
Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
First Published: 2023-06-01

Last Modified: 2023-07-25

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

© 2022-2023 Cisco Systems, Inc. All rights reserved.

C H A P T E R 1
Overview

This section contains the following topics:

• Overview, on page 1
• What's in an adapter, on page 1

Overview
Workflow Adapters are tools that allow a workflow to interact with systems outside the CWM. You can see
them as agents and intermediaries between the CWMplatform and any external services. Their role is to cause
an action in an outside system that's part of a workflow stream, or to retrieve data required by a workflow to
progress.

Every adapter is developed for communicating with an intended target service. Target services can be generic,
such as REST APIs over HTTP, or specific, such as vendor products (Cisco's Network Services Orchestrator,
for example).

If a workflow needs to access one or more external services, you can develop custom adapters for each of
them using the Adapter SDK. You may also want to use two pre-built adapters which are available as part
of the CWM offering. These ready-made solutions include: the Network Services Orchestrator adapter and a
generic REST API adapter.

What's in an adapter
An adapter is developed using the Workflow Adapter SDK which uses Golang for defining adapter logic and
leverages Protocol Buffers for representing adapter interfaces.

Modules, packages, activities
Every adapter is a go module that represents a product by a vendor. The go module in turn is a collection of
product features organized into go packages. Inside the packages you define adapter activities, which are
particular actions that the adapter can trigger within a given external system. You can have multiple features
inside one adapter by bundling related activities into separate packages.

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
1

https://go.dev
https://protobuf.dev

Figure 1: Adapter structure

As shown in the picture, every adapter follows the vendor, product and feature naming convention which
corresponds to a standard go project layout with modules and packages as described above.

Interfaces
Each product feature is represented by a protobuf file located in the proto folder. The Adapter SDK provides
command arguments to create the adapter structure and files.

As mentioned before, the naming convention for the adapter features is <vendor>.<product>.<feature>,
for example, cisco.nso.restconf.

When you create an adapter, the Adapter SDK generates a .proto file for each interface (feature) you specified:
syntax = "proto3";

package <vendor>.<product>.<feature>;

option go_package = "<module>/<feature>";

The interface is defined as a list of RPCs in the service named 'Activities':
service Activities {

rpc <ActOne> (<ActOne>Request) returns (<ActOne>Response);
rpc <ActTwo> (<ActTwo>Request) returns (<ActTwo>Response);

}

Lastly, the input and output of each activity are defined as protobuf messages:
message <ActOne>Request {

...
}
message <ActOne>Response {

...
}
...

common.adapter.proto
Besides the .proto files representing the adapter interface, there is one additional file:
<vendor>.<product>.common.adapter.proto.

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
2

Overview
Interfaces

The common .proto file is used to define additional configuration required by the adapter as well as information
allowing the adapter to connect to a target system. The file is generated automatically by the Adapter SDK,
but the developer can do any manual updates required.

The common .proto file must define certain messages to enable the CWM Resource Manager to handle this
data correctly. This can be done directly inside the file (default) or by importing another .proto.

Note

// Can be defined anywhere and imported to common .proto file.
message Resource {

...
}
message Secret {

...
}

// Must be defined in common .proto file.
message Config {

Resource resource = 1;
Secret secret = 2;

}

Activities
The Adapter SDK generates activities to be implemented in Golang. Each activity is represented as a method
with the receiver being a pointer to an adapter struct. Each method definition is based on the activity RPC
defined in proto.
func (adp *Adapter) <ActivityName>(

ctx context.Context,
req *<ActivityName>Request,
cfg *common.Config) (*<ActivityName>Response, error) {

/* Activity implementation */
}

There are no restrictions on how to implement an activity. The developer is free to import any available go
packages. One suggestion is to avoid panics by having robust error handling with the activity returning a
meaningful error code.

Note

Properties
Each adapter has a .properties file which serves the CWM as the source of basic data about the adapter.
Mandatory properties are described below with examples:

DescriptionProperty

Name of adapter developerauthor=cisco

Name of target system vendorvendor=cisco

Name of target systemproduct=nso

Adapter versionversion=1.0.0

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
3

Overview
Activities

DescriptionProperty

Version of SDK used for developing the adaptercwmsdk=1.0.0

Compatible CWM versioncwmversion=1.0

Compatible resource type stored by CWMResourceManagerresourcetype=cisco.nso.resource.v1.0.0

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
4

Overview
Properties

C H A P T E R 2
Use Adapter SDK

This section contains the following topics:

• Prerequisites, on page 5
• Overview of commands, on page 6

Prerequisites
To start using the Workflow Adapter SDK, you need to install a Golang environment, Protocol buffers,
dedicated go plugins and download the Adapter SDK contained in the CWM software package.

Install Go
To develop and test an adapter, you need to install theGolang environment. Follow the installation instructions
dedicated for your OS: https://grpc.io/docs/protoc-installation/.

Install Protocol buffers
To define an adapter interface and generate the input and output parameters, you need the Protobufs compiler.
Follow the installation instructions dedicated for your OS: https://grpc.io/docs/protoc-installation/. Note that
you need at least version 3.15 (proto3).

Install go plugins

Step 1 Install additional protocol compiler plugins for go:
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.28
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.2

Step 2 Install protocol compiler plugin for JSON schema:
go install github.com/chrusty/protoc-gen-jsonschema/cmd/protoc-gen-jsonschema@latest

Step 3 Update your system PATH so that the protoc compiler can find the plugins:
export PATH="$PATH:$(go env GOPATH)/bin

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
5

https://go.dev/doc/install
https://grpc.io/docs/protoc-installation/

Get CWM Adapter SDK
Go to Cisco Software Download page to download the CWM Software Package, where the Adapter SDK
resides.

Include the location of cwm-sdk-binaries by setting the environment variable path:
export PATH=/path/to/cwm-sdk-binaries:$PATH

Remember to replace the /path/to/ with your actual path.Note

Overview of commands
The Adapter SDK application offers the following set of commands for managing an adapter:

• cwm-sdk create-adapter - use it to create a go module with a package and the corresponding .proto
files).

• cwm-sdk extend-adapter - use it to add a new feature to an existing adapter (go package and .proto
files).

• make generate-model - generate activities, input and output (go code).

• make generate-code - update activities, input and output (go code).

• cwm-sdk upgrade-adapter - upgrade the adapter to match CWM.

• cwm-sdk create-installable - create an archive installable by CWM.

Create a new adapter
To create an adapter, open a terminal and from the cwmsdk repository directory, run:

cwm-sdk create-adapter [options] -product <product-name>

Options
These are the options you can add to the create-adapter command:

• -exclude-resource - skip creation of the .resource.proto file from template.

• -go-module string - provide name for the module assigned to the go.mod file (default:
"www.cisco.com/cwm/adapters/<vendor>/<adapter-name>").

• -feature string - provide name for the go package assigned to activities (default: "<adapter-name>").

• -location string - point to adapter location (default: current directory).

• -os-architecture string - define architecture in which adapter is developed. Valid options are:
'linux','mac-intel','mac-arm' and 'windows' (default: "linux").

• -vendor string - provide unique name for the company creating the adapter (default "cisco").

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
6

Use Adapter SDK
Get CWM Adapter SDK

• -product string - provide name for the go module corresponding to the product name you create an
adapter for (required).

Output
Once the command is executed, verify the generated output inside the new adapter directory:

• <adapter-name>/go/go.mod

• <adapter-name>/proto/<vendor\>.<module\>.<package\>.adapter.proto

• <adapter-name>/proto/<vendor\>.<module\>.<package\>.resource.proto (if -exclude-resource
option wasn't used)

• <adapter-name>/Makefile

Extend adapter with features
To add a feature (a go package) for an adapter, open a terminal and from the cwmsdk repository directory,
run:

cwm-sdk extend-adapter [options] -feature <feature_name>

Options
• -exclude-resource - skip creation of the .resource.proto file from template.

• -location string - point to the location of the adapter to be extended by the new package (default: current
directory).

Output
Once the command is executed, verify the generated output inside the new adapter directory:

• <adapter-name>/proto/<vendor>.<module>.<package>.adapter.proto

• <adapter-name>/proto/<vendor>.<module>.<package>.resource.proto (if -exclude-resource
option wasn't used)

Generate input and output
To generate the input and output files for the adapter, go to the root directory of your adapter and run:
make generate-model

Output
Once the command is executed, verify the generated output inside the adapter directory:

• go/<feature\>/<vendor>.<product>.<feature>.adapter.pb.go

• go/common/<vendor>.<product>.common.adapter.pb.go

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
7

Use Adapter SDK
Output

The .pb.go files contain go structs defining the input and output parameters of the adapter. It should not be
altered manually.

Generate activities
To generate the previously defined activities, go to the root directory of your adapter and run: make

generate-code

Output
Once the command is executed, verify the generated output inside the adapter directory:

• go/<package>/activities.go

The activities.go file contains stubs for the gRPCs defined in the .adapter.proto. Once generated, you
can add functionality to the activities by defining the message .

Upgrade an adapter
To upgrade the go module to contain matching versions for go and required imports, open a terminal and
from the cwmsdk repository directory, run:

"Linux" cwm-sdk upgrade-adapter [options]

Options
• -cwm-version string - provide the version of CWM to upgrade to (default is latest).

• -location string - point to location of adapter to upgrade (default: current directory).

Output
• go/go.mod

The go.mod file module will be modifed allowing the adapter to be installed correctly.

Release an installable adapter
To create an archive for installing your adapter for different operating systems, open a terminal and from the
cwmsdk repository directory, run:

"Linux" cwm-sdk create-installable [options]

This generates code based on the proto file.

Options
• -location string - point to location for the adapter installable file (default ".").

Output
• out/<vendor>-<product>-v<X.Y.Z>.tar.gz

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
8

Use Adapter SDK
Generate activities

The generated archive contains the adapter go module and proto files. The go module is modified using the
go vendor command in order to not have any external dependencies.

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
9

Use Adapter SDK
Output

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
10

Use Adapter SDK
Output

C H A P T E R 3
Adapter example

This section contains the following topics:

• Adapter example, on page 11

Adapter example
This tutorial is a step-by-step instruction on building an example adapter using the Workflow Adapter SDK.
It gives an idea on the adapter structure and on how you provide input to define adapter activities to be
consumed by a workflow worker. Before you start, you need to go through the Prerequisites section to set up
your development environment.

Step 1: Create new adapter
In a terminal window, open your cwmsdk repository directory and run:

cwm-sdk create-adapter -location ~/your_repo/adapters -vendor companyX -feature featureX

-product productX

Now you have a directory in adapters named companyX.productX with the following contents:
Makefile
adapter.properties
go
proto

./go:
common
go.mod
featureX

./go/common:

./go/featureX:

./proto:
cisco.cwm.sdk.resource.proto
companyX.productX.common.adapter.proto
companyX.productX.featureX.adapter.proto

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
11

Step 2: Define mock activity
The Adapter SDK has generated the .proto files. In the companyX.productX.featureX.adapter.proto file,
define the interface of the adapter:

Step 1 Open the companyX.productX.featureX.adapter.proto file with a text editor or inside a terminal window. The contents
are as below.
syntax = "proto3";

package productXfeatureX;

option go_package = "www.cisco.com/cwm/adapters/companyX/productX/featureX";

service Activities {
// NOTE: Activity functions are defined as RPCs here e.g.

/* Documentation for MyActivity */
rpc MyActivity(MyRequest) returns (MyResponse);
}

// NOTE: Messages here e.g.

/* Documentation for MyRequest */
message MyRequest {
string input = 1;
}

/* Documentation for MyResponse */
message MyResponse {
string output = 1;
}

Step 2 To define your activity, replace the placeholder 'MyActivity' with a mock 'Hello' activity, along with the MyRequest and
MyResponse placeholder names and message parameters as shown below:
service Activities {
/* Documentation for Hello Activity */
rpc Hello(Request) returns (Response);
}

/* Documentation for Request */
message Request {
string name = 1;
}

/* Documentation for Response */
message Response {
string message = 1;
}

Step 3: Generate adapter source code

Step 1 Based on the adapter.proto file that you have edited and on the remaining .proto files, generate the source go code
for the adapter and inspect the files. In the main adapter directory, run:

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
12

Adapter example
Step 2: Define mock activity

make generate-model && ls

.go/
common
go.mod
featureX

go//common:
companyX.productX.common.adapter.pb

go//featureX:
companyX.productX.featureX.adapter.pb

The `.adapter.pb.go` files generated using the **Protobufs compiler** define all the messages from
the `adapter.proto` files.
!!! caution
The `.adapter.pb.go` files should not be edited manually.

Step 2 Now generate the go code for the defined activities. In the main adapter directory, run:
make generate-code && ls

.go/
common
go.mod
featureX
main.go

go//common:
companyX.productX.common.adapter.pb.go

go//featureX:
activities.go
adapter.go
companyX.productX.featureX.adapter.pb.go

The generated activities.go file contains stubs for all the RPCs you have defined in the .adapter.proto file. Open
the file:
package featureX

import (
"context"
"errors"
"go.temporal.io/sdk/activity"
)

func (adp *Adapter) Hello(ctx context.Context, req *Request, cfg *Config) (*Response, error) {

activity.GetLogger(ctx).Info("Activity Hello called")

var res *Response
var err error

if ctx == nil {
return nil, errors.New("Invalid context")
}

if req == nil {
return nil, errors.New("Invalid request")
}

if cfg == nil {
return nil, errors.New("Invalid config")
}

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
13

Adapter example
Step 3: Generate adapter source code

cancel := ctx.Done()
done := make(chan any)

go func() {

//
// NOTE:
//
// Enter activity code to set response and error here...
//
// Perform step 1
//
// ...
//
// activity.activity.RecordHeartbeat(ctx, "Activity completed step 1")
//
// Perform step 2
//
// ...
//
// activity.activity.RecordHeartbeat(ctx, "Activity completed step 2")
//
// ...
//
// All logic steps are completed
//

done <- nil
}()

//
// NOTE
//
// For a long running call heartbeats can be recorded in a separate
//
// go func () {
// for {
// activity.RecordHeartbeat(ctx, "Activity is running")
// // TODO sleep for some interval
// }
// } ()
//

for {
select {
case <-cancel:

//
// NOTE
//
// Execute any cleanup required for a canceled activity here...
//

return nil, errors.New("Activity was canceled")
case <-done:
return res, err
}
}
}

Step 3 Edit the file to return a message:

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
14

Adapter example
Step 3: Generate adapter source code

go func() {

res = &Response {Message: "Hello, " + req.GetName() + "!"}
err = nil

done <- nil
}()

Define another activity
If you wish to add another activity to the existing feature set (go package),

Step 1 Open and edit the adapter.proto file and define another activity underneath the existing one:
service Activities {
rpc Hello(Request) returns (Response);
rpc Fancy(Request) returns (Response);
}

Step 2 Update the activities go code using the SDK:
make generate-code

Once the code is generated, the activities.go file is updated with the new 'Fancy' activity stub, while the code for the
'Hello' activity remains.

Step 4: Add another feature
If you wish to add another feature (go package) to the example adapter, use the extend-adapter command.
Open your cwmsdk repository directory in a terminal and run:

cwm-sdk extend-adapter -feature featureY

Step 1 A new companyX.productX.featureY.adapter.proto file has been added for your adapter:
.proto/
cisco.cwm.sdk.resource.proto
companyX.productX.common.adapter.proto
companyX.productX.featureY.adapter.proto
companyX.productX.featureX.adapter.proto

Step 2 To define activities for the new feature, open the companyX.productX.featureY.adapter.proto file, and modify the
contents accordingly
syntax = "proto3";

package companyXproductX;

option go_package = "www.cisco.com/cwm/adapters/companyX/productX/featureY";

service Activities {
/* Documentation for Goodbye Activity */
rpc Goodbye(Request) returns (Response);
}

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
15

Adapter example
Define another activity

/* Documentation for Request */
message Request {
string name = 1;
}

/* Documentation for Response */
message Response {
string message = 1;
}

Step 3 Generate the code for the 'featureY' package and activities.
make generate-model && generate-code && ls

.go/goodbyes
activities.go
adapter.go
companyX.productX.featureY.adapter.pb.go

Step 5: Create an installable archive
cwm-sdk create-installable

The generated archive contains the all required files of the adapter. The go vendor command has been executed
in order to eliminate any external dependencies.

Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
16

Adapter example
Step 5: Create an installable archive

	Cisco Crosswork Workflow Manager 1.0 Adapter Developer guide
	Overview
	Overview
	What's in an adapter
	Modules, packages, activities
	Interfaces
	common.adapter.proto

	Activities
	Properties

	Use Adapter SDK
	Prerequisites
	Install Go
	Install Protocol buffers
	Install go plugins

	Get CWM Adapter SDK

	Overview of commands
	Create a new adapter
	Options
	Output

	Extend adapter with features
	Options
	Output

	Generate input and output
	Output

	Generate activities
	Output

	Upgrade an adapter
	Options
	Output

	Release an installable adapter
	Options
	Output

	Adapter example
	Adapter example
	Step 1: Create new adapter
	Step 2: Define mock activity
	Step 3: Generate adapter source code
	Define another activity

	Step 4: Add another feature
	Step 5: Create an installable archive

