that has been added. The data can be configuration, log files, boot variables, core files, and so on.

The factory-reset all command erases the bootflash, nvram, rommon variables, licenses, and logs.

Caution

Use of the factory reset command should not be done lightly. All customer configurations will be ddeleted and the platform will boot up as if new from the factory.

Note factory-reset all does not work if IOS-XE is running in controller mode. Please refer to SDWAN configuration information.

```
Router#factory-reset all
The factory reset operation is irreversible for all operations. Are you sure? [confirm]
*Enter*
*May 12 09:55:45.831: %SYS-5-RELOAD: Reload requested by Exec. Reload Reason: Factory Reset.
```

***Return to ROMMON Prompt

L

Boot Sequence after Factory Reset

Booting the image:

- The bootloader attempts to boot "golden.bin" from the bootflash: partition
- If no "golden.bin" is present, then boot the first image.

Loading the configuration:

- IOS looks for "golden.cfg" file on nvram: partition and applies it upon booting.
- If no "golden.cfg" is present on nvram: then IOS looks for "golden.cfg" file on bootflash: partition and applies it upon booting.
- If no "golden.cfg" is present on bootflash: then configurations are erased and Software Configuration dialog is used.