
Telemetry Configuration Guide for Cisco NCS 1000 Series
First Published: 2018-03-29

Last Modified: 2024-07-23

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products
and software. BST provides you with detailed defect information about your products and software.

© 2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://developer.cisco.com/site/marketplace/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

C O N T E N T S

Stream Telemetry Data 1C H A P T E R 1

Scope 1

Need 1

Benefits 2

Methods of Telemetry 2

Configure Model-driven Telemetry 3C H A P T E R 2

Configure Dial-out Mode 4

Create a Destination Group 4

Create a Sensor Group 6

Create a Subscription 6

Validate Dial-out Configuration 8

Configure Dial-in Mode 11

Enable gRPC 11

Create a Sensor Group 13

Create a Subscription 13

Validate Dial-in Configuration 14

Event-driven Telemetry for Terminal-device Models 15

Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables 16

gRPC Network Management Interface 27

2s Telemetry Based on GNMI Subscribe 28

gNMI Heartbeat Interval 29

Core Components of Model-driven Telemetry Streaming 31C H A P T E R 3

Session 31

Dial-in Mode 31

Telemetry Configuration Guide for Cisco NCS 1000 Series
v

Dial-out Mode 32

Sensor Path 32

Sensor Paths Supported for EDT in NCS 1001 32

OpenConfig Sensor Paths Supported for MDT in NCS 1001 33

Sensor Paths Supported in NCS 1004 33

Sensor Paths Supported in NCS 1010 and NCS 1020 36

Subscription 39

Transport and Encoding 40

Configure Policy-based Telemetry 43C H A P T E R 4

Create Policy File 43

Copy Policy File 45

Configure Encoder 45

Configure JSON Encoder 46

Configure GPB Encoder 46

Verify Policy Activation 47

Core Components of Policy-based Telemetry Streaming 49C H A P T E R 5

Telemetry Policy File 49

Schema Paths 50

Telemetry Encoder 51

TCP Header 52

JSON Message Format 53

GPB Message Format 55

Telemetry Receiver 58

Telemetry Configuration Guide for Cisco NCS 1000 Series
vi

Contents

C H A P T E R 1
Stream Telemetry Data

This document will help you understand the process of streaming telemetry data and its core components.

• Scope, on page 1
• Need, on page 1
• Benefits, on page 2
• Methods of Telemetry, on page 2

Scope
Streaming telemetry lets users direct data to a configured receiver. This data can be used for analysis and
troubleshooting purposes to maintain the health of the network. This is achieved by leveraging the capabilities
of machine-to-machine communication.

The data is used by development and operations (DevOps) personnel who plan to optimize networks by
collecting analytics of the network in real-time, locate where problems occur, and investigate issues in a
collaborative manner.

Need
Collecting data for analyzing and troubleshooting has always been an important aspect in monitoring the
health of a network.

IOS XR provides several mechanisms such as SNMP, CLI and Syslog to collect data from a network. These
mechanisms have limitations that restrict automation and scale. One limitation is the use of the pull model,
where the initial request for data from network elements originates from the client. The pull model does not
scale when there is more than one network management station (NMS) in the network. With this model, the
server sends data only when clients request it. To initiate such requests, continual manual intervention is
required. This continual manual intervention makes the pull model inefficient.

Network state indicators, network statistics, and critical infrastructure information are exposed to the application
layer, where they are used to enhance operational performance and to reduce troubleshooting time. A push
model uses this capability to continuously stream data out of the network and notify the client. Telemetry
enables the push model, which provides near-real-time access to monitoring data.

Streaming telemetry provides a mechanism to select data of interest from IOS XR routers and to transmit it
in a structured format to remote management stations for monitoring. This mechanism enables automatic
tuning of the network based on real-time data, which is crucial for its seamless operation. The finer granularity

Telemetry Configuration Guide for Cisco NCS 1000 Series
1

and higher frequency of data available through telemetry enables better performance monitoring and therefore,
better troubleshooting. It helps a more service-efficient bandwidth utilization, link utilization, risk assessment
and control, remote monitoring and scalability. Streaming telemetry, thus, converts the monitoring process
into a Big Data proposition that enables the rapid extraction and analysis of massive data sets to improve
decision-making.

Benefits
Streamed real-time telemetry data is useful in:

• Traffic optimization: When link utilization and packet drops in a network are monitored frequently, it
is easier to add or remove links, re-direct traffic, modify policing, and so on. With technologies like fast
reroute, the network can switch to a new path and re-route faster than the SNMP poll interval mechanism.
Streaming telemetry data helps in providing quick response time for faster traffic.

• Preventive troubleshooting: Helps to quickly detect and avert failure situations that result after a
problematic condition exists for a certain duration.

Methods of Telemetry
Telemetry data can be streamed using these methods:

• Model-driven telemetry: provides a mechanism to stream data from an MDT-capable device to a
destination. The data to be streamed is driven through subscription. There are two methods of
configuration:

• Cadence-based telemetry:Cadence-based Telemetry (CDT) continuously streams data (operational
statistics and state transitions) at a configured cadence. The streamed data helps users closely identify
patterns in the networks. For example, streaming data about interface counters and so on.

• Event-based telemetry: Event-driven Telemetry (EDT) optimizes data collected at the receiver by
streaming data only when a state transition occurs. For example, stream data only when an interface
state transitions, IP route updates and so on.

EDT is supported only for Interface events, Routing state (RIB events) and Syslog
events.

Note

• Policy-based telemetry: streams telemetry data to a destination using a policy file. A policy file defines
the data to be streamed and the frequency at which the data is to be streamed.

Model-driven telemetry supersedes policy-based telemetry.Note

Telemetry Configuration Guide for Cisco NCS 1000 Series
2

Stream Telemetry Data
Benefits

C H A P T E R 2
Configure Model-driven Telemetry

Model-driven Telemetry (MDT) provides a mechanism to stream data from an MDT-capable device to a
destination. The data to be streamed is defined through subscription.

The data to be streamed is subscribed from a data set in a YANG model. The data from the subscribed data
set is streamed out to the destination either at a configured periodic interval or only when an event occurs.
This behavior is based on whether MDT is configured for cadence-based telemetry or event-based telemetry
(EDT).

The configuration for event-based telemetry is similar to cadence-based telemetry, with only the sample
interval as the differentor. Configuring the sample interval value to zero sets the subscription for event-based
telemetry, while configuring the interval to any non-zero value sets the subscription for cadence-based
telemetry.

The following YANG models are used to configure and monitor MDT:

• Cisco-IOS-XR-telemetry-model-driven-cfg.yang and openconfig-telemetry.yang: configure MDT
using NETCONF or merge-config over grpc.

• Cisco-IOS-XR-telemetry-model-driven-oper.yang: get the operational information about MDT.

For the nodes that support event-driven telemetry (EDT), the YANG model is annotated with the statement
xr:event-telemetry. For example, the interface that supports EDT has an annotation as shown in the following
example:

leaf interface-name {
xr:event-telemetry "Subscribe Telemetry Event";
type xr:Interface-name;
description "Member's interface name";

}

The process of streaming MDT data uses these components:

• Destination: specifies one or more destinations to collect the streamed data.

• Sensor path: specifies the YANG path from which data has to be streamed.

• Subscription: binds one or more sensor-paths to destinations, and specifies the criteria to stream data.
In cadence-based telemetry, data is streamed continuously at a configured frequency. In event-based
telemetry, data is streamed only when a change in the state or data for the configured model occurs.

• Transport and encoding: represents the delivery mechanism of telemetry data.

The options to initialize a telemetry session between the router and destination is based on two modes:

Telemetry Configuration Guide for Cisco NCS 1000 Series
3

• Dial-out mode: The router initiates a session to the destinations based on the subscription.

• Dial-in mode: The destination initiates a session to the router and subscribes to data to be streamed.

Dial-in mode is supported only over gRPC.Note

Streaming model-driven telemetry data to the intended receiver involves these tasks:

• Configure Dial-out Mode, on page 4
• Configure Dial-in Mode, on page 11
• Event-driven Telemetry for Terminal-device Models, on page 15
• Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables, on page 16
• gRPC Network Management Interface, on page 27
• 2s Telemetry Based on GNMI Subscribe, on page 28
• gNMI Heartbeat Interval, on page 29

Configure Dial-out Mode
In a dial-out mode, the router initiates a session to the destinations based on the subscription.

All 64-bit IOS XR platforms (except for NCS 6000 series routers) support gRPC , UDP and TCP protocols.
All 32-bit IOS XR platforms support only TCP.

For more information about the dial-out mode, see Dial-out Mode, on page 32.

The process to configure a dial-out mode involves:

Create a Destination Group
The destination group specifies the destination address, port, encoding and transport that the router uses to
send out telemetry data.

1. Identify the destination address, port, transport, and encoding format.

2. Create a destination group.

Router(config)#telemetry model-driven
Router(config-model-driven)#destination-group <group-name>

Router(config-model-driven-dest)#address family ipv4 <IP-address> port <port-number>
Router(config-model-driven-dest-addr)#encoding <encoding-format>
Router(config-model-driven-dest-addr)#protocol <transport>
Router(config-model-driven-dest-addr)#commit

Example: Destination Group for TCP Dial-out

The following example shows a destination group DGroup1 created for TCP dial-out configuration with
key-value Google Protocol Buffers (also called self-describing-gpb) encoding:

Router(config)#telemetry model-driven
Router(config-model-driven)#destination-group DGroup1

Telemetry Configuration Guide for Cisco NCS 1000 Series
4

Configure Model-driven Telemetry
Configure Dial-out Mode

Router(config-model-driven-dest)#address family ipv4 172.0.0.0 port 5432
Router(config-model-driven-dest-addr)#encoding self-describing-gpb
Router(config-model-driven-dest-addr)#protocol tcp
Router(config-model-driven-dest-addr)#commit

Example: Destination Group for UDP Dial-out

The following example shows a destination group DGroup1 created for UDP dial-out configuration with
key-value Google Protocol Buffers (also called self-describing-gpb) encoding:

Router(config)#telemetry model-driven
Router(config-model-driven)#destination-group DGroup1
Router(config-model-driven-dest)#address family ipv4 172.0.0.0 port 5432
Router(config-model-driven-dest-addr)#encoding self-describing-gpb
Router(config-model-driven-dest-addr)#protocol udp
Router(config-model-driven-dest-addr)#commit

TheUDP destination is shown as Active irrespective of the state of the collector because UDP is connectionless.

Model-driven Telemetry with UDP is not suitable for a busy network. There is no retry if a message is dropped
by the network before it reaches the collector.

Example: Destination Group for gRPC Dial-out

gRPC is supported in only 64-bit platforms.Note

gRPC protocol supports TLS andmodel-driven telemetry uses TLS to dial-out by default. The certificate must
be copied to /misc/config/grpc/dialout/. To by-pass the TLS option, use protocol grpc no-tls.

The following is an example of a certificate to which the server certificate is connected:

RP/0/RP0/CPU0:ios#run

Wed Aug 24 05:05:46.206 UTC
[xr-vm_node0_RP0_CPU0:~]$ls -l /misc/config/grpc/dialout/
total 4
-rw-r--r-- 1 root root 4017 Aug 19 19:17 dialout.pem
[xr-vm_node0_RP0_CPU0:~]$

The CN (CommonName) used in the certificate must be configured as protocol grpc tls-hostname <>.

The following example shows a destination group DGroup2 created for gRPC dial-out configuration with
key-value GPB encoding, and with tls disabled:

Router(config)#telemetry model-driven
Router(config-model-driven)#destination-group DGroup2
Router(config-model-driven-dest)#address family ipv4 172.0.0.0 port 57500
Router(config-model-driven-dest-addr)#encoding self-describing-gpb
Router(config-model-driven-dest-addr)#protocol grpc no-tls
Router(config-model-driven-dest-addr)#commit

The following example shows a destination group DGroup2 created for gRPC dial-out configuration with
key-value GPB encoding, and with tls hostname:

Configuration with tls-hostname:
Router(config)#telemetry model-driven

Telemetry Configuration Guide for Cisco NCS 1000 Series
5

Configure Model-driven Telemetry
Create a Destination Group

Router(config-model-driven)#destination-group DGroup2
Router(config-model-driven-dest)#address family ipv4 172.0.0.0 port 57500
Router(config-model-driven-dest-addr)#encoding self-describing-gpb
Router(config-model-driven-dest-addr)#protocol grpc tls-hostname hostname.com
Router(config-model-driven-dest-addr)#commit

If only the protocol grpc is configured without tls option, tls is enabled by default and tls-hostname defaults
to the IP address of the destination.

Note

What to Do Next:

Create a sensor group.

Create a Sensor Group
The sensor-group specifies a list of YANG models that are to be streamed.

1. Identify the sensor path for XR YANG model.

2. Create a sensor group.

Router(config)#telemetry model-driven
Router(config-model-driven)#sensor-group <group-name>
Router(config-model-driven-snsr-grp)# sensor-path <XR YANG model>
Router(config-model-driven-snsr-grp)# commit

Example: Sensor Group for Dial-out

gRPC is supported in only 64-bit platforms.Note

The following example shows a sensor group SGroup1 created for dial-out configuration with the YANG
model for optics controller:

Router(config)#telemetry model-driven
Router(config-model-driven)#sensor-group SGroup1
Router(config-model-driven-snsr-grp)# sensor-path
Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info
Router(config-model-driven-snsr-grp)# commit

What to Do Next:

Create a subscription.

Create a Subscription
The subscription associates a destination-group with a sensor-group and sets the streaming method -
cadence-based or event-based telemetry.

A source interface in the subscription group specifies the interface that will be used for establishing the session
to stream data to the destination. If both VRF and source interface are configured, the source interface must
be in the same VRF as the one specified under destination group for the session to be established.

Telemetry Configuration Guide for Cisco NCS 1000 Series
6

Configure Model-driven Telemetry
Create a Sensor Group

Router(config)#telemetry model-driven
Router(config-model-driven)#subscription <subscription-name>
Router(config-model-driven-subs)#sensor-group-id <sensor-group> sample-interval <interval>

Router(config-model-driven-subs)#destination-id <destination-group>
Router(config-model-driven-subs)#source-interface <source-interface>
Router(config-mdt-subscription)#commit

Example: Subscription for Cadence-based Dial-out Configuration

The following example shows a subscription Sub1 that is created to associate the sensor-group and
destination-group, and configure an interval of 30 seconds to stream data:

Router(config)#telemetry model-driven
Router(config-model-driven)#subscription Sub1
Router(config-model-driven-subs)#sensor-group-id SGroup1 sample-interval 30000
Router(config-model-driven-subs)#destination-id DGroup1
Router(config-mdt-subscription)# commit

Example: Configure Event-driven Telemetry for Optics Controller and Performance Monitoring

telemetry model-driven
destination-group 1
address family ipv4 <ip-address> port <port-number>
encoding self-describing-gpb
protocol grpc no-tls
!
!
sensor-group 1
sensor-path

Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info
!
sensor-group 2
sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-second30-history
!
subscription 1
sensor-group-id 1 sample-interval 0
sensor-group-id 2 sample-interval 0
destination-id 1

!

Example: Subscription for Event-based Dial-out Configuration

The following example shows a subscription Sub1 that is created to associate the sensor-group and
destination-group, and configure event-based method to stream data:

Router(config)#telemetry model-driven
Router(config-model-driven)#subscription Sub1
Router(config-model-driven-subs)#sensor-group-id SGroup1 sample-interval 0
Router(config-model-driven-subs)#destination-id DGroup1
Router(config-mdt-subscription)# commit

What to Do Next:

Validate the configuration.

Telemetry Configuration Guide for Cisco NCS 1000 Series
7

Configure Model-driven Telemetry
Create a Subscription

Validate Dial-out Configuration
Use the following command to verify that you have correctly configured the router for dial-out.

Router#show telemetry model-driven subscription <subscription-group-name>

Example: Validation for TCP Dial-out

Router#show telemetry model-driven subscription Sub1
Thu Jul 21 15:42:27.751 UTC
Subscription: Sub1 State: ACTIVE

Sensor groups:
Id Interval(ms) State
SGroup1 30000 Resolved

Destination Groups:
Id Encoding Transport State Port IP
DGroup1 self-describing-gpb tcp Active 5432 172.0.0.0

Example: Validation for gRPC Dial-out

gRPC is supported in only 64-bit platforms.Note

Router#show telemetry model-driven subscription Sub2
Thu Jul 21 21:14:08.636 UTC
Subscription: Sub2 State: ACTIVE

Sensor groups:
Id Interval(ms) State
SGroup2 30000 Resolved

Destination Groups:
Id Encoding Transport State Port IP
DGroup2 self-describing-gpb grpc ACTIVE 57500 172.0.0.0

The telemetry data starts steaming out of the router to the destination.

Example: Configure model-driven telemetry with different sensor groups

RP/0/RP0/CPU0:ios#sh run telemetry model-driven

Wed Aug 24 04:49:19.309 UTC

telemetry model-driven
destination-group 1
address family ipv4 10.1.1.1 port 1111
protocol grpc
!
!

destination-group 2
address family ipv4 10.2.2.2 port 2222
!
!

Telemetry Configuration Guide for Cisco NCS 1000 Series
8

Configure Model-driven Telemetry
Validate Dial-out Configuration

destination-group test
address family ipv4 172.0.0.0 port 8801
encoding self-describing-gpb
protocol grpc no-tls
!
address family ipv4 172.0.0.0 port 8901
encoding self-describing-gpb
protocol grpc tls-hostname chkpt1.com
!
!

sensor-group 1
sensor-path

Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info
!

sensor-group mdt
sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-second30-history
!

sensor-group generic
sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-minute15-history
!

sensor-group if-oper
sensor-path Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-hour24-history
!

subscription mdt
sensor-group-id mdt sample-interval 10000
!

subscription generic
sensor-group-id generic sample-interval 10000
!

subscription if-oper
sensor-group-id if-oper sample-interval 10000
destination-id test
!
!

A sample output from the destination with TLS certificate chkpt1.com:
RP/0/RP0/CPU0:ios#sh telemetry model-driven dest

Wed Aug 24 04:49:25.030 UTC
Group Id IP Port Encoding Transport State

1 10.1.1.1 1111 none grpc ACTIVE

TLS:10.1.1.1
2 10.2.2.2 2222 none grpc ACTIVE

TLS:10.2.2.2
test 172.0.0.0 8801 self-describing-gpb grpc Active
test 172.0.0.0 8901 self-describing-gpb grpc Active

TLS:chkpt1.com

A sample output from the subscription:

Telemetry Configuration Guide for Cisco NCS 1000 Series
9

Configure Model-driven Telemetry
Validate Dial-out Configuration

RP/0/RP0/CPU0:ios#sh telemetry model-driven subscription

Wed Aug 24 04:49:48.002 UTC
Subscription: mdt State: ACTIVE

Sensor groups:
Id Interval(ms) State
mdt 10000 Resolved

Subscription: generic State: ACTIVE

Sensor groups:
Id Interval(ms) State
generic 10000 Resolved

Subscription: if-oper State: ACTIVE

Sensor groups:
Id Interval(ms) State
if-oper 10000 Resolved

Destination Groups:
Id Encoding Transport State Port IP
test self-describing-gpb grpc ACTIVE 8801 172.0.0.0

No TLS :

test self-describing-gpb grpc Active 8901 172.0.0.0
TLS : chkpt1.com

RP/0/RP0/CPU0:ios#sh telemetry model-driven subscription if-oper

Wed Aug 24 04:50:02.295 UTC
Subscription: if-oper

State: ACTIVE
Sensor groups:
Id: if-oper
Sample Interval: 10000 ms
Sensor Path:

Cisco-IOS-XR-pmengine-oper:performance-management-history/global/periodic/
optics-history/optics-port-histories/optics-port-history/optics-hour24-history
Sensor Path State: Resolved

Destination Groups:
Group Id: test
Destination IP: 172.0.0.0
Destination Port: 8801
Encoding: self-describing-gpb
Transport: grpc
State: ACTIVE
No TLS
Destination IP: 172.0.0.0
Destination Port: 8901
Encoding: self-describing-gpb
Transport: grpc
State: ACTIVE
TLS : chkpt1.com
Total bytes sent: 120703
Total packets sent: 11
Last Sent time: 2016-08-24 04:49:53.52169253 +0000

Collection Groups:

Telemetry Configuration Guide for Cisco NCS 1000 Series
10

Configure Model-driven Telemetry
Validate Dial-out Configuration

Id: 1
Sample Interval: 10000 ms
Encoding: self-describing-gpb
Num of collection: 11
Collection time: Min: 69 ms Max: 82 ms
Total time: Min: 69 ms Avg: 76 ms Max: 83 ms
Total Deferred: 0
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
Last Collection Start:2016-08-24 04:49:53.52086253 +0000
Last Collection End: 2016-08-24 04:49:53.52169253 +0000
Sensor Path:

Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-ports/optics-port/optics-info

Configure Dial-in Mode
In a dial-in mode, the destination initiates a session to the router and subscribes to data to be streamed.

Dial-in mode is supported over gRPC in only 64-bit platforms.Note

For more information about dial-in mode, see Dial-in Mode.

The process to configure a dial-in mode involves these tasks:

• Enable gRPC

• Create a sensor group

• Create a subscription

• Validate the configuration

Enable gRPC
Configure the gRPC server on the router to accept incoming connections from the collector.

1. Enable gRPC over an HTTP/2 connection.

Router# configure
Router (config)# grpc

2. Enable access to a specified port number.
Router (config-grpc)# port <port-number>

The <port-number> range is from 57344 to 57999. If a port number is unavailable, an error is displayed.

3. In the configuration mode, set the session parameters.
Router (config)# grpc{ address-family | dscp | max-request-per-user | max-request-total
| max-streams | max-streams-per-user | no-tls | service-layer | tls-cipher | tls-mutual
| tls-trustpoint | vrf }

where:

Telemetry Configuration Guide for Cisco NCS 1000 Series
11

Configure Model-driven Telemetry
Configure Dial-in Mode

• address-family: set the address family identifier type

• dscp: set QoS marking DSCP on transmitted gRPC

• max-request-per-user: set the maximum concurrent requests per user

• max-request-total: set the maximum concurrent requests in total

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription
limit is 128 requests. The default is 32 requests

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum
subscription limit is 128 requests. The default is 32 requests

• no-tls: disable transport layer security (TLS). The TLS is enabled by default.

• service-layer: enable the grpc service layer configuration

• tls-cipher: enable the gRPC TLS cipher suites

• tls-mutual: set the mutual authentication

• tls-trustpoint: configure trustpoint

• server-vrf: enable server vrf

4. Commit the configuration.
Router(config-grpc)#commit

The following example shows the output of show grpc command. The sample output displays the gRPC
configuration when TLS is enabled on the router.
Router#show grpc

Address family : ipv4
Port : 57300
VRF : global-vrf
TLS : enabled
TLS mutual : disabled
Trustpoint : none
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32

TLS cipher suites
Default : none
Enable : none
Disable : none

Operational enable : ecdhe-rsa-chacha20-poly1305
: ecdhe-ecdsa-chacha20-poly1305
: ecdhe-rsa-aes128-gcm-sha256
: ecdhe-ecdsa-aes128-gcm-sha256
: ecdhe-rsa-aes256-gcm-sha384
: ecdhe-ecdsa-aes256-gcm-sha384
: ecdhe-rsa-aes128-sha
: ecdhe-ecdsa-aes128-sha
: ecdhe-rsa-aes256-sha
: ecdhe-ecdsa-aes256-sha
: aes128-gcm-sha256

Telemetry Configuration Guide for Cisco NCS 1000 Series
12

Configure Model-driven Telemetry
Enable gRPC

: aes256-gcm-sha384
: aes128-sha
: aes256-sha

Operational disable : none

What to Do Next:

Create a sensor group.

Create a Sensor Group
The sensor group specifies a list of YANG models that are to be streamed.

1. Identify the sensor path for XR YANG model.

2. Create a sensor group.

Router(config)#telemetry model-driven
Router(config-model-driven)#sensor-group <group-name>
Router(config-model-driven-snsr-grp)# sensor-path <XR YANG model>
Router(config-model-driven-snsr-grp)# commit

Example: Sensor Group for gRPC Dial-in

The following example shows a sensor group SGroup3 created for gRPC dial-in configuration with the YANG
model for interfaces:

Router(config)#telemetry model-driven
Router(config-model-driven)#sensor-group SGroup3
Router(config-model-driven-snsr-grp)# sensor-path openconfig-interfaces:interfaces/interface

Router(config-model-driven-snsr-grp)# commit

What to Do Next:

Create a subscription.

Create a Subscription
The subscription associates a sensor-group with a streaming interval. The collector requests the subscription
to the sensor paths when it establishes a connection with the router.

Router(config)#telemetry model-driven
Router(config-model-driven)#subscription <subscription-name>
Router(config-model-driven-subs)#sensor-group-id <sensor-group> sample-interval <interval>

Router(config-model-driven-subs)#destination-id <destination-group>
Router(config-mdt-subscription)#commit

Example: Subscription for gRPC Dial-in

The following example shows a subscription Sub3 that is created to associate the sensor-group with an interval
of 30 seconds to stream data:

Router(config)telemetry model-driven
Router(config-model-driven)#subscription Sub3

Telemetry Configuration Guide for Cisco NCS 1000 Series
13

Configure Model-driven Telemetry
Create a Sensor Group

Router(config-model-driven-subs)#sensor-group-id SGroup3 sample-interval 30000
Router(config-mdt-subscription)#commit

What to Do Next:

Validate the configuration.

Validate Dial-in Configuration
Use the following command to verify that you have correctly configured the router for gRPC dial-in.

Router#show telemetry model-driven subscription

Example: Validation for gRPC Dial-in

RP/0/RP0/CPU0:SunC#show telemetry model-driven subscription Sub3
Thu Jul 21 21:32:45.365 UTC
Subscription: Sub3

State: ACTIVE
Sensor groups:
Id: SGroup3
Sample Interval: 30000 ms
Sensor Path: openconfig-interfaces:interfaces/interface
Sensor Path State: Resolved

Destination Groups:
Group Id: DialIn_1002
Destination IP: 172.30.8.4
Destination Port: 44841
Encoding: self-describing-gpb
Transport: dialin
State: Active
Total bytes sent: 13909
Total packets sent: 14
Last Sent time: 2016-07-21 21:32:25.231964501 +0000

Collection Groups:

Id: 2
Sample Interval: 30000 ms
Encoding: self-describing-gpb
Num of collection: 7
Collection time: Min: 32 ms Max: 39 ms
Total time: Min: 34 ms Avg: 37 ms Max: 40 ms
Total Deferred: 0
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
Last Collection Start:2016-07-21 21:32:25.231930501 +0000
Last Collection End: 2016-07-21 21:32:25.231969501 +0000
Sensor Path: openconfig-interfaces:interfaces/interface

Telemetry Configuration Guide for Cisco NCS 1000 Series
14

Configure Model-driven Telemetry
Validate Dial-in Configuration

Event-driven Telemetry for Terminal-device Models
In R6.5.2, event-driven telemetry is supported for terminal-device models. When an alarm is received, the
alarm is immediately sent through the telemetry system. The event-driven telemetry is enabled by setting the
sample interval value to 0 in the subscription configuration.

Example: Configure Event-driven Telemetry for Terminal-device Models

RP/0/RP0/CPU0:ios# show running-config telemetry model-driven

Wed Sep 19 13:57:41.418 IST
telemetry model-driven
destination-group pipeline_test
address-family ipv4 198.51.100.3 port 5890
encoding self-describing-gpb
protocol tcp
!

!

sensor-group gkl_30seconds
sensor-path openconfig-system:system

!
subscription gkl_30seconds
sensor-group-id gkl_30seconds sample-interval 0
destination-id pipeline_test

!
!

sensor-path openconfig-system:system means open config sensor path (global).

sample-interval 0 means telemetry is performed instantly for alarm occurrence and clearance.

Verify the Resolution of Sensor Path

Use the following show command to verify whether the sensor path is resolved.

RP/0/RP0/CPU0:ios# show telemetry model-driven subscription gkl_30s$

Wed Sep 26 09:59:48.326 IST
Subscription: gkl_30seconds

State: Paused
Sensor groups:
Id: gkl_30seconds
Sample Interval: 0 ms
Sensor Path: openconfig-system:system
Sensor Path State: Resolved

Destination Groups:
Group Id: pipeline_test
Destination IP: 10.77.132.122
Destination Port: 5900
Encoding: self-describing-gpb
Transport: tcp
State: NA
No TLS

Collection Groups:

Telemetry Configuration Guide for Cisco NCS 1000 Series
15

Configure Model-driven Telemetry
Event-driven Telemetry for Terminal-device Models

Id: 1
Sample Interval: 0 ms
Encoding: self-describing-gpb
Num of collection: 24
Collection time: Min: 7 ms Max: 15 ms
Total time: Min: 1 ms Avg: 5 ms Max: 15 ms
Total Deferred: 9
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
No data Instances: 0
Last Collection Start:2018-09-24 18:22:36.1991344829 +0530
Last Collection End: 2018-09-25 12:39:56.3406424389 +0530
Sensor Path: openconfig-system:system

Streaming Event-Driven Telemetry for Online Insertion and
Removal of Pluggables

Table 1: Feature History

DescriptionReleaseFeature Name

A new sensor path in the
OpenConfig model type is
introduced to support EDT in NCS
1004 during OIR of the pluggables.
It triggers telemetry data such as
form factor, SONET-SDH
compliance code, FEC corrected
bits during removal, and state,
channel data during insertion of the
NCS 1004 chassis. This telemetry
data helps you to track the
pluggables present in the NCS 1004
chassis.

Cisco IOS XR Release 7.8.1Event Driven Telemetry Support
for Online Insertion and Removal
(OIR) of Pluggables

Event-driven telemetry in NCS 1004 streams operational data that are related to each lane that is configured
for pluggables when OIR of pluggables occurs. In this section, the output examples show the operational data
for pluggables that are configured with a single lane and four lanes. The
openconfig-platform-transceiver:transceiver sensor path in the OpenConfig RPC model provides
telemetry data of NCS 1004 pluggables that are removed or added in the NCS 1004 chassis.

Enabling EDT for OIR of Pluggables

To enable the event-driven telemetry for the OIR of pluggables, perform the following steps in order.

1. Use the no no-tls command in the gRPC configuration mode to enable the event-driven telemetry.

2. Run the subscription configuration file and input file together in the following format. Use the following
command in your local machine to which you want to stream the event-driven telemetry data for pluggables
that you remove or add.

Telemetry Configuration Guide for Cisco NCS 1000 Series
16

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

<local-file-path>/<client-file> -a <IPv4-address>:<gRPC-portnumber> -insecure
-insecure_username <username> -insecure_password <password> -<encoding> "$(cat
<subscription-config file)" -dt <display-type-string>

Table 2: Attribute Description

DescriptionData TypeAttribute

Local file path of the client and subscription configuration file
in your machine.

file path<local-file-path>

Name of the client file to enable EDTString<client-file>

IPv4 address of the NCS 1004 chassisDecimal<IPv4-address>

Port number of the gRPC portInteger<gRPC-portnumber>

Name of the admin userString<username>

User password to access the NCS 1004 chassis.Alphanumeric<password>

Type of the encoding formatString<encoding>

Name of the configuration file to enable EDT subscriptionString<subscription-config
file>

Format of the output displayCharacter<display-type-string>

The following sample command executes the subscription file to stream the telemetry data for the OIR
of the pluggables.
/ws/achakali-bgl/bh_final/bh_devtest/bh_auto/bh_automation/generated_files/gnmi_cli_latest
-a 10.127.60.146:57400 -insecure -insecure_username test2 -insecure_password cisco123
-proto "$(cat transceiver_input)" -dt p

Subscription Configuration File

The following sample configuration file is based on gNMI specifications. It uses the openconfig sensor path
and enables the EDT in NCS 1004 for the OIR of pluggables.

Event-driven telemetry is enabled by setting the sample interval value to 0 and mode to ON_CHANGE in
the subscription configuration.

Note

subscribe: <
prefix: <
>
subscription: <
path: <

elem: <
name: "openconfig-platform:components"

>
elem: <

name: "component/openconfig-platform-transceiver:transceiver"
>

>

Telemetry Configuration Guide for Cisco NCS 1000 Series
17

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

mode: ON_CHANGE
sample_interval: 0

>
mode: STREAM
encoding: PROTO

>

The sensor path component/openconfig-platform-transceiver:transceiver enables the
streaming of transceiver data when the pluggable is inserted or removed. The encoding format proto displays
the streamed telemetry data in the .proto format. The mode STREAM enables the stream subscription for
the set of sensory paths. For more information on the gNMI specifications, refer to gRPCNetworkManagement
Interface (gNMI).

Verify the Sensor Path

Use the following command to verify whether the event-driven telemetry sensor path for the OIR of pluggables
in NCS 1004 is enabled.
RP/0/RP0/CPU0:ios#show telemetry model-driven internal subscription

The following output shows thecomponent/openconfig-platform-transceiver:transceiver
sensor path is active.

Fri Oct 21 15:32:28.785 IST
Subscription: GNMI__10083376335112435231

State: ACTIVE
Sensor groups:
Id: GNMI__10083376335112435231_0
Sample Interval: 0 ms
Heartbeat Interval: NA
Sensor Path:

openconfig-platform:components/component/openconfig-platform-transceiver:transceiver
Sensor Path State: Resolved

Destination Groups:
Group Id: GNMI_1001
Destination IP: 198.51.100.3
Destination Port: 60058
Encoding: gnmi-proto
Transport: dialin
State: Active
TLS : True
Total bytes sent: 309553
Total packets sent: 179
Last Sent time: 2022-10-21 15:32:15.2304030650 +0530

Collection Groups:

Id: 1
Sample Interval: 0 ms
Heartbeat Interval: NA
Heartbeat always: False
Encoding: gnmi-proto
Num of collection: 1
Incremental updates: 0
Collection time: Min: 709 ms Max: 709 ms
Total time: Min: 716 ms Avg: 716 ms Max: 716 ms
Total Deferred: 1
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0

Telemetry Configuration Guide for Cisco NCS 1000 Series
18

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

No data Instances: 0
Last Collection Start:2022-10-21 15:32:14.2303313823 +0530
Last Collection End: 2022-10-21 15:32:15.2304030650 +0530
Sensor Path:

openconfig-platform:components/component/openconfig-platform-transceiver:transceiver

Sysdb Path:
/oper/overlays/gl/oc_transceiver/openconfig-platform/components/component__list_S/*/transceiver/physical-channels/channel__list_u__bag_overlay_oc_transceiver_channel/*

Count: 1 Method: FINDDATA Min: 709 ms Avg: 709 ms Max: 709 ms
Item Count: 132 Status: Eventing Active
Missed Collections:0 send bytes: 286891 packets: 130 dropped bytes: 0
Missed Heartbeats: 0 Filtered Item Count: 0

success errors deferred/drops
Gets 0 0
List 0 0
Datalist 0 0
Finddata 3 0
GetBulk 0 0
Encode 0 1
Send 0 0

Id: 2
Sample Interval: 0 ms
Heartbeat Interval: NA
Heartbeat always: False
Encoding: gnmi-proto
Num of collection: 1
Incremental updates: 0
Collection time: Min: 691 ms Max: 691 ms
Total time: Min: 694 ms Avg: 694 ms Max: 694 ms
Total Deferred: 0
Total Send Errors: 0
Total Send Drops: 0
Total Other Errors: 0
No data Instances: 0
Last Collection Start:2022-10-21 15:32:14.2302824953 +0530
Last Collection End: 2022-10-21 15:32:15.2303519103 +0530
Sensor Path:

openconfig-platform:components/component/openconfig-platform-transceiver:transceiver

Sysdb Path:
/oper/overlays/gl/oc_transceiver/openconfig-platform/components/component__list_S/*/transceiver/state__bag_overlay_oc_transceiver_state

Count: 1 Method: FINDDATA Min: 691 ms Avg: 691 ms Max: 691 ms
Item Count: 49 Status: Eventing Active
Missed Collections:0 send bytes: 22662 packets: 48 dropped bytes: 0
Missed Heartbeats: 0 Filtered Item Count: 0

success errors deferred/drops
Gets 0 0
List 0 0
Datalist 0 0
Finddata 2 0
GetBulk 0 0
Encode 0 0
Send 0 0

RP/0/RP0/CPU0:ios#

EDT Output for the OIR of Pluggables

Output for Inserted Pluggable

Telemetry Configuration Guide for Cisco NCS 1000 Series
19

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

The following example shows the telemetry data for the addition of a single lane FR-S pluggable optic
transceiver in port 13 of a 1.2T card in slot 1 in .proto format. The following output is the same for a single
lane LR-S pluggable optic transceiver.
update: <

path: <
elem: <
name: "state"

>
elem: <
name: "present"

>
>
val: <
string_val: "PRESENT"

>
>

>

update: <
timestamp: 1667367012319000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_1_0_13"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
update: <
path: <
elem: <
name: "physical-channels"

>
elem: <
name: "channel"
key: <
key: "index"
value: "1"

>
>
elem: <
name: "state"

>
elem: <
name: "index"

>
>
val: <
uint_val: 1

>
>

>

The following table describes the highlighted parameters in the preceding example.

Telemetry Configuration Guide for Cisco NCS 1000 Series
20

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

Table 3: Parameters Description

DescriptionParameters

Subscribed sensor pathname:
"openconfig-platform-transceiver:transceiver"

Addition of the transceiver pluggableupdate:

Indicates the availability of the pluggablestring_val: "PRESENT"

FR pluggable inserted in slot 1 port 13 of 1.2T cardvalue: "Optics0_1_0_13"

Output for Removed Pluggable

The following example shows the telemetry data for the removal of a single lane LR-S pluggable optic
transceiver in port 13 of a 1.2T card in slot 1 in .proto format. The following output is the same for a single
lane FR-S pluggable optic transceiver.
update: <
timestamp: 1667367004302000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_1_0_13"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "state"

>
elem: <
name: "fec-mode"

>
>

.

.
output snipped
.
.
delete: <
elem: <
name: "state"

>
elem: <
name: "fec-uncorrectable-words"

>
>
delete: <
elem: <
name: "state"

Telemetry Configuration Guide for Cisco NCS 1000 Series
21

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

>
elem: <
name: "fec-corrected-bits"

>
>

>

update: <
timestamp: 1667367004303000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_1_0_13"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "physical-channels"

>
elem: <
name: "channel"
key: <
key: "index"
value: "1"

>
>
elem: <
name: "state"

>
elem: <
name: "index"

>
>
delete: <
elem: <
name: "physical-channels"

>
elem: <
name: "channel"
key: <
key: "index"
value: "1"

>
>
elem: <
name: "state"

>
elem: <
name: "description"

>
>
delete: <
elem: <
name: "physical-channels"

Telemetry Configuration Guide for Cisco NCS 1000 Series
22

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

>
elem: <
name: "channel"
key: <
key: "index"
value: "1"

>
>
elem: <
name: "state"

>
>

The following table describes the highlighted parameters in the preceding example.

Table 4: Parameters Description

DescriptionParameters

Subscribed sensor pathname:
"openconfig-platform-transceiver:transceiver"

Removal of the transceiver pluggabledelete:

LR pluggable removed in slot 1 port 13 of 1.2T cardvalue: "Optics0_1_0_13"

Indicates the deleted lane numberkey: <
key: "index"
value: "1"

The following example shows the telemetry data for the removal of a four-lane LR4-S pluggable optic
transceiver in port 5 of a 1.2T card in slot 0 in .proto format.
update: <
timestamp: 1667367249665000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_0_0_5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "state"

>
elem: <
name: "fec-mode"

>
>

.

.
output snipped

Telemetry Configuration Guide for Cisco NCS 1000 Series
23

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

.

.
delete: <
elem: <
name: "state"

>
elem: <
name: "fec-uncorrectable-words"

>
>
delete: <
elem: <
name: "state"

>
elem: <
name: "fec-corrected-bits"

>
>

>

update: <
timestamp: 1667367249666000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_0_0_5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "physical-channels"

>
elem: <
name: "channel"
key: <
key: "index"
value: "1"

>
>
elem: <
name: "state"

>
elem: <
name: "index"

>
>

.

.

.output snipped

.

.
>

update: <

Telemetry Configuration Guide for Cisco NCS 1000 Series
24

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

timestamp: 1667367249667000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_0_0_5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "physical-channels"

>
elem: <
name: "channel"
key: <
key: "index"
value: "2"

>
>
elem: <
name: "state"

>
elem: <
name: "index"

>
>

.

.
output snipped
.
.
>

update: <
timestamp: 1667367249669000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_0_0_5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "physical-channels"

>

Telemetry Configuration Guide for Cisco NCS 1000 Series
25

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

elem: <
name: "channel"
key: <
key: "index"
value: "3"

>
>
elem: <
name: "state"

>
elem: <
name: "index"

>
.
.
output snipped
.
.
>

>

update: <
timestamp: 1667367249670000000
prefix: <
origin: "openconfig-platform"
elem: <
name: "components"

>
elem: <
name: "component"
key: <
key: "name"
value: "Optics0_0_0_5"

>
>
elem: <
name: "openconfig-platform-transceiver:transceiver"

>
>
delete: <
elem: <
name: "physical-channels"

>
elem: <
name: "channel"
key: <
key: "index"
value: "4"

>
>
elem: <
name: "state"

>
elem: <
name: "index"

>
>

.

.
output snipped
.
.
>

Telemetry Configuration Guide for Cisco NCS 1000 Series
26

Configure Model-driven Telemetry
Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables

The following table describes the highlighted parameters in the preceding example.

Table 5: Parameters Description

DescriptionParameters

Subscribed sensor pathname:
"openconfig-platform-transceiver:transceiver"

Removal of the transceiver pluggabledelete:

LR4 pluggable removed in slot 0 port 5 of 1.2T cardvalue: "Optics0_0_0_5"

Indicates the deleted lane number 4key: <
key: "index"
value: "4"

gRPC Network Management Interface
gRPC Network Management Interface is an interface for a network management system to interact with a
network element.

gNMI Services

• Get - Used by the client to retrieve configuration data on the target.

• Set - Used by the client to modify configuration data of the target.

• Telemetry - Used by the client to control subscriptions to the data on the target.

Example for GET:

Syntax:

$./gnmi_cli -get --address=mrstn-5502-2.cisco.com:57344 \
-proto "$(cat test.proto)" \
-with_user_pass \
-insecure \
-ca_crt=ca.cert \
-client_crt=ems.pem \
-client_key=ems.key \
-timeout=5s

Example for SET:

Syntax:

$./gnmi_cli -set --address=mrstn-5502-2.cisco.com:57344 \
-proto "$(cat test.proto)" \
-with_user_pass \
-insecure \
-ca_crt=ca.cert \
-client_crt=ems.pem \
-client_key=ems.key \
-timeout=5s

Example for Subscribe:

Syntax:

Telemetry Configuration Guide for Cisco NCS 1000 Series
27

Configure Model-driven Telemetry
gRPC Network Management Interface

$./gnmi_cli --address=mrstn-5502-2.cisco.com:57344 \
-proto "$(cat test.proto)" \
-with_user_pass \
-insecure \
-ca_crt=ca.cert \
-client_crt=ems.pem \
-client_key=ems.key \
-timeout=5s
-display_type string (g, group, s, single, p, proto). (default "group")

Subscription Mode

Subscription Mode is the mode of the subscription, specifying how the target must return values in a
subscription.

Modes of the subscription:

• STREAM = 0

• ONCE = 1

• POLL = 2

ONCE Subscriptions: A subscription operating in the ONCEmode acts as a single request/response channel.
The target creates the relevant update messages, transmits them, and subsequently closes the RPC.

STREAM Subscriptions: Stream subscriptions are long-lived subscriptions which continue to transmit
updates relating to the set of paths that are covered within the subscription indefinitely.

2s Telemetry Based on GNMI Subscribe
gRPC Network Management Interface (GNMI) is a network management protocol used for configuration
management and telemetry. gNMI provides the mechanism to install, manipulate, and delete the configuration
of network devices, and to view operational data. The content provided through gNMI can be modeled using
YANG.

Typically, GNMI client is configured to receive telemetry reports for every 30 seconds. The user can configure
GNMI client with a sample interval of two seconds. However, the system cannot manage this delay between
two collections. Hence, a characterization has been done to evaluate the actual system performance.

The characterization started to identify the maximum system load corresponding to the following scenario:

• The node is configured as a section protection node (EDFA, PSM, and EDFAmodules on the three slots).

• Both the EDFA modules are configurated with grid mode=50Ghz.

The grid-mode configuration creates up to 96 additional OTS-OCH controllers for each ots 0/slot/0/0
and ots 0/slot/0/1. The grid-mode 50GHz configuration adds 96 * 2 (number of slots with EDFAmodule
for section protection) * 2 (bidirectional ports having OTS-OCH controllers for each EDFA module) =
384 controllers to the system.

Measurements have been performed for maximum load and for no_grid mode.

The following sensor paths are supported for telemetry testing in NCS 1001. GNMI client is configured for
the following sensor paths to receive telemetry reports for every two seconds.

Telemetry Configuration Guide for Cisco NCS 1000 Series
28

Configure Model-driven Telemetry
2s Telemetry Based on GNMI Subscribe

DescriptionSensor Path

Provides the data of all the OTS and OTS-OCH
controllers for the system.

Cisco-IOS-XR-controller-optics-oper-sub1:optics-oper/optics-ports/optics-port/optics-info

Provides the controller information of OTS and
OTS-OCH controllers and active alarms.

Cisco-IOS-XR-controller-optics-oper-sub1:optics-oper/optics-ports/optics-port/optics-info

Cisco-IOS-XR-alarmgr-server-oper-sub1:alarms/brief/brief-card/brief-locations/brief-location/active

Characterization is performedwith line-rx and com-rx
disconnected on both the EDFAmodules. OTS-OCH
controller is in maintenance state by default.

The above sensor paths must belong to the same sensor group for which the minimum subscription interval
is measured. Other sensor paths can belong to other sensor groups with subscriptions greater than 30 seconds.

The characterization performed found a value for which a sample interval for telemetry is suggested to 10
seconds for maximum load, whereas subscription time is 5 seconds for grid_mode=no grid.

gNMI Heartbeat Interval
Table 6: Feature History

Feature DescriptionRelease InformationFeature Name

The gNMI Heartbeat Interval
feature allows you to send
ON_CHANGE subscription data
for each heartbeat interval
regardless of change in value. This
feature enables you to enhance the
network management system.

Cisco IOS XR Release 7.3.2gNMI Heartbeat Interval

The gNMI heartbeat interval must be specified along withON_CHANGE subscription. In this case, the value
of the data items must be resent once for each heartbeat interval regardless of change in value.

Limitation

Enabling the gNMI heartbeat interval using Open Config is not supported.

Examples

The following example uses the openconfig sensor path and enables the gNMI heartbeat interval value of one
hour in nanoseconds.

subscribe: <
prefix: <
>
subscription: <
path: <

origin: "openconfig-system"
elem: <

name: "system"

Telemetry Configuration Guide for Cisco NCS 1000 Series
29

Configure Model-driven Telemetry
gNMI Heartbeat Interval

>
elem: <

name: "alarms"
>

>
mode: ON_CHANGE
heartbeat_interval: 3600000000000

>
mode: STREAM
encoding: PROTO

>

The following example shows the enabled gNMI heartbeat interval.
RP/0/RP0/CPU0:ios#show run telemetry model-driven subscription sub-1
Thu Jun 17 08:41:52.400 UTC
telemetry model-driven
subscription sub-1
sensor-group-id group1 sample-interval 0
sensor-group-id group1 heartbeat interval 3600000000000
sensor-group-id group1 heartbeat always

!
!

The interval attribute sends subscription data for each heartbeat interval when no events have occurred within
the interval. The always attribute sends subscription data for each heartbeat interval even if events have
occurred within the interval. The sample-interval attribute is enabled only with event-driven telemetry. This
attribute value must be set to 0 to enable event-driven telemetry.

Telemetry Configuration Guide for Cisco NCS 1000 Series
30

Configure Model-driven Telemetry
gNMI Heartbeat Interval

C H A P T E R 3
Core Components of Model-driven Telemetry
Streaming

The core components used in streaming model-driven telemetry data are described in this chapter.

• Session, on page 31
• Sensor Path, on page 32
• Sensor Paths Supported for EDT in NCS 1001, on page 32
• OpenConfig Sensor Paths Supported for MDT in NCS 1001, on page 33
• Sensor Paths Supported in NCS 1004, on page 33
• Sensor Paths Supported in NCS 1010 and NCS 1020, on page 36
• Subscription, on page 39
• Transport and Encoding, on page 40

Session
A telemetry session can be initiated using:

Dial-in Mode
In a dial-in mode, an MDT receiver dials in to the router, and subscribes dynamically to one or more sensor
paths or subscriptions. The router acts as the server and the receiver is the client. The router streams telemetry
data through the same session. The dial-in mode of subscriptions is dynamic. This dynamic subscription
terminates when the receiver cancels the subscription or when the session terminates.

There are two methods to request sensor-paths in a dynamic subscription:

• OpenConfig RPC model: The subscribe RPC defined in the model is used to specify sensor-paths and
frequency. In this method, the subscription is not associated with an existing configured subscription. A
subsequent cancel RPC defined in the model removes an existing dynamic subscription.

• IOS XR MDT RPC: IOS XR defines RPCs to subscribe and to cancel one or more configured
subscriptions. The sensor-paths and frequency are part of the telemetry configuration on the router. A
subscription is identified by its configured subscription name in the RPCs.

Telemetry Configuration Guide for Cisco NCS 1000 Series
31

Dial-out Mode
In a dial-out mode, the router dials out to the receiver. This is the default mode of operation. The router acts
as a client and receiver acts as a server. In this mode, sensor-paths and destinations are configured and bound
together into one or more subscriptions. The router continually attempts to establish a session with each
destination in the subscription, and streams data to the receiver. The dial-out mode of subscriptions is persistent.
When a session terminates, the router continually attempts to re-establish a new session with the receiver
every 30 seconds.

Sensor Path
The sensor path describes a YANG path or a subset of data definitions in a YANG model with a container.
In a YANG model, the sensor path can be specified to end at any level in the container hierarchy.

AnMDT-capable device, such as a router, associates the sensor path to the nearest container path in the model.
The router encodes and streams the container path within a single telemetry message. A receiver receives data
about all the containers and leaf nodes at and below this container path.

The router streams telemetry data for one or more sensor-paths, at the configured frequency (cadence-based
streaming) or when the sensor-path content changes (event-based streaming), to one or more receivers through
subscribed sessions.

Sensor Paths Supported for EDT in NCS 1001
The following sensor paths are supported for Event-based telemetry in NCS 1001.

DescriptionEDT Sensor Path

This event is triggeredwhen the configuration changes
for optics/ots controller (say shutdown / no shutdown)
or when the configuration changes for Transport
Admin State (say sec-admin-state maintenance).

Cisco-IOS-XR-controller-optics-oper:optics-oper/
optics-ports/optics-port/optics-info

This event is triggered when the 30 seconds historical
PM is completed. It returns latest bucket for all
optics/ots controllers.

Cisco-IOS-XR-pmengine-oper:
performance-management-history/
global/periodic/optics-history/
optics-port-histories/optics-port-history/
optics-second30-history

This event is triggered when the 15 minutes historical
PM is completed. It returns latest bucket for all
optics/ots controllers.

Cisco-IOS-XR-pmengine-oper:
performance-management-history/
global/periodic/optics-history/
optics-port-histories/optics-port-history/
optics-minute15-history

This event is triggered when the 24 hours historical
PM is completed. It returns latest bucket for all
optics/ots controllers.

Cisco-IOS-XR-pmengine-oper:
performance-management-history/
global/periodic/optics-history/
optics-port-histories/optics-port-history/
optics-hour24-history

Telemetry Configuration Guide for Cisco NCS 1000 Series
32

Core Components of Model-driven Telemetry Streaming
Dial-out Mode

OpenConfig Sensor Paths Supported for MDT in NCS 1001
The following OpenConfig sensor paths are supported for Model-based telemetry in NCS 1001.

DescriptionMDT Sensor Path

Sensor path related to EDFA objects (ots controllers)
openconfig-optical-amplifier:optical-amplifier/
amplifiers/amplifier

Sensor path related to PSM objects (ots controllers)openconfig-transport-line-protectionaps/
aps-modules/aps-module

Sensor path related to EDFA objects (ots-och
controllers and spectrum information)

openconfig-channel-monitor:channel-monitors/
channel-monitor/channels

Sensor Paths Supported in NCS 1004
The following sensor paths are supported in NCS 1004.

Table 7:

DescriptionSensor PathModel Type

Provides the details of
the FPGA versions of
various hardware
components and the
packaged FPGAswith
the ISO such as,
BP_FPGA,
XGE_FLASH.

Cisco-IOS-XR-show-fpd-loc-ng-oper:show-fpd/hw-module-fpdNative

Provides details of
available space and
occupied space in the
various directory
structures.

Cisco-IOS-XR-mediasvr-linux-oper:media-svr/allNative

Provides the list of all
active system alarms
on the node.

Cisco-IOS-XR-alarmgr-server-oper:alarms/brief/brief-system/activeNative

Provides the list of all
suppressed system
alarms on the node.

Cisco-IOS-XR-alarmgr-server-oper:alarms/brief/brief-system/suppressedNative

Provides the list of all
conditional system
alarms on the node.

Cisco-IOS-XR-alarmgr-server-oper:alarms/brief/brief-system/conditionsNative

Telemetry Configuration Guide for Cisco NCS 1000 Series
33

Core Components of Model-driven Telemetry Streaming
OpenConfig Sensor Paths Supported for MDT in NCS 1001

DescriptionSensor PathModel Type

Provides the details of
all the trunk or client
ports of optics
controller such as
Baud rate, TX-RX
power admin state, and
LED state

Cisco-IOS-XR-controller-optics-oper:optics-oper/optics-portsNative

Provides the details of
OTU FEC PM
counters for 30 second
bucket such as, OSNR,
PDL, PSR.

Cisco-IOS-XR-pmengine-oper:performance-management/otu/
otu-ports/otu-port/otu-current/otu-second30/otu-second30fecs

Native

Provides the details of
OTU OTN PM
counters for 30 second
bucket such as,
BBER-FE, FC-FE.

Cisco-IOS-XR-pmengine-oper:performance-management/otu/
otu-ports/otu-port/otu-current/otu-second30/otu-second30otns

Native

Provides the details of
Optics PM counters
for 30 second bucket
such as, LB+E4C,
OPT, OPR.

Cisco-IOS-XR-pmengine-oper:performance-management/optics/
optics-ports/optics-port/optics-current/optics-second30/optics-second30-optics

Native

Provides the details of
Ethernet PM counters
for 30 second bucket
such as, STAT-PKT,
TX-PKT.

Cisco-IOS-XR-pmengine-oper:performance-management/ethernet/ethernet-ports/
ethernet-port/ethernet-current/ethernet-second30/second30-ethers

Native

Provides the snapshot
of current CPU
utilization of the node.

Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilizationNative

Provides the snapshot
of memory utilization
of the node.

Cisco-IOS-XR-nto-misc-oper:memory-summary/nodes/
node/summary

Native

Provides the details of
muxponder slices that
are configured on the
node.

Cisco-IOS-XR-osa-oper:osa/node-ids/node-id/mxponder-slicesNative

Provides the details of
the current active ISO
and RPMs on the
node.

Cisco-IOS-XR-spirit-install-instmgr-oper:software-install/activeNative

Telemetry Configuration Guide for Cisco NCS 1000 Series
34

Core Components of Model-driven Telemetry Streaming
Sensor Paths Supported in NCS 1004

DescriptionSensor PathModel Type

Checks for the alarms,
host name, SSH
configuration, and
gRPC configuration.

openconfig-system:systemOpenConfig

Checks for the
inventory of the node
such as
subcomponents and
field replaceable units
such as,
QSFP-100G-LR4-S,
QSFP-100G-CWDM4-S.

openconfig-platform:components/componentOpenConfig

Provides operational
data for each
configured lane of
pluggables that is
added or removed
from the chassis, such
as FEC corrected bits,
form factor during
removal and state,
channel data during
insertion.

openconfig-platform:components/component/openconfig-platform-transceiver:transceiverOpenConfig

Provides the supported
operational modes of
theOC terminal device
configuration.

openconfig-terminal-device:terminal-deviceOpenConfig

Provides the details of
PM counters for 10
second history bucket
for OTN/ODU logical
channels trunk ports
such as, ES-NE,
ESR-NE, BBE-FE.

openconfig-terminal-device:terminal-device/logical-
channels/channel/otn/state

OpenConfig

Provides the details of
PCS counters for 10
second history bucket
and all the other
packet counters as
cumulative for the
ethernet logical
channel client ports
such as,
STAT-MULTICAST-PKT,
TX-PKT, IN-MCAST.

openconfig-terminal-device:terminal-device/logical-
channels/channel/ethernet/state

OpenConfig

Telemetry Configuration Guide for Cisco NCS 1000 Series
35

Core Components of Model-driven Telemetry Streaming
Sensor Paths Supported in NCS 1004

Sensor Paths Supported in NCS 1010 and NCS 1020
Table 8: Feature History

DescriptionReleaseFeature Name

New native YANG model sensor
paths and an OpenConfig sensor
path are introduced for Event Driven
Telemetry (EDT) in NCS 1010.

EDT streams data only when a state
transition occurs and thus avoids
excess data collection at the
receiver.

EDT streams data about interface
state transitions, controller
shutdown, and failure, removal and
insertion of the components such as
power module, fan, line card, and
passive modules into the NCS 1010
chassis.

Cisco IOS XR Release 7.9.1Sensor paths supported for EDT

Model Driven Telemetry (MDT) is
now supported by NCS 1010 for the
native YANG models and
OpenConfig sensor paths. MDT
performs continuous data streaming
and provides near real-time access
to operational statistics.

Cisco IOS XR Release 7.9.1Sensor paths supported for MDT

Sensor Paths Supported for EDT in NCS 1010 and NCS 1020

These sensor paths are supported for event-based telemetry in NCS 1010 and NCS 1020.

DescriptionEDT Sensor PathModel Type

This event is triggered whenever
the state changes in the inventory
modules. It returns the admin-state
and oper-state status.

Cisco-IOS-XR-platform-oper:platform/racks/rack/
slots/slot/state

Native

This event is triggered whenever
the state changes in the inventory
modules. It returns the admin-state
and oper-state status per instance.

Cisco-IOS-XR-platform-oper:platform/racks/rack/
slots/slot/instances/instance/state

Native

Telemetry Configuration Guide for Cisco NCS 1000 Series
36

Core Components of Model-driven Telemetry Streaming
Sensor Paths Supported in NCS 1010 and NCS 1020

DescriptionEDT Sensor PathModel Type

This event is triggered whenever
a new alarm is generated in the
system. It returns the alarm,
alarm-id, and a few other status
values whenever a node turns
active.

Cisco-IOS-XR-alarmgr-server-oper:alarms/brief/
alarm-id/active-alarms/active-alarm

Native

This event is triggered when the
15-minutes historical PM is
completed. It returns the latest
bucket for all optics/ots
controllers.

Cisco-IOS-XR-pmengine-oper:performance-management-history/
global/periodic/optics-history/optics-port-histories/optics-port-history/
optics-minute15-history/optics-minute15-optics-histories/
optics-minute15-optics-history/

Native

This event is triggered when the
30-minutes historical PM is
completed. It returns the latest
bucket for all optics/ots
controllers.

Cisco-IOS-XR-pmengine-oper:performance-management-history/
global/periodic/optics-history/optics-port-histories/optics-port-history/
optics-second30-history

Native

This event is triggered when the
24-hours historical PM is
completed. It returns the latest
bucket for all optics/ots
controllers.

Cisco-IOS-XR-pmengine-oper:performance-management-history/
global/periodic/optics-history/optics-port-histories/optics-port-history/
optics-hour24-history

Native

This event is triggered when there
is a change in state in the optical
controllers for shutdown or
no-shutdown states, such as in
OTS, OTS-OCH, OMS,OCH,
OSC and DFB controllers.

Cisco-IOS-XR-pfi-im-cmd-ctrlr-oper:controllers/controllers/
controller

Native

This event is triggered when the
state of any neighboring node
changes in the system. It returns
state values like UP or DOWN
during peer interface state
changes.

Cisco-IOS-XR-ethernet-lldp-oper:lldp/nodes/node/neighborsNative

Telemetry Configuration Guide for Cisco NCS 1000 Series
37

Core Components of Model-driven Telemetry Streaming
Sensor Paths Supported in NCS 1010 and NCS 1020

DescriptionEDT Sensor PathModel Type

This event is triggered when there
is an online insertion and removal
of any component, such as the
power module, fan, and line card
(OLT or ILA cards), and the NCS
1000 passive modules (NCS 1000
Breakout modules, and NCS 1000
32-Channel mux/demux patch
panel). This event is also triggered
whenever there is a change in the
state of the component, such as
failure of the power module and
fan.

openconfig-platform:/components/component/stateOpenConfig

Sensor Paths Supported for MDT in NCS 1010 and NCS 1020

These sensor paths are supported for model-based telemetry in NCS 1010 and NCS 1020.

DescriptionMDT Sensor PathModel Type

Provides the details of the
ots controllers such as
ingress/egress gain or tilt
values along with others.

Cisco-IOS-XR-controller-ots-oper:ots-oper/ots-ports/ots-portNative

Provides the details of all
the ots-och controllers, such
as total TX-RX power,
add/drop channel and other
states.

Cisco-IOS-XR-controller-ots-och-oper:ots-och-oper/ots-och-ports/ots-och-portNative

Provides the details of all
the osc controllers, such as
total TX-RX power and
other states.

Cisco-IOS-XR-controller-osc-oper:osc-oper/osc-ports/osc-port/osc-infoNative

Provides the details of all
the DFB controllers, such as
total TX-RX power states.

Cisco-IOS-XR-controller-dfb-oper:dfb-oper/dfb-ports/dfb-port/dfb-infoNative

Provides the details of all
the OMS controllers, such
as total TX-RX power and
other states.

Cisco-IOS-XR-controller-oms-oper:oms-oper/oms-ports/oms-port/oms-infoNative

Provides the details of all
the och controllers, such as
total TX-RX power and
other states.

Cisco-IOS-XR-controller-och-oper:och-oper/och-ports/och-port/och-infoNative

Telemetry Configuration Guide for Cisco NCS 1000 Series
38

Core Components of Model-driven Telemetry Streaming
Sensor Paths Supported in NCS 1010 and NCS 1020

DescriptionMDT Sensor PathModel Type

Provides the details of
optical controllers such as
ots, ots-och, osc, dfb, oms,
and och PM counters for the
30-seconds bucket.

Cisco-IOS-XR-pmengine-oper:performance-management/optics/optics-ports/optics-port/
optics-current/optics-second30

Native

Provides the details of all
the inventory modules that
are connected to NCS1010.

Cisco-IOS-XR-platform-oper:platform/racks/rack/slots/slotNative

Provides the list of all active
system alarms on a node.

Cisco-IOS-XR-alarmgr-server-oper:alarms/brief/brief-system/activeNative

Provides the details of
optical applications such as
raman-tuning, span-loss,
PSD, and others.

Cisco-IOS-XR-olc-oper:olcNative

Provides the details of
ingress/egress gain, tilt,
gain-range, and OSRI.

openconfig-optical-amplifierr:optical-amplifier/amplifiersOpenConfig

Cisco-IOS-XR-invmgr-oper:inventory/entities/entityNative

Cisco-IOS-XR-platform-oper:platform/racks/rack/slots/slot/instances/instance/stateNative

Cisco-IOS-XR-infra-syslog-operNative

Cisco-IOS-XR-envmon-oper:environmental-monitoring

Cisco-IOS-XR-envmon-oper:power-management

Native

Cisco-IOS-XR-invmgr-diag-oper:diag/racks/rackNative

Cisco-IOS-XR-ledmgr-oper:led-management/locationsNative

Subscription
A subscription binds one or more sensor paths and destinations. An MDT-capable device streams data for
each sensor path at the configured frequency (cadence-based streaming) or when the sensor-path content
changes (event-based streaming) to the destination.

The following example shows subscription SUB1 that associates a sensor-group, sample interval and destination
group.

Router(config)#telemetry model-driven
Router(config-model-driven)#subscription SUB1
Router(config-model-driven-subs)#sensor-group-id SGROUP1 sample-interval 10000
Router(config-model-driven-subs)#strict-timer

Telemetry Configuration Guide for Cisco NCS 1000 Series
39

Core Components of Model-driven Telemetry Streaming
Subscription

With a strict-timer configured for the sample interval, the data collection starts exactly at the configured
time interval allowing a more deterministic behavior to stream data.

In 32-bit platforms, strict-timer can be configured only under the subscription. Whereas, 64-bit platforms
support configurtion at global level in addition to the subscription level. However, configuring at the global
level will affect all configured subscriptions.
Router(config)#telemetry model-driven
Router(config-model-driven)#strict-timer

Note

Transport and Encoding
The router streams telemetry data using a transport mechanism. The generated data is encapsulated into the
desired format using encoders.

Model-Driven Telemetry (MDT) data is streamed through these supported transport mechanisms:

• Google Protocol RPC (gRPC): used for both dial-in and dial-out modes.

• Transmission Control Protocol (TCP): used for only dial-out mode.

• User Datagram Protocol (UDP): used for only dial-out mode.

UDP for Telemetry is not recommended for production networks. It doesn't support models that send messages
larger than the UDP size limit of 65507 bytes.

Note

The data to be streamed can be encoded into Google Protocol Buffers (GPB) or JavaScript Object Notation
(JSON) encoding. In GPB, the encoding can either be compact GPB (for optimising the network bandwidth
usage) or self-describing GPB. The encodings supported are:

• GPB encoding: configuring for GPB encoding requires metadata in the form of compiled .proto files.
A .proto file describes the GPBmessage format, which is used to stream data. The .proto files are available
in the Github repository.

• Compact GPB encoding: data is streamed in compressed and non self-describing format. A .proto
file corresponding to each sensor-path must be used by the receiver to decode the streamed data.

• Key-value (KV-GPB) encoding: data of each sensor path streamed is in a self-describing formatted
ASCII text. A single .proto file telemetry.proto is used by the receiver to decode any sensor path
data. Because the key names are included in the streamed data, the data on the wire is much larger
as compared to compact GPB encoding.

• JSON encoding

Telemetry Configuration Guide for Cisco NCS 1000 Series
40

Core Components of Model-driven Telemetry Streaming
Transport and Encoding

Telemetry data is streamed out of the router using an Extensible Manageability Services Deamon (emsd)
process. The data of interest is subscribed through subscriptions and streamed through gRPC, TCP or UDP
sessions. However, a combination of gRPC, TCP and UDP sessions with more than 150 active sessions leads
to emsd crash or process restart.

Note

Telemetry Configuration Guide for Cisco NCS 1000 Series
41

Core Components of Model-driven Telemetry Streaming
Transport and Encoding

Telemetry Configuration Guide for Cisco NCS 1000 Series
42

Core Components of Model-driven Telemetry Streaming
Transport and Encoding

C H A P T E R 4
Configure Policy-based Telemetry

Policy-based telemetry (PBT) streams telemetry data to a destination using a policy file. A policy file defines
the data to be streamed and the frequency at which the data is to be streamed.

The process of streaming telemetry data uses three core components:

• Telemetry Policy File specifies the kind of telemetry data to be generated, at a specified frequency.

• Telemetry Encoder encapsulates the generated data into the desired format and transmits to the receiver.

• Telemetry Receiver is the remote management system that stores the telemetry data.

For more information about the three core components, see Core Components of Policy-based Telemetry
Streaming, on page 49.

Model-driven telemetry supersedes policy-based telemetry.Note

Streaming policy-based telemetry data to the intended receiver involves these tasks:

• Create Policy File, on page 43
• Copy Policy File, on page 45
• Configure Encoder, on page 45
• Verify Policy Activation, on page 47

Create Policy File
You define a telemetry policy file to specify the kind of telemetry data to be generated and pushed to the
receiver. Defining the policy files requires a path to stream data. The paths can be schemas, native YANG or
allowed list entries.

For more information on the schema paths associated with a corresponding CLI command, see Schema Paths,
on page 50.

For more information on policy files, see Telemetry Policy File, on page 49.

1. Determine the schema paths to stream data.

For example, the schema path for interfaces is:

Telemetry Configuration Guide for Cisco NCS 1000 Series
43

RootOper.InfraStatistics.Interface(*).Latest.GenericCounters

2. Create a policy file that contains these paths.

Example: Policy File

The following example shows a sample policy file for streaming the generic counters of an interface:

{
"Name": "Test",
"Metadata": {

"Version": 25,
"Description": "This is a sample policy",
"Comment": "This is the first draft",
"Identifier": "<data that may be sent by the encoder to the mgmt stn"

},
"CollectionGroups": {

"FirstGroup": {
"Period": 10,
"Paths": [

"RootOper.InfraStatistics.Interface(*).Latest.GenericCounters"
]

}
}
}

The following example shows the paths with allowed list entries in the policy file. Instead of streaming all
the data for a particular entry, only specific items can be streamed using allowed list entries. The entries are
allowed using IncludeFields in the policy file. In the example, the entry within the IncludeFields section
streams only the latest applied AutoBW value for that TE tunnel, which is nested two levels down from the
top level of the path:

{

"Name": "RSVPTEPolicy",
"Metadata": {

"Version": 1,
"Description": "This policy collects auto bw stats",
"Comment": "This is the first draft"

},

"CollectionGroups": {
"FirstGroup": {

"Period": 10,
"Paths": {

"RootOper.MPLS_TE.P2P_P2MPTunnel.TunnelHead({'TunnelName':
'tunnel-te10'})": {

"IncludeFields": [{

"P2PInfo": [{
"AutoBandwidthOper": [

"LastBandwidthApplied"
]

}]
}]

}
}

}

Telemetry Configuration Guide for Cisco NCS 1000 Series
44

Configure Policy-based Telemetry
Create Policy File

}
}

The following example shows the paths with native YANG entry in the policy file. This entry will stream the
generic counters of the interface:

"Paths": [

“/Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface=*/latest/generic-counters”

]

What to Do Next:

Copy the policy file to the router. You may copy the same policy file to multiple routers.

Copy Policy File
Run the Secure Copy Protocol (SCP) command to securely copy the policy file from the server where it is
created. For example:

$ scp Test.policy <ip-address-of-router>:/telemetry/policies

For example, to copy the Test.policy file to the /telemetry/policies folder of a router with IP address
10.0.0.1:

$ scp Test.policy cisco@10.0.0.1:/telemetry/policies
cisco@10.0.0.1's password:
Test.policy
100% 779 0.8KB/s 00:00
Connection to 10.0.0.1 closed by remote host.

Verify Policy Installation

In this example, the policy is installed in the /telemetry/policies/ folder in the router file system.
Run the show telemetry policies brief command to verify that the policy is successfully copied to the router.

Router#show telemetry policy-driven policies brief
Wed Aug 26 02:24:40.556 PDT

Name	Active?	Version	Description
Test N 1 This is a sample policy

What to Do Next:

Configure the telemetry encoder to activate and stream data.

Configure Encoder
An encoder calls the streaming Telemetry API to:

• Specify policies to be explicitly defined

• Register all policies of interest

Telemetry Configuration Guide for Cisco NCS 1000 Series
45

Configure Policy-based Telemetry
Copy Policy File

Configure the encoder to activate the policy and stream data. More than one policy and destination can be
specified. Multiple policy groups can be specified under each encoder and each group can be streamed to
multiple destinations. When multiple destinations are specified, the data is streamed to all destinations.

Configure an encoder based on the requirement.

Configure JSON Encoder
The JavaScript Object Notation (JSON) encoder is packaged with the IOS XR software and provides the
default format for streaming telemetry data.

To stream data in JavaScript Object Notation (JSON) format, specify the encoder, policies, policy group,
destination, and port:

Router# configure
Router(config)#telemetry policy-driven encoder json
Router(config-telemetry-json)#policy group FirstGroup
Router(config-policy-group)#policy Test
Router(config-policy-group)#destination ipv4 10.0.0.1 port 5555
Router(config-policy-group)#commit

The names of the policy and the policy group must be identical to the policy and its definition that you create.
For more information on policy files, see Create Policy File, on page 43.

For more information about the message format of JSON encoder, see JSON Message Format, on page 53

Configure GPB Encoder
Configuring the GPB (Google Protocol Buffer) encoder requires metadata in the form of compiled .proto

files. A .proto file describes the GPB message format, which is used to stream data.

Two encoding formats are supported:

• Compact encoding stores data in a compressed and non-self-describing format. A .proto file must be
generated for each path in the policy file to be used by the receiver to decode the resulting data.

• Key-value encoding uses a single .proto file to encode data in a self-describing format. This encoding
does not require a .proto file for each path. The data on the wire is much larger because key names are
included.

To stream GPB data, complete these steps:

1. For compact encoding, create .proto files for all paths that are to be streamed using the following tool:
telemetry generate gpb-encoding path <path> [file <output_file>]

or
telemetry generate gpb-encoding policy <policy_file> directory <output_dir>

A parser limitation does not support the use of quotes within paths in the tool. For example, for use in the
tool, change this policy path,
RootOper.InfraStatistics.Interface(*).Latest.Protocol(['IPV4_UNICAST']) to
RootOper.InfraStatistics.Interface(*).Latest.Protocol.

Attention

Telemetry Configuration Guide for Cisco NCS 1000 Series
46

Configure Policy-based Telemetry
Configure JSON Encoder

2. Copy the policy file to the router.

3. Configure the telemetry policy specifying the encoder, policies, policy group, destination, and port:

Router# configure
Router(config)#telemetry policy-driven encoder gpb
Router(config-telemetry-json)#policy group FirstGroup
Router(config-policy-group)#policy Test
Router(config-policy-group)#destination ipv4 10.0.0.1 port 5555
Router(config-policy-group)#commit

For more information about the message format of GPB encoder, see GPB Message Format, on page 55

Verify Policy Activation
Verify that the policy is activated using the show telemetry policies command.

Router#show telemetry policy-driven policies
Wed Aug 26 02:24:40.556 PDT

Filename: Test.policy
Version: 25
Description: This is a sample policy to demonstrate the syntax
Status: Active
CollectionGroup: FirstGroup
Cadence: 10s
Total collections: 2766
Latest collection: 2015-08-26 02:25:07
Min collection time: 0.000s
Max collection time: 0.095s
Avg collection time: 0.000s
Min total time: 0.022s
Max total time: 0.903s
Avg total time: 0.161s
Collection errors: 0
Missed collections: 0

+--+---------+---------+------+------+------+------+------+------+

| Path | Avg (s)
| Max (s) | Err |

+--+---------+---------+------+------+------+------+------+------+

| RootOper.InfraStatistics.Interface(*).Latest.GenericCounters | 0.000 |
0.000 | 0 |

+--+---------+---------+------+------+------+------+------+------+

After the policy is validated, the telemetry encoder starts streaming data to the receiver. For more information
on the receiver, see Telemetry Receiver, on page 58.

Telemetry Configuration Guide for Cisco NCS 1000 Series
47

Configure Policy-based Telemetry
Verify Policy Activation

Telemetry Configuration Guide for Cisco NCS 1000 Series
48

Configure Policy-based Telemetry
Verify Policy Activation

C H A P T E R 5
Core Components of Policy-based Telemetry
Streaming

The core components used in streaming policy-based telemetry data are:

• Telemetry Policy File, on page 49
• Telemetry Encoder, on page 51
• Telemetry Receiver, on page 58

Telemetry Policy File
A telemetry policy file is defined by the user to specify the kind of telemetry data that is generated and pushed
to the receiver. The policy must be stored in a text file with a .policy extension. Multiple policy files can be
defined and installed in the /telemetry/policies/ folder in the router file system.

A policy file:

• Contains one or more collection groups; a collection group includes different types of data to be streamed
at different intervals

• Includes a period in seconds for each group

• Contains one or more paths for each group

• Includes metadata that contains version, description, and other details about the policy

Policy file syntax

The following example shows a sample policy file:

{
"Name": "NameOfPolicy",
"Metadata": {

"Version": 25,
"Description": "This is a sample policy to demonstrate the syntax",
"Comment": "This is the first draft",
"Identifier": "<data that may be sent by the encoder to the mgmt stn"

},
"CollectionGroups": {

"FirstGroup": {
"Period": 10,
"Paths": [

Telemetry Configuration Guide for Cisco NCS 1000 Series
49

"RootOper.MemorySummary.Node",
"RootOper.RIB.VRF",
"..."

]
},
"SecondGroup": {

"Period": 300,
"Paths": [

"RootOper.Interfaces.Interface"
]

}
}
}

The syntax of the policy file includes:

• Name the name of the policy. In the previous example, the policy is stored in a file named
NameOfPolicy.policy. The name of the policy must match the filename (without the .policy extension).
It can contain uppercase alphabets, lower-case alphabets, and numbers. The policy name is case sensitive.

• Metadata information about the policy. The metadata can include the version number, date, description,
author, copyright information, and other details that identify the policy. The following fields have
significance in identifying the policy:

• Description is displayed in the show policies command.

• Version and Identifier are sent to the receiver as part of the message header of the telemetrymessages.

• CollectionGroups an encoder object that maps the group names to information about them. The name
of the collection group can contain uppercase alphabets, lowercase alphabets, and numbers. The group
name is case sensitive.

• Period the cadence for each collection group. The period specifies the frequency in seconds at which
data is queried and sent to the receiver. The value must be within the range of 5 and 86400 seconds.

• Paths one or more schema paths, allowed list entries or native YANG paths (for a container) for the data
to be streamed and sent to the receiver. For example,

Schema path:
RootOper.InfraStatistics.Interface(*).Latest.GenericCounters

YANG path:
/Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface=*/latest/generic-counters

Allowed list entry:
"RootOper.Interfaces.Interface(*)":
{

"IncludeFields": ["State"]
}

Schema Paths
A schema path is used to specify where the telemetry data is collected. A few paths are listed in the following
table for your reference:

Telemetry Configuration Guide for Cisco NCS 1000 Series
50

Core Components of Policy-based Telemetry Streaming
Schema Paths

Table 9: Schema Paths

PathOperation

RootOper.Interfaces.Interface(*)Interface Operational data

RootOper.InfraStatistics.Interface(*).Latest.GenericCountersPacket/byte counters

RootOper.InfraStatistics.Interface(*).Latest.DataRatePacket/byte rates

RootOper.InfraStatistics.Interface(*).Latest.Protocol(['IPV4_UNICAST'])IPv4 packet/byte counters

• RootOper.MPLS_TE.Tunnels.TunnelAutoBandwidth
• RootOper.MPLS_TE.P2P_P2MPTunnel.TunnelHead
• RootOper.MPLS_TE.SignallingCounters.HeadSignallingCounters

MPLS stats

• RootOper.QOS.Interface(*).Input.Statistics
• RootOper.QOS.Interface(*).Output.Statistics

QOS Stats

RootOper.BGP.Instance({'InstanceName':
'default'}).InstanceActive.DefaultVRF.Neighbor([*])

BGP Data

RootOper.PlatformInventory.Rack(*).Attributes.BasicInfo
RootOper.PlatformInventory.Rack(*).Slot(*).Card(*).Sensor(*).Attributes.BasicInfo

Inventory data

Telemetry Encoder
The telemetry encoder encapsulates the generated data into the desired format and transmits to the receiver.

An encoder calls the streaming Telemetry API to:

• Specify policies to be explicitly defined

• Register all policies of interest

Telemetry supports two types of encoders:

• JavaScript Object Notation (JSON) encoder

This encoder is packaged with the IOS XR software and provides the default method of streaming
telemetry data. It can be configured by CLI and XML to register for specific policies. Configuration is
grouped into policy groups, with each policy group containing one or more policies and one or more
destinations. JSON encoding is supported over only TCP transport service.

JSON encoder supports two encoding formats:

• Restconf-style encoding is the default JSON encoding format.

• Embedded-keys encoding treats naming information in the path as keys.

• Google Protocol Buffers (GPB) encoder

This encoder provides an alternative encoding mechanism, streaming the data in GPB format over UDP
or TCP. It can be configured by CLI and XML and uses the same policy files as those of JSON.

Telemetry Configuration Guide for Cisco NCS 1000 Series
51

Core Components of Policy-based Telemetry Streaming
Telemetry Encoder

Additionally, a GPB encoder requires metadata in the form of compiled .proto files to translate the data
into GPB format.

GPB encoder supports two encoding formats:

• Compact encoding stores data in a compact GPB structure that is specific to the policy that is
streamed. This format is available over both UDP and TCP transport services. A .proto file must
be generated for each path in the policy file to be used by the receiver to decode the resulting data.

• Key-value encoding stores data in a generic key-value format using a single .proto file. The
encoding is self-describing as the keys are contained in the message. This format is available over
UDP and TCP transport service. A .proto file is not required for each policy file because the receiver
can interpret the data.

TCP Header
Streaming data over a TCP connection either with a JSON or a GPB encoder and having it optionally
compressed by zlib ensures that the stream is flushed at the end of each batch of data. This helps the receiver
to decompress the data received. If data is compressed using zlib, the compression is done at the policy group
level. The compressor resets when a new connection is established from the receiver because the decompressor
at the receiver has an empty initial state.

Header of each TCP message:

MessageLengthFlagsType

Variable4 bytes4 bytes

• default - Use 0x0
value to set no flags.

• zlib compression -
Use 0x1 value to set
zlib compression on
the message.

4 bytes

where:

• The Type is encoded as a big-endian value.

• The Length (in bytes) is encoded as a big-endian value.

• The flags indicates modifiers (such as compression) in big-endian format.

• The message contains the streamed data in either JSON or GPB object.

Type of messages:

ValueLengthNameType

No value0Reset Compressor1

JSON message (any format)VariableJSON Message2

GPB message in compact formatVariableGPB compact3

Telemetry Configuration Guide for Cisco NCS 1000 Series
52

Core Components of Policy-based Telemetry Streaming
TCP Header

ValueLengthNameType

GPB message in key-value formatVariableGPB key-value4

JSON Message Format
JSON messages are sent over TCP and use the header message described in TCP Header, on page 52.

The message consists of the following JSON objects:

{
"Policy": "<name-of-policy>",
"Version": "<policy-version>",
"Identifier": "<data from policy file>"
"CollectionID": <id>,
"Path": <Policy Path>,
"CollectionStartTime": <timestamp>,
"Data": { … object as above … },
"CollectionEndTime": <timestamp>,
}

where:

• Policy, Version and Identifier are specified in the policy file.

• CollectionID is an integer that allows messages to be grouped together if data for a single path is split
over multiple messages.

• Path is the base path of the corresponding data as specified in the policy file.

• CollectionStartTime and CollectionEndTime are the timestamps that indicate when the data was
collected

The JSON message reflects the hierarchy of the router's data model. The hierarchy consists of:

• containers: a container has nodes that can be of different types.

• tables: a table also contains nodes, but the number of child nodes may vary, and they must be of the same
type.

• leaf node: a leaf contains a data value, such as integer or string.

The schema objects are mapped to JSON are in this manner:

• Each container maps to a JSON object. The keys are strings that represent the schema names of the nodes;
the values represent the values of the nodes.

• JSON objects are also used to represent tables. In this case, the keys are based on naming information
that is converted to string format. Two options are provided for encoding the naming information:

• The default is restconf-style encoding, where naming parameters are contained within the child
node to which it refers.

• The embedded-keys option uses the naming information as keys in a JSON dictionary, with the
corresponding child node forming the value.

• Leaf data types are mapped in this manner:

Telemetry Configuration Guide for Cisco NCS 1000 Series
53

Core Components of Policy-based Telemetry Streaming
JSON Message Format

Simple strings, integers, and booleans are mapped directly.•

• Enumeration values are stored as the string representation of the value.

• Other simple data types, such as IP addresses, are mapped as strings.

Example: Rest-conf Encoding

For example, consider the path -
Interfaces(*).Counters.Protocols(“IPv4”)

This has two naming parameters - the interface name and the protocol name - and represents a container
holding leaf nodes which are packet and byte counters. This would be represented as follows:
{
"Interfaces": [
{
"Name": "GigabitEthernet0/0/0/1"
"Counters": {
"Protocols": [
{
"ProtoName": "IPv4",
"CollectionTime": 12345678,
"InputPkts": 100,
"InputBytes": 200,

}
]

}
},{
"Name": "GigabitEthernet0/0/0/2"
"Counters": {
"Protocols": [
{
"ProtoName": "IPv4",
"CollectionTime": 12345678,
"InputPkts": 400,
"InputBytes": 500,

}
]

}
}

]
}

Anaming parameter withmultiple keys, for example Foo.Destination(IPAddress=10.1.1.1, Port=2000) would
be represented as follows:
{
"Foo":
{
"Destination": [
{
"IPAddress": 10.1.1.1,
"Port": 2000,
"CollectionTime": 12345678,
"Leaf1": 100,

}
]

}
}

Telemetry Configuration Guide for Cisco NCS 1000 Series
54

Core Components of Policy-based Telemetry Streaming
JSON Message Format

Example: Embedded Keys Encoding

The embedded-keys encoding treats naming information in the path as keys in the JSON dictionary. The key
name information is lost and there are extra levels in the hierarchy but it is clearer which data constitutes the
key which may aid collectors when parsing it. This option is provided primarily for backwards-compatibility
with 6.0.
{
"Interfaces": {

"GigabitEthernet0/0/0/1": {
"Counters": {
"Protocols": {
"IPv4": {
"CollectionTime": 12345678,
"InputPkts": 100,
"InputBytes": 200,

}
}

}
},
"GigabitEthernet0/0/0/2": {
"Counters": {
"Protocols": {
"IPv4": {
"CollectionTime": 12345678,
"InputPkts": 400,
"InputBytes": 500,

}
}

}
}

}
}

}

A naming parameter with multiple keys, for example Foo.Destination(IPAddress=10.1.1.1, Port=2000), would
be represented by nesting each key in order:
{
"Foo":
{
"Destination": {

10.1.1.1: {
2000: {
Leaf1": 100,

}
}

}
]

}
}

GPB Message Format
The output of the GPB encoder consists entirely of GPBs and allows multiple tables in a single packet for
scalability.

GPB (Google Protocol Buffer) encoder requires metadata in the form of compiled .proto files. A .proto file
describes the GPB message format, which is used to stream data.

For UDP, the data is simply a GPB. Only the compact format is supported so the message can be interpreted
as a TelemetryHeader message.

Telemetry Configuration Guide for Cisco NCS 1000 Series
55

Core Components of Policy-based Telemetry Streaming
GPB Message Format

For TCP, the message body is either a Telemetry message or a TelemetryHeader message, depending on
which of the following encoding types is configured:

• Compact GPB format stores data in a compressed and non-self-describing format. A .proto file must
be generated for each path in the policy file to be used by the receiver to decode the resulting data.

• Key-value GPB format uses a single .proto file to encode data in a self-describing format. This encoding
does not require a .proto file for each path. The data on the wire is much larger because key names are
included.

In the following example, the policy group, alpha uses the default configuration of compact encoding and
UDP transport. The policy group, beta uses compressed TCP and key-value encoding. The policy group,
gamma uses compact encoding over uncompressed TCP.
telemetry policy-driven encoder gpb
policy group alpha
policy foo
destination ipv4 192.168.1.1 port 1234
destination ipv4 10.0.0.1 port 9876

policy group beta
policy bar
policy whizz
destination ipv4 10.20.30.40 port 3333
transport tcp
compression zlib

policy group gamma
policy bang
destination ipv4 10.11.1.1 port 4444
transport tcp
encoding-format gpb-compact

Compact GPB Format

The compact GPB format is intended for streaming large volumes of data at frequent intervals. The format
minimizes the size of the message on the wire. Multiple tables can be sent in in a single packet for scalability.

The tables can be split over multiple packets but fragmenting a row is not supported. If a row in the table is
too large to fit in a single UDP frame, it cannot be streamed. Instead either switch to TCP, increase the MTU,
or modify the .proto file.

Note

The following .proto file shows the header, which is common to all packets sent by the encoder:
message TelemetryHeader {
optional uint32 encoding = 1

optional string policy_name = 2;
optional string version = 3;
optional string identifier = 4;

optional uint64 start_time = 5;
optional uint64 end_time = 6;

repeated TelemetryTable tables = 7;
}

message TelemetryTable {
optional string policy_path = 1;

Telemetry Configuration Guide for Cisco NCS 1000 Series
56

Core Components of Policy-based Telemetry Streaming
GPB Message Format

repeated bytes row = 2;
}

where:

• encoding is used by receivers to verify that the packet is valid.

• policy name, version and identifier are metadata taken from the policy file.

• start time and end time indicate the duration when the data is collected.

• tables is a list of tables within the packet. This format indicates that it is possible to receive results for
multiple schema paths in a single packet.

• For each table:

• policy path is the schema path.

• row is one or more byte arrays that represents an encoded GPB.

Key-value GPB Format

The self-describing key-value GPB format uses a generic .proto file. This file encodes data as a sequence of
key-value pairs. The field names are included in the output for the receiver to interpret the data.

The following .proto file shows the field containing the key-value pairs:
message Telemetry {
uint64 collection_id = 1;
string base_path = 2;
string subscription_identifier = 3;
string model_version = 4;
uint64 collection_start_time = 5;
uint64 msg_timestamp = 6;
repeated TelemetryField fields = 14;
uint64 collection_end_time = 15;

}

message TelemetryField {
uint64 timestamp = 1;
string name = 2;
bool augment_data = 3;
oneof value_by_type {
bytes bytes_value = 4;
string string_value = 5;
bool bool_value = 6;
uint32 uint32_value = 7;
uint64 uint64_value = 8;
sint32 sint32_value = 9;
sint64 sint64_value = 10;
double double_value = 11;
float float_value = 12;

}
repeated TelemetryField fields = 15;

}

where:

• collection_id, base_path, collection_start_time and collection_end_time provide streaming details.

• subscription_identifier is a fixed value for cadence-driven telemetry. This is used to distinguish from
event-driven data.

Telemetry Configuration Guide for Cisco NCS 1000 Series
57

Core Components of Policy-based Telemetry Streaming
GPB Message Format

• model_version contains a string used for the version of the data model, as applicable.

Telemetry Receiver
A telemetry receiver is used as a destination to store streamed data.

A sample receiver that handles both JSON and GPB encodings is available in the Github repository.

A copy of the cisco.proto file is required to compile code for a GPB receiver. The cisco.proto file is
available in the Github repository.

If you are building your own collector, use the standard protoc compiler. For example, for the GPB compact
encoding:
protoc --python_out . -I=/sw/packages/protoc/current/google/include/:. generic_counters.proto
ipv4_counters.proto

where:

• --python_out <out_dir> specifies the location of the resulting generated files. These files are of the form
<name>_pb2.py.

• -I <import_path> specifies the path to look for imports. This must include the location of
descriptor.proto from Google. (in /sw/packages) and cisco.proto and the .proto files that are
compiled.

All files shown in the above example are located in the local directory.

Telemetry Configuration Guide for Cisco NCS 1000 Series
58

Core Components of Policy-based Telemetry Streaming
Telemetry Receiver

	Telemetry Configuration Guide for Cisco NCS 1000 Series
	Contents
	Stream Telemetry Data
	Scope
	Need
	Benefits
	Methods of Telemetry

	Configure Model-driven Telemetry
	Configure Dial-out Mode
	Create a Destination Group
	Create a Sensor Group
	Create a Subscription
	Validate Dial-out Configuration

	Configure Dial-in Mode
	Enable gRPC
	Create a Sensor Group
	Create a Subscription
	Validate Dial-in Configuration

	Event-driven Telemetry for Terminal-device Models
	Streaming Event-Driven Telemetry for Online Insertion and Removal of Pluggables
	gRPC Network Management Interface
	2s Telemetry Based on GNMI Subscribe
	gNMI Heartbeat Interval

	Core Components of Model-driven Telemetry Streaming
	Session
	Dial-in Mode
	Dial-out Mode

	Sensor Path
	Sensor Paths Supported for EDT in NCS 1001
	OpenConfig Sensor Paths Supported for MDT in NCS 1001
	Sensor Paths Supported in NCS 1004
	Sensor Paths Supported in NCS 1010 and NCS 1020
	Subscription
	Transport and Encoding

	Configure Policy-based Telemetry
	Create Policy File
	Copy Policy File
	Configure Encoder
	Configure JSON Encoder
	Configure GPB Encoder

	Verify Policy Activation

	Core Components of Policy-based Telemetry Streaming
	Telemetry Policy File
	Schema Paths

	Telemetry Encoder
	TCP Header
	JSON Message Format
	GPB Message Format

	Telemetry Receiver

