
Implementing Trustworthy Systems

• Need for Trustworthy Systems, on page 1
• Enable Trust in Hardware, on page 2
• Enable Trust in Software, on page 6
• Establish and Maintain Trust at Steady State, on page 9
• How Trustworthiness is Implemented, on page 28
• Understanding Key Concepts in Security, on page 29

Need for Trustworthy Systems
In Cisco IOS XR Release 7.0.1, this section is applicable only to the following Cisco NCS 540 variants:

• N540-28Z4C-SYS-A/D

• N540X-16Z4G8Q2C-A/D

• N540-12Z20G-SYS-A/D

• N540X-12Z16G-SYS-A/D

Starting Cisco IOS XR Release 7.3.1, this section is also applicable to the following Cisco NCS 540 variants:

• N540X-6Z18G-SYS-A/D

• N540X-8Z16G-SYS-A/D

• N540-FH-CSR-SYS

Global service providers, enterprises, and government networks rely on the unimpeded operation of complex
computing and communications networks. The integrity of the data and IT infrastructure is foundational to
maintaining the security of these networks and user trust. With the evolution to anywhere, anytime access to
personal data, users expect the same level of access and security on every network. The threat landscape is
also changing, with adversaries becoming more aggressive. Protecting networks from attacks by malevolent
actors and from counterfeit and tampered products becomes even more crucial.

Routers are the critical components of the network infrastructure and must be able to protect the network and
report on system integrity. A “trustworthy solution” is one that does what it is expected to do in a verifiable
way. Building trustworthy solutions requires that security is a primary design consideration. Routers that
constitute trustworthy systems are a function of security, and trust is about preventing as well as knowing
whether systems have been tampered with.

Implementing Trustworthy Systems
1

In trustworthy systems, trust starts at the lowest levels of hardware and is carried through the boot process,
into the operating system (OS) kernel, and finally into runtime in the OS.

The main components of implementing a trustworthy system are:

• Enabling trust in hardware with Hardware root-of-trust and secure JTAG

• Enabling trust in software with secure boot and secure iPXE

• Enabling and maintaining trust at steady state with Security-Enhanced Linux (SELinux), Secure install,
and SSD Encryption

Figure 1: Ecosystem of Trustworthy Systems

Trustworthy systems must have methods to securely measure hardware, firmware, and software components
and to securely attest to these secure measurements.

For information on key concepts used in this chapter, see the Understanding Key Concepts in Security.

Enable Trust in Hardware
The first component in implementing a trustworthy system is to enable trust in hardware.

Because software alone can’t prove a system's integrity, truly establishing trust must also be done in the
hardware using a hardware-anchored root of trust. Without a hardware root of trust, no amount of software
signatures or secure software development can protect the underlying system from becoming compromised.
To be effective, this root of trust must be based on an immutable hardware component that establishes a chain
of trust at boot-time. Each piece of code in the boot process measures and checks the signature of the next
stage of the boot process before the software boots.

A hardware-anchored root of trust is achieved through:

• Anti-counterfeit chip: All modules that include a CPU, as well as the chassis, are fitted with an
anti-counterfeit chip, which supports co-signed secure boot, secure storage, and boot-integrity-visibility.
The chip ensures that the device's software and hardware are authentic and haven’t been tampered with
or modified in any way. It also helps to prevent unauthorized access to the device's sensitive data by
enforcing strong authentication and access control policies.

• Secure Unique Device Identifier (SUDI): The X.509 SUDI certificate installed at manufacturing provides
a unique device identifier. SUDI helps to enable anti-counterfeit checks along with authentication and

Implementing Trustworthy Systems
2

Implementing Trustworthy Systems
Enable Trust in Hardware

remote provisioning. The SUDI is generated using a combination of the device's unique hardware identifier
(such as its serial number or MAC address) and a private key that is securely stored within the device.
This ensures that each SUDI is unique and cannot be easily duplicated or forged. When a device attempts
to connect to a network, the network uses the SUDI to authenticate the device, and ensure that it’s
authorized to connect. This helps to prevent unauthorized access to the network and ensures that only
trusted devices are allowed to connect.

• Secure JTAG: The secure JTAG interface is used for debugging and downloading firmware. This interface
with asymmetric-key based authentication and verification protocols prevents attackers from modifying
firmware or stealing confidential information. Secure JTAG typically involves a combination of hardware
and software-based securitymeasures. For example, it may include the use of encryption and authentication
protocols to secure communications between the JTAG interface and the debugging tool. It may also
involve the use of access control policies and permissions to restrict access to the JTAG interface to
authorized users only.

Hardware-anchored root of trust is enabled by default on Cisco NCS 540 Series routers.Note

Verification

You can verify if trust is enabled in the hardware by executing the following command:
Router#show platform security integrity hardware
Wed Apr 17 11:19:03.202 UTC

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 52050
Known-good-digests:
Index value
0 hh4jzFBlxSGHZ4hKqnC2FEjqHg4tpx/chZ7YcTwLCco=

observed-digests:
Index value
0 hh4jzFBlxSGHZ4hKqnC2FEjqHg4tpx/chZ7YcTwLCco=

PCRs:
Index value
15 Dl1BGskyzeJ1LNYKuZK8Qqllwkth0ru+0xWydL9YMdc=

Secure Hardware for Strong Cryptography
All Cisco IOS XR7 supported-platforms ships with a non-tamperable Trust Anchor module (TAm) in the
hardware.

TAm houses known-good-values (KGVs) of the hardware components along with keys and certificates rooted
to Cisco, which are used to verify components of the hardware during the BIOS boot.

Chip Guard and Attestation are security features implemented in TAm to enable trust in hardware.

• Chip Guard detects tampering attempts and responds by initiating actions such as disabling access to the
device, erasing sensitive information stored in the device, or triggering a security alarm.

• Attestation provides a mechanism for verifying the integrity and authenticity of the software and hardware
components of a device.

Implementing Trustworthy Systems
3

Implementing Trustworthy Systems
Secure Hardware for Strong Cryptography

ACisco router with SUDI is authenticated and verified remotely for uniquely identifying that it’s an authentic
Cisco device.

Some Cisco NCS 540 Series Routers have the older generation of chips with lesser capabilities compared to
the latest TAm chips present on the newer generation of hardware.

Note

Hardware Integrity Check Using Chip Guard Functionality

Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

Support for the Chip Guard
functionality is now extended to the
following Cisco NCS 540 router
variant:

• N540X-6Z18G-SYS-A/D

• N540X-8Z16G-SYS - A/D

• N540X-4Z14G2Q-SYS-A/D

Release 7.4.1Hardware Integrity Check Using
Chip Guard Functionality

The chip guard feature helps detect if attackers have replaced a Cisco router’s Application Specific Integrated
Circuit (ASIC) chip or CPU chip with a counterfeit one when the device is in the manufacturing supply chain.
The ASIC performs critical functions, such as scanning an egress queue for error causes and a CPU runs the
operating system. If these chips are counterfeited, the performance, reliability, and security of the router is
compromised. During the hardware integrity check, at the time of device boot, if the chip guard feature
identifies a counterfeit ASIC or CPU, it halts the secure boot process and displays a warning to inform that
the supply chain integrity has been compromised.

Why do We Need Chip Guard

The increased hardware supply chain attacks compromise physical components, where attackers replace the
ASIC or CPU on a router with malware-infested chips. Once the ASIC or CPU is replaced, the integrity of
the hardware is compromised. Counterfeit chips in a router may have hidden functionalities to create a larger
security vulnerability. Cisco’s chip guard feature detects counterfeit chips before the router is deployed in the
network.

Stages of Chip Guard Implementation

The table shows the various stages through which chip guard is implemented on the router.

ResultProcess/ActionStage

The Imprint DB inside the TAm
chip contains the SHA 256 hashes,
which cannot be modified during
the router’s lifetime.

SHA 256 hashes of the electronic
chip IDs of both the CPU andASIC
are programmed in the TAm chip
and stored in a database known as
Imprint DB.

1. Router Manufacturing

Implementing Trustworthy Systems
4

Implementing Trustworthy Systems
Hardware Integrity Check Using Chip Guard Functionality

ResultProcess/ActionStage

The Observed DB values are stored
inside the TAm chip.

During the secure boot process, the
chip guard feature recomputes the
SHA 256 hashes of the electronic
chip IDs of both the CPU andASIC
and creates a database known as
Observed DB.

2. Router Deployed in the Field and
Powered Up

The router continues to boot.
Depending on the capability of the
underlying router, the chip guard
feature validates either the CPU,
ASIC, or both.

DBs match3. Comparison of Imprint DB and
Observed DB

The router notifies that either the
CPU or ASIC is counterfeit, and
the secure boot process halts. A
message is displayed on the console
about the chip guard validation
failure.

DBs do not match

Action to be Taken on Hardware Validation Failure

If you receive a chip guard warning about integrity check failure, you must create a service request on the
Products Returns & Replacement (RMA) website.

Attestation

Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

Attestation is a mechanism used
by a trusted entity to validate the
software integrity of a platform.

Support for attestation is now
extended to the following Cisco
NCS 540 router variant:

• N540-24Q8L2DD-SYS

Release 7.4.1Support for Attestation

Attestation enables external verifiers to check the integrity of the software running on the host. Implementing
this feature on Cisco hardware helps you validate the trustworthiness of the hardware and software of network
devices.

Once a router is up and running, you can send a request to an external verifier. The external verifier requests
an attestation quote from the router. The TAm chip can output the PCR quote and audit log, and it signs the
quote using an attestation private key for that specific router and responds to the verifier. The verifier uses
Cisco-provided KGV hashes and the Attestation Public Certificate to verify the attested PCR quotes and audit
logs. This verification is protected against repeat attacks using a nonce. Besides this, the verification ensures
that the attestation is specific to a particular router by using attestation key pairs. These attestation key pairs

Implementing Trustworthy Systems
5

Implementing Trustworthy Systems
Attestation

https://www.cisco.com/c/en/us/buy/product-returns-replacements-rma.html

are unique to each router. This ensures that attackers do not tamper with the router hardware, boot keys, boot
configuration, and running software.

Proof of hardware integrity is recorded in the TAm as part of Chip Guard. This proof is made available through
the following command:

The same data is also available through NETCONF for a remote attestation server:
Cisco-IOS-XR-remote-attestation-act.yang.

Note

RP/0/RP0/CPU0:NCS-540-C-LNT#show platform security attest pcr 0 trustpoint ciscoaik nonce
4567 location 0/RP0/CPU0
Thu Apr 11 05:44:10.808 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
Uptime: 1198700
pcr-quote:
/1RDR4AYACCkyXSBYFKZw5Nurif7DYQRMrBTg6q91heoKFZW0kp0FQACRWcAAAAABX5fDQAAA97/////AQAAACQAAAALAAAAAQALAwEAAAAgrE798LlOkKp1kryIv50kG0/V461IQutuSVgCUwjG8q4=
pcr-quote-signature:
mC8oPWYzgSTge31DLXCs/Ez7BRKsZyDVb4auuhJagWHa3aHSa9eMf34Y/FMuTitjeAhcs---<truncated>---dJYpsPKMGkcro1IquTnaD1gKIH+Gh4QBewdNky3Igiw==
pcr-index pcr-value
0 sL3H+Em2xzxXrNUoDF+kC47IXxN4V/d/7hYUXApXNoY=

See the System Security Command Reference guide for more commands.

Enable Trust in Software
The second component in implementing a trustworthy system is to enable trust in software.

In Cisco IOS XR7, trust in the software is enabled through:

• Secure Boot

• Secure iPXE

Implementing Trustworthy Systems
6

Implementing Trustworthy Systems
Enable Trust in Software

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/trustworthy-systems-commands.html

Secure Boot
Table 3: Feature History Table

Feature DescriptionRelease InformationFeature Name

You can now verify whether the router is
securely booted up with an authentic Cisco
software image. We have introduced a
show command to verify the secure boot
status of the router. If the software image
was tampered with, then the secure boot
fails, and the router does not boot up.
Before this release, there was no provision
on the router to verify the secure boot
status.

The feature introduces these:

• CLI: command.

• YANG Data Model:
Cisco-IOS-XR-attestation-agent-oper.yang

Cisco native model (see GitHub)

The feature is supported on the following
Cisco NCS 540 router variants:

• N540-28Z4C-SYS-A/D

• N540X-16Z4G8Q2C-A/D

• N540X-16Z8Q2C-D

• N540-12Z20G-SYS-A/D

• N540X-12Z16G-SYS-A/D

• N540X-6Z18G-SYS-A/D

• N540X-8Z16G-SYS-A/D

• N540X-4Z14G2Q-A/D

• N540-6Z18G-SYS-A/D

• N540-6Z14S-SYS-D

Release 7.8.1Secure Boot Status

Support for Secure Boot is now extended
to the following Cisco NCS 540 router
variant:

• N540-24Q8L2DD-SYS

Release 7.4.1Support for Secure Boot

Cisco Secure Boot helps to ensure that the code that executes as part of the software image boot up on Cisco
routers is authentic and unmodified. Cisco IOS XR7 platforms support the hardware-anchored secure boot

Implementing Trustworthy Systems
7

Implementing Trustworthy Systems
Secure Boot

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

which is based on the standard Unified Extensible Firmware Interface (UEFI). This UEFI-based secure boot
protects the microloader (the first piece of code that boots) in tamper-resistant hardware, establishing a root
of trust that helps prevent Cisco network devices from executing tainted network software.

Figure 2: Secure Boot

The intent of Secure Boot is to have a trust anchor module (TAm) in hardware that verifies the bootloader
code. A fundamental feature of secure boot is the barrier it provides that makes it that it is extremely difficult
or nearly impossible to bypass these hardware protections.

Secure boot ensures that the bootloader code is a genuine, unmodified Cisco piece of code and that code is
capable of verifying the next piece of code that is loaded onto the system. It is enabled by default.

When secure boot authenticates the software as genuine Cisco in a Cisco device with the TAm, the operating
system then queries the TAm to verify whether the hardware is authentic. It verifies by cryptographically
checking the TAm for a secure unique device identifier (SUDI) that comes only from Cisco.

The SUDI is permanently programmed into the TAm and logged by Cisco during Cisco’s closed, secured,
and audited manufacturing processes.

Booting the System with Trusted Software

In Cisco IOSXR7, the router supports the UEFI-based secure boot with Cisco-signed boot artifact verification.
The following takes place:

Step 1: At bootup, the system verifies every artifact using the keys in the TAm.

Step 2: The following packages are verified and executed:

• Bootloader (Grand Unified Bootloader (GRUB), GRUB configuration, Preboot eXecution Environment
(PXE), netboot)

• Initial RAM disk (Initrd)

• Kernel (operating system)

Step 3: Kernel is launched.

Step 4: Init process is launched.

Step 5: All Cisco IOS XR RPMs are installed with signature verification.

Implementing Trustworthy Systems
8

Implementing Trustworthy Systems
Secure Boot

Step 6: All required services are launched.

Secure iPXE – Secure Boot Over the Network
The iPXE server is an HTTP server discovered using DHCP that acts as an image repository server. Before
downloading the image from the server, the Cisco router must authenticate the iPXE server.

A secure iPXE server must support HTTPS with self-signed certificates.Note

The Cisco router uses certificate-based authentication to authenticate the iPXE server. The router:

• Downloads the iPXE self-signed certificates

• Uses the Simple Certificate Enrollment Protocol (SCEP)

• Acquires the root certificate chain and checks if it’s self-signed

The root certificate chain is used to authenticate the iPXE server. After successful authentication, a secure
HTTPS channel is established between the Cisco router and the iPXE server. Bootstrapper protocol (Bootp),
ISO, binaries, and scripts can now be downloaded on this secure channel.

Establish and Maintain Trust at Steady State
The third component in implementing a trustworthy system is to maintain trust in the steady or runtime state.

Attackers are seeking long-term compromise of systems and using effective techniques to compromise and
persist within critical infrastructure devices. Hence, it is critical to establish and maintain trust within the
network infrastructure devices at all points during the system runtime.

In Cisco IOS XR7, trust is established and maintained in a steady state through:

• SELinux

• SELinux Policy

• SeLinux Mode

• Secure Install

• RPM Signing and Validation

• Third-Party RPMs

• SSD Encryption

SELinux
Security-Enhanced Linux (SELinux) is a Linux kernel securitymodule that provides amechanism for supporting
access control security policies, including mandatory access controls (MAC).

Implementing Trustworthy Systems
9

Implementing Trustworthy Systems
Secure iPXE – Secure Boot Over the Network

A kernel integrating SELinux enforces MAC policies that confine user programs and system servers to the
minimum amount of privileges they require to do their jobs. This reduces or eliminates the ability of these
programs and daemons to cause harm when compromised (for example, through buffer overflows or
misconfigurations). This confinement mechanism operates independently of the traditional Linux access
control mechanisms. SELinux has no concept of a "root" super-user and does not share the well-known
shortcomings of the traditional Linux security mechanisms (such as a dependence on setuid/setgid binaries).

On Cisco IOS XR7 software, only Targeted SELinux policies are used, so that only third-party applications
are affected by the policies; all Cisco IOS XR programs can run with full root permission.

With Targeted SELinux, using targeted policies, processes that are targeted run in a confined domain. For
example, the httpd process runs in the httpd_t domain. If a confined process is compromised by an attacker,
depending on the SELinux policy configuration, the attacker's access to resources and the possible damage
that can result is limited.

Processes running in unconfined domains fall back to using discretionary access control (DAC) rules.Note

DAC is a type of access control defined as a means of restricting access to objects based on the identity of
the subjects or the groups (or both) to which they belong.

SELinux Policy
Each Linux user is mapped to an SELinux user through an SELinux policy. This allows Linux users to inherit
the restrictions placed on SELinux users.

If an unconfined Linux user executes an application, which an SELinux policy defines as an application that
can transition from the unconfined_t domain to its own confined domain, the unconfined Linux user is subject
to the restrictions of that confined domain. The security benefit is that, even though a Linux user is running
in unconfined mode, the application remains confined. Therefore, the exploitation of a flaw in the application
is limited by the policy.

A confined Linux user is restricted by a confined user domain against the unconfined_t domain. The SELinux
policy can also define a transition from a confined user domain to its own target confined domain. In such a
case, confined Linux users are subject to the restrictions of that target confined domain.

SELinux Mode
There are three SELinux modes:

• Enforcing: When SELinux is running in enforcing mode, it enforces the SELinux policy and denies
access based on SELinux policy rules.

• Permissive: In permissive mode, the SELinux does not enforce policy, but logs any denials. Permissive
mode is used for debugging and policy development. This is the default mode.

• Disabled: In disabled mode, no SELinux policy is loaded. The mode may be changed in the boot loader,
SELinux config, or at runtime with setenforce.

Role of the SELinux Policy in Boot Process
SELinux plays an important role during system startup. Because all processes must be labeled with their
proper domain, the init process performs essential actions early in the boot process that synchronize labeling
and policy enforcement.

Implementing Trustworthy Systems
10

Implementing Trustworthy Systems
SELinux Policy

Secure Install
The Cisco IOS XR software is shipped as RPMs. Each RPM consists of one or more processes, libraries, and
other files. An RPM represents a collection of software that performs a similar functionality; for example,
packages of BGP, OSPF, as well as the Cisco IOS XR Infra libraries and processes.

RPMs can also be installed into the base Linux system outside the Cisco IOS XR domain; however, those
RPMs must also be appropriately signed.

All RPMs shipped from Cisco are secured using digitally signed Cisco private keys.

There are three types of packages that can be installed:

• Packages shipped by Cisco (open source or proprietary)

• Customer packages that replace Cisco provided packages

• Customer packages that do not replace Cisco provided packages

RPM Signing and Validation

Table 4: Feature History Table

Feature DescriptionRelease InformationFeature Name

Support for RPM Signing and
Validation is now extended to the
following Cisco NCS 540 router
varaint:

• N540-24Q8L2DD-SYS

Release 7.4.1Support for RPM Signing and
Validation

RPMs are signed using Cisco keys during the build process.

The install component of the Cisco IOS XR automatically performs various actions on the RPMs, such as
verification, activation, deactivation, and removal. Many of these actions invoke the underlying DNF installer.
During each of these actions, the DNF installer verifies the signature of the RPM to ensure that it operates on
a legitimate package.

Cisco RPMs are signed using GPG keys. The RPM format has an area dedicated to hold the signature of the
header and payload and these are verified and validated via DNF package managers.

Third-Party RPMs
The XR Install enforces signature validation using the ‘gpgcheck’ option of DNF. Thus, any Third-Party RPM
packages installation fails if done through the XR Install (which uses the DNF).

Implementing Trustworthy Systems
11

Implementing Trustworthy Systems
Secure Install

SSD Encryption
Table 5: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature enables trust and
security in the system’s steady state
by encrypting data at the disk level.
The encrypted data can be accessed
only with a specific key stored in
the TAm.

In this release, this feature is
supported on:

• N540-ACC-SYS

• N540X-ACC-SYS

• N540-24Z8Q2C-SYS

Release 7.5.1SSD Encryption for Addiitonal
PIDs

This feature enables trust and
security in the system’s steady state
by encrypting data at the disk level.
The encrypted data can be accessed
only with a specific key stored in
the TAm.

In this release, the feature is
supported on:

• N540-28Z4C-SYS-A/D

• N540X-16Z4G8Q2C-A/D

• N540-12Z20G-SYS-A/D

• N540X-12Z16G-SYS-A/D

• N540X-6Z18G-SYS-A/D

Release 7.3.1Solid State Drive (SSD) Encryption

Customers are concerned about the security of sensitive data present on persistent storagemedia. User passwords
are limited in their capability to protect data against attackers who can bypass the software systems and directly
access the storage media.

In this case, only encryption can guarantee data confidentiality.

Cisco IOSXRSoftware introduces SSD encryption that allows encrypting data at the disk level. SSD encryption
also ensures that the encrypted data is specific to a system and is accessible onlywith a specific key to decrypt
them.

Data that can be encrypted is sensitive information such as, topology data, configuration data, and so on.

Encryption is an automatic process and can be achieved through the following:

• DM-Crypt

Implementing Trustworthy Systems
12

Implementing Trustworthy Systems
SSD Encryption

• CPU with AES-NI support

• CryptSetup

DM-Crypt
DM-Crypt is a Linux kernel module that provides disk encryption. The module takes advantage of the Linux
kernel’s device-mapper (DM) infrastructure. The DM provides a way to create virtual layers of block devices.

DM-crypt is a device-mapper target and provides transparent encryption of block devices using the kernel
crypto API. Data written to the block device is encrypted; whereas, data to be read is decrypted. See the
following figure.

Figure 3: DM-Crypt Encryption

AES-NI Support
Intel's Advanced Encryption Standard New Instructions (AES-NI) is a hardware-assisted engine that enables
high-speed hardware encryption and decryption. This process leaves the CPU free to do other tasks.

When the input-output operations are started, the read-write requests that are directed at the encrypted block
device are passed to the DM-Crypt. DM-Crypt then sends multiple cryptographic requests to the Cryptographic
Framework. The crypto framework is designed to take advantage of off-chip hardware accelerators and
provides software implementations when accelerators are not available. See the following image.

Implementing Trustworthy Systems
13

Implementing Trustworthy Systems
DM-Crypt

Figure 4: AES-NI Support

CryptSetup
DM-Crypt relies on user space tools, such as cryptsetup to set up cryptographic volumes. Cryptsetup is a
command-line-interface (CLI) tool that interacts with DM-Crypt for creating, accessing, and managing
encrypted devices.

Encrypted Logical Volume
An encrypted logical volume (LV) can be created during software installation on the following Cisco NCS
540 router variants:

• N540-28Z4C-SYS-A/D

• N540X-16Z4G8Q2C-A/D

• N540-12Z20G-SYS-A/D

• N540X-12Z16G-SYS-A/D

• N540X-6Z18G-SYS-A/D

In Cisco IOS XR Release 7.5.1, the encrypted logical volume (LV) can also be created during software
installation on the following Cisco NCS 540 router variants:

• N540-ACC-SYS

• N540X-ACC-SYS

Implementing Trustworthy Systems
14

Implementing Trustworthy Systems
CryptSetup

• N540-24Z8Q2C-SYS

You can activate or deactivate the encrypted disk partition on demand. In addition to being activated, all
sensitive files are also migrated from the unencrypted disk partition to the encrypted disk partition. The
encrypted files can be migrated back during deactivation.

You can activate the data encryption by using the disk-encryption activate location command. A sample
output is as follows:
Router#disk-encryption activate location 0/RP0/CPU0
Tue Apr 16 14:35:00.939 UTC

Preparing system for backup. This may take a few minutes especially for large configurations.

Status report: node0_RP0_CPU0: START TO BACKUP
Router# Status report: node0_RP0_CPU0: BACKUP HAS COMPLETED SUCCESSFULLY
[Done]

The encrypted logical volume capacity is 150MB of disk space and is available as /var/xr/enc for applications
to access.

Although applications can choose to use this space for storage, that data is not be part of the data migration
if the software image is downgraded to a version that does not support encryption.

Note

SSD Binding
When encryption is activated on a system, each card generates a random encryption key and stores it in its
own secure storage—the Trust Anchor module (TAm). During successive reboots, the encryption key is read
from the TAm and applied to unlock the encrypted device. Since each card stores its encryption key locally
on the TAm, an SSD that is removed from one card and inserted into another cannot be unlocked by the key
stored on that card, thereby making the SSD unusable.

If encryption is activated, the encrypted LV can only be unlocked by using the key stored in the TAm. So, if
an encrypted SSD is removed and moved to another line card, the SSD cannot be unlocked. In other words,
when you activate encryption, the SSD is bound to the card it is inserted in.

Data Zeroization
Zeroization refers to the process of deleting sensitive data from a cryptographic module.

In case of a Return Material Authorization (RMA), you must factory reset the data.Note

You can perform zeroization by using the factory reset location command from the XR prompt.

Running this command while encryption is activated, deletes the master encryption key from the TAm and
renders the motherboard unusable after the subsequent reload.

Caution

Implementing Trustworthy Systems
15

Implementing Trustworthy Systems
SSD Binding

Boot Integrity and Trust Visibility
Table 6: Feature History Table

Feature DescriptionRelease InformationFeature Name

Support for the BIV functionality
is now extended to the following
Cisco NCS 540 router varaint:

• N540X-6Z18G-SYS-A/D

• N540X-8Z16G-SYS - A/D

• N540X-4Z14G2Q-SYS-A/D

Release 7.4.1Support for Boot Integrity and
Trust Visibility (BIV)

The secure boot first stage is rooted in the chip and all subsequent boot stages are anchored to the first successful
boot. The system is, therefore, capable of measuring the integrity of the boot chain. The hash of each software
boot image is recorded before it is launched. These integrity records are protected by the TAm. The boot chain
integrity measurements are logged and these measurements are extended into the TAm.

Use the Router#show platform security attest pcr 15 trustpoint ciscoaik nonce 4567 command to view
the boot integrity and boot-chain measurements. Given below is a sample output:
RP/0/RP0/CPU0:ios# show platform security attest PCR 15 trustpoint CiscoAIK nonce 4567
location 0/RP0/CPU0

Sun Jun 21 03:07:18.394 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
Uptime: 495270
pcr-quote: /1RDR4AYACCBG/wltf4TEwfdUjtjun7S3rXC90eAb0G0ytrYRv3ExwACRWcAAAAAAD8hUwAAAEf/////
AQAAACQAAAALAAAAAQALAwCAAAAgae1J8QIYe06nS2RUx0JYeoG8tM3bqeVdpW7CObwBt+g=
pcr-quote-signature:
EZbzSUge89jSjH8ZqTgKJrZJBopEbd818C+h1Ec780qi7Li1WfCZQPIP6KCDV6HsRCVzLoFijgmlMLoZE2rakQq+/
1TgZOWSLjMY7RbjSFr8z/zbpVI+YLnOG+wytVYWuY33uKHBn/
YWokHwo+qVf7u9aLGhnrXKvRUaFknBiZtQGiyAdis6GbPTToqn0WSN1y6DPh4UHZj1vLVwJsI48mbQUrAyCZrz/
XBHLM38tVJjqSrC0jw/6LF2DDoT5ks0VUFT7sqbysw4F56y+z/IlDBrrRW3GFOY46MOxDxLwSl1/
n6zdoVjiKKeqKOnmhpBh72bJQAdeu/GVOYTrOSy4Q==
pcr-index pcr-value
15 oYk8yqrzudIpGB4H++SaV0wMv6ugDSUIuUfeSqbJvbY=

RP/0/RP0/CPU0:ios# show platform security integrity hardware digest-algorithm SHA1 trustpoint
CiscoAIK nonce 4567 location 0/RP0/CPU0

Sun Jun 21 03:09:14.594 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495385
Known-good-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

observed-digests:

Implementing Trustworthy Systems
16

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

PCRs:
Index value
15 1Y3uKqNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0/CPU0:ios# show platform security integrity hardware digest-algorithm SHA256
trustpoint CiscoAIK nonce 4567 location 0/RP0/CPU0

Sun Jun 21 03:09:31.110 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495401
Known-good-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

observed-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

PCRs:
Index value
15 1Y3uKqNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0/CPU0:ios# show platform security integrity hardware digest-algorithm SHA256
trustpoint CiscoAIK nonce 4567 location 0/RP0/CPU0

Sun Jun 21 03:09:43.782 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495414
Known-good-digests:
Index value
0 y3n/SsvyNb8g3o7FFRGCZwfbs8EGxvMZg/PeN0NA71k=

observed-digests:
Index value
0 y3n/SsvyNb8g3o7FFRGCZwfbs8EGxvMZg/PeN0NA71k=

PCRs:
Index value
15 oYk8yqrzudIpGB4H++SaV0wMv6ugDSUIuUfeSqbJvbY=

Cisco AIK Certificate used for signing PCR
pcr-quote: /1RDR4AYACCBG/wltf4TEwfdUjtjun7S3rXC90eAb0G0ytrYRv3ExwACRWcAAAAAAD8hywAAAEf////
/AQAAACQAAAALAAAAAQALAwCAAAAgae1J8QIYe06nS2RUx0JYeoG8tM3bqeVdpW7CObwBt+g=
pcr-quote-signature:
qyKbK7ndJbrgxeVnOodLWQzT7++NzrxJ9ERRvJzvTe4+8r6p0HGSepHUhZHzYkXw4DbniHAK0Cs3dwg/
hGKGe4M8Lz+/k682yIjaFYYip0DHMaV2ny/lT7RSqM/6u3j/JZrZv39MaeHa3MyjjonzRf9oe7EBSFAKsa/D54eTR0eFtaxFy/
XdtM0VVQe2JRdoBVxnIBLGiVmGRlVVlmHvwwgX1lAN6e3/soC1Vk3I5gjLldPHUYuJ/
7PTGyAwZsbdeigx8d4ViUUUjSMzK7JISwXa8k4GiPQVLBHtqqR+RA9scmMZTbKLsG3luIWKQeyCtXMYE1VOeW8WQlAvioMICw==
RP/0/RP0/CPU0:ios#show platform security integrity hardware digest-algorith$
Sun Jun 21 03:09:56.794 UTC
Nonce: 4567

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
TPM Name: node0_RP0_CPU0_aikido
Uptime: 495427

Implementing Trustworthy Systems
17

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

Known-good-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

observed-digests:
Index value
0 3TDUS9iUDCFX3VkICcOnySOQTPA=

PCRs:
Index value
15 1Y3uKqNv1UJQUNZQxmZkiuG4blk=

RP/0/RP0/CPU0:ios#

You can also use Cisco-IOS-XR-remote-attestation-act.yang to fetch the boot integrity over the NETCONF
protocol.

The command displays both, the integrity log values and the assurance that these values have not been tampered.
These measurements include the following parameters:

• Micro loader hash

• Boot loader hash

• Image signing and management key hashes

• Operating system image hash

platform-pid string Platform ID
Event log [key: event_number]: Ordered list of TCG described event log

that extended the PCRs in the order they
were logged

+-- event_number uint32 Unique event number of this even
+-- event_type uint32 log event type
+-- PCR_index uint16 PCR index that this event extended
+-- digest hex-string The hash of the event data
+-- event_size uint32 Size of the event data
+-- event_data uint8[] event data, size determined by event_size

PCR [index] - List of relevant PCR contents
+-- index uint16 PCR register number
+-- value uint8[] 32 bytes - PCR register content

PCR Quote binary TPM 2.0 PCR Quote
PCR Quote Signature binary Signature of the PCR quote using TAM-held ECC or RSA restricted
key with the optional nonce if supplied

• Platform Configuration Register (PCR) 0-9 are used for secure boot.

• Signature version designates the format of the signed data.

• The signature digest is SHA256.

• The signing key is in a Trusted Computing Group (TCG) compliant format.

Note

Implementing Trustworthy Systems
18

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

Note

Implementing Trustworthy Systems
19

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

Use the show platform security tam command to view the TAm device details. The following example
shows a truncated output of the command:
Router#show platform security tam all location all
Mon Apr 15 14:42:34.649 UTC

Node - node0_RP0_CPU0

Device Type - AIKIDO Extended
Device PID - N540X-12Z16G-SYS-A
Device Serial Number - FOC2333NJ0J
Device Firmware Version- 0x24.000b
Server Version - 3
Server Package Version - 9.4.1
Client Package Version - 9.4.1

Sudi Root Cert:

Certificate:

Data:
Version: 3 (0x2)
Serial Number:

01:9a:33:58:78:ce:16:c1:c1
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=Cisco, CN=Cisco Root CA 2099
Validity

Not Before: Aug 9 20:58:28 2016 GMT
Not After : Aug 9 20:58:28 2099 GMT

Subject: O=Cisco, CN=Cisco Root CA 2099
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:d3:b6:e3:35:7e:0d:3e:f4:67:e5:8a:4e:1a:c6:
Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical
CA:TRUE

X509v3 Subject Key Identifier:
38:95:57:0F:34:23:4E:F3:A1:26:20:BA:14:91:C7:41:88:1D:A3:5B

Signature Algorithm: sha256WithRSAEncryption
8d:e2:99:a3:ee:31:77:4e:53:16:da:bd:f6:72:a7:58:0d:09:

Sudi Sub CA Cert:

Certificate:

Data:
Version: 3 (0x2)
Serial Number:

0a:64:75:52:4c:d8:61:7c:62
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=Cisco, CN=Cisco Root CA 2099
Validity

Not Before: Aug 11 20:28:08 2016 GMT
Not After : Aug 9 20:58:27 2099 GMT

Subject: CN=High Assurance SUDI CA, O=Cisco
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:

00:bd:dc:de:49:67:43:23:a9:51:64:36:11:bc:0e:

Implementing Trustworthy Systems
20

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Certificate Sign, CRL Sign

X509v3 Basic Constraints: critical
CA:TRUE, pathlen:0

Authority Information Access:
CA Issuers - URI:https://www.cisco.com/security/pki/certs/crca2099.cer
OCSP - URI:http://pkicvs.cisco.com/pki/ocsp

X509v3 Authority Key Identifier:
keyid:38:95:57:0F:34:23:4E:F3:A1:26:20:BA:14:91:C7:41:88:1D:A3:5B

X509v3 Certificate Policies:
Policy: 1.3.6.1.4.1.9.21.1.30.0
CPS: http://www.cisco.com/security/pki/policies/

X509v3 CRL Distribution Points:

Full Name:
URI:http://www.cisco.com/security/pki/crl/crca2099.crl

X509v3 Subject Key Identifier:
EA:6B:A3:B9:C1:13:97:7E:1B:FB:3A:8D:68:60:07:39:5F:87:48:FA

Signature Algorithm: sha256WithRSAEncryption
5c:a9:81:0e:80:01:e1:19:62:a7:77:03:3d:d3:55:d7:d8:49:

Sudi Cert:

Certificate:

Data:
Version: 3 (0x2)
Serial Number: 29200071 (0x1bd8ec7)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=High Assurance SUDI CA, O=Cisco
Validity

Not Before: Sep 5 03:39:36 2019 GMT
Not After : Aug 9 20:58:26 2099 GMT

Subject: serialNumber=PID:N540X-12Z16G-SYS-A SN:FOC2333NJ0J, O=Cisco, OU=ACT-2 Lite
SUDI, CN=Cisco NCS 540 System with 12x10G+4x1G Cu+12x1G AC Chassis

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:ca:2a:8a:b4:87:8b:43:68:17:d3:b2:43:44:ca:

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Basic Constraints: critical
CA:FALSE

X509v3 Subject Alternative Name:
0...N.

+..........@917C927B4B340B908703945A7A0A6D14D0207ADB2FB622DFA8C83538FD7E63B5.
B..+.........5.3ChipID=QvZQd9q9psveoAz6QJQeNAAAAAAAAAAAAAAAAAAAAAA=

Signature Algorithm: sha256WithRSAEncryption
5b:67:da:2e:e5:d4:07:f2:ff:9c:17:c9:54:78:8b:da:16:df:

The boot integrity verification is automatic and the BIOS reports the values to the PCR. The boot integrity
verification process consists of the following steps:

1. Report Boot 0 version and look up the expected integrity value for this platform and version.

Implementing Trustworthy Systems
21

Implementing Trustworthy Systems
Boot Integrity and Trust Visibility

2. Report bootloader version and look up the expected integrity value for this platform and version.

3. Report OS version and look up the expected integrity value for this platform and version.

4. Using the integrity values obtained from steps 1-3, compute the expected PCR 0 and PCR 8 values

5. Compare the expected PCR values against the actual PCR values.

6. Verify the nonced signature to ensure the liveliness of the response data (this assumes unique nonced are
being passed). Note that this signature verification must be performed only with the platform identity
verified using SUDI.

7. (Optional) Verify the software image (IOS XR) version is with what is expected to be installed on this
platform.

A failure of any of the above steps indicates either a compromised system or an incomplete integrity value
database.

Secure gRPC
gRPC (gRPC Remote Procedure Calls) is an open source remote procedure call (RPC) system that provides
features such as, authentication, bidirectional streaming and flow control, blocking or nonblocking bindings,
and cancellation and timeouts. For more information, see https://opensource.google.com/projects/grpc.

TLS (Transport Layer Security) is a cryptographic protocol that provides end-to-end communications security
over networks. It prevents eavesdropping, tampering, and message forgery.

In Cisco IOS XR7, by default, TLS is enabled in gRPC to provide a secure connection between the client and
server.

Integrity Measurement Architecture (IMA)
The goals of the Linux kernel integrity subsystem are to:

• detect whether files are accidentally or maliciously altered, both remotely and locally

• measure the file by calculating the hash of the file content

• appraise a file's measurement against a known good value stored as an extended attribute

• enforce local file integrity

There are three components in the Linux kernel integrity subsystem:

• IMA Measurement

• IMA Appraisal

• IMA Audit

These goals are complementary to the Mandatory Access Control (MAC) protections provided by SElinux.Note

IMA Measurement

Implementing Trustworthy Systems
22

Implementing Trustworthy Systems
Secure gRPC

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/programability/24xx/b-programmability-cg-24xx-ncs540/grpc-session.html
https://opensource.google.com/projects/grpc

IMA maintains a runtime measurement list and—because it is also anchored in the hardware Trusted Anchor
module (TAm)—an aggregate integrity value over this list. The benefit of anchoring the aggregate integrity
value in the TAm is that the measurement list cannot be compromised by any software attack without being
detectable. As a result, on a trusted boot system, IMA-measurement can be used to attest to the system's
runtime integrity.

For more information about IMA, download the IMA whitepaper, An Overview of The Linux Integrity
Subsystem.

IMA Appraisal

Table 7: Feature History Table

DescriptionReleaseFeature Name

We now use IntegrityMeasurement
Architecture (IMA) to provide a
higher level of trust and runtime
security for the routers. With IMA
appraisal, you can detect
modifications to a file or executable
within the router. These
modifications could be accidental
or malicious, carried out remotely
or locally. In addition to logging an
integrity violation, the IMA policy
also enforces an appraisal by
blocking any operation (open or
run) for a compromised executable.

IMA Enforcement is now
introduced on the following Cisco
NCS 540 router variants:

• N540X-6Z18G-SYS-A/D

• N540X-8Z16G-SYS-A/D

• N540X-4Z14G2Q-A/D

• N540-6Z18G-SYS-A/D

Release 7.8.1IMAAppraisal for NCS 540 Small
Density Routers

Implementing Trustworthy Systems
23

Implementing Trustworthy Systems
IMA Appraisal

http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf
http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf

DescriptionReleaseFeature Name

IMA maintains an integrity
measurement list for remote
attestation. The IMA-appraisal
extension adds local integrity
validation and enforcement of the
measurement against a 'good' value.
In this release, IMA policy enforces
an appraisal instead of simply
logging an integrity violation by
blocking any operation (open or
run) for a compromised executable.
This enforced mode of appraisal
ensures a higher level of trust and
security at runtime.

Release 7.4.1IMA Appraisal

IMA appraisal provides an added runtime security level that can detect if a file has been modified – either
accidentally or maliciously and either remotely or locally.

The kernel achieves this by validating the hash measurement of the file against a known good value (KGV).
The encrypted KGV in the form of a signature is stored in the file’s extended attribute and enforces local file
integrity. The enforced mode strictly enforces the file integrity check whenever a file is opened for either
reading or executing.

Figure 5: IMA Appraisal

There are three categories of system files that require protection – Linux, XR, and third-party applications.

1. Linux System Files: System files are comprised of Executable and Linkable Format (ELF) binary
executables, shared libraries, scripts (such as, Bash, Python, PERL, and Tcl), configuration files, and
password files that are part of the Linux distribution packages. Integrity protection of the said files ensures

Implementing Trustworthy Systems
24

Implementing Trustworthy Systems
IMA Appraisal

that remote or local modification of the data does not remain undetected and access to such tampered data
is either forbidden or logged or both. To guarantee the integrity of these files, they must have a valid IMA
signature for the lifetime of the files. Executables and scripts must be appraised and measured. All other
immutable files must be measured. Files that don’t require appraisal and measurement are runtime files,
logs, memory-mapped files like devices, and shared memory objects.

2. XR System Files: XR system files are comprised of XR applications, shared libraries, kernel modules,
scripts, data files, configuration files and secret files like keys and user credentials. Integrity of these files
must be maintained in order for XR to operate properly. To keep the integrity of these files protected all
system files must have a valid IMA signature for the lifetime of the files. Executables and scripts must
be appraised and measured. All other immutable files must be measured. Files that don’t require appraisal
and measurement are runtime files, logs, memory-mapped files like devices, and shared memory objects.

3. Third-party Applications (TPAs): All TPAs are not appraised. There are two types of TPAs:

• native running applications: For native running applications the system files are installed on the disk
from an rpm package or directly copied to the disk. All immutable files are onlymeasured. Executables
and scripts must be appraised and measured. All other immutable files must be measured. Files that
don’t require appraisal andmeasurement are runtime files, logs, and memorymapped-files like shared
memory objects.

• containerized applications: For containerized applications the system files are packaged in the
container image such as docker as part of the filesystem layers. When the container is launched, the
system files are only accessible from within the container unless it is bind mounted on the host. In
this case, only container image files are measured.

There are other frequently updated files that are created by the IOSXR (Linux, XR) at runtime, such as runtime
files, logs, memory mapped files like devices and shared memory objects. These files contain runtime data
and logs that are constantly updated by the applications. By default, they do not require an IMA signature and
are excluded from appraisal to avoid possible access failure.

In this release, the following files are not signed with an IMA key, so they do not have an IMA signature.
However, the system still allows their execution:

• Zero Touch Provisioning (ZTP) bash scripts with execute permission

• ZTP bash scripts without execute permission

• Third-party bash scripts without execute permission

• Bash scripts downloaded through file transfer operation like secure copy (SCP) or Secure File Transfer
Protocol (SFTP)

• Open Programmability System (OPS) 1.0 scripts, whether downloaded or created on the router

In Cisco IOS XR Release 7.4.1, enforced appraisal is enabled only on the XR system files.Note

IMA Measurement Log

When a file covered by an IMA measurement policy is opened for reading or execution IMA must measure
the file by calculating its sha256 hash and record it in the IMA measurement log. To read the integrity log as
registered by the IMA subsystem, review the /sys/kernel/security/ima/ascii_runtime_measurements file.
The columns (from left to right) are:

Implementing Trustworthy Systems
25

Implementing Trustworthy Systems
IMA Measurement Log

• PCR (Platform Configuration Register) in which the values are registered. This is applicable only if
a Trusted Platform Module (TPM) chip is in use.

• Extended hash that is stored in the PCR.

• Template that registered the integrity value (ima-sig).

• SHA256 hash of the file.

• Filename that has the fully-qualified file path.

IMA Audit
IMA audit generates an event log every time it finds a file opened for reading or executing that has a mismatch
between the measured file hash and the one stored in the extended attribute.

This data integrity verification event is recorded in the audit log.

There are three reasons an integrity log is recorded in the audit log – invalid signature, invalid hash and missing
hash. The audit log has the following key information:

• type - INTEGRITY_DATA - Triggered to record a data integrity verification event run by the kernel.

• pid - Process ID of the calling process that opened the file with integrity verification failure.

• subject - SELinux file context label. SELinux runs in Permissive mode. Any access control violation is
only logged in the audit log and the application is still allowed to run.

• op - Operation (appraise_data).

• cause - Reason for integrity verification failure (invalid-signature, invalid-hash, missing-hash).

• comm - Calling process.

• name – Name of the file with full path that was appraised.

The following output shows an instance where the IMA appraisal causes the execution of a tampered binary
executable to fail. The integrity violation logged is Invalid Signature, the integrity violation log type is
Integrity Data, and the appraised file is /usr/bin/zip.
RP/0/RP0/CPU0:NCS-540-C-LNT#run
Mon Apr 29 08:39:26.793 UTC

Implementing Trustworthy Systems
26

Implementing Trustworthy Systems
IMA Audit

[node0_RP0_CPU0:~]$cat /var/log/audit/audit.log | grep -i integ | grep zip | fold -w 100
type=INTEGRITY_DATA msg=audit(1714378019.193:866): pid=2236 uid=0 auid=4294967295
ses=4294967295 sub
j=iosxradmin_u:iosxradmin_r:iosxradmin_t:s0 op="appraise_data" cause="invalid-signature"
comm="sh" n
ame="/usr/bin/zip" dev="dm-14" ino=147881 res=0
type=INTEGRITY_DATA msg=audit(1714378019.197:867): pid=2236 uid=0 auid=4294967295
ses=4294967295 sub
j=iosxradmin_u:iosxradmin_r:iosxradmin_t:s0 op="appraise_data" cause="invalid-signature"
comm="sh" n
ame="/usr/bin/zip" dev="dm-14" ino=147881 res=0

The following output shows an instance when an audit log was recorded because the file was missing an IMA
signature and was opened for either reading or execution. This resulted in a “missing-hash” event log.

[node0_RP0_CPU0:/ima-appraisal]$zip --version | head -2
sh: /usr/bin/zip: Permission denied
[node0_RP0_CPU0:/ima-appraisal]$
[node0_RP0_CPU0:/ima-appraisal]$cat /var/log/audit/audit.log | grep -i integ | fold -w 100
type=INTEGRITY_DATA msg=audit(1714500558.187:556): pid=52560 uid=0 auid=4294967295
ses=4294967295 su
bj=iosxradmin_u:iosxradmin_r:iosxradmin_t:s0 op=appraise_data cause=missing-hash comm="sh"
name="/us
r/bin/zip" dev="dm-11" ino=1507384 res=0

IMA Policy
The IMA policy is not user-defined and is created by default. It contains a policy rule set that defines exactly
which files on the file system should be measured or appraised.

Each policy rule must start with one of the following directives:

• measure: Perform IMA measurement

• dont_measure: Exclude from IMA measurement

• appraise: Perform IMA appraisal

• dont_appraise: Exclude from IMA appraisal

IMA policy is protected at runtime – it cannot be read or modified.Note

Verifying the IMA Appraisal “enforce” Mode
To display the content of the IMA appraisal mode, query the kernel command line and look for
“ima_appraise=enforce”.
$ cat /proc/cmdline

To query the content of the IMA measurement logs:
$ cat /sys/kernel/security/ima/ascii_runtime_measurements

To display the total number of files measured:
$ cat /sys/kernel/security/ima/runtime_measurements_count

To display the total number of integrity violations:

Implementing Trustworthy Systems
27

Implementing Trustworthy Systems
IMA Policy

$ cat /sys/kernel/security/ima/violations

To access other user space interfaces in sysfs that are specific to the cisco_ima measurement:
$ ls /sys/kernel/security/cisco_ima

IMA Signatures
The IMA appraisal provides local integrity, validation, and enforcement of the measurement against a known
good value stored as an extended attribute—security.ima. The method for validating file data integrity is based
on a digital signature, which in addition to providing file data integrity also provides authenticity. Each file
(RPM) shipped in the image is signed by Cisco during the build and packaging process and validated at runtime
using the IMA public certificate stored in the TAm.

All RPMs contain Cisco IMA signatures of the files packaged in the RPM, which are embedded in the RPM
header. The IMA signature of the individual file is stored in its extended attribute during RPM installation.
This protects against modification of the Cisco RPMs.

The IMA signature format used for IMA can have multiple lines and every line has comma-separated fields.
Each line entry will have the filename, hash, and signature as illustrated below.

• File – Filename with the full path of the file hashed and signed

• Hash – SHA256 hash of the file

• Signature – RSA2048 key-based signature

How Trustworthiness is Implemented
The following sequence of events takes place automatically when the Cisco routers that support the IOS XR7
operating system are powered up:

1. At power UP, the micro-loader in the chip verifies the digital signature of BIOS using the keys stored
in the Trusted Anchor module (TAm). The BIOS signature verification is logged and the measurement
is extended into a PCR.

2. The BIOS then verifies the signature of the boot-loader using keys stored in TAm. The boot-loader
signature verification is logged and the measurement is extended into the PCR.

3. If the validation is successful, the BIOS launches the bootloader. The bootloader uses the keys loaded
by the BIOS to verify the sanctity of the kernel, initial RAM disk (initrd) file system, and grub-config
file. Each verification operation is logged, and the PCR in TAm is extended.

4. The initrd is loaded to create the initial file system.

5. The kernel is launched and the kernel keyrings are populated with the appropriate keys from the TAm.

6. The init process is launched. Whenever an executable or a shared library is invoked, the IMA kernel
hook validates the signature using the certificates in IMA keyring, which is then used to validate the
signature attached to the file.

7. The Cisco IOS XR7 RPM is installed with the signed verification. The results of RPM verification are
logged.

8. Cisco IOS XR7 processes are launched with IMA measurement.

9. TAm services are launched.

Implementing Trustworthy Systems
28

Implementing Trustworthy Systems
IMA Signatures

10. Cisco IOSXR7 application runs the initial admin user configuration and stores the credentials into TAm
secure storage.

Manual provisioning of user credentials is now complete.

The Cisco routers perform the above steps, which is a holistic approach to integrate trust. Trust begins in
hardware, next the system verifies the trustworthiness of the network operating system, after bootup, the
system maintains trust at runtime, last, the system visualizes and reports on trust. You can verify the boot
status by executing the following command:
Router#show platform security integrity log secure-boot
Fri Apr 12 17:13:43.867 UTC

+--------------------------------------+
Node location: node0_RP0_CPU0

+--------------------------------------+
Secure Boot Status: Enabled

Understanding Key Concepts in Security
Attestation

Attestation is a mechanism used to attest the software’s integrity. The verifier trusts that the attested data is
accurate because it is signed by a TPM whose key is certified by the CA.

Attestation Identity Key

An Attestation Identity Key (AIK) is a restricted key that is used for signing attestation requests.

Bootloader

The bootloader is a piece of code that runs before any operating system begins to run. Bootloaders contain
several ways to boot the OS kernel and also contain commands for debugging and modifying the kernel
environment.

Certificates and Keys in TAm

All database keys are signed by the KEK. Any update to the keys requires the KEK or PK to sign in, using
time-based authentic variables. Some of the keys on the database are:

• Image signing certificate: This is the X.509 certificate corresponding to the public key and is used for
validating the signature of grub, initrd, kernel, and kernel modules.

• IOS-XR Key: A public key certificate signed by the KEK. This key is common to all Cisco NCS 540
Series routers and is used to sign GRUB, initrd, kernel and kernel modules.

• RPM key: Used for signing RPMs.

• IMA public key certificate: Used for Integrity Measurement Architecture (IMA), and used to validate
the IMA signature of the files.

• BIOS or Firmware Capsule Update key: Used to sign the outer capsule for BIOS or firmware updates.
It is the same as the secure boot key.

• Platform key (PK) and Key Enrollment Key (KEK): These are public keys and certificates used to manage
other keys in the TAM.

Implementing Trustworthy Systems
29

Implementing Trustworthy Systems
Understanding Key Concepts in Security

• LDWM Key: In the Cisco IOS XR7, the LDWM key is stored in the hardware trust anchor module and
is used for validating the BIOS.

Golden ISO (GISO)

A GISO image includes a base binary artifact (an ISO) for the Linux distribution that is used on the server
fleet, packages, and configuration files that can be used as a base across all servers.

The GISO image for Cisco IOS XR7 software contains the IOS XR RPMs and third-party RPMs.

GRand Unified Bootloader (GRUB)

GNU GRUB (or just GRUB) is a boot loader package that loads the kernel and supports multiple operating
systems on a device. It is the first software that starts at a system boot.

Hash Function

A hash function is any function that is used to map data of arbitrary size onto data of a fixed size.

Initramfs

Initramfs, a complete set of directories on a normal root filesystem, is bundled into a single cpio archive and
compressed with one of the several compression algorithms. At boot time, the boot loader loads the kernel
and the initramfs image into memory and starts the kernel.

initrd

initial RAM disk is an initial root file system that is mounted before the real root file system is made available.
The initrd is bound to the kernel and loaded as part of the kernel boot procedure.

JTAG

JTAG is a common hardware interface that provides a system with a way to communicate directly with the
chips on a board. JTAG is used for debugging, programming, and testing on embedded devices.

Nonce Value

A nonce value is an arbitrary number that can be used only once in a cryptographic communication. It is a
random or pseudo-random number that is issued in an authentication protocol to ensure that the old
communications are not reused in replay attacks.

Platform Configuration Register (PCR)

A PCR is a shielded register or memory region large enough to hold the contents of a hash operation. A PCR
is initialized to a well-known value at power-up, and typically cannot be reset.

PCR Extend

The only way to change the value held in a PCR is to perform an “extend” operation, which is defined as:
PCR[x]new = hash (PCR[x]old || hash (measurement value))

Trust Anchor module (TAm)

The Cisco Trust Anchor module (TAm) helps verify that Cisco hardware is authentic and provides additional
security services.

Trusted Platform Module (TPM)

A Trusted Platform Module (TPM) is a specialized chip on an endpoint device that stores RSA encryption
keys specific to the host system for hardware authentication. This key pair is generated by the TPM based on
the Endorsement Key and an owner-specified password.

Implementing Trustworthy Systems
30

Implementing Trustworthy Systems
Understanding Key Concepts in Security

Root of Trust for Storage

TPM 2.0-compliant Platform Configuration Registers (PCRs) form the Root of Trust for Storage.

Implementing Trustworthy Systems
31

Implementing Trustworthy Systems
Understanding Key Concepts in Security

Implementing Trustworthy Systems
32

Implementing Trustworthy Systems
Understanding Key Concepts in Security

	Implementing Trustworthy Systems
	Need for Trustworthy Systems
	Enable Trust in Hardware
	Secure Hardware for Strong Cryptography
	Hardware Integrity Check Using Chip Guard Functionality
	Attestation

	Enable Trust in Software
	Secure Boot
	Secure iPXE – Secure Boot Over the Network

	Establish and Maintain Trust at Steady State
	SELinux
	SELinux Policy
	SELinux Mode
	Role of the SELinux Policy in Boot Process

	Secure Install
	RPM Signing and Validation
	Third-Party RPMs

	SSD Encryption
	DM-Crypt
	AES-NI Support
	CryptSetup
	Encrypted Logical Volume
	SSD Binding
	Data Zeroization

	Boot Integrity and Trust Visibility
	Secure gRPC
	Integrity Measurement Architecture (IMA)
	IMA Appraisal
	IMA Measurement Log

	IMA Audit
	IMA Policy
	Verifying the IMA Appraisal “enforce” Mode
	IMA Signatures

	How Trustworthiness is Implemented
	Understanding Key Concepts in Security

