

Implementing Layer 3 Multicast

Multicast routing allows a host to send packets to a subset of all hosts as a group transmission rather than to a single host, as in unicast transmission, or to all hosts, as in broadcast transmission. The subset of hosts is known as group members and are identified by a single multicast group address that falls under the IP Class D address range from 224.0.00 through 239.255.255.

The multicast environment consists of senders and receivers. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

The following protocols are supported to implement multicast routing:

- IGMP—IGMP is used between hosts on a network (for example, LAN) and the routers on that network to track the multicast groups of which hosts are members.
- PIM SSM— Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM) has the ability to report interest in receiving packets from specific source addresses (or from all but the specific source addresses), to an IP multicast address.

Prerequisites for Implementing Multicast Routing

- You must install and activate the multicast RPM package.
- You must be familiar with IPv4 multicast routing configuration tasks and concepts.
- Unicast routing must be operational.

Restrictions

- Enabling Multicast, on page 2
- Supported Multicast Features, on page 3
- Protocol Independent Multicast, on page 4
- PIM BFD Overview, on page 4
- PIM Bootstrap Router, on page 6
- Reverse Path Forwarding , on page 7
- RPF Vector Encoding Using IETF Standard, on page 8
- PIM-Source Specific Multicast, on page 9
- PIM-Sparse Mode, on page 14
- Multicast Source Discovery Protocol, on page 16
- Designated Routers, on page 21

- Designated Router Election Using StickyDR, on page 23
- Multicast VPN, on page 27
- Internet Group Management Protocol, on page 31
- EVPN Active/Active Multihome Source with IGMP Snooping, on page 35
- Multicast Route Statistics, on page 36
- Statistics for Egress Multicast Traffic Route Rate, on page 39
- Bundle Member Selection , on page 41
- Multicast Over IPV4 Unicast GRE Tunnels, on page 41
- Use Case: Video Streaming, on page 48
- Multicast Label Distribution Protocol, on page 50
- Label Switching Multicast for Edge Router, on page 51
- Multicast MLDP Profile 14 support on an Edge Router, on page 51
- Label Switched Multicast (LSM) Multicast Label Distribution Protocol (mLDP) based Multicast VPN (mVPN) Support, on page 54
- Configuration Example for MLDP on Core, on page 57
- Flexible Algorithm for MLDP, on page 58
- Configure VRF MLDP In-Band Signaling on Edge Routers, on page 62
- Configure Global MLDP In-band Signaling on Edge Routers, on page 63
- Configuration Examples for Inband mLDP Profiles on Edge Routers, on page 63
- Verification of MLDP Configuration on Edge Routers, on page 64
- Overriding VRFs in IGMP Interfaces, on page 66
- Configuring IGMP VRF Override, on page 67
- Configure MVPN using Draft-Rosen (Profile 0), on page 70
- Configure mVPN using RSVP-TE P2MP (Profile 22), on page 82
- Restrictions for MVPN Profiles, on page 84
- Configuration Examples for MVPN Profiles, on page 84

Enabling Multicast

Configuration Example

Enables multicast routing and forwarding on all new and existing interfaces.

```
Router#config
Router(config)#multicast-routing
Router(config-mcast)#address-family ipv4
Router(config-mcast-default-ipv4)#interface all enable
*/In the above command, you can also indicate a specific interface (For example, interface
TenGigE0/0/0/3)
for enabling multicast only on that interface/*
Router(config-mcast-default-ipv4)#commit
```

Running Configuration

```
Router#show running multicast routing
multicast-routing
address-family ipv4
interface all enable
!
```

Verification

Verify that the Interfaces are enabled for multicast.

```
Router#show mfib interface location 0/3/CPU00/RP0/cpu0
Interface : FINT0/RP0/cpu0 (Enabled)
SW Mcast pkts in : 0, SW Mcast pkts out : 0
TTL Threshold : 0
Ref Count : 2
Interface : TenGigE0/0/0/3 (Enabled)
SW Mcast pkts in : 0, SW Mcast pkts out : 0
TTL Threshold : 0
Ref Count : 3
Interface : TenGigE0/0/0/9 (Enabled)
SW Mcast pkts in : 0, SW Mcast pkts out : 0
TTL Threshold : 0
Ref Count : 13
Interface : Bundle-Ether1 (Enabled)
SW Mcast pkts in : 0, SW Mcast pkts out : 0
TTL Threshold : 0
Ref Count : 4
Interface : Bundle-Ether1.1 (Enabled)
SW Mcast pkts in : 0, SW Mcast pkts out : 0
TTL Threshold : 0
```

Supported Multicast Features

- Hardware Offloaded BFD for PIMv4 is supported.
- IPv4 and IPV6 static groups for both IGMPv2/v3 and MLDv1/v2 are supported.
- Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM) mapping is supported.
- PIMv4 SSM and PIMv6 SSM over Bundle sub-interface are supported.
- MFIB stats (source, group) or (S,G) are supported.
- Load balancing for multicast traffic for ECMP links and bundles is supported. However, an RPF check
 is performed on the multicast routers to ensure loop prevention in multicast trees.
- IPv6 multicast MLD joins are subjected to hop by hop LPTS punt policer. Tweaking this policer to a
 higher value achieves convergence at higher scale.

Also, adjust the ICMP control traffic LPTS hardware policer to a higher value for optimal convergence at higher scale.

Redundant sources for IPv6 PIM SSM is supported.

Note You must enable multicast-routing in the default VRF to use multicast in some other VRF.

Protocol Independent Multicast

Protocol Independent Multicast (PIM) is a multicast routing protocol used to create multicast distribution trees, which are used to forward multicast data packets.

Proper operation of multicast depends on knowing the unicast paths towards a source or an RP. PIM relies on unicast routing protocols to derive this reverse-path forwarding (RPF) information. As the name PIM implies, it functions independently of the unicast protocols being used. PIM relies on the Routing Information Base (RIB) for RPF information. Protocol Independent Multicast (PIM) is designed to send and receive multicast routing updates.

PIM on Bundle-Ethernet subinterface is supported.

PIM BFD Overview

The BFD Support for Multicast (PIM) feature, also known as PIM BFD, registers PIM as a client of BFD. PIM can then utilize BFD's fast adjacency failure detection. When PIM BFD is enabled, BFD enables faster failure detection without waiting for hello messages from PIM.

At PIMs request, as a BFD client, BFD establishes and maintains a session with an adjacent node for maintaining liveness and detecting forwarding path failure to the adjacent node. PIM hellos will continue to be exchanged between the neighbors even after BFD establishes and maintains a BFD session with the neighbor. The behavior of the PIM hello mechanism is not altered due to the introduction of this feature. Although PIM depends on the Interior Gateway Protocol (IGP) and BFD is supported in IGP, PIM BFD is independent of IGP's BFD.

Protocol Independent Multicast (PIM) uses a hello mechanism for discovering new PIM neighbors between adjacent nodes. The minimum failure detection time in PIM is 3 times the PIM Query-Interval. To enable faster failure detection, the rate at which a PIM hello message is transmitted on an interface is configurable. However, lower intervals increase the load on the protocol and can increase CPU and memory utilization and cause a system-wide negative impact on performance. Lower intervals can also cause PIM neighbors to expire frequently as the neighbor expiry can occur before the hello messages received from those neighbors are processed. When PIM BFD is enabled, BFD enables faster failure detection without waiting for hello messages from PIM.

Configure PIM BFD

This section describes how you can configure PIM BFD

```
Router# configure

Router(config)# router pim address-family ipv4

Router(config-pim-default-ipv4)# interface HundredGigE0/1/0/1

Router(config-pim-ipv4-if)# bfd minimum-interval 10

Router(config-pim-ipv4-if)# bfd fast-detect

Router(config-pim-ipv4-if)# bfd multiplier 3

Router(config-pim-default-ipv4)# interface TenGigE0/0/0/4

Router(config-pim-ipv4-if)# bfd minimum-interval 50

Router(config-pim-ipv4-if)# bfd fast-detect

Router(config-pim-ipv4-if)# bfd fast-detect

Router(config-pim-ipv4-if)# bfd multiplier 3

Router(config-pim-default-ipv4)# interface TenGigE 0/0/0/4.101

Router(config-pim-ipv4-if)# bfd minimum-interval 50
```

```
Router(config-pim-ipv4-if)# bfd fast-detect
Router(config-pim-ipv4-if)# bfd multiplier 3
Router(config-pim-ipv4-if)# exit
Router(config-pim-default-ipv4)# interface Bundle-Ether 101
Router(config-pim-ipv4-if)# bfd minimum-interval 50
Router(config-pim-ipv4-if)# bfd fast-detect
Router(config-pim-ipv4-if)# bfd multiplier 3
Router(config-pim-ipv4-if)# exit
Router(config-pim-default-ipv4)# commit
```

Running Configuration

```
router pim
address-family ipv4
 interface HundredGigE 0/1/0/1
  bfd minimum-interval 10
   bfd fast-detect
  bfd multiplier 3
  !
  interface TenGigE 0/0/0/4
  bfd minimum-interval 50
   bfd fast-detect
  bfd multiplier 3
  !
  interface TenGigE 0/0/0/4.101
  bfd minimum-interval 50
   bfd fast-detect
  bfd multiplier 3
  !
    !
  !
 1
!
```

Verification

The show outputs given in the following section display the details of the configuration of the PIM BFD, and the status of their configuration.

Router# show bfd se Wed Nov 22 08:27:35							
Interface H/W NPU	Dest Addr 1	Local det t	.ime(int*mult)	State	Echo	Async	
Hu0/0/1/3 0/0/CPU0	10.12.12.2	0s(0s*0)	90ms(30ms*3)	UP		Yes	
Hu0/0/1/2 0/0/CPU0	10.12.12.2	0s(0s*0)	90ms(30ms*3)	UP		Yes	
Hu0/0/1/1 0/0/CPU0	10.18.18.2	0s(0s*0)	90ms(30ms*3)	UP		Yes	
Te0/0/0/4.101 0/0/CPU0	10.112.112.2	0s(0s*0)	90ms(30ms*3)	UP		Yes	
BE101	10.18.18.2	n/a	n/a	UP		No	n/a

BE102	10.12.12.2	n/a	n/a	UP	No	n/a
-------	------------	-----	-----	----	----	-----

Router# show bfd client

Name	Node	Num sessions		
L2VPN_ATOM	0/RP0/CPU0	0		
MPLS-TR	0/RP0/CPU0	0		
bgp-default	0/RP0/CPU0	0		
bundlemgr_distr:	bundlemgr distrib 0/RP0/CPU0 14			
isis-1	0/RP0/CPU0	0		
object_tracking	0/RP0/CPU0	0		
pim6	0/RP0/CPU0	0		
pim	0/RP0/CPU0	0		
service-layer	0/RP0/CPU0	0		

PIM Bootstrap Router

The PIM bootstrap router (BSR) provides a fault-tolerant, automated RP discovery and distribution mechanism that simplifies the Auto-RP process. This feature is enabled by default allowing routers to dynamically learn the group-to-RP mappings.

PIM uses the BSR to discover and announce RP-set information for each group prefix to all the routers in a PIM domain. This is the same function accomplished by Auto-RP, but the BSR is part of the PIM specification. The BSR mechanism interoperates with Auto-RP on Cisco routers.

To avoid a single point of failure, you can configure several candidate BSRs in a PIM domain. A BSR is elected among the candidate BSRs automatically.

Candidates use bootstrap messages to discover which BSR has the highest priority. The candidate with the highest priority sends an announcement to all PIM routers in the PIM domain that it is the BSR.

Routers that are configured as candidate RPs unicast to the BSR the group range for which they are responsible. The BSR includes this information in its bootstrap messages and disseminates it to all PIM routers in the domain. Based on this information, all routers are able to map multicast groups to specific RPs. As long as a router is receiving the bootstrap message, it has a current RP map.

Configuring PIM Bootstrap Router

Configuration Example

Configures the router as a candidate BSR with a hash mask length of 30:

```
Router#config
Router(config)#router pim
Router(config-pim-default-ipv4)#bsr candidate-bsr 1.1.1.1 hash-mask-len 30 priority 1
Router(config-pim-default-ipv4-if)#commit
```

Configures the router to advertise itself as a candidate rendezvous point to the BSR in its PIM domain. Access list number 4 specifies the prefix associated with the candidate rendezvous point address 1.1.1.1. This rendezvous point is responsible for the groups with the prefix 239.

```
Router#config
Router(config)#router pim
Router(config-pim-default-ipv4)#bsr candidate-rp 1.1.1.1 group-list 4 priority 192 interval
60
Router(config-pim-default-ipv4)#exit
```

```
Router(config)#ipv4 access-list 4
Router(config-ipv4-acl)#permit ipv4 any 239.0.0.0 0.255.255.255
Router(config-ipv4-acl)#commit
```

Running Configuration

```
Router#show run router pim
router pim
address-family ipv4
bsr candidate-bsr 1.1.1.1 hash-mask-len 30 priority 1
bsr candidate-rp 1.1.1.1 group-list 4 priority 192 interval 60
```

Verification

```
Router#show pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.0.0/8
  RP 1.1.1.1 (?), v2
    Info source: 1.1.1.1 (?), elected via bsr, priority 192, holdtime 150
      Uptime: 00:02:50, expires: 00:01:54
Router#show pim bsr candidate-rp
PIM BSR Candidate RP Info
        mode scope priority uptime
Cand-RP
                                                group-list
1.1.1.1
                 BD
                       16
                              192
                                     00:04:06
                                                       4
Router#show pim bsr election
PIM BSR Election State
Cand/Elect-State Uptime BS-Timer BSR
Elected/Accept-Pref 00:03:49 00:00:25 1.1.1.1 [1, 30]
                                                                                       C-BSR
                                                                    1.1.1.1 [1, 30]
```

Reverse Path Forwarding

Reverse-path forwarding (RPF) is an algorithm used for forwarding multicast datagrams. It functions as follows:

- If a router receives a datagram on an interface it uses to send unicast packets to the source, the packet has arrived on the RPF interface.
- If the packet arrives on the RPF interface, a router forwards the packet out the interfaces present in the outgoing interface list of a multicast routing table entry.
- If the packet does not arrive on the RPF interface, the packet is silently discarded to prevent loops.

PIM uses both source trees and RP-rooted shared trees to forward datagrams; the RPF check is performed differently for each, as follows:

- If a PIM router has an (S,G) entry present in the multicast routing table (a source-tree state), the router performs the RPF check against the IP address of the source for the multicast packet.
- If a PIM router has no explicit source-tree state, this is considered a shared-tree state. The router performs the RPF check on the address of the RP, which is known when members join the group.

Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes. (S,G) joins (which are source-tree states) are sent toward the source. (*,G) joins (which are shared-tree states) are sent toward the RP.

Setting the Reverse Path Forwarding Statically

Configuration Example

The following example configures the static RPF rule for IP address 10.0.0.1:

```
Router#configure
Router(config)#multicast-routing
Router(config-mcast)#address-family ipv4
Router(config-mcast)#static-rpf 10.0.0.1 32 TenGigE 0/0/0/1 192.168.0.2
Router(config-mcast)#commit
```

Running Configuration

```
multicast-routing
  address-family ipv4
    static-rpf 10.10.10.2 32 TenGigE0/0/0/1 192.168.0.2
```

Verification

Verify that RPF is chosen according to the static RPF configuration for 10.10.10.2

```
Router#show pim rpf
Table: IPv4-Unicast-default
* 10.10.10.2/32 [0/0]
via GigabitEthernet0/0/0/1 with rpf neighbor 192.168.0.2
```

RPF Vector Encoding Using IETF Standard

RPF vector is a PIM proxy that lets core routers without RPF information forward join and prune messages for external sources (for example, a MPLS-based BGP-free core, where the MPLS core router is without external routes learned from BGP). The RPF vector encoding is now compatible with the new IETF encoding. The new IETF standard encodes PIM messages using PIM Hello option 26.

Configuring RPF Vector (IETF Standard Encoding)

This example shows how to enable RPF encoding using IETF standard:

```
(config) # router pim
(config-pim-default-ipv4) # address-family ipv4
(config-pim-default-ipv4) # rpf-vector use-standard-encoding
!
(config) # multicast-routing
(config-mcast) # interface TenGigE0/0/0/0
(config-mcast) # interface TenGigE0/0/0/2
```

Verification

Router**#show pim neighbor** Tue Apr 17 10:15:40.961 PDT

```
PIM neighbors in VRF default
Flag: B - Bidir capable, P - Proxy capable, DR - Designated Router,
     E - ECMP Redirect capable
      * indicates the neighbor created for this router
Neighbor Address
                             Interface
                                                    Uptime
                                                              Expires DR pri
                                                                                Flags
25.25.25.1
                             TenGigE0/0/0/0
                                                  1w3d
                                                            00:01:36 1
                                                                            ΒP
25.25.25.2*
                                                            00:01:41 1 (DR) B P E
                             TenGigE0/0/0/0
                                                  1w3d
32.32.32.2*
                             TenGigE0/0/0/2
                00:01:40 1
                                 BPE
       1w4d
                             TenGigE0/0/0/2
32.32.32.3
       1w4d
                00:01:42 1 (DR) B P
```

In the above output, you can see "P" tag on the multicast enabled interfaces.

PIM-Source Specific Multicast

When PIM is used in SSM mode, multicast routing is easier to manage. This is because RPs (rendezvous points) are not required and therefore, no shared trees (*,G) are built.

There is no specific IETF document defining PIM-SSM. However, RFC4607 defines the overall SSM behavior.

In the rest of this document, we use the term PIM-SSM to describe PIM behavior and configuration when SSM is used.

PIM in Source-Specific Multicast operation uses information found on source addresses for a multicast group provided by receivers and performs source filtering on traffic.

- By default, PIM-SSM operates in the 232.0.0.0/8 multicast group range for IPv4 and FF3x::/32 for IPv6. To configure these values, use the **ssm range** command.
- If SSM is deployed in a network already configured for PIM-SM, only the last-hop routers must be upgraded with Cisco IOS XR Software that supports the SSM feature.
- No MSDP SA messages within the SSM range are accepted, generated, or forwarded.
- SSM can be disabled using the ssm disable command.
- The ssm allow-override command allows SSM ranges to be overridden by more specific ranges.

In many multicast deployments where the source is known, protocol-independent multicast-source-specific multicast (PIM-SSM) mapping is the obvious multicast routing protocol choice to use because of its simplicity. Typical multicast deployments that benefit from PIM-SSM consist of entertainment-type solutions like the ETTH space, or financial deployments that completely rely on static forwarding.

In SSM, delivery of data grams is based on (S,G) channels. Traffic for one (S,G) channel consists of datagrams with an IP unicast source address S and the multicast group address G as the IP destination address. Systems receive traffic by becoming members of the (S,G) channel. Signaling is not required, but receivers must subscribe or unsubscribe to (S,G) channels to receive or not receive traffic from specific sources. Channel subscription signaling uses IGMP to include mode membership reports, which are supported only in Version 3 of IGMP (IGMPv3).

To run SSM with IGMPv3, SSM must be supported on the multicast router, the host where the application is running, and the application itself. Cisco IOS XR Software allows SSM configuration for an arbitrary subset of the IP multicast address range 224.0.0.0 through 239.255.255.255.

When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use addresses in the SSM range, unless the application is modified to use explicit (S,G) channel subscription.

Benefits of PIM-SSM over PIM-SM

PIM-SSM is derived from PIM-SM. However, whereas PIM-SM allows for the data transmission of all sources sending to a particular group in response to PIM join messages, the SSM feature forwards traffic to receivers only from those sources that the receivers have explicitly joined. Because PIM joins and prunes are sent directly towards the source sending traffic, an RP and shared trees are unnecessary and are disallowed. SSM is used to optimize bandwidth utilization and deny unwanted Internet broad cast traffic. The source is provided by interested receivers through IGMPv3 membership reports.

IGMPv2

To support IGMPv2, SSM mapping configuration must be added while configuring IGMP to match certain sources to group range.

Configuring Example

Configures the access-list (mc1):

```
Router#configure
Router(config)#ipv4 access-list mc1
Router(config-ipv4-acl)#permit ipv4 any 232.1.1.0 0.0.0.255
Router(config-ipv4-acl)#commit
```

Configures the multicast source (1.1.1.1) as part of a set of sources that map SSM groups described by the specified access-list (mc1):

Router#configure

Router(config)**#router igmp** Router(config-igmp)**#ssm map static 1.1.1.1 mc1** Router(config-igmp)**#commit**

Running Configuration

```
Router#show run router igmp
router igmp
ssm map static 1.1.1.1 mc1
```

Multipath Option

The multipath option is available under router pim configuration mode. After multipath option is enabled, SSM selects different path to reach same destination instead of choosing common path. The multipath option helps load balance the SSM traffic.

Configuring Multipath Option

```
Router#configure
Router(config)#router pim address-family ipv4
Router(config-pim-default-ipv4)#multipath hash source
Router(config-pim-default-ipv4)#commit
```

Running Configuration

```
Router#show running router pim
router pim
address-family ipv4
dr-priority 100
multipath hash source /*SSM traffic takes different path to reach same destination
based on source hash value.*/
```

Verification

The Bundle-Ether132 and TenGigE0/4/0/18/0.132 are two paths to reach the destination router Turnin-56. Since we have enabled multipath option, the source has two IP addresses 50.11.30.12 and 50.11.30.11. The Multicast traffic from two sources take two different paths Bundle-Ether132 and TenGigE0/4/0/18/0.132 to reach same destination.

This show run output shows that Bundle-Ether132 and TenGigE0/4/0/18/0.132 are connected to same destination router Turnin-56:

```
Router#show run int TenGigE0/1/0/6/3.132
interface TenGigE0/1/0/6/3.132
description Connected to Turin-56 ten0/0/0/19.132
 ipv4 address 13.0.2.1 255.255.255.240
 ipv6 address 2606::13:0:2:1/120
encapsulation dot1q 132
Т
Router#show run int be132
interface Bundle-Ether132
description Bundle between Fretta-56 and Turin-56
 ipv4 address 28.0.0.1 255.255.255.240
 ipv6 address 2606::28:0:0:1/120
load-interval 30
Router#show mrib route 50.11.30.11 detail
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
    C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
   IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
   MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
    II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
    EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
    EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
   MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
   IRMI - IR MDT Interface
(50.11.30.11,225.255.11.1) Ver: 0x523cc294 RPF nbr: 50.11.30.11 Flags: L RPF, FGID: 11453,
 -1, -1
 Up: 4d15h
  Incoming Interface List
   HundredGigE0/4/0/10.1130 Flags: A, Up: 4d15h
  Outgoing Interface List
    FortyGigE0/1/0/5 Flags: F NS, Up: 4d15h
    TenGigE0/4/0/6/0 Flags: F NS, Up: 4d15h
    TenGigE0/1/0/6/3.132 Flags: F NS, Up: 4d15h
    TenGigE0/4/0/18/0.122 Flags: F NS, Up: 4d15h
```

Router#show mrib route 50.11.30.12 detail

```
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
   C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
    IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
   MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
   II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
   EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
   EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
   MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
    IRMI - IR MDT Interface
(50.11.30.12,226.255.12.1) Ver: 0x5fe02e5b RPF nbr: 50.11.30.12 Flags: L RPF, FGID: 12686,
 -1, -1
 Up: 4d15h
  Incoming Interface List
   HundredGigE0/4/0/10.1130 Flags: A, Up: 4d15h
  Outgoing Interface List
    Bundle-Ether121 Flags: F NS, Up: 4d15h
   Bundle-Ether132 Flags: F NS, Up: 4d15h
   FortyGigE0/1/0/5 Flags: F NS, Up: 4d15h
    TenGigE0/4/0/6/0.117 Flags: F NS, Up: 4d15h
```

Configuring PIM-SSM

Configuration Example

Configures SSM default range for the IPv4 address range defined by access list 4.

```
Router#config
Router(config)#ipv4 access-list 4
Router(config-ipv4-acl)#permit ipv4 any 224.2.151.0 0.0.0.255
Router(config-ipv4-acl)#exit
Router(config)#multicast-routing
Router(config-mcast)#address-family ipv4
Router(config-mcast-default-ipv4)#ssm range 4
Router(config-mcast-default-ipv4)#commit
Router(config-mcast-default-ipv4)#end
```

```
Router#config
Router(config)#ipv6 access-list 6
Router(config-ipv6-acl)#permit ipv6 any ff30:0:0:2::/32
Router(config-ipv6-acl)#exit
Router(config)#multicast-routing
Router(config-mcast)#address-family ipv6
Router(config-mcast-default-ipv6)#ssm range 6
Router(config-mcast-default-ipv6)#commit
Router(config-mcast-default-ipv6)#end
```

Running Configuration

```
Router#show running multicast-routing
multicast-routing
address-family ipv4
ssm range 4
```

```
interface all enable
!
Router#show running multicast-routing
multicast-routing
address-family ipv6
ssm range 6
interface all enable
'
```

Verification

Verify if the SSM range is configured according to the set parameters:

```
Router#show access-lists 4
ipv4 access-list 4
10 permit ipv4 any 224.2.151.0 0.0.0.255
*/Verify if the SSM is configured for 224.2.151.0/24/*:
Router#show pim group-map
IP PIM Group Mapping Table
(* indicates group mappings being used)
                Proto Client Groups RP address
Group Range
                                                    Tnfo
224.0.1.39/32*
                              1 0.0.0.0
                DM perm
224.0.1.40/32*
                DM perm
                              1
                                    0.0.0.0
224.0.0.0/24*
                NO
                              0
                                     0.0.0.0
                     perm
224.2.151.0/24*
                 SSM config 0
                                     0.0.0.0
```

Configuring PIM Parameters

To configure PIM-specific parameters, the router pim configuration mode is used. The default configuration prompt is for IPv4 and will be seen as config-pim-default-ipv4. To ensure the election of a router as PIM DR on a LAN segment, use the **dr-priority** command. The router with the highest DR priority will win the election. By default, at a preconfigured threshold, the last hop router can join the shortest path tree to receive multicast traffic. To change this behavior, use the command **spt-threshold infinity** under the router pim configuration mode. This will result in the last hop router permanently joining the shared tree. The frequency at which a router sends PIM hello messages to its neighbors can be configured by the hello-interval command. By default, PIM hello mode, all the interfaces with PIM enabled will inherit this value. To change the hello interval on the interface, use the **hello-interval** command under interface configuration mode, as follows:

Configuration Example

```
Router#configure
Router(config)#router pim
Router(config-pim-default)#address-family ipv4
Router(config-pim-default-ipv4)#dr-priority 2
Router(config-pim-default-ipv4)#spt-threshold infinity
Router(config-pim-default-ipv4)#interface TenGigE0/0/0/1
Router(config-pim-ipv4-if)#dr-priority 4
Router(config-pim-ipv4-if)#hello-interval 45
Router(config-pim-ipv4-if)#commit
```

Running Configuration

Router**#show run router pim** router pim address-family ipv4

```
dr-priority 2
spt-threshold infinity
interface TenGigE0/0/0/1
dr-priority 4
hello-interval 45
```

Verification

Verify if the parameters are set according to the configured values:

Count Intvl
is system

PIM-Sparse Mode

Typically, PIM in sparse mode (PIM-SM) operation is used in a multicast network when relatively few routers are involved in each multicast. Routers do not forward multicast packets for a group, unless there is an explicit request for traffic. Requests are accomplished using PIM join messages, which are sent hop by hop toward the root node of the tree. The root node of a tree in PIM-SM is the rendezvous point (RP) in the case of a shared tree or the first-hop router that is directly connected to the multicast source in the case of a shortest path tree (SPT). The RP keeps track of multicast groups, and the sources that send multicast packets are registered with the RP by the first-hop router of the source.

As a PIM join travels up the tree, routers along the path set up the multicast forwarding state so that the requested multicast traffic is forwarded back down the tree. When multicast traffic is no longer needed, a router sends a PIM prune message up the tree toward the root node to prune (or remove) the unnecessary traffic. As this PIM prune travels hop by hop up the tree, each router updates its forwarding state appropriately. Ultimately, the forwarding state associated with a multicast group or source is removed. Additionally, if prunes are not explicitly sent, the PIM state will timeout and be removed in the absence of any further join messages.

This image shows IGMP and PIM-SM operating in a multicast environment.

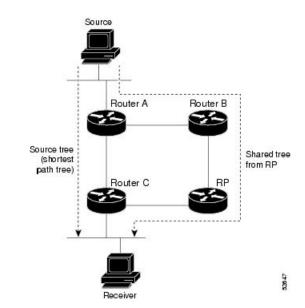


Figure 1: Shared Tree and Source Tree (Shortest Path Tree)

In PIM-SM, the rendezvous point (RP) is used to bridge sources sending data to a particular group with receivers sending joins for that group. In the initial set up of state, interested receivers receive data from senders to the group across a single data distribution tree rooted at the RP. This type of distribution tree is called a shared tree or rendezvous point tree (RPT) as illustrated in Figure 4: Shared Tree and Source Tree (Shortest Path Tree), above. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.

Unless the command is configured, this initial state gives way as soon as traffic is received on the leaf routers (designated router closest to the host receivers). When the leaf router receives traffic from the RP on the RPT, the router initiates a switch to a data distribution tree rooted at the source sending traffic. This type of distribution tree is called a shortest path tree or source tree. By default, the Cisco IOS XR Software switches to a source tree when it receives the first data packet from a source.

The following process describes the move from shared tree to source tree in more detail:

- 1. Receiver joins a group; leaf Router C sends a join message toward RP.
- 2. RP puts link to Router C in its outgoing interface list.
- 3. Source sends data; Router A encapsulates data in Register and sends it to RP.
- 4. RP forwards data down the shared tree to Router C and sends a join message toward Source. At this point, data may arrive twice at the RP, once encapsulated and once natively.
- 5. When data arrives natively (unencapsulated) at RP, RP sends a register-stop message to Router A.
- 6. By default, receipt of the first data packet prompts Router C to send a join message toward Source.
- 7. When Router C receives data on (S,G), it sends a prune message for Source up the shared tree.
- **8.** RP deletes the link to Router C from outgoing interface of (S,G). RP triggers a prune message toward Source.
- **9.** Join and prune messages are sent for sources and RPs. They are sent hop by hop and are processed by each PIM router along the path to the source or RP. Register and register-stop messages are not sent hop

by hop. They are exchanged using direct unicast communication between the designated router that is directly connected to a source and the RP for the group.

Note The **spt-threshold infinity** command lets you configure the router so that it never switches to the shortest path tree (SPT).

Restrictions and Usage Guidelines

This section describes the restrictions and guidelines related to the PIM protocol.

The following restrictions and guidelines apply for the Protocol Independent Multicast-Sparse Mode (PIM-SM) protocol:

- IPv6 is not supported.
- Auto RP is not supported.
- BSR is not supported in profile 14.

Multicast Source Discovery Protocol

Multicast Source Discovery Protocol (MSDP) is a mechanism to connect multiple PIM sparse-mode domains. MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and need not depend on RPs in other domains.

An RP in a PIM-SM domain has MSDP peering relationships with MSDP-enabled routers in other domains. Each peering relationship occurs over a TCP connection, which is maintained by the underlying routing system.

MSDP speakers exchange messages called Source Active (SA) messages. When an RP learns about a local active source, typically through a PIM register message, the MSDP process encapsulates the register in an SA message and forwards the information to its peers. The message contains the source and group information for the multicast flow, as well as any encapsulated data. If a neighboring RP has local joiners for the multicast group, the RP installs the S, G route, forwards the encapsulated data contained in the SA message, and sends PIM joins back towards the source. This process describes how a multicast path can be built between domains.

Note

Although you should configure BGP or Multiprotocol BGP for optimal MSDP interdomain operation, this is not considered necessary in the Cisco IOS XR Software implementation. For information about how BGP or Multiprotocol BGP may be used with MSDP, see the MSDP RPF rules listed in the Multicast Source Discovery Protocol (MSDP), Internet Engineering Task Force (IETF) Internet draft.

Interconnecting PIM-SM Domains with MSDP

To set up an MSDP peering relationship with MSDP-enabled routers in another domain, you configure an MSDP peer to the local router.

If you do not want to have or cannot have a BGP peer in your domain, you could define a default MSDP peer from which to accept all Source-Active (SA) messages.

Finally, you can change the Originator ID when you configure a logical RP on multiple routers in an MSDP mesh group.

Before you begin

You must configure MSDP default peering, if the addresses of all MSDP peers are not known in BGP or multiprotocol BGP.

Procedure

	Command or Action	Purpose			
Step 1	configure				
Step 2	interface type interface-path-id Example:	(Optional) Enters interface configuration mo to define the IPv4 address for the interface. Note This step is required if you specify a			
	<pre>RP/0/RP0/CPU0:router(config)# interface loopback 0</pre>	interface type and number whose primary address becomes the source IP address for the TCP connection.			
Step 3	ipv4 address <i>address mask</i> Example:	(Optional) Defines the IPv4 address for the interface.			
	RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.0.1.3 255.255.255.0	Note This step is required only if you specify an interface type and number whose primary address becomes the source IP address for the TCP connection. See optional for information about configuring the connect-source command.			
Step 4	exit	Exits interface configuration mode.			
	Example:				
	RP/0/RP0/CPU0:router(config-if)# end				
Step 5	router msdp	Enters MSDP protocol configuration mode.			
	Example:				
	RP/0/RP0/CPU0:router(config)# router msdp				
Step 6	default-peer <i>ip-address</i> [prefix-list <i>list</i>] Example:	(Optional) Defines a default peer from which to accept all MSDP SA messages.			
	RP/0/RP0/CPU0:router(config-msdp)#				

	Command or Action	Purpose
	default-peer 172.23.16.0	
Step 7	<pre>originator-id type interface-path-id Example: RP/0/RP0/CPU0:router(config-msdp)# originator-id GigabitEthernet0/1/1/0</pre>	(Optional) Allows an MSDP speaker that originates a (Source-Active) SA message to use the IP address of the interface as the RP address in the SA message.
Step 8	<pre>peer peer-address Example: RP/0/RP0/CPU0:router(config-msdp)# peer 172.31.1.2</pre>	 Enters MSDP peer configuration mode and configures an MSDP peer. Configure the router as a BGP neighbor. If you are also BGP peering with this MSDP peer, use the same IP address for MSDP and BGP. You are not required to run BGP or multiprotocol BGP with the MSDP peer, as long as there is a BGP or multiprotocol BGP path between the MSDP peers.
Step 9	<pre>connect-source type interface-path-id Example: RP/0/RP0/CPU0:router(config-msdp-peer)# connect-source loopback 0</pre>	(Optional) Configures a source address used for an MSDP connection.
Step 10	<pre>mesh-group name Example: RP/0/RP0/CPU0:router(config-msdp-peer)# mesh-group internal</pre>	(Optional) Configures an MSDP peer to be a member of a mesh group.
Step 11	<pre>remote-as as-number Example: RP/0/RP0/CPU0:router(config-msdp-peer)# remote-as 250</pre>	(Optional) Configures the remote autonomous system number of this peer.
Step 12	commit	
Step 13	<pre>show msdp [ipv4] globals Example: RP/0/RP0/CPU0:router# show msdp globals</pre>	Displays the MSDP global variables.

	Command or Action	Purpose
Step 14	show msdp [ipv4] peer [peer-address]	Displays information about the MSDP peer.
	Example:	
	RP/0/RP0/CPU0:router# show msdp peer 172.31.1.2	
Step 15	show msdp [ipv4] rpf rpf-address	Displays the RPF lookup.
	Example:	
	RP/0/RP0/CPU0:router# show msdp rpf 172.16.10.13	

Controlling Source Information on MSDP Peer Routers

Your MSDP peer router can be customized to control source information that is originated, forwarded, received, cached, and encapsulated.

When originating Source-Active (SA) messages, you can control to whom you will originate source information, based on the source that is requesting information.

When forwarding SA messages you can do the following:

- Filter all source/group pairs
- Specify an extended access list to pass only certain source/group pairs
- Filter based on match criteria in a route map

When receiving SA messages you can do the following:

- · Filter all incoming SA messages from an MSDP peer
- · Specify an extended access list to pass certain source/group pairs
- Filter based on match criteria in a route map

In addition, you can use time to live (TTL) to control what data is encapsulated in the first SA message for every source. For example, you could limit internal traffic to a TTL of eight hops. If you want other groups to go to external locations, you send those packets with a TTL greater than eight hops.

By default, MSDP automatically sends SA messages to peers when a new member joins a group and wants to receive multicast traffic. You are no longer required to configure an SA request to a specified MSDP peer.

Procedure

	Command or Action	Purpose
Step 1	configure	
Step 2	router msdp	Enters MSDP protocol configuration mode.
	Example:	

	Command or Action	Purpose
	RP/0/RP0/CPU0:router(config)# router msdp	
Step 3	<pre>sa-filter {in out} [list access-list-name] [rp-list access-list-name] Example: RP/0/RP0/CPU0:router(config-msdp)# sa-filter out list 100</pre>	 Configures an incoming or outgoing filter list for messages received from the specified MSDP peer. If you specify both the list and rp-list keywords, all conditions must be true to pass any source, group (S, G) pairs in outgoing Source-Active (SA) messages. You must configure the ipv4 access-list command in Step 7, on page 21. If all match criteria are true, a permit from the route map passes routes through the filter. A deny filters routes.
Step 4	<pre>cache-sa-state [list access-list-name] [rp-list access-list-name] Example: RP/0/RP0/CPU0:router(config-msdp)# cache-sa-state list 100</pre>	Creates and caches source/group pairs from received Source-Active (SA) messages and controls pairs through access lists.
Step 5	<pre>ttl-threshold ttl-value Example: RP/0/RP0/CPU0:router(config-msdp)# ttl-threshold 8</pre>	 (Optional) Limits which multicast data is sent in SA messages to an MSDP peer. Only multicast packets with an IP header TTL greater than or equal to the <i>ttl-value</i> argument are sent to the MSDP peer specified by the IP address or name. Use this command if you want to use TTL to examine your multicast data traffic. For example, you could limit internal traffic to a TTL of 8. If you want other groups to go to external locations, send those packets with a TTL greater than 8. This example configures a TTL threshold of eight hops.
Step 6	exit	Exits the current configuration mode.

	Command or Action	Purpose			
Step 7	ipv4 access-list <i>name</i> [sequence-number] permit source [source-wildcard]	Defines an IPv4 access list to be used by Sa filtering.			
	Example:	• In this example, the access list 100 permits multicast group 239.1.1.1.			
	<pre>RP/0/RP0/CPU0:router(config)# ipv4 access-list 100 20 permit 239.1.1.1 0.0.0.0</pre>	• The ipv4 access-list command is required if the keyword list is configured for SA filtering in Step 3, on page 20.			
Step 8	commit				

Designated Routers

Cisco routers use PIM-SM to forward multicast traffic and follow an election process to select a designated router (DR) when there is more than one router on a LAN segment.

The designated router is responsible for sending PIM register and PIM join and prune messages toward the RP to inform it about host group membership.

If there are multiple PIM-SM routers on a LAN, a designated router must be elected to avoid duplicating multicast traffic for connected hosts. The PIM router with the highest IP address becomes the DR for the LAN unless you choose to force the DR election by use of the **dr-priority** command. The DR priority option allows you to specify the DR priority of each router on the LAN segment (default priority = 1) so that the router with the highest priority is elected as the DR. If all routers on the LAN segment have the same priority, the highest IP address is again used as the tiebreaker.

Note DR election process is required only on multi access LANs. The last-hop router directly connected to the host is the DR.

The figure "Designated Router Election on a Multiaccess Segment", below illustrates what happens on a multi access segment. Router A (10.0.0.253) and Router B (10.0.0.251) are connected to a common multi access Ethernet segment with Host A (10.0.0.1) as an active receiver for Group A. As the Explicit Join model is used, only Router A, operating as the DR, sends joins to the RP to construct the shared tree for Group A. If Router B were also permitted to send (*,G) joins to the RP, parallel paths would be created and Host A would receive duplicate multicast traffic. When Host A begins to source multicast traffic to the group, the DR's responsibility is to send register messages to the RP. Again, if both routers were assigned the responsibility, the RP would receive duplicate multicast packets.

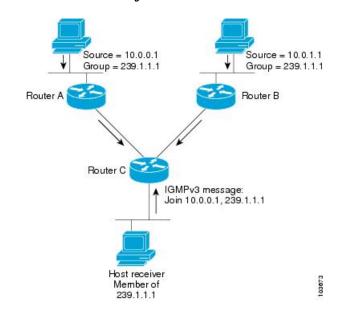


Figure 2: Designated Router Election on a Multiaccess Segment

If the DR fails, the PIM-SM provides a way to detect the failure of Router A and to elect a failover DR. If the DR (Router A) were to become inoperable, Router B would detect this situation when its neighbor adjacency with Router A timed out. Because Router B has been hearing IGMP membership reports from Host A, it already has IGMP state for Group A on this interface and immediately sends a join to the RP when it becomes the new DR. This step reestablishes traffic flow down a new branch of the shared tree using Router B. Additionally, if Host A were sourcing traffic, Router B would initiate a new register process immediately after receiving the next multicast packet from Host A. This action would trigger the RP to join the SPT to Host A, using a new branch through Router B.

Note

Two PIM routers are neighbors if there is a direct connection between them. To display your PIM neighbors, use the show pim neighbor command in EXEC mode.

- They are not used for unicast routing but are used only by PIM to look up an IPv4 next hop to a PIM source.
- They are not published to the Forwarding Information Base (FIB).
- When multicast-intact is enabled on an IGP, all IPv4 destinations that were learned through link-state advertisements are published with a set equal-cost mcast-intact next-hops to the RIB. This attribute applies even when the native next-hops have no IGP shortcuts.
- In IS-IS, the max-paths limit is applied by counting both the native and meast-intact next-hops together. (In OSPFv2, the behavior is slightly different.)

Configuration Example

Configures the router to use DR priority 4 for TenGigE interface 0/0/0/1, but other interfaces will inherit DR priority 2:

```
Router#configure
Router(config)#router pim
```

L

```
Router(config-pim-default) #address-family ipv4
Router(config-pim-default-ipv4)#dr-priority 2
Router(config-pim-default-ipv4) #interface TenGigE0/0/0/1
Router(config-pim-ipv4-if)#dr-priority 4
Router(config-ipv4-acl) #commit
```

Running Configuration

```
Router#show run router pim
router pim
address-family ipv4
 dr-priority 2
 spt-threshold infinity
 interface TenGigE0/0/0/1
  dr-priority 4
  hello-interval 45
```

Verification

Verify if the parameters are set according to the configured values:

Router# show pin	n interface						
PIM interfaces	in VRF default						
Address	Interface	PIM	Nbr	Hello	DR	DR Count Intvl	Prior
100.1.1.1	TenGigE0/0/0/1	on	1	45	4	this system	
26.1.1.1	TenGigE0/0/0/26	on	1	30	2	this system	

Designated Router Election Using StickyDR

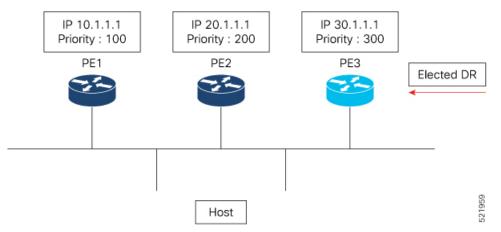
Feature Name	Release Information	Feature Description
Designated Router Election Using StickyDR	Release 7.4.1	 With this feature, the router sends a PIM <i>hello</i> message with a special PIM DR priority value on a multi-access LAN. The router with this special DR priority value is always elected as the designated router. The traffic now flows in the same path even when a new router is added. This feature introduces the sticky-dr command.

Table 1: Feature History Table

When you enable PIM on an interface or reload a router, router periodically sends the PIM Hello messages on each interface. PIM Hello messages allow a router to learn neighboring PIM routers on each interface and elects a Designated Router (DR) based on the DR Priority. The DR election avoids duplicating multicast traffic for connected hosts.

Each time the DR is reelected, the multicast control tree sets up a new path and the multicast traffic flows in different direction.

With Sticky DR feature, the designated router remains the same and doesn't allow any other router to become the designated router. The multicast control tree does not set up a new path and the multicast traffic flows in same direction, thus avoids traffic loss. DR election isn't based on DR priority.

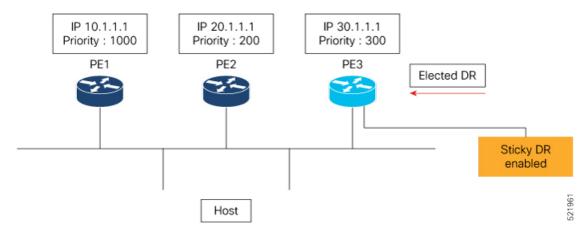

After you enable the sticky DR feature, the elected DR no longer advertises configured DR. Instead the router sends PIM Hello message with special PIM DR priority value which is reserved for Sticky PIM DR.

Restrictions

• The Sticky DR priority value is 4294967294. You must not configure DR priority with the value 4294967294 or any number greater than this value.

Topology

In this topology, PE1, PE2, PE3 are three PIM routers connected on a LAN. PE3 has the maximum priority and hence PE3 is elected as DR.



Now, when you configure PE1 with DR priority 1000, DR election process is re-initiated and PE1 becomes the new DR.

Every time a new DR is elected, the control tree computes a new path for traffic flow.

Now if you enable sticky DR on PE3, the PE3 remains the designated router irrespective of the DR priority of the PE devices.

In this example, the sticky DR is configured on PE3 and PE3 always remains as the DR.

Configuration

Let's configure sticky DR on PE3. To configure sticky DR on an interface, perform the following task:

```
Router# configure
Router(config)# router pim
Router(config-pim-default)# address-family ipv4
Router(config-pim-default-ipv4)# interface bundle-ether 72.1
Router(config-pim-ipv4-if)# sticky-dr
Router(config-ipv4-acl)# commit
```

Verification

The following output specifies that the Sticky DR is enabled on the interface and active:

```
Router# show pim interface bundle-ether 72.1 detail
```

```
PIM interfaces in VRF default
IP PIM Multicast Interface State
Flag: B - Bidir enabled, NB - Bidir disabled
     P - PIM Proxy enabled, NP - PIM Proxy disabled
     V - Virtual Interface, S - Sticky DR enabled
BFD State - State/Interval/Multiplier
Interface
                         PIM Nbr
                                  Hello DR
                              Count Intvl Prior
Bundle-Ether72.1
                         on 2
                                    30 100000
   Primary Address : 200.1.72.1
             Flags : B NP S V
               BFD : On/150 ms/3
               DR : this system
  Propagation delay : 500
  Override Interval : 2500
       Hello Timer : 00:00:24
   Neighbor Filter : ·
         Sticky DR : Configured, Active since Mon Jul 26 16:53:01 2021
 _____
Sticky DR Event History
_____
Event
                        State
                                    Time
```

Dynamic Batch Active (null)

PIM interfaces in VRF default

The following output specifies that the Sticky DR is enabled on the interface and is inactive:

Router# show pim interface bundle-ether 72.1 detail

IP PIM Multicast Interface State Flag: B - Bidir enabled, NB - Bidir disabled P - PIM Proxy enabled, NP - PIM Proxy disabled V - Virtual Interface, S - Sticky DR enabled BFD State - State/Interval/Multiplier PIM Nbr Hello DR Interface Count Intvl Prior Bundle-Ether72.1 2 30 1 on Primary Address : 200.1.72.1 Flags : B NP S V BFD : On/150 ms/3 DR : 200.1.72.2 Propagation delay : 500 Override Interval : 2500 Hello Timer : 00:00:18 Neighbor Filter : -Sticky DR : Configured, Inactive Router# show pim neighor detail

PIM neighbors in VRF default
Flag: B - Bidir capable, P - Proxy capable, DR - Designated Router,
 E - ECMP Redirect capable, S - Sticky DR Neighbor
 * indicates the neighbor created for this router

Neighbor Address	Interface	Uptime	Expires DR pri	Flags
201.7.7.7* E	tunnel-mte1019	2d17h	00:01:36 1	(DR) B
Expiry Timer: 00:01:05 201.7.7.7* E	tunnel-mte1001	2d17h	00:01:36 1	(DR) B
Expiry Timer: 00:01:12 200.1.71.1* Expiry Timer: 00:00:02	Bundle-Ether71.1	2d17h	00:01:31 99	(DR) B
200.1.71.2	Bundle-Ether71.1	2d17h	00:01:19 1	В
BFD State: enabled				
201.7.7.7* E	Loopback0	2d17h	00:01:41 1	(DR) B
Expiry Timer: 00:01:12 201.202.7.7* E	Loopback1	2d17h	00:01:40 1	(DR) B
Expiry Timer: 00:01:11				
200.1.72.1* s	Bundle-Ether72.1	2d17h	00:01:15 -	(DR) B
Expiry Timer: 00:01:21				

Disable Sticky DR

To disable the sticky DR feature, perform the following task:

Router# configure Router(config)# router pim Router(config-pim-default)# address-family ipv4

```
Router(config-pim-default-ipv4)# interface bundle-ether 72.1
Router(config-pim-ipv4-if)# no sticky-dr
Router(config-ipv4-acl)# commit
```

To clear the DR stickiness and force the DR reelection, use the following command:

Router# clear pim interface bundle-ether 72.1 sticky-dr

Multicast VPN

Multicast VPN (MVPN) provides the ability to dynamically provide multicast support over MPLS networks. MVPN introduces an additional set of protocols and procedures that help enable a provider to support multicast traffic in a VPN.

Note PIM-Bidir is not supported on MVPN.

There are two ways MCAST VPN traffic can be transported over the core network:

- Rosen GRE (native): MVPN uses GRE with unique multicast distribution tree (MDT) forwarding to
 enable scalability of native IP Multicast in the core network. MVPN introduces multicast routing
 information to the VPN routing and forwarding table (VRF), creating a Multicast VRF. In Rosen GRE,
 the MCAST customer packets (c-packets) are encapsulated into the provider MCAST packets (p-packets),
 so that the PIM protocol is enabled in the provider core, and mrib/mfib is used for forwarding p-packets
 in the core.
- MLDP ones (Rosen, partition): MVPN allows a service provider to configure and support multicast
 traffic in an MPLS VPN environment. This type supports routing and forwarding of multicast packets
 for each individual VPN routing and forwarding (VRF) instance, and it also provides a mechanism to
 transport VPN multicast packets across the service provider backbone. In the MLDP case, the regular
 label switch path forwarding is used, so core does not need to run PIM protocol. In this scenario, the
 c-packets are encapsulated in the MPLS labels and forwarding is based on the MPLS Label Switched
 Paths (LSPs) ,similar to the unicast case.

In both the above types, the MVPN service allows you to build a Protocol Independent Multicast (PIM) domain that has sources and receivers located in different sites.

To provide Layer 3 multicast services to customers with multiple distributed sites, service providers look for a secure and scalable mechanism to transmit customer multicast traffic across the provider network. Multicast VPN (MVPN) provides such services over a shared service provider backbone, using native multicast technology similar to BGP/MPLS VPN.

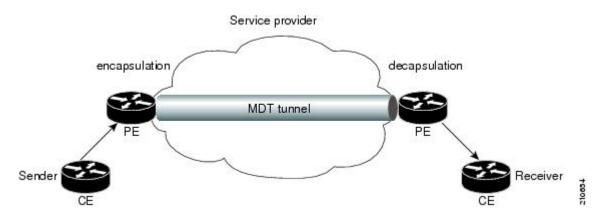
MVPN emulates MPLS VPN technology in its adoption of the multicast domain (MD) concept, in which provider edge (PE) routers establish virtual PIM neighbor connections with other PE routers that are connected to the same customer VPN. These PE routers thereby form a secure, virtual multicast domain over the provider network. Multicast traffic is then transmitted across the core network from one site to another, as if the traffic were going through a dedicated provider network.

Multi-instance BGP is supported on multicast and MVPN. Multicast-related SAFIs can be configured on multiple BGP instances.

Multicast VPN Routing and Forwarding

Dedicated multicast routing and forwarding tables are created for each VPN to separate traffic in one VPN from traffic in another.

The VPN-specific multicast routing and forwarding database is referred to as **MVRF**. On a PE router, an MVRF is created when multicast is enabled for a VRF. Protocol Independent Multicast (PIM), and Internet Group Management Protocol (IGMP) protocols run in the context of MVRF, and all routes created by an MVRF protocol instance are associated with the corresponding MVRF. In addition to VRFs, which hold VPN-specific protocol states, a PE router always has a global VRF instance, containing all routing and forwarding information for the provider network.


Multicast Distribution Tree Tunnels

The multicast distribution tree (MDT) can span multiple customer sites through provider networks, allowing traffic to flow from one source to multiple receivers. For MLDP, the MDT tunnel are called Labeled MDT (LMDT).

Secure data transmission of multicast packets sent from the customer edge (CE) router at the ingress PE router is achieved by encapsulating the packets in a provider header and transmitting the packets across the core. At the egress PE router, the encapsulated packets are decapsulated and then sent to the CE receiving routers.

Multicast distribution tree (MDT) tunnels are point-to-multipoint. A MDT tunnel interface is an interface that MVRF uses to access the multicast domain. It can be deemed as a passage that connects an MVRF and the global MVRF. Packets sent to an MDT tunnel interface are received by multiple receiving routers. Packets sent to an MDT tunnel interface are encapsulated, and packets received from a MDT tunnel interface are decapsulated.

Figure 3: Virtual PIM Peer Connection over an MDT Tunnel Interface

Encapsulating multicast packets in a provider header allows PE routers to be kept unaware of the packets' origin—all VPN packets passing through the provider network are viewed as native multicast packets and are routed based on the routing information in the core network. To support MVPN, PE routers only need to support native multicast routing.

MVPN also supports optimized VPN traffic forwarding for high-bandwidth applications that have sparsely distributed receivers. A dedicated multicast group can be used to encapsulate packets from a specific source, and an optimized MDT can be created to send traffic only to PE routers connected to interested receivers. This is referred to **data MDT**.

Naming Data MDTs

Table 2: Feature History Table

Feature Name	Release Information	Feature Description
Naming Data MDTs	Release 7.5.2	You can decide on the multicast flow that must be mapped to a specific MDT by naming it and assigning the flows to the named data MDT.

This feature enables you to deterministically map flows to data MDT at ingress PE by assigning the flows to a named data MDT.

You can define and create policies to map flows, which must flow to the required PEs, to specific data MDTs instead of dynamically multiplexing the flow to existing data MDT. This mapping makes the distribution of flows to data MDT more deterministic and solves the inherent inefficiencies.

Transitioning a flow to a data MDT occurs in one of the following conditions:

• The rate of the flow reaches the configured threshold limit.

You can set the threshold limit of data MDTs by using the following command:

mdt data <max nr of data groups> (threshold)

• Immediate switch is configured in which case the flow when detected is transitioned to a data MDT.

For more details of immediate switch option configuration, see mdt data ingress replication command.

The multicast flow is transitioned into named data MDT if the following conditions are met:

- The criteria for a flow to be part of the data MDT is met.
- The flow satisfies the rules that are associated with the route-policy.

Named Data MDT

Based on the configured threshold, when the multicast flow is chosen to be transitioned to data MDT, the flow is compared against the configured route-policy. If it satisfies the specified conditions, the Cisco IOS XR software creates a named data MDT and transitions the flow to the new named data MDT.

The transport-specific parameters that are required to build the distribution tree based on the underlay transport (like FEC for MLDP) are autogenerated. Subsequent flows that match the policy and are mapped to the same named data MDT, are multiplexed to the same multicast transport tree in the core.

Even if you are using only named data MDTs, and the number of named data MDTs that can be configured is independent of the number of data MDTs configured, you have to configure a nonzero data MDT value for creating named data MDTs.

Flow-Mapping Rules for Named Data MDT

When you use route-policy to create named data MDTs, the following rules may be applicable:

• You can map disparate multicast flows to the same named data-mdt.

- You can specify multiple named data MDTs in one policy.
- Only the flows that are mapped using the route-policy use a named data MDT.

Flows which do not match the route-policy but are eligible to be transitioned to data-mdt, are transitioned to regular data-mdt.

• You can map a named-data MDT to only one path (Refer Chapter: Flexible Algorithm for MLDP).

You can have a rule for creating a new named-data-mdt, that uses the same flexible algorithm which is used by another rule.

- You can map the named data MDT to only one color (configured using the set on-demand-color <val> command), when Tree-SID is used as core.
- Named data MDTs with the same name in different VRFs create different named data MDTs.
- If you use the same route-policies across VRFs, it creates different data MDTs.
- Named data MDTs with same name in IPv4 and IPv6 AF of a VRF creates different named data MDTs.
- Flows that do not match the route policy are mapped to dynamic MDTs.

```
Note
```

Any change to the route-policy, deletes the existing named-data-mdt and recreates it.

Restrictions and Limitation of Named Data MDT

- The total number of named data MDTs and the number of dynamic data MDTs across all VRFs and address families (AF) must not exceed the router-supported limit for a given transport.
- The number of flows that can be transitioned to a single named data MDT is restricted to 255 by default. You can change this default 255 value using the **mdt data max-aggregation <value>** command. However, the total number of named data MDTs that can be created is not limited by the total number of regular data MDTs allowed by the configuration.

When you update the maximum aggregation (**max-aggregation**) value, it does not re-evaluate the existing flows. However, the updated value is applicable to the new flows.

Configuring Named Data MDT

You can apply the route-policy for named data MDT using the following sample configurations and verify using the show commands:

```
Router(config)#multicast-routing vrf red address-family ipv4
Router(config-mcast-red-ipv4) #mdt data mldp 10 route-policy RedGroup-1
Router(config-mcast-red-ipv4) #
Router(config) #route-policy RedGroup-1
Router(config-rpl) #if destination in (228.0.0.0/24 le 32) then
Router(config-rpl) #if destination in (228.0.0.0/24 le 32) then
Router(config-rpl-if) #set data-mdt RedGroup-1
Router(config-rpl-if) #set flex-algo 128
Router(config-rpl-if) #pass
Router(config-rpl-if) #endif
Router(config-rpl) #end-policy
```

Verifying Named Data MDT

The following command outputs show the Name column which has the data MDT name.

Router#show pim vrt vonl mdt cache Fri Aug 6 09:39:17.210 PDT Core Source Cust (Source, Group) Core Data Expires Name 192.0.2.4 (31.3.233.7, 232.0.0.1) [tree-id 524296] RedGroup-1 never Leaf AD: 192.0.2.2 192.0.2.1 192.0.2.4 (31.3.233.7, 232.0.0.2) [tree-id 524296] never RedGroup-2 Leaf AD: 192.0.2.1 Router#show pim vrf vpn1 mdt sr-p2mp local Fri Aug 6 09:39:20.435 PDT MDT Cache DIP Local VRF Routes On-demand Name Tree Identifier Count Entry Using Cache Color Source [tree-id 524296 (0x80008)] 192.0.2.4 2 N Y 2 0 RedGroup-1 Tree.SID Leaf: 192.0.2.1 192.0.2.2 Router# Router#sh pim vrf vpn2 mdt cache Tue Aug 17 04:39:58.751 PDT Core Source Cust (Source, Group) Core Data Expires Name 192.0.2.4 (31.3.234.7, 232.0.0.1) [global-id 7] 00:02:14 n-mdt-vrf-vpn2 192.0.2.4 (31.3.234.7, 232.0.0.2) [global-id 7] 00:02:14 n-mdt-vrf-vpn2 192.0.2.4 (31.3.234.7, 232.0.0.3) [global-id 7] 00:02:14 n-mdt-vrf-vpn2 Router# Router# Router#sh pim vrf von2 mdt mldp local Tue Aug 17 04:40:19.160 PDT MDT Cache Max DIP Local VRF Routes Core Name Identifier Source Count Agg Entry Using Cache [global-id 71 3 255 N Y 3 n-mdt-vrf-von2 Router#

Internet Group Management Protocol

Cisco IOS XR Software provides support for Internet Group Management Protocol (IGMP) over IPv4.

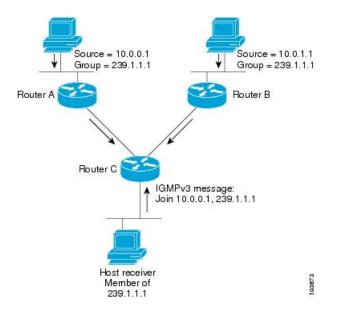
IGMP provides a means for hosts to indicate which multicast traffic they are interested in and for routers to control and limit the flow of multicast traffic throughout the network. Routers build state by means of IGMP messages; that is, router queries and host reports.

A set of routers and hosts that receive multicast data streams from the same source is called a multicast group. Hosts use IGMP messages to join and leave multicast groups.

Note IGMP messages use group addresses, which are Class D IP addresses. The high-order four bits of a Class D address are 1110. Host group addresses can be in the range 224.0.0.0 to 239.255.255.255. The address is guaranteed not to be assigned to any group. The address 224.0.0.1 is assigned to all systems on a subnet. The address 224.0.0.2 is assigned to all routers on a subnet.

Restrictions

IGMP snooping under VPLS bridge domain is not supported.


Functioning of IGMP Routing

The following image "IGMP Singaling", illustrates two sources, 10.0.0.1 and 10.0.1.1, that are multicasting to group 239.1.1.1.

The receiver wants to receive traffic addressed to group 239.1.1.1 from source 10.0.0.1 but not from source 10.0.1.1.

The host must send an IGMPv3 message containing a list of sources and groups (S, G) that it wants to join and a list of sources and groups (S, G) that it wants to leave. Router C can now use this information to prune traffic from Source 10.0.1.1 so that only Source 10.0.0.1 traffic is being delivered to Router C.

Figure 4: IGMP Signaling

Configuring Maximum IGMP Per Interface Group Limit

The IGMP Per Interface States Limit sets a limit on creating OIF for the IGMP interface. When the set limit is reached, the group is not accounted against this interface but the group can exist in IGMP context for some other interface.

• If a user has configured a maximum of 20 groups and has reached the maximum number of groups, then no more groups can be created. If the user reduces the maximum number of groups to 10, the 20 joins

will remain and a message of reaching the maximum is displayed. No more joins can be added until the number of groups has reached less than 10.

• If a user already has configured a maximum of 30 joins and add a max of 20, the configuration occurs displaying a message that the maximum has been reached. No state change occurs and also no more joins can occur until the threshold number of groups is brought down below the maximum number of groups.

Configuration Example

Configures all interfaces with 4000 maximum groups per interface except TenGigE interface 0/0/0/6, which is set to 3000:

```
Router#config
Router(config)#router igmp
Router(config-igmp)#maximum groups-per-interface 4000
Router(config-igmp)#interface TenGigE0/0/0/6
Router(config-igmp-default-if)#maximum groups-per-interface 3000
Router(config-igmp-default-if)#commit
```

Running Configuration

```
router igmp
interface TenGigE0/0/0/6
maximum groups-per-interface 3000
!
maximum groups-per-interface 4000
!
```

Verification

```
Router#show igmp summary
Robustness Value 2
No. of Group x Interfaces 37
Maximum number of Group x Interfaces 50000
Supported Interfaces : 9
Unsupported Interfaces: 0
Enabled Interfaces : 8
Disabled Interfaces : 1
MTE tuple count
                    : 0
Interface
                             Number Max #
                             Groups Groups
Loopback0
                              4
                                      4000
TenGigE0/0/0/0
                              5
                                      4000
TenGigE0/0/0/1
                              5
                                      4000
TenGigE0/0/0/2
                              0
                                      4000
TenGigE0/0/0/3
                              5
                                      4000
TenGigE0/0/0/6
                              5
                                     3000
TenGigE0/0/0/18
                              5
                                      4000
TenGigE0/0/0/19
                              5
                                      4000
TenGigE0/0/0/6.1
                              3
                                      4000
```

SSM Static Source Mapping

Configure a source (1.1.1.1) as part of a set of sources that map SSM groups described by the specified access-list (4).

Configuration Example

```
Router#configure
Router(config) #ipv4 access-list 4
Router (config-ipv4-acl) #permit ipv4 any 229.1.1.0 0.0.0.255
Router(config-ipv4-acl)#exit
Router(config) # multicast-routing
Router(config-mcast)#address-family ipv4
Router(config-mcast-default-ipv4)#ssm range 4
Router(config-mcast-default-ipv4) #exit
Router(config-mcast) #exit
Router (config) #router igmp
Router (config-igmp) #ssm map static 1.1.1.1 4
*/Repeat the above step as many times as you have source addresses to include in the set
for SSM mapping/*
Router(config-igmp)#interface TenGigE0/0/0/3
Router (config-igmp-default-if) #static-group 229.1.1.1
Router(config-igmp-default-if) #commit
```

Running Configuration

```
Router#show run multicast-routing
multicast-routing
address-family ipv4
ssm range 4
interface all enable
!
Router#show access-lists 4
ipv4 access-list 4
10 permit ipv4 any 229.1.1.0 0.0.0.255
Router#show run router igmp
```

```
router igmp
interface TenGigE0/0/0/3
static-group 229.1.1.1
!
ssm map static 1.1.1.1 4
```

Verification

Verify if the parameters are set according to the configured values:

```
Router#show mrib route 229.1.1.1 detail
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
   C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
   IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
   MOFE - MOFRR Enabled, MOFS - MOFRR State, MOFP - MOFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
   II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
    EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
   EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
   MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
    IRMI - IR MDT Interface
(1.1.1.1,229.1.1.1) RPF nbr: 1.1.1.1 Flags: RPF
  Up: 00:01:11
  Incoming Interface List
```

```
Loopback0 Flags: A, Up: 00:01:11
Outgoing Interface List
TenGigE0/0/0/3 Flags: F NS LI, Up: 00:01:11
```

EVPN Active/Active Multihome Source with IGMP Snooping

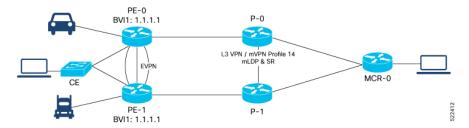

Feature Name	Release Information	Description
EVPN Active/Active Source with IGMP Snooping	Release 7.6.1	Supports multicast data packets from multihomed sources when the source is behind a BVI and the receivers at the core or on a bridge domain. This feature is not supported on the following variant: • N540-24Q8L2DD-SYS

Table 3: Feature History Table

From IOS XR 7.6.1 release, Cisco NCS 540 routers support multicast data traffic from multihomed sources. The source must be behind a BVI and the receivers at the core or on a bridge domain.

Multicast data traffic from multihome receivers is already supported on NCS 540 routers.

The following illustration shows the multicast data traffic between multihome sources and a multihome receiver.

In this illustration, the source is connected behind a CE, which is multihomed to PE-0 and PE-1. The PE-1 has a BVI with anycast IP address. The receiver that is behind the MCR-0 has a PIM connection toward the source. The following scenarios occur based on IGMP snooping:

IGMP Snooping: Activated

When the multicast data packets reach one of the PEs, the PE forwards the packets only to the interested receivers who have sent a request, including the EVPN OLE. Packets are recycled for BVI.

The recycled packets for BVI do an L3 lookup and if there is a route which exists with BVI as accept interface, the packet is forwarded to the L3 OLE.

EVPN replicated packets from PE-0 reach the other PE-1, one copy is replicated for BVI, and only the interested members and ACs receive the packets. The same packets are not returned to the CE due to SHL label filtering for the EVPN traffic. The replicated packets for the BVI are dropped due to split horizon group (SHG) filtering as EVPN and BVI belong to the same SHG.

IGMP Snooping: Dectivated

When the multicast data packets reach one of the PEs, it floods the bridge domain, recycles for BVI, and floods all the ACs, including the EVPN OLE.

The recycled packets for BVI do an L3 lookup and if there is a route which exists with BVI as accept interface, the packet is forwarded to the L3 OLE.

EVPN replicated packets from PE-0 reach the other PE-1, which flood the bridge domain. As part of this, one copy is replicated for BVI and flooded to all members and ACs. The same packets are not returned to the CE due to SHL label filtering for the EVPN traffic. The replicated packets for the BVI are dropped due to split horizon group (SHG) filtering as EVPN and BVI belong to the same SHG.

Multicast Route Statistics

Multicast route statistic feature provides information about the multicast routes. The multicast statistics information includes the rate at which packets are received.

Before enabling multicast route statistics, you must configure an ACL to specify which of the IP route statistics to be captured.

Restrictions and Usage Guidelines for Multicast Route Statistics

These are the points that you should consider before implementing multicast route statistics feature:

- Multicast route statistics are available for <S,G> routes only. The statistics for <*,G> routes are not available.
- Multicast route statistics for egress direction is supported only for phy intf, phy sub-inf, bundle intf, and bundle sub-intf. Rate is not supproted for egress stats.
- When ACL is mapped with **hw-module router-stats** configuration, you can't modify the ACL. To modify ACLs that are mapped with router-stats, remove the existing **hw-module router-stats** configuration and update the ACL entries. Then, configure the **hw-module router-stats** again.

This feature supports:

- L3 Multicast traffic
- MVPN GRE
- Multicast over GRE
- LSM
- Default VRFs.

Configure Multicast Route Statistics

Feature Name	Release Information	Description
YANG Data Models for Multicast Interface Counters	Release 7.4.1	This feature introduces YANG data model support for multicast packets, in and out bytes per interface and sub-interface. With this feature, you can programmatically retrieve the operational details of multicast interfaces. You can access the data models from the Github repository.

Table 4: Feature History Table

Configuring multicast route statistics includes these main tasks:

- · Configuring an ACL
- Enabling multicast route statistics for the configured ACLs

```
RP0/0/RP0/CPU0:router# configure
```

```
/* Configure an ACL matching the (S,G) routes for which statistics have to be captured:*/
RP0/0/RP0/CPU0:router(config)# ipv4 access-list mcast-counter
RP0/0/RP0/CPU0:router(config-acl)# 10 permit ipv4 host 10.1.1.2 host 224.2.151.1
RP0/0/RP0/CPU0:router(config-acl)# 30 permit ipv4 10.1.1.0/24 232.0.4.0/22
RP0/0/RP0/CPU0:router(config-acl)# 50 permit ipv4 192.168.0.0/24 232.0.4.0/22
RP0/0/RP0/CPU0:router(config-acl)# commit
RP0/0/RP0/CPU0:router(config-acl)# commit
RP0/0/RP0/CPU0:router(config-acl)# exit
/* Enable multicast route statistics for the configured ACL on the default VRF. */
RP0/0/RP0/CPU0:router(config)# hw-module route-stats l3mcast vrf default ipv4 egress
mcast-router
RP0/0/RP0/CPU0:router(config)# hw-module route-stats l3mcast vrf default ipv4 ingress
mcast-router
```


Note

- If you are enabling the route stats for a router on the global table, use **vrf default**. If you are enabling the route stats for specific vrf, use the **vrf** *vrfname* option.
 - In case, you want to enable route stats for all tables, do not use the **vrf**.

For example:

RP0/0/RP0/CPU0:router(config) #hw-module route-stats l3mcast ipv4 mcast-counter

- If you configure **hw-module route-stats** on both vrf default and vpn routes for either IPv4 or IPv6 ACLs, then to switch vrf default to other VRF, remove the configuration of the existing **hw-module route-stats** and commit it, and then configure the hw-module stats with the required vrf and commit it.
- If you configure hw-module route-stats on both vrf default and vpn routes for either IPv4 or IPv6 ACLs, then to switch vrf default to other VRF, remove the configuration of the existing hw-module route-stats and commit it, and then configure the hw-module stats with the required vrf and commit it.

Verification

Use the **show mfib route rate** command to verify if the multicast route information is captured for the traffic that matches the ACL:

Note The ingress stats are always per S, G.

```
RP0/0/RP0/CPU0:router# show mfib route rate
Thu Aug 16 18:04:47.312 PDT
IP Multicast Forwarding Rates
(Source Address, Group Address)
Incoming rate:
Node: (Incoming node) : pps/bps
Outgoing rate:
Node: (Outgoing node) : pps/bps
(10.1.1.2,232.0.0.1)
Incoming rate :
Node : 0/0/CPU0 : 4593 / 18153671
Outgoing rate :
Node : 0/0/CPU0 : 0 / 0
```

The above output shows that the multicast source **10.1.1.2** is sending packets to multicast group **232.0.0.1** and is received at **4593** pps.

IPv6 Egress Multicast Route Statistics Example

RP0/0/RP0/CPU0:router# configure

```
/* Configure an ACL matching the (S,G) routes for which statistics have to be captured:*/
RP0/0/RP0/CPU0:router(config)# ipv6 access-list 12
RP0/0/RP0/CPU0:router(config-acl)# 10 permit ipv6 any ff33:1:3::1/48
RP0/0/RP0/CPU0:router(config-acl)#commit
RP0/0/RP0/CPU0:router(config-acl)#exit
```

```
/* Enable multicast route statistics for the configured ACL in the egress direction on the named VRF. */
```

RF0/0/RF0/CFU0:router(config)# hw-module route-stats 13mcast vrf vrf1 ipv6 egress 12

For the information on the interface accounting stats, use the show interface accounting command. The following show command displays interface accounting stats for ingress:

Router# show int t	enGigE 0/0/0/15	accounting		
Mon Nov 12 10:26:2	0.592 UTC			
TenGigE0/0/0/15				
Protocol	Pkts In	Chars In	Pkts Out	Chars Out
IPV6 MULTICAST	22125711958	1814308380556	0	0
IPV6_ND	0	0	1243	128960

Cisco IOS XR Release 7.4.1 and later support YANG data model for multicast interface counters.

- Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/protocols/protocol
- Cisco-IOS-XR-infra-statisd-oper:infra-statistics/interfaces/interface[interface-name=TenGigE0/0/0/18]/protocols/protocol

Pkts/sec

990

990

0

0

Note The YANG model does not support ingress and egress multicast route stats. The following show command displays interface accounting stats for egress:

0

0

0

Noucer# Show Incertace	es pullare echer	100.1001 accou	incing taces	
Mon Aug 26 15:56:41.73	38 IST			
Bundle-Ether100.1001				
	Ingr	ess		Egress
Protocol	Bits/sec	Pkts/sec	Bits/sec	
IPV4_MULTICAST	0	0	11455000	

Statistics for Egress Multicast Traffic Route Rate

Feature Name	Release Information	Feature Description
Statistics for Egress Multicast Traffic Route Rate	Release 7.11.1	With the ability to now view the route rates or rate of data being forwarded or transmitted per interface, you can monitor your network performance at a granular level, effectively troubleshoot network issues, and have greater control over bandwidth management.
		Previously, you could view the route rates only at the line card level.
		This feature introduces the following changes:
		• CLI
		• The rate keyword is introduced in the show mrib route command.
		• YANG Data Model
		• New XPaths for Cisco-IOS-XR-mfwd-oper.yang (see GitHub, YANG Data Models Navigator).

0

0

0

11455000

0

0

Table 5: Feature History Table

IPV6 MULTICAST

ARP

IPV6_ND

Multicast and interface statistics are used for accounting purpose. Route rates play a crucial role in identifying any potential traffic drops. By introducing support for multicast route rates and per outgoing interfac (OIF) statistics on compatible platforms, this feature aims to leverage per-source group (SG) telemetry traffic data. This data enables us to efficiently detect where traffic drops occur and identify the router causing them, both at the node and interface levels. As a result, you can improve network monitoring and troubleshooting by using streaming telemetry and enhanced data analysis.

Verify Multicast Traffic Route Rate Statistics

To verify the OIF egress rates per mroute, use the following example configuration:

RP/0/RSP0/CPU0:LA# show mrib route rate

```
Fri Dec 17 19:30:21.733 UTC
(11.1.1.2,232.1.1.1) RPF nbr: 11.1.1.2 Flags: RPF
 Up: 00:40:52
 Incoming Interface List
   HundredGigE0/0/0/2 Flags: A, Up: 00:40:52
   Node Rate (0/0/CPU0): 99 pps / 38407 bps
     HW Incoming count: 205444 packets
     HW Drop count: 0 packets
  Outgoing Interface List
   HundredGigE0/0/0/1 Flags: F NS, Up: 00:40:52
   Node Rate (0/0/CPU0): 99 pps / 38407 bps
     HW Forwarding count: 205444 packets
     HW Drop count:
                          0 packets
    Interface Rates:
       Interface: HundredGigE0/0/0/1
       Outgoing Packet Rate (PPS rate / BPS rate): 100 / 100
       HW Forwarding count: 10000 packets
       HW Drop count: 0 packets
(11.1.1.2,232.2.2.2) RPF nbr: 11.1.1.2 Flags: RPF
 Up: 00:40:52
  Incoming Interface List
   HundredGigE0/0/0/2 Flags: A, Up: 00:40:52
  Node Rate (0/0/CPU0): 74 pps / 28798 bps
     HW Incoming count: 154084 packets
     HW Drop count: 0 packets
  Outgoing Interface List
   HundredGigE0/0/0/1 Flags: F NS, Up: 00:40:52
   Node Rate (0/0/CPU0): 74 pps / 28798 bps
     HW Forwarding count: 154084 packets
     HW Drop count:
                          0 packets
    Interface Rates:
       Interface: HundredGigE0/0/0/1
       Outgoing Packet Rate (PPS rate / BPS rate): 100 / 100
       HW Forwarding count: 10000 packets
       HW Drop count: 0 packets
```

Bundle Member Selection

Table 6: Feature History Table

Feature Name	Release Information	Feature Description
Bundle Member Selection	Release 7.3.1	 This feature enables selecting a bundle member in the control plane to steer the L2 and L3 multicast traffic traversing over bundle at the egress NP. This feature helps optimize fabric bandwidth as the member selection is performed in the control plane.

This feature enables selecting a bundle member in the control plane to steer the L2 and L3 multicast traffic traversing over bundle at the egress NP.

This feature brings following benefits:

- · Optimizes fabric bandwidth as the member selection is performed in the control plane
- · Reduces NP bandwidth and processing as number of OLE replications are less
- · Supports bundle member change in MVPN head node with local receiver

Multicast Over IPV4 Unicast GRE Tunnels

Table 7: Feature History Table

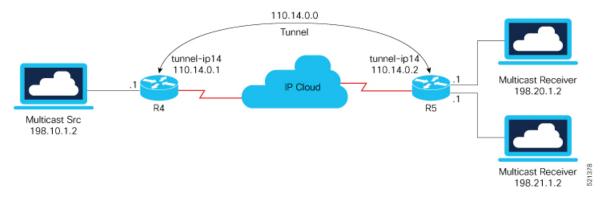
Feature Name	Release Information	Feature Description
Support for Multicast Over IPV4 Unicast GRE Tunnels	Release 7.2.2	This feature allows encapsulation of multicast packets using GRE tunnels, thereby enabling transport of multicast packets securely between source and destination routers located in different IP clouds.

Use IPV4 unicast GRE tunnels to transport multicast traffic securely over the network.

Generic Routing Encapsulation (GRE) is a tunneling protocol that encapsulates and transport packets of one protocol over another protocol.

If you want to send multicast packets from a source to destination router configured with a different routing protocol, you can encapsulate the packets using GRE unicast tunnels. The encapsulated packets are forwarded like any other IPv4 unicast packet to the destination endpoint of the tunnel. The destination router then de-encapsulates the packet to retrieve the multicast packets.

For more information Configuring GRE Tunnels.


Restrictions

- ECMP and LAG hash based on GRE header is not supported on the NCS 5500 line cards line cards.
- Multicast over GRE with L3VPN is only supported on UFI and not on the NCS 5500 line cards and NCS 5700 line cards.
- Only SSM V4 and V6 address family traffic is supported.
- Supports up to 500 GRE tunnels
- Only up to 16 unique source IP addresses are supported for the tunnel source
- Multicast over GRE tunnel is supported only with 2-pass GRE tunnel configuration.
- Configurable MTU is not supported on Single-pass GRE interface, but supported on 2-pass GRE interface.
- This is a native Multicast over GRE feature and not Multicast VPN (mVPN) Profile 0 or Rosen GRE.

Configuration

In this topology, the multicast source (198.10.1.2) is connected to R4. The multicast receivers are connected to R5 and is configured to receive multicast packets. Separating the source (R4) and receiver (R5) is an IP cloud, which is not configured for multicast routing.

Multicast packets are encapsulated with GRE headers and transported via GRE tunnel (tunnel-ip14).

Configuration Example

R4

```
interface TenGigE0/0/0/32.1
ipv4 address 198.10.1.1 255.255.255.0
ipv6 address 2002:10:1::1/64
encapsulation dot1q 1
!
interface Loopback14
ipv4 address 10.10.10.14 255.255.255.255
!
interface tunnel-ip14
ipv4 address 110.14.0.1 255.255.255.0
ipv6 address 110:14::1/64
```

L

```
tunnel mode gre ipv4
tunnel source 10.10.10.14
tunnel destination 20.20.20.14
1
router ospf core native_mcast
nsr
router-id 10.10.10.1
area 0.0.0.0
 interface Bundle-Ether121
  1
  interface Loopback14
 1
router ospf mogre_edge_native_mcast
nsr
router-id 10.10.10.11
 area 0.0.0.0
 interface tunnel-ip14
 interface TenGigE0/0/0/32.1
```

R5

```
interface TenGigE0/0/0/0.1
ipv4 address 198.20.1.1 255.255.255.0
ipv6 address 2002:20:1::1/64
encapsulation dot1q 1
!
```

```
interface TenGigE0/0/0/1.1
    ipv4 address 198.21.1.1 255.255.255.0
    ipv6 address 2002:21:1::1/64
    encapsulation dotlq 1
!
interface Loopback14
    ipv4 address 20.20.20.14 255.255.255.255
!
```

```
interface tunnel-ip14
ipv4 address 110.14.0.2 255.255.255.0
ipv6 address 110:14::2/64
tunnel mode gre ipv4
tunnel source 20.20.20.14
tunnel destination 10.10.10.14
!
```

```
router ospf core_native_mcast
nsr
router-id 20.20.20.1
area 0.0.0.0
interface Bundle-Ether121
!
interface Loopback14
```

```
router ospf mogre_edge_native_mcast
nsr
router-id 20.20.20.11
area 0.0.0.0
interface tunnel-ip14
!
```

```
interface TenGigE0/0/0/0.1
!
interface TenGigE0/0/0/1.1
```

Verification

In this example, Router R4 receives joins for group 232.1.0.0 from source 198.10.1.2 connected to R4. PIM joins are traversed from R5 to R4, as shown in the **show PIM topology** command output. The joins are learnt on Router R4 via tunnel-ip, as it acts as the transport layer.

RP/0/RP0/CPU0:R4# show pim topology 232.1.0.0 198.10.1.2

```
IP PIM Multicast Topology Table
Entry state: (*/S,G) [RPT/SPT] Protocol Uptime Info
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive
   RA - Really Alive, IA - Inherit Alive, LH - Last Hop
   DSS - Don't Signal Sources, RR - Register Received
   SR - Sending Registers, SNR - Sending Null Registers
   E - MSDP External, EX - Extranet
   MFA - Mofrr Active, MFP - Mofrr Primary, MFB - Mofrr Backup
   DCC - Don't Check Connected, ME - MDT Encap, MD - MDT Decap
   MT - Crossed Data MDT threshold, MA - Data MDT Assigned
    SAJ - BGP Source Active Joined, SAR - BGP Source Active Received,
    SAS - BGP Source Active Sent, IM - Inband mLDP, X - VxLAN
Interface state: Name, Uptime, Fwd, Info
Interface flags: LI - Local Interest, LD - Local Dissinterest,
   II - Internal Interest, ID - Internal Dissinterest,
   LH - Last Hop, AS - Assert, AB - Admin Boundary, EX - Extranet,
   BGP - BGP C-Multicast Join, BP - BGP Source Active Prune,
   MVS - MVPN Safi Learned, MV6S - MVPN IPv6 Safi Learned
(198.10.1.2,232.1.0.0)SPT SSM Up: 00:33:51
JP: Join(now) RPF: TenGigE0/0/0/32.1,198.10.1.2* Flags:
  tunnel-ip14
                              00:29:34 fwd Join(00:03:00)
```

From the following **show mrib route** command output, you can see that TenGigE0/0/0/32.1 is the incoming interface and tunnel-ip14 is the outgoing interface for (S,G) 198.10.1.2, 232.1.0.0.

```
RP/0/RP0/CPU0:R4# show mrib route 232.1.0.0 detail
TP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
   C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
   IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
   MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
    II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
    EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
   EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
   MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
    IRMI - IR MDT Interface, TRMI - TREE SID MDT Interface, MH - Multihome Interface
(198.10.1.2,232.1.0.0) Ver: 0x6e42 RPF nbr: 198.10.1.2 Flags: RPF, FGID: 16915, Statistics
 enabled: 0x0, Tunnel RIF: -1
 Up: 00:32:54
 Incoming Interface List
    TenGigE0/0/0/32.1 Flags: F A LI, Up: 00:32:54
```

```
Outgoing Interface List
    tunnel-ip14 (0/0/0) Flags: F NS, Up: 00:28:37
RP/0/RP0/CPU0:R4#sh mfib route 232.1.0.0 198.10.1.2
IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop,
     - Inherit Accept, IF - Inherit From, EID - Encap ID,
  TA ·
  ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed,
 MH - MDT interface handle, CD - Conditional Decap,
  DT - MDT Decap True, EX - Extranet, RPFID - RPF ID Set,
 MoFE - MoFRR Enabled, MoFS - MoFRR State, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
 NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
  EG - Egress, EI - Encapsulation Interface, MI - MDT Interface,
 EX - Extranet, A2 - Secondary Accept
Forwarding/Replication Counts: Packets in/Packets out/Bytes out
Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
(198.10.1.2,232.1.0.0), Flags:
 Up: 00:35:39
  Last Used: never
  SW Forwarding Counts: 0/0/0
  SW Replication Counts: 0/0/0
  SW Failure Counts: 0/0/0/0/0
 tunnel-ip14 (0xe0) Flags: NS, Up:00:31:16
RP/0/RP0/CPU0:R4# show mfib hardware route 232.1.0.0 198.10.1.2 location 0/0/cPU0
Route (198.10.1.2: 232.1.0.0)
   HAL PD context
      VRF ID: 0 Core MCID : 0 Core backup MCID 0
   HAL Ingress route context:
       Route FGID: 16915 RPF IF signal : not-set Local receivers: set
       Encap ID flag: not-set, Encap ID: 0
       Tunnel RIF: 0x0
       Statistics enabled: not-set
       Ingress engine context:
          local route: set, is accept intf bvi: not-set is tun rif set:not-set
          VRF ID: 0 RPF ID:0 Tunnel RIF:0x0
   HAL Egress route context:
      RPF ID: 0
       Egress engine context:
          out of sync: not-set, local intf: not-set
          bvi count: 0
   DPA Route context:
      Handle: 30895ef540
      Transaction ID: 91864
      Number of OLE: 4 VRF ID: 0
      Incoming interface : Te0/0/0/32.1 A intf id: 0x39 Merged flag 0
      Tunnel RIF : 0x0 FGID: 16915
      FEC ID : 0x2001f888 Punt action: 0x0
      TCAM entry ID : 0x0 IPMC action: 0x4 FEC Accessed 1
      L3 Intf Refhandle : 0x308ccbd448 L3 interface ref key: 0x0
      Statistics enabled : not-set Statistics activated : not-set
      Egress Route OLEs:
       Handle: 308e669960
        Transaction ID: 267707
        NPU ID: 0 Outgoing intf: ti14
```

OLE Type : Gre tunnel interface outgoing port : 0x0 cud: 0x13878 is_bundle: 0 Sys_port : 0x0 mpls encap id: 0x0 LAG ID: 0 is_pw_access: 0 pw_encap_id:0 L3 intf refhndl : 0x308d47bee8 L3 intf refkey: 0x200040fc L2 Port refhandle : 0x0 L2 Port refkey: 0x0 MPLS nh refhandle : 0x0 MPLS nh refkey: 0x0 LAG port refhandle : 0x0 LAG port refkey: 0x0 EFP-Visibility: not-set Total fwd packets : 0 Total fwd bytes: 0

The following command output shows that the PIM joins received from TenGigE0/0/0/0.1 and TenGigE0/0/0/1.1 for group 232.1.0.0.

```
RP/0/RP0/CPU0:R5# show pim topology 232.1.0.0 198.10.1.2
IP PIM Multicast Topology Table
Entry state: (*/S,G)[RPT/SPT] Protocol Uptime Info
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive
   RA - Really Alive, IA - Inherit Alive, LH - Last Hop
   DSS - Don't Signal Sources, RR - Register Received
   SR - Sending Registers, SNR - Sending Null Registers
   E - MSDP External, EX - Extranet
   MFA - Mofrr Active, MFP - Mofrr Primary, MFB - Mofrr Backup
    DCC - Don't Check Connected, ME - MDT Encap, MD - MDT Decap
   MT - Crossed Data MDT threshold, MA - Data MDT Assigned
   SAJ - BGP Source Active Joined, SAR - BGP Source Active Received,
    SAS - BGP Source Active Sent, IM - Inband mLDP, X - VxLAN
Interface state: Name, Uptime, Fwd, Info
Interface flags: LI - Local Interest, LD - Local Dissinterest,
    II - Internal Interest, ID - Internal Dissinterest,
   LH - Last Hop, AS - Assert, AB - Admin Boundary, EX - Extranet,
    BGP - BGP C-Multicast Join, BP - BGP Source Active Prune,
   MVS - MVPN Safi Learned, MV6S - MVPN IPv6 Safi Learned
(198.10.1.2,232.1.0.0) SPT SSM Up: 00:44:09
JP: Join(00:00:02) RPF: tunnel-ip14,110.14.0.1 Flags:
                            00:44:09 fwd LI LH
  TenGigE0/0/0/0.1
  TenGigE0/0/0/1.1
                              00:44:06 fwd LI LH
```

The traffic received from tunnel-ip is then forwarded to multicast receivers TenGigE0/0/0/0.1 and TenGigE0/0/0/1.1 acting as OLE, as shown in the following output.

```
RP/0/RP0/CPU0:R5# show mrib route 232.1.0.0 detail
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
    C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
   IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
   MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
    II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
   EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
   EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
   MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
    IRMI - IR MDT Interface, TRMI - TREE SID MDT Interface, MH - Multihome Interface
(198.10.1.2,232.1.0.0) Ver: 0x8ef6 RPF nbr: 110.14.0.1 Flags: RPF, FGID: 28465, Statistics
```

```
enabled: 0x0, Tunnel RIF: -1
  Up: 00:42:42
  Incoming Interface List
    tunnel-ip14 Flags: A, Up: 00:38:24
  Outgoing Interface List
    TenGigE0/0/0/0.1 Flags: F NS LI, Up: 00:42:42
    TenGigE0/0/0/1.1 Flags: F NS LI, Up: 00:42:40
RP/0/RP0/CPU0:R5# show mfib route 232.1.0.0 198.10.1.2
IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop,
  IA - Inherit Accept, IF - Inherit From, EID - Encap ID,
  ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed,
 MH - MDT interface handle, CD - Conditional Decap,
 DT - MDT Decap True, EX - Extranet, RPFID - RPF ID Set,
 MoFE - MoFRR Enabled, MoFS - MoFRR State, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
 NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
 EG - Egress, EI - Encapsulation Interface, MI - MDT Interface,
 EX - Extranet, A2 - Secondary Accept
Forwarding/Replication Counts: Packets in/Packets out/Bytes out
Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
(198.10.1.2,232.1.0.0), Flags:
  Up: 00:43:30
  Last Used: never
  SW Forwarding Counts: 0/0/0
  SW Replication Counts: 0/0/0
  SW Failure Counts: 0/0/0/0/0
  tunnel-ip14 Flags: A, Up:00:39:09
  TenGigE0/0/0/0.1 Flags: NS, Up:00:43:30
  TenGigE0/0/0/1.1 Flags: NS, Up:00:43:17
RP/0/RP0/CPU0:R5# show mfib hardware route 232.1.0.0 198.10.1.2 location 0/0/CPU0
Route (198.10.1.2: 232.1.0.0)
   HAL PD context
      VRF ID: 0 Core MCID : 0 Core backup MCID 0
   HAL Ingress route context:
      Route FGID: 28465 RPF IF signal : not-set Local receivers: set
       Encap ID flag: not-set, Encap ID: 0
       Tunnel RIF: 0x0
       Statistics enabled: not-set
       Ingress engine context:
          local route: set, is accept intf bvi: not-set is tun rif set:not-set
           VRF ID: 0 RPF ID:0 Tunnel RIF:0x0
   HAL Egress route context:
      RPF ID: 0
       Egress engine context:
          out of sync: not-set, local intf: not-set
           bvi count: 0
   DPA Route context:
      Handle: 308852aed0
      Transaction TD: 228831
      Number of OLE: 2 VRF ID: 0
      Incoming interface : til4 A_intf_id: 0x43 Merged flag 0
      Tunnel RIF : 0x0 FGID: 28465
      FEC ID : 0x2001fd37 Punt action: 0x0
```

```
TCAM entry ID : 0x0 IPMC action: 0x4 FEC Accessed 1
L3 Intf Refhandle : 0x308d76fee8 L3 interface ref key: 0x0
Statistics enabled : not-set Statistics activated : not-set
Egress Route OLEs:
  Handle: 308e27d930
  Transaction ID: 103691
 NPU ID: 0 Outgoing intf: Te0/0/0/1.1
  OLE Type : Main Interface
  outgoing port : 0x1d cud: 0x0 is bundle: 0
  Sys_port : 0x0 mpls encap id: 0x0 LAG ID: 0
  is pw access: 0 pw encap id:0
  L3 intf refhndl : 0x308cf40b08 L3 intf refkey: 0x4178
  L2 Port refhandle : 0x308cf49358 L2 Port refkey: 0xe8
  MPLS nh refhandle : 0x0 MPLS nh refkey: 0x0
  LAG port refhandle : 0x0 LAG port refkey: 0x0
  EFP-Visibility: not-set
  Total fwd packets : 0 Total fwd bytes: 0
  NPU ID: 0 Outgoing intf: Te0/0/0/0.1
  OLE Type : Main Interface
  outgoing port : 0x1e cud: 0x0 is bundle: 0
  Sys port : 0x0 mpls encap id: 0x0 LAG ID: 0
  is pw access: 0 pw_encap_id:0
  L3 intf refhndl : 0x308cf3e668 L3 intf refkey: 0x4168
  L2 Port refhandle : 0x308cf470a8 L2 Port refkey: 0xf0
  MPLS nh refhandle : 0x0 MPLS nh refkey: 0x0
  LAG port refhandle : 0x0 LAG port refkey: 0x0
```

EFP-Visibility: not-set Total fwd packets : 0 Total fwd bytes: 0

Associated Commands

- interface tunnel-ip
- tunnel mode
- tunnel source
- tunnel destination

Use Case: Video Streaming

In today's broadcast video networks, proprietary transport systems are used to deliver entire channel line-ups to each video branch office. IP based transport network would be a cost efficient/convenient alternative to deliver video services combined with the delivery of other IP based services. (Internet delivery or business services)

By its very nature, broadcast video is a service well-suited to using IP multicast as a more efficient delivery mechanism to reach end customers.

The IP multicast delivery of broadcast video is explained as follows:

- 1. Encoding devices in digital primary headends, encode one or more video channels into a Moving Pictures Expert Group (MPEG) stream which is carried in the network via IP multicast.
- 2. Devices at video branch office are configured by the operator to request the desired multicast content via IGMP joins.

3. The network, using PIM-SSM as its multicast routing protocol, routes the multicast stream from the digital primary headend to edge device receivers located in the video branch office. These edge devices could be edge QAM devices which modulate the MPEG stream for an RF frequency, or CMTS for DOCSIS.

Figure 5: Video Streaming

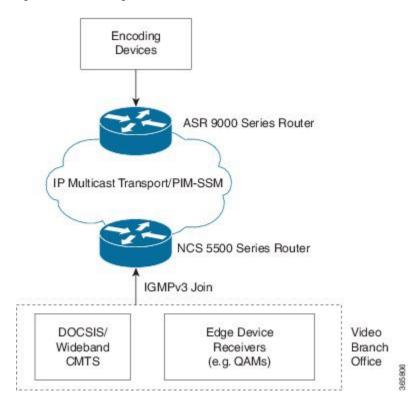
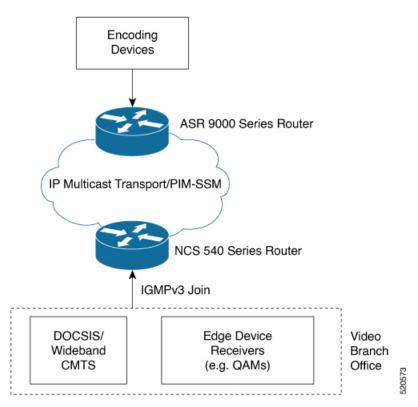



Figure 6: Video Streaming

Multicast Label Distribution Protocol

This section contains information related to Multicast Label Distribution Protocol (MLDP) and the associated features.

Multicast Label Distribution Protocol (MLDP) for Core

Multicast Label Distribution Protocol (MLDP) provides extensions to the Label Distribution Protocol (LDP) for the setup of point-to-multipoint (P2MP) and multipoint-to-multipoint (MP2MP) Label Switched Paths (LSPs) in Multiprotocol Label Switching (MPLS) networks.

MLDP eleminates the use of native multicast PIM to transport multicast packets across the core. In MLDP multicast traffic is label switched across the core. This saves a lot of control plane processing effort.

Characteristics of MLDP Profiles on Core

The following MLDP profiles are supported when the router is configured as a core router:

- Profile 5—Partitioned MDT MLDP P2MP BGP-AD PIM C-mcast Signaling
- Profile 6-VRF MLDP In-band Signaling
- Profile 7-Global MLDP In-band Signaling
- Profile 12-Default MDT MLDP P2MP BGP-AD BGP C-mcast Signaling

- Profile 14-Partitioned MDT MLDP P2MP BGP-AD BGP C-mcast Signaling
- Profile 17-Default MDT MLDP P2MP BGP-AD PIM C-mcast Signaling

Point-to-Multipoint TE Profiles on Core and Edge Routers

The following profiles are supported when the router is configured as a core router and edge router for p2mp:

- Profile 8—Global P2MP-TE
- Profile 10-VRF Static-P2MP-TE with BGP AD
- Profile 22—RSVP-TE P2MP

Label Switching Multicast for Edge Router

The following MLDP profiles are supported when the router is configured as an edge router:

- Profile 6-VRF MLDP In-Band Signaling
- Profile 7-Global MLDP In-band Signaling
- Profile 14-MLDP Partitioned MDT P2MP with BGP AD and BGP-C Multicast Signaling

Multicast MLDP Profile 14 support on an Edge Router

Feature Name	Release Information	Feature Description
Protocol Independent Multicast (PIM) SM for Multicast VPN (MVPN) Profile 14	Release 7.10.1	With this release, MVPN profile 14 is now extended to support PIM SM mode for IPv4 and static RP.
PIM SM for mVPN Profile 14	Release 7.5.1	With this feature, MVPN profile 14 is now extended to support PIM SM mode for IPv4 and static RP. PIM SM for MVPN is not supported on Cisco NC57 line cards.
MLDP Profile 14 support on an Edge Router	Release 7.3.1	This feature is now supported on Cisco NCS 540 routers.

Table 8: Feature History Table

The MLDP Profile 14 is supported when the router is configured as an edge router.

IP based transport network is a cost efficient and convenient alternative to deliver video services combined with the delivery of other IP based services. To deliver IPTV content MLDP Profile 14 also called as the partitioned MDT, is supported when a router is configured as an edge router.

These are the characteristics of the profile 14:

- Customer traffic is SSM.
- Inter-AS Option A, B and C is supported.
- All PEs must have a unique BGP Route Distinguisher (RD) value.

Configuration Example for mLDP Profile 14 on Edge Routers

```
vrf one
address-family ipv4 unicast
  import route-target
  1:1
  1
  export route-target
  1:1
  !
 I.
router pim
vrf one
 address-family ipv4
  rpf topology route-policy rpf-for-one
  mdt c-multicast-routing bgp
   1
   interface GigabitEthernet0/1/0/0
   enable
   !
  !
 !
!
route-policy rpf-for-one
 set core-tree mldp-partitioned-p2mp
end-policy
!
multicast-routing
vrf one
 address-family ipv4
  mdt source Loopback0
  mdt partitioned mldp ipv4 p2mp
  rate-per-route
   interface all enable
  bgp auto-discovery mldp
   1
   accounting per-prefix
  !
 !
!
mpls ldp
mldp
 logging notifications
 address-family ipv4
 !
 !
!
router bgp 100
bgp router-id 23.23.23.23
bgp graceful-restart
address-family ipv4 unicast
 redistribute connected
```

L

```
!
address-family vpnv4 unicast
!
address-family ipv6 unicast
 redistribute connected
!
address-family vpnv6 unicast
1
address-family ipv4 mdt
1
address-family ipv4 mvpn
!
address-family ipv6 mvpn
!
neighbor 5.5.5.5
 remote-as 100
 update-source Loopback0
  address-family ipv4 unicast
  1
  address-family vpnv4 unicast
  1
  address-family ipv6 unicast
  1
  address-family vpnv6 unicast
  !
  address-family ipv4 mdt
  1
  address-family ipv4 mvpn
  address-family ipv6 mvpn
  !
neighbor 11.11.11.11
  remote-as 100
  update-source Loopback0
  address-family ipv4 unicast
  1
  address-family vpnv4 unicast
  1
  address-family ipv6 unicast
  address-family vpnv6 unicast
  !
  address-family ipv4 mdt
  !
  address-family ipv4 mvpn
  1
  address-family ipv6 mvpn
  !
1
neighbor 21.21.21.21
 remote-as 100
  update-source Loopback0
  address-family ipv4 unicast
  1
  address-family vpnv4 unicast
  T
  address-family ipv6 unicast
  1
  address-family vpnv6 unicast
  address-family ipv4 mdt
  address-family ipv4 mvpn
  !
```

```
address-family ipv6 mvpn
 1
!
vrf vrf2
 rd 2:2
  address-family ipv4 unicast
  redistribute connected
 address-family ipv6 unicast
  redistribute connected
 Т
 address-family ipv4 mvpn
 1
 address-family ipv6 mvpn
 1
I.
!
```

Label Switched Multicast (LSM) Multicast Label Distribution Protocol (mLDP) based Multicast VPN (mVPN) Support

Label Switch Multicast (LSM) is MPLS technology extensions to support multicast using label encapsulation. Next-generation MVPN is based on Multicast Label Distribution Protocol (mLDP), which can be used to build P2MP and MP2MP LSPs through a MPLS network. These LSPs can be used for transporting both IPv4 and IPv6 multicast packets, either in the global table or VPN context. mLDP is supported on both core and edge routers.

When router is positioned as the core router running mLDP, it only supports the Profiles 5, 6, 7, 12, 14, and 17 irrespective of the profiles supported on the edge router.

When router is positioned as the edge router running mLDP, it only supports the Profiles 6, 7, and 14.

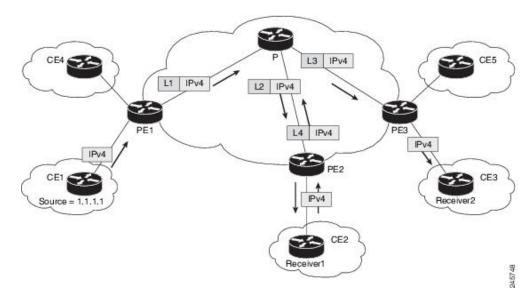
For more information about the characteristics of each of the mLDP Profiles, Characteristics of MLDP Profiles on Core

Benefits of LSM MLDP based MVPN

LSM provides these benefits when compared to GRE core tunnels that are currently used to transport customer traffic in the core:

- It leverages the MPLS infrastructure for transporting IP multicast packets, providing a common data plane for unicast and multicast.
- It applies the benefits of MPLS to IP multicast such as Fast ReRoute (FRR) and
- · It eliminates the complexity associated PIM.

Configuring MLDP MVPN


The MLDP MVPN configuration enables IPv4 multicast packet delivery using MPLS. This configuration uses MPLS labels to construct default and data Multicast Distribution Trees (MDTs). The MPLS replication is used as a forwarding mechanism in the core and edge network. For MLDP MVPN configuration to work, ensure that the global MPLS MLDP configuration is enabled. To configure MVPN extranet support, configure

the source multicast VPN Routing and Forwarding (mVRF) on the receiver Provider Edge (PE) router or configure the receiver mVRF on the source PE. MLDP MVPN is supported for both intranet and extranet.

Note If a tail-end router has multiple VRFs with the same import Route Target (RT), issues can occur. These issues arise when the intended Label Switched Multicast (LSM) is not an extranet setup. The router may perform incorrect signaling. It may also fail to build core trees.

Figure 7: MLDP based MPLS Network for Core and Edge Routers

Packet Flow in mLDP-based Multicast VPN

For each packet coming in, MPLS creates multiple out-labels. Packets from the source network are replicated along the path to the receiver network. The CE1 router sends out the native IP multicast traffic. The Provider Edge1 (PE1) router imposes a label on the incoming multicast packet and replicates the labeled packet towards the MPLS core network. When the packet reaches the core router (P), the packet is replicated with the appropriate labels for the MP2MP default MDT or the P2MP data MDT and transported to all the egress PEs. Once the packet reaches the egress PE (edge routers), the label is removed and the IP multicast packet is replicated at tailend on the PE routers.

Realizing a mLDP-based Multicast VPN

There are different ways a Label Switched Path (LSP) built by mLDP can be used depending on the requirement and nature of application such as:

- P2MP LSPs for global table transit Multicast using in-band signaling.
- P2MP/MP2MP LSPs for MVPN based on MI-PMSI or Multidirectional Inclusive Provider Multicast Service Instance (Rosen Draft).

 P2MP/MP2MP LSPs for MVPN based on MS-PMSI or Multidirectional Selective Provider Multicast Service Instance (Partitioned E-LAN).

The router performs the following important functions for the implementation of MLDP:

- 1. Encapsulating VRF multicast IP packet with GRE/Label and replicating to core interfaces (imposition node).
- 2. Replicating multicast label packets to different interfaces with different labels (Mid node).
- 3. Decapsulate and replicate label packets into VRF interfaces (Disposition node).

Restrictions for mLDP on Edge Routers

The restrictions applicable for mLDP on edge routers are as follows:

- NETCONF/YANG on MVPN for Profile 6 and Profile 7 is not supported.
- MLDP ping traceroute is not supported.
- IPv6 BVI is not supported.
- Netflow for MPLS-encapsulated multicast packets is not supported.
- MLDP Fast-Reroute (FRR) is supported for Profile 14 only.
- The MLDP Fast-Reroute and Egress Traffic Management (ETM) features are mutually exclusive.

Configure MLDP MVPN for Intranet

Use this task to configure MLDP MVPN on an intranet.

Procedure

Step 1 Enable MPLS MLDP.

mpls ldp mldp

Step 2 Configure a VRF entry.

```
vrf vrf_name
address-family ipv4 unicast
import route-target route-target-ext-community
export route-target route-target-ext-community
```

Step 3 Configure VPN ID.

vrf vrf_name
vpn id vpn id

Step 4 Configure MVPN routing and forwarding instance.

multicast-routing vrf vrf_name
address-family ipv4
mdt default mldp ipv4 root-node

Step 5 Configure the route distinguisher.

router bgp AS Number
vrf vrf_name
rd rd value

Step 6 (Optional) Configure data MDTs.

multicast-routing vrf vrf_name
address-family ipv4
mdt data <1-255>

Step 7 Configure BGP MDT address family.

router bgp AS Number address-family ipv4 mdt

Step 8 Configure BGP vpnv4 address family.

router bgp AS Number
address-family vpnv4 unicast

Step 9 Configure BGP IPv4 VRF address family.

router bgp AS Number
vrf vrf_name
address-family ipv4 unicast

Step 10 Configure PIM SM/SSM mode for the VRFs.

router pim vrf vrf_name address-family ipv4 rpf topology route-policy rosen_mvpn_mldp

Step 11 Configure route-policy. For each profile, a different route-policy is configured.

```
route-policy rosen_mvpn_mldp
set core-tree tree-type
pass
end-policy
```

Note The configuration of the above procedure depends on the profile used for each configuration.

Configuration Example for MLDP on Core

```
mpls ldp
mldp
logging notifications
address-family ipv4
!
!
```

Flexible Algorithm for MLDP

Table 9: Feature History Table

Feature Name	Release Information	Feature Description
Flexible Algorithm for Multicast VPN profiles	Release 7.5.2	Flexible Algorithm is now available for the following profiles:
		 Profile 12: Default MDT - MLDP - P2MP - BGP-AD - BGP C-Mcast Signaling
		 Profile 14: Partitioned MDT - MLDP P2MP - BGP-AD - BGP C-Mcast Signaling
Flexible Algorithm for MLDP	Release 7.5.1	This feature gives you the flexibility to customize the metrics that IGP uses to route traffic for MLDP tunnels. With this feature, your router can generate two multicast streams for the same feed, thus ensuring low latency and high availability of multicast traffic. This feature introduces the keyword.

IGP determines the shortest path to send traffic through MLDP tunnels. However, at times, you may require to choose a path other than the shortest one. For instance, when you want to achieve low latency or want to send the traffic on a specific path to avoid a set of links or build totally two or more disjoint paths.

Multipoint LDP (mLDP) flexible algorithm allows you to customize the IGP path computation based on the business needs.

With this feature, you can get disjoint paths for two multicast streams. Each stream carries traffic within a separate network and helps reduce a connection loss or delay ensuring low latency and high availability of multicast traffic. This feature allows you to segregate multicast traffic to specific regions.

mLDP flexible algorithm is based on Segment Routing flexible algorithm that allows operators to customize IGP shortest path computation according to their own needs. For more information, see Enabling Segment Routing Flexible Algorithm.

To compute two different paths, the mLDP flexible algorithm uses a 2-tuple hash algorithm, which includes MPLS Multi-Topology Identifier (MT-ID) and IGP algorithm.

MPLS multi topology Identifier (MT-ID) is a unique identifier that is used to associate an LSP with multi topology. This identifier is part of the mLDP FEC encoding so that LDP peers are able to set up an MP LSP through their own defined policy and avoid conflicting policies for the same mLDP FEC. The MT-ID and IGP Algorithm must be part of the FEC so that different values result in unique MP-LSP FEC elements.

mLDP flexible algorithm is stored in IGP Algorithm (IPA) Registry field. A 16-bit reserved field is included and out of which 8 bits are used for flexible algorithm. The root is an IP address identifying the Root of an MLDP-P2MP tree. Only IPv4 address is supported.

0	1	2	3
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6	78901234	5678901
+-	+-	-+	+-+-+-+-+-+-+
MP FEC type	Address Fam	ily	AF Length
+-	+-	-+	+-+-+-+-+-+-+
Roc	t Node Address		
+-	+-	-+	+-+-+-+-+-+-+
Reserved	Flex-Algo	MT-	ID
+-	+-	-+	+-+-+-+-+-+-+
Opaque Length		Opaque Val	ue
+-	+-+-+-+++++++++++++++++++++++++++++++++		+
~			~
+-	+-	-+-+-+-+-+-+-+-	+-+-+-+-+-+-+

For example, two flexible algorithms are required to implement a disjoint-paths scenario.

Leafs belonging to the first plane are associated with flexible algorithm 130 and leafs belonging another plane are associated with flexible algorithm 128.

Restrictions

The following features are not supported with flexible algorithm:

- PIM BiDir in the core
- Carrier supporting carrier (CSC)
- Inter-AS
- Extranet
- Default MDT
- MVPN profiles except profile-14

How to configure mLDP Flexible Algorithm?

Configure partitioned MDT with flexible algorithm MVPN profile:

```
Router #configure
Router(config)# multicast-routing
Router(config-mcast)# vrf red
Router(config-mcast-red)# address-family ipv4
Router(config-mcast-red-ipv4)# mdt partitioned mldp ipv4 p2mp flex-algo 128
```

Configure data MDT with flexible algorithm:

```
Router# configure
Router(config)# multicast-routing
Router(config-mcast)# vrf red
Router(config-mcast-red)# address-family ipv4
Router(config-mcast-red-ipv4)# mdt data mldp 10 flex-algo 130
```

Configure route policy for Data MDT with flexible algorithm:

```
Router # configure
Router(config)# multicast-routing vrf red address-family ipv4
Router(config-mcast-red-ipv4)# mdt data mldp 10 route-policy rpl-for-red flex-algo 130
```



```
Note
```

We recommend having 1:1 allocation of Data MDTs with number of flows. However, you can configure less Data MDTs than the number of flows. But you may not see the expected results. You cannot modify the flexible algorithm configuration without removing the MDT configuration. You must reconfigure MDT with the new flexible algorithm. Other combinations like no flexible algorithm to flexible algorithm are not supported.

Configuration Example

The route-policy and flexible algorithm are configured on Data MDT CLI.

In this example,

- Multicast groups 232.1.1.1 and 232.1.1.2 match the route policy it uses the Data MDT created with flexible algorithm 128.
- Multicast groups 232.1.1.3 and 232.1.1.4 also match the route-policy it uses the Data MDT created with flexible algorithm 129.

All other groups do not match the route-policy so it uses the Data MDT created with flexible algorithm 130 which is configured in Data MDT CLI.

```
route-policy c1-data-mdt
  if destination in (232.1.1.1, 232.1.1.2) then
    set flex-algo 128
  elseif destination in (232.1.1.3, 232.1.1.4) then
    set flex-algo 129
  endif
end-policy
1
multicast-routing
vrf red
 address-family ipv4
  mdt partitioned mldp ipv4 p2mp flex-algo 131
  mdt data mldp 100 route-policy c1-data-mdt flex-algo 130
 1
 !
T.
```

In the following example, route-policy is configured on Data MDT CLI but without flexible algorithm.

```
route-policy c1-data-mdt
    if destination in (232.1.1.1, 232.1.1.2) then
        set flex-algo 128
    elseif destination in (232.1.1.3, 232.1.1.4) then
        set flex-algo 129
    endif
end-policy
!
multicast-routing
vrf red
    address-family ipv4
```

```
mdt partitioned mldp ipv4 p2mp flex-algo 131
mdt data mldp 100 route-policy c1-data-mdt
!
!
```

Flexible algorithm is configured on Data MDT CLI and all groups uses the Data MDT created with flexible algorithm 130.

```
multicast-routing
vrf red
address-family ipv4
mdt partitioned mldp ipv4 p2mp flex-algo 131
mdt data mldp 100 flex-algo 130
```

In the following example, flexible algorithms are configured in Partitioned MDT. All groups use the Data MDT created with Flexible Algorithm 131 which is configured in Partitioned MDT CLI.

```
multicast-routing
vrf red
address-family ipv4
mdt partitioned mldp ipv4 p2mp flex-algo 131
mdt data mldp 100
```

Verification

Router# show mvpn vrf red context private MVPN context information for VRF red (0xa99dbf8) RD: 1:1 (Valid, IID 0x1), VPN-ID: 0:0 Import Route-targets : 2 RT:10.0.0.4:0, BGP-AD RT:10.0.0.4:17, BGP-AD BGP Auto-Discovery Enabled (I-PMSI added) , MS-PMSI sent MLDP Core-tree data: MDT Name: Lmdtred, Handle: 0x8041b0, idb: 0xa9b1c18 MTU: 1376, MaxAggr: 255, SW Int: 30, AN Int: 60 RPF-ID: 9/0, C:0, O:1, D:0, CP:0 MLDP Number of Roots: 0 (Local: 0), HLI: 0x00000, Rem HLI: 0x00000 Discovery Type, Value: Flex-Algo, 131 Data MDT Discovery Type, Value: Flex-Algo, 130 Partitioned MDT: Configured, P2MP (RD:Not added, ID:Added), HLI: 0x00005, Loc Label: 24017, Remote: None ID: 2 (0xa79ce90), Ctrl Trees : 0/0/0, Ctrl ID: 0 (0x0), IR Ctrl ID: 0 (0x0), Ctrl HLI: 0x00000 P2MP Def MDT ID: 0 (0x0), added: 0, HLI: 0x00000, Cfg: 0/0

```
Router# show mpls mldp database root 10.0.0.21 opaquetype global-id 5
```

mLDP database LSM-ID: 0x00020 Type: P2MP Uptime: 2d17h FEC Root : 10.0.0.21 IGP Algorithm : Flex-Algo 129 Opaque decoded : [global-id 5] Upstream neighbor(s) : 10.0.0.4:0 [Active] Uptime: 1d22h Local Label (D) : 24040 Downstream client(s): PIM MDT Uptime: 2d17h Egress intf : LmdtWHITE Table TD

RD RD	: 15 : 257:18154475	000012	
Core Source	vrf vpnl mdt cache Cust (Source, Group) (100.0.1.1, 233.1.1.1)	Core Data Expires [global-id 17, Flex-Algo 129] never	
5.15.15.15	(100.0.1.1, 233.1.1.2)	[global-id 18, Flex-Algo 129] never	
5.15.15.15	(100.0.1.1, 233.1.1.3)	[global-id 19, Flex-Algo 129] never	
5.15.15.15	(100.0.1.1, 233.1.1.4)	[global-id 20, Flex-Algo 129] never	
5.15.15.15	(100.0.1.1, 233.1.1.5)	[global-id 21, Flex-Algo 129] never	

• TPv4• 0ve0000012 TPv6• 0ve0800012

Configure VRF MLDP In-Band Signaling on Edge Routers

To configure VRF MLDP in-band signaling (Profile 6) on edge routers, you must complete the following tasks:

- **1.** Assign a route policy in PIM to select a reverse-path forwarding (RPF) topology.
- 2. Configure route policy to set the Multicast Distribution Tree (MDT) type to MLDP inband.
- 3. Enable MLDP-inband signaling in multicast routing.
- 4. Enable MPLS for MLDP.

Configuration

/* Assign a route policy in PIM to select a reverse-path forwarding (RPF) topology */

```
RP/0/RP0/CPU0:router(config) #router pim
RP/0/RP0/CPU0:router(config-pim) #vrf one
RP/0/RP0/CPU0:router(config-pim-one) #address-family ipv4
RP/0/RP0/CPU0:router(config-pim-one-ipv4) #rpf topology route-policy rpf-vrf-one
```

/* Configure route policy to set the MDT type to MLDP inband */

```
RP/0/RP0/CPU0:router(config)#route-policy rpf-vrf-one
RP/0/RP0/CPU0:router(config-rpl)#set core-tree mldp-inband
RP/0/RP0/CPU0:router(config-rpl)#end-policy
```

/* Enable MLDP-inband signaling in multicast routing */

```
RP/0/RP0/CPU0:router(config)#multicast-routing
RP/0/RP0/CPU0:router(config-mcast)#vrf one
RP/0/RP0/CPU0:router(config-mcast-one)#address-family ipv4
RP/0/RP0/CPU0:router(config-mcast-one-ipv4)#mdt source loopback 0
RP/0/RP0/CPU0:router(config-mcast-one-ipv4)#mdt mldp in-band-signaling ipv4
RP/0/RP0/CPU0:router(config-mcast-one-ipv4)#interface all enable
```

/* Enable MPLS MLDP */

```
RP/0/RP0/CPU0:router(config) #mpls ldp
RP/0/RP0/CPU0:router(config-ldp) #mldp
```

Configure Global MLDP In-band Signaling on Edge Routers

To configure global MLDP in-band signaling (Profile 7) on edge routers, you must complete the following tasks:

- 1. Assign a route policy in PIM to select a reverse-path forwarding (RPF) topology.
- 2. Configure route policy to set the MDT type to MLDP Inband.
- 3. Enable MLDP inband signaling in multicast routing.
- 4. Enable MPLS MLDP.

Configuration

/* Assign a route policy in PIM to select a reverse-path forwarding (RPF) topology */

```
RP/0/RP0/CPU0:router(config)#router pim
RP/0/RP0/CPU0:router(config-pim)#address-family ipv4
RP/0/RP0/CPU0:router(config-pim-default-ipv4)#rpf topology route-policy rpf-global
RP/0/RP0/CPU0:router(config-pim-default-ipv4)#interface TenGigE 0/0/0/21
RP/0/RP0/CPU0:router(config-pim-ipv4-if)#enable
```

/* Configure route policy to set the MDT type to MLDP inband */

```
RP/0/RP0/CPU0:router(config) #route-policy rpf-global
RP/0/RP0/CPU0:router(config-rpl)#set core-tree mldp-inband
RP/0/RP0/CPU0:router(config-rpl)#end-policy
```

/* Enable MLDP-inband signaling in multicast routing */

```
RP/0/RP0/CPU0:router(config)#multicast-routing
RP/0/RP0/CPU0:router(config-mcast)#address-family ipv4
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#interface loopback 0
RP/0/RP0/CPU0:router(config-mcast-default-ipv4-if)#enable
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)if)#exit
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#mdt source loopback 0
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#mdt mldp in-band-signaling ipv4
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#interface all enable
```

/* Enable MPLS MLDP */

RP/0/RP0/CPU0:router(config) #mpls ldp RP/0/RP0/CPU0:router(config-ldp) #mldp

Configuration Examples for Inband mLDP Profiles on Edge Routers

Running Configuration for VRF MLDP In-Band Signaling (Profile 6)

```
router pim
vrf one
address-family ipv4
```

```
rpf topology route-policy rpf-vrf-one
route-policy rpf-vrf-one
set core-tree mldp-inband
end-policy
multicast-routing
vrf one
address-family ipv4
mdt source Loopback0
mdt mldp in-band-signaling ipv4
interface all enable
mpls ldp
mldp
```

Running Configuration for Global MLDP In-band Signaling (Profile 7)

```
router pim
 address-family ipv4
  rpf topology route-policy rpf-global
   interface TenGigE0/0/0/0
   enable
route-policy rpf-global
 set core-tree mldp-inband
end-policy
multicast-routing
address-family ipv4
 interface Loopback0
  enable
 !
 mdt source Loopback0
 mdt mldp in-band-signaling ipv4
 interface all enable
 !
mpls ldp
mldp
```

Verification of MLDP Configuration on Edge Routers

Use the following commands to verify the MLDP configuration on edge routers.

To check the MLDP neighbors, use the show mpls mldp neighbor command.

```
RP/0/RP0/CPU0:Head# show mpls mldp neighbors
mLDP neighbor database
MLDP peer ID : 2.2.2.2:0, uptime 07:47:59 Up,
 Capabilities : GR, Typed Wildcard FEC, P2MP, MP2MP
Target Adj : No
 Upstream count : 1
                 : 1
 Branch count
 LDP GR
                 : Enabled
                 : Instance: 1
 Label map timer : never
 Policy filter in :
 Path count : 1
                 : 12.1.1.2
 Path(s)
                                    TenGigE0/0/1/0/3.2000 LDP
            : 12.1.1.2
 Adj list
                                    TenGigE0/0/1/0/3.2000
```

Peer addr list : 2.25.32.2 : 2.2.2.2 : 11.1.1.1 : 12.1.1.2 : 13.10.1.1

To display the contents of the Label Information Base (LIB), use the **show mpls mldp bindings** command.

RP/0/RP0/CPU0:Head#show mpls mldp bindings mLDP MPLS Bindings database

```
LSP-ID: 0x00001 Paths: 7 Flags:

0x00001 P2MP 5.5.5.5 [vpnv6 1:1 2015:1:1::3 ff3e::1]

Local Label: 70009

Remote Label: 64018 NH: 12.1.1.2 Inft: TenGigE0/0/1/0/3.2000

Remote Label: 64022 NH: 50.1.1.1 Inft: TenGigE0/0/1/3/0

Remote Label: 30002 NH: 30.10.1.2 Inft: Bundle-Ether56

Remote Label: 64023 NH: 60.1.1.2 Inft: HundredGigE0/0/1/1

Remote Label: 64024 NH: 70.1.1.1 Inft: TenGigE0/0/1/2/0

Remote Label: 64022 NH: 40.1.1.1 Inft: TenGigE0/0/0/18
```

To display the MLDP event traces, use the **show mpls mldp trace** command.

```
RP/0/RP0/CPU0:Head#show mpls mldp trace
3535 wrapping entries (631040 possible, 35584 allocated, 0 filtered, 3535 total)
May 30 23:30:21.121 MLDP GLO 0/RP0/CPU0 t6746 GEN : Trace pre-init iox success
May 30 23:30:21.121 MLDP GLO 0/RP0/CPU0 t6746 GEN : Debug pre-init iox success
May 30 23:30:21.121 MLDP GLO 0/RP0/CPU0 t6746 GEN
                                                  : API pre-init iox success
May 30 23:30:21.121 MLDP GLO 0/RP0/CPU0 t6746 GEN : Bitfield pre-init iox success
May 31 12:08:39.465 MLDP GLO 0/RP0/CPU0 t6746 GEN : mldp evm 0x563de8f01698 allocated
May 31 12:08:39.465 MLDP GLO 0/RP0/CPU0 t6746 GEN : EVM init iox success
May 31 12:08:39.472 MLDP GLO 0/RP0/CPU0 t6746 GEN
                                                  : Registered EDM on active success
May 31 12:08:39.472 MLDP GLO 0/RP0/CPU0 t6746 GEN
                                                  : EDM Ac/St init iox again
May 31 12:08:39.472 MLDP GLO 0/RP0/CPU0 t6746 GEN : Registered EDM Location on active
success
May 31 12:08:39.472 MLDP GLO 0/RP0/CPU0 t6746 GEN : EDM Loc init iox success
May 31 12:08:39.475 MLDP GLO 0/RP0/CPU0 t6746 GEN : LMRIB init iox success
May 31 12:08:39.475 MLDP GLO 0/RP0/CPU0 t18944 MRIB : MRIB connection established
May 31 12:08:39.475 MLDP GLO 0/RP0/CPU0 t6746 GEN : Interface manager init iox success
May 31 12:08:39.475 MLDP GLO 0/RP0/CPU0 t6746 GEN
                                                  : Asvnc init iox success
May 31 12:08:39.475 MLDP GLO 0/RP0/CPU0 t6746 GEN : Boolean init iox success
May 31 12:08:39.475 MLDP GLO 0/RP0/CPU0 t6746 GEN : Timers init iox success
May 31 12:08:39.479 MLDP GLO 0/RP0/CPU0 t6746 GEN : RUMP init iox success
May 31 12:08:39.479 MLDP GLO 0/RP0/CPU0 t6746 GEN
                                                  : Chunks init iox success
May 31 12:08:39.509 MLDP ERR 0/RP0/CPU0 t6746 RIB : RIB not ready
May 31 12:08:39.509 MLDP ERR 0/RP0/CPU0 t6746 RIB : RIB not ready
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 GEN : mldp ens event ctx chunk is NULL
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 GEN : Context Table init iox success
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 GEN
                                                  : mldp rib main evm 0x563de8fd23e8
allocated
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 GEN : RIB Thread EVM init rib success
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 GEN : RIB Thread Chunk init rib success
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 GEN : RIB Thread queue init rib success
May 31 12:08:39.512 MLDP GLO 0/RP0/CPU0 t6746 RIB : Bound to RIB, fd: 354
```

Overriding VRFs in IGMP Interfaces

Table 10: Feature History Table

Feature Name	Release Information	Feature Description
Support for IGMP VRF Override in Multicast Routers	Release 7.5.1	Using this feature, you can configure a multicast router interface to override the configuration specified in the local VRF table. When an IGMP client sends a join message to the multicast router, it performs a Reverse-path Forwarding (RPF) lookup for the IGMP join in the local VRF table. If the local VRF table does not have the information, the feature extends the lookup to the default (global) VRF table. This ensures that the interface in a specific VRF table is part of the outgoing list of interfaces in the global routing table for a multicast route.

All unicast traffic on the user-to-network interfaces of next-generation aggregation or core networks must be mapped to a specific VRF. They must then be mapped to an MPLS VPN on the network-to-network side. This requires the configuration of a physical interface in this specific VRF.

This feature allows mapping of IGMP packets entering through a user-to-user interface to the multicast routes in the global multicast routing table. This ensures that the interface in a specific VRF can be part of the outgoing list of interfaces in the table for a multicast route.

IGMP packets entering through a non-default VRF interface in the default (global) VRF are processed, with IGMP later distributing the interface-related multicast state (route/interface) to MRIB. This occurs through the default VRF rather than through the VRF to which the interface belongs. MRIB, PIM, MSDP, and MFIB then process the multicast state for this interface through the default VRF.

When an IGMP join for a specific (S, G) is received on the configured interface, IGMP stores this information in its VRF-specific databases. But, when sending an update to MRIB, IGMP sends this route through the default VRF. MRIB then programs this (S, G) along with this interface as an OLIST member in the default multicast routing table.

Similarly, when PIM requests information about IGMP routes from MRIB, MRIB sends this update to PIM in the context of the default VRF.

This feature specifically supports:

- Mapping of IGMP requests on an interface in a non-default VRF to the default VRF multicast routing table.
- Enabling and disabling of VRF override functionality at run time.

- Routing policy configuration at the global (default) VRF level, because routing policy configuration cannot be done at the granularity of an individual interface.
- Enablement and disablement of an IGMP VRF override on all Layer- 3 and Layer- 2 interface types, including physical Ethernet, VLAN sub-interface, bundles and VLANs over bundles.
- The same scale of multicast routes and OLIST interfaces currently supported by the platform even when VRF override functionality is operational.

Configuring IGMP VRF Override

This process consists of the following tasks:

Specifying VRF definition

Procedure

	Command or Action	Purpose
Step 1	configure	
Step 2	vrf vrf-name	Enters the VRF configuration sub mode.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config)# vrf name1</pre>	
Step 3	address-family ipv4 unicast	AFI configuration for IPv4. This is supported
	Example:	on unicast topologies only.
	<pre>RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast</pre>	
Step 4	import route-target 1:1	Enables VRF import.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-vrf-af)# import route-target 1:1</pre>	
Step 5	export route-target 1:1	Enables VRF export.
	Example:	
	<pre>RP/0/RP0/CPU0:router(config-vrf-af)# export route-target 1:1</pre>	
Step 6	commit	

Enabling Multicast Routing on default and non-default VRFs

This task enables multicast routing and forwarding on all new and existing interfaces. For the VRF override feature, multicast routing needs to be enabled on both, the default and the non-default VRFs.

Procedure

	Command or Action	Purpose
Step 1	configure	
Step 2	<pre>multicast-routing vrf [vrf-name default] Example: RP/0/RP0/CPU0:router(config)# multicast-routing vrf green</pre>	Enters multicast configuration mode for the specified VRF. Note that the default configuration mode for multicast routing is default vrf (if the non-default VRF name is not specified).
Step 3	<pre>interface {type interface-path-id all} enable Example: RP/0/RP0/CPU0:router(config-mcast-green) { interface all enable</pre>	one or on all new and existing interfaces.
Step 4	commit	

Configuring an Interface for a Non-default VRF Instance

Procedure

	Command or Action	Purpose
Step 1	configure	
Step 2	interface type interface-path-id	Enters PIM address-family IPv4 submode.
	Example:	
	RP/0/RP0/CPU0:router(config)# interface tengige 0/1/0/0	
Step 3	vrf vrf-name	Sets the VRF for the interface.
	Example:	
	RP/0/RP0/CPU0:router(config-if)# vrf name1	
Step 4	ipv4 address address mask	Sets the IPv4 address for the interface.
	Example:	

	Command or Action	Purpose
	RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.1.1.1 255.0.0.0	
Step 5	commit	

Configuring route-policy

Procedure

	Command or Action	Purpose
Step 1	configure	
Step 2	route-policy policy-name	Defines a route policy.
	Example:	
	RP/0/RP0/CPU0:router(config)# route-policy policy1	
Step 3	set rpf-topology vrf default	Sets the PIM RPF topology attributes for the
	Example:	default VRF.
	RP/0/RP0/CPU0:router(config-rpl)# set rpf-topology vrf default	
Step 4	end-policy	Ends the route-policy definition configuration.
	Example:	
	RP/0/RP0/CPU0:router(config-rpl)# end-policy	
Step 5	commit	

Associating a route policy to PIM configuration for the VRF receiving IGMP reports

Procedure

I

	Command or Action	Purpose
Step 1	configure	
Step 2	router pim vrf vrf-name address-family ipv4	Enters PIM address-family IPv4 submode.

	Command or Action	Purpose
Step 3	rpf-topology route-policy policy-name	Associates a previously defined route-policy
	Example:	with the non-default VRF that receives the IGMP reports.
	<pre>RP/0/RP0/CPU0:router(config-rpl)# rpf-topology route-policy policy1</pre>	
Step 4	commit	

Configure MVPN using Draft-Rosen (Profile 0)

Feature Name	Release Information	Feature Description
Draft-Rosen Multicast VPN (Profile 0) in PIM Sparse Mode (SM)	Release 7.10.1	Draft-Rosen Multicast VPN (Profile 0) is now supported in PIM sparse mode (PIM-SM) between the PE routers that are running in VRF mode. PIM SM provides precise control in cases of large multicast traffic when there is less bandwidth available. This control is possible because it uses a temporary Rendezvous Point (RP) router to connect the multicast traffic source to the next hop router.
		Prior to this release, Profile 0 was supported only in PIM Source Specific Multicast (SSM) mode.
Draft-Rosen Multicast VPN (Profile 0)	Release 7.4.1	Draft-Rosen (profile 0) is a widely used MVPN model and uses GRE tunnels to securely transmit multicast traffic between the PE routers. It also enables ease of deployment by using the Protocol-Independent Multicast (PIM) protocol between edge routers (PE) and hosts (CE), and between PE routers that are running in VRF mode.

Table 11: Feature History Table

Draft-Rosen Multicast VPN (Profile 0) uses Generic Routing Encapsulation (GRE) as an overlay protocol. All multicast packets are encapsulated inside GRE. Profile 0 has PIM as the multicast routing protocol between the edge routers (PE) and hosts (CE), and between the PE routers in the VRF mode. The PE routers directly connect using a Default Multicast Distribution Tree (MDT) formed between the PE routers. The PE routers connect to each other as PIM neighbors across the Default MDT.

Benefits

• Profile 0 is a widely used model and fairly easy to deploy as Profile 0 uses the native multicast in the core and does not require any additional configuration on customers routers and in the core.

Restriction

- PIM SM is not supported in core and under VRF. Only PIM SSM is supported.
- IPv6 is not supported on both VRF and core.
- BVI is not supported in the core.
- In-Service Software Upgrade (ISSU) is not supported for MVPN GRE and L2 multicast.
- Auto-RP is not supported.
- If there is an IPv4 Unicast GRE tunnel configured in your network, the Maximum Transmission Unit (MTU) size of the configured Unicast GRE tunnel impacts the MTU of the Profile-0 MDT multicast. Ensure that the Profile-0 MDT multicast packet size does not exceed the MTU value of the IPv4 unicast GRE tunnel. If the multicast packet size value exceeds the MTU value of the tunnel, then the packet is dropped.
- Use the **immediate-switch** keyword only for data MDT switchover. Switchover from the default MDT to the data MDT is not supported based on the threshold.

Configuration Example

Perform the following steps to configure Profile 0 on the PE devices:

```
Router# configure
Router(config)# route-policy rosen-gre
Router(config-rpl)# set core-tree pim-default
Router(config-rpl)# end-policy
Router(config)# multicast-routing
Router(config-mcast)# vrf vpn101
Router(config-mcast-vpn101)# address-family ipv4
Router(config-mcast-vpn101-ipv4)# mdt source Loopback0
Router(config-mcast-vpn101-ipv4)# mdt default ipv4 232.100.0.1
Router(config-mcast-vpn101-ipv4)# interface all enable
Router(config)# router pim
```

```
Router(config-pim)# address-family ipv4
Router(config-pim-default-ipv4)# vrf vpn101
Router(config-pim-vpn101)# address-family ipv4
Router(config-pim-vpn101-ipv4)# rpf topology route-policy rosen-gre
Router(config-pim-vpn101-ipv4)# exit
Router(config-pim-vpn101-ipv4)# commit
```

Running Configuration

/*Head Configuration*/ :

hostname PE1 logging console disable vrf vpn101

```
address-family ipv4 unicast
 import route-target
  1:1
  !
 export route-target
  1:1
 !
 !
 address-family ipv6 unicast
 import route-target
  1:1
  !
 export route-target
  1:1
 !
 !
!
line console
exec-timeout 0 0
absolute-timeout 0
session-timeout 0
1
line default
exec-timeout 0 0
absolute-timeout 0
session-timeout 0
T.
call-home
service active
contact smart-licensing
profile CiscoTAC-1
 active
 destination transport-method email disable
 destination transport-method http
 1
!
interface Bundle-Ether1
load-interval 30
12transport
1
!
interface Loopback0
ipv4 address 4.4.4.4 255.255.255.255
ipv6 address 4::4/124
1
interface Loopback1
vrf vpn101
ipv4 address 4.1.1.1 255.255.255.255
ipv6 address 4::1:1/124
!
interface MgmtEth0/RP0/CPU0/0
ipv4 address 7.1.10.55 255.255.0.0
!
interface TenGigE0/0/0/4
ipv4 address 10.2.0.1 255.255.255.0
ipv6 address 10::2:1/124
load-interval 30
!
interface TenGigE0/0/0/18
vrf vpn101
ipv4 address 2.0.0.1 255.255.0.0
ipv6 address 2::1/124
load-interval 30
!
```

```
I
route-policy PASS
 pass
end-policy
1
route-policy rosen-gre
 set core-tree mldp-partitioned-p2mp
end-policy
!
route-policy pim-mdt-default
 set core-tree pim-default
end-policy
1
router static
address-family ipv4 unicast
 0.0.0.0/0 7.1.0.1
 !
!
router ospf core
router-id 4.4.4.4
mpls ldp auto-config
area O
 interface Loopback0
 1
 interface TenGigE0/0/0/4
 1
 1
!
router bgp 100
bgp router-id 4.4.4.4
 address-family ipv4 unicast
 redistribute connected
 allocate-label all
 !
 address-family vpnv4 unicast
 1
 address-family ipv6 unicast
 redistribute connected
 allocate-label all
 1
 address-family vpnv6 unicast
 1
 address-family ipv4 mdt
 !
 address-family ipv4 mvpn
 1
 address-family ipv6 mvpn
 !
neighbor 21.21.21.21
 remote-as 100
 update-source Loopback0
 address-family ipv4 unicast
  !
  address-family vpnv4 unicast
  !
  address-family ipv6 unicast
  1
  address-family vpnv6 unicast
  !
  address-family ipv4 mdt
  address-family ipv4 mvpn
  1
  address-family ipv6 mvpn
```

! Т vrf vpn101 rd 1**:**1 address-family ipv4 unicast route-target download redistribute connected ! address-family ipv6 unicast route-target download redistribute connected ! ! ! mpls ldp mldp address-family ipv4 ! ! router-id 4.4.4.4 interface TenGigE0/0/0/4 ! ! multicast-routing address-family ipv4 interface all enable 1 address-family ipv6 interface all enable 1 vrf vpn101 address-family ipv4 mdt source Loopback0 rate-per-route interface all enable mdt default ipv4 232.1.0.1 mdt data 232.100.1.1/24 immediate-switch 1 address-family ipv6 mdt source Loopback0 rate-per-route interface all enable mdt default ipv4 232.2.0.1 mdt data 232.200.1.1/24 immediate-switch 1 1 ! lldp 1 router pim vrf vpn101 address-family ipv4 rpf topology route-policy pim-mdt-default hello-interval 1 rp-address 21.1.1.1 ! address-family ipv6 rpf topology route-policy pim-mdt-default hello-interval 1 ! ! 1 mld snooping profile mldsn

system-ip-address fe80::1 link-local

```
internal-querier
Т
igmp snooping profile igmpsn
system-ip-address 4.4.4.4
internal-querier
I.
igmp snooping profile snjoin
static group 232.1.1.1 source 40.0.0.2
!
end
/*Tail Configuration*/ :
hostname PE2
logging console disable
vrf vpn101
 address-family ipv4 unicast
  import route-target
  1:1
  !
  export route-target
  1:1
  !
 1
 address-family ipv6 unicast
 import route-target
  1:1
  !
  export route-target
  1:1
  !
 1
!
line console
exec-timeout 0 0
absolute-timeout 0
session-timeout 0
1
line default
exec-timeout 0 0
absolute-timeout 0
session-timeout 0
Т
call-home
service active
contact smart-licensing
profile CiscoTAC-1
 active
 destination transport-method email disable
 destination transport-method http
 !
1
interface Loopback0
ipv4 address 21.21.21.21 255.255.255.255
ipv6 address 21::21/124
!
interface Loopback1
vrf vpn101
 ipv4 address 21.1.1.1 255.255.255.255
ipv6 address 21::1:1/124
!
interface MgmtEth0/RP0/CPU0/0
```

```
ipv4 address 7.1.10.57 255.255.0.0
shutdown
interface TenGigE0/0/0/4
ipv4 address 10.2.0.2 255.255.255.0
 ipv6 address 10::1:1/124
load-interval 30
!
interface TenGigE0/0/0/6
vrf vpn101
ipv4 address 3.0.0.1 255.255.0.0
ipv6 address 3::1/124
load-interval 30
ļ
T.
route-policy PASS
 pass
end-policy
1
route-policy rosen-gre
 set core-tree mldp-partitioned-p2mp
end-policy
1
route-policy pim-mdt-default
set core-tree pim-default
end-policy
1
router static
address-family ipv4 unicast
 0.0.0.0/0 7.1.0.1
 !
T.
router ospf core
router-id 21.21.21.21
mpls ldp auto-config
area O
 interface Loopback0
 1
 interface TenGigE0/0/0/4
 1
 !
!
router bgp 100
bgp router-id 21.21.21.21
bgp graceful-restart
address-family ipv4 unicast
 redistribute connected
 1
address-family vpnv4 unicast
 address-family ipv6 unicast
 redistribute connected
 !
 address-family vpnv6 unicast
 !
 address-family ipv4 mdt
 1
 address-family ipv4 mvpn
 !
 address-family ipv6 mvpn
neighbor 4.4.4.4
 remote-as 100
 update-source Loopback0
```

```
address-family ipv4 unicast
  1
  address-family vpnv4 unicast
  !
  address-family ipv6 unicast
  address-family vpnv6 unicast
  1
  address-family ipv4 mdt
  1
  address-family ipv4 mvpn
  !
  address-family ipv6 mvpn
  !
 1
vrf vpn101
 rd 1:1
  address-family ipv4 unicast
  route-target download
   redistribute connected
  1
 address-family ipv6 unicast
  route-target download
  redistribute connected
 !
 !
Т
multicast-routing
address-family ipv4
 interface all enable
 !
 address-family ipv6
 interface all enable
 1
vrf vpn101
 address-family ipv4
 mdt source Loopback0
  rate-per-route
   interface all enable
  mdt default ipv4 232.1.0.1
  mdt data 232.100.1.1/24 immediate-switch
  !
 address-family ipv6
  mdt source Loopback0
   rate-per-route
  interface all enable
  mdt default ipv4 232.2.0.1
   mdt data 232.200.1.1/24 immediate-switch
  1
 !
Т
lldp
!
router pim
vrf vpn101
  address-family ipv4
  rpf topology route-policy pim-mdt-default
   hello-interval 1
  rp-address 21.1.1.1
  1
  address-family ipv6
  rpf topology route-policy pim-mdt-default
   hello-interval 1
  !
```

```
!
!
router igmp
vrf vpn101
interface interface TenGigE0/0/0/6
static-group 232.1.1.1 3.0.0.2
!
!
!
end
```

Verification

```
Router# show pim vrf vpn101 context
Wed Aug 9 14:56:28.382 UTC
PIM context information for VRF vpn101 (0x55845d7772b0)
VRF ID: 0x6000002
Table ID: 0xe0000002
Remote Table ID: 0xe0800002
MDT Default Group : 232.1.0.1
MDT Source : (4.4.4.4, Loopback0) Per-VRF
MDT Immediate Switch Not Configured
MDT handle: 0x2000806c(mdtvpn101)
Context Active, ITAL Active
Routing Enabled
Registered with MRIB
Owner of MDT Interface
Raw socket reg: T, act: T, LPTS filter reg: T, act: T
UDP socket req: T, act: T, UDP vbind req: T, act: T
Reg Inj socket req: T, act: T, Reg Inj LPTS filter req: T, act: T
Mhost Default Interface : TenGigE0/0/0/18 (publish pending: F)
Remote MDT Default Group : 232.2.0.1
Backup MLC virtual interface: Null
Neighbor-filter: -
MDT Neighbor-filter: -
Router# show mrib vrf vpn101 route detail
Wed Aug 9 10:20:40.486 UTC
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
    C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
    IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
   MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
   II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
   EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
    EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
   MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
    IRMI - IR MDT Interface, TRMI - TREE SID MDT Interface, MH - Multihome Interface
(*,224.0.0.0/4) Ver: 0x9b0d RPF nbr: 21.1.1.1 Flags: L C RPF P, FGID: 11903, Statistics
enabled: 0x0, Tunnel RIF: 0xffffffff, Tunnel LIF: 0xfffffff
  Up: 00:03:33
  Outgoing Interface List
    Decapstunnel1 Flags: NS DI, Up: 00:03:28
```

(*,224.0.0.0/24) Ver: 0xec6c Flags: D P, FGID: 11901, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:03:33 (*,224.0.1.39) Ver: 0xe7dc Flags: S P, FGID: 11899, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:03:33 (*,224.0.1.40) Ver: 0xf5fb Flags: S P, FGID: 11900, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:03:33 Outgoing Interface List TenGigE0/0/0/6 Flags: II LI, Up: 00:03:33 (*,232.0.0.0/8) Ver: 0x96d1 Flags: D P, FGID: 11902, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:03:33 (2.0.0.2,232.1.1.1) Ver: 0x2c3f RPF nbr: 4.4.4.4 Flags: RPF RPFID, FGID: 11907, Statistics enabled: 0x0, Tunnel RIF: 0x26, Tunnel LIF: 0xa000, Flags2: 0x2 Up: 00:00:22 RPF-ID: 1, Encap-ID: 0 Incoming Interface List mdtvpn101 Flags: A MI, Up: 00:00:22 Outgoing Interface List TenGigE0/0/0/6 Flags: F NS LI, Up: 00:00:22 Router# show pim vrf vpn101 context Wed Aug 9 15:00:03.092 UTC IP Multicast Routing Information Base Entry flags: L - Domain-Local Source, E - External Source to the Domain, C - Directly-Connected Check, S - Signal, IA - Inherit Accept, IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID, MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN Interface flags: F - Forward, A - Accept, IC - Internal Copy, NS - Negate Signal, DP - Don't Preserve, SP - Signal Present, II - Internal Interest, ID - Internal Disinterest, LI - Local Interest, LD - Local Disinterest, DI - Decapsulation Interface EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap, EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed, MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface IRMI - IR MDT Interface, TRMI - TREE SID MDT Interface, MH - Multihome Interface (*,224.0.0.0/24) Ver: 0x7f6e Flags: D P, FGID: 9235, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 (*,224.0.1.39) Ver: 0x7af2 Flags: S P, FGID: 9233, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 (*,224.0.1.40) Ver: 0x9f9b Flags: S P, FGID: 9234, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 Outgoing Interface List TenGigE0/0/0/4 Flags: II LI, Up: 00:06:54 (*,232.0.0.0/8) Ver: 0x517d Flags: D P, FGID: 9236, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54

```
(4.4.4.4,232.1.0.1) Ver: 0xc19e RPF nbr: 4.4.4.4 Flags: RPF ME MH, FGID: 9242, Statistics
enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2
  MVPN TID: 0xe0000002
 MVPN Remote TID: 0x0
  MVPN Payload: IPv4
 MDT IFH: 0x2000806c
  Up: 00:06:49
  RPF-ID: 1, Encap-ID: 0
  Incoming Interface List
   Loopback0 Flags: F A, Up: 00:06:49
  Outgoing Interface List
   Loopback0 Flags: F A, Up: 00:06:49
   TenGigE0/0/0/4 Flags: F NS, Up: 00:04:13
(21.21.21.21,232.1.0.1) Ver: 0xa354 RPF nbr: 10.2.0.2 Flags: RPF MD MH CD, FGID: 9244,
Statistics enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2
 MVPN TID: 0xe0000002
 MVPN Remote TID: 0x0
 MVPN Payload: IPv4
 MDT IFH: 0x2000806c
  Up: 00:04:13
  RPF-ID: 1, Encap-ID: 0
  Incoming Interface List
   TenGigE0/0/0/4 Flags: A, Up: 00:04:13
  Outgoing Interface List
   Loopback0 Flags: F NS, Up: 00:04:13
(4.4.4.4,232.2.0.1) Ver: 0xbab2 RPF nbr: 4.4.4.4 Flags: RPF ME MH, FGID: 9243, Statistics
enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2
  MVPN TID: 0x0
 MVPN Remote TID: 0xe0800002
 MVPN Payload: IPv6
  MDT IFH: 0x2000806c
 Up: 00:06:49
 RPF-ID: 1, Encap-ID: 0
  Incoming Interface List
   Loopback0 Flags: F A, Up: 00:06:49
  Outgoing Interface List
   Loopback0 Flags: F A, Up: 00:06:49
(4.4.4.4,232.100.1.0) Ver: 0x86b RPF nbr: 4.4.4.4 Flags: RPF ME MH, FGID: 9246, Statistics
 enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2
 MVPN TID: 0xe0000002
 MVPN Remote TID: 0x0
 MVPN Payload: IPv4
 MDT IFH: 0x2000806c
 Up: 00:01:17
  RPF-ID: 1, Encap-ID: 0
  Incoming Interface List
   Loopback0 Flags: F A, Up: 00:01:17
  Outgoing Interface List
    Loopback0 Flags: F A, Up: 00:01:17
    TenGigE0/0/0/4 Flags: F NS, Up: 00:01:17
Router# show mrib route detail
Wed Aug 9 15:00:03.092 UTC
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
   C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
    IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
   MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
   CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
```

MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN Interface flags: F - Forward, A - Accept, IC - Internal Copy, NS - Negate Signal, DP - Don't Preserve, SP - Signal Present, II - Internal Interest, ID - Internal Disinterest, LI - Local Interest, LD - Local Disinterest, DI - Decapsulation Interface EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap, EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed, MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface IRMI - IR MDT Interface, TRMI - TREE SID MDT Interface, MH - Multihome Interface (*,224.0.0.0/24) Ver: 0x7f6e Flags: D P, FGID: 9235, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 (*,224.0.1.39) Ver: 0x7af2 Flags: S P, FGID: 9233, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 (*,224.0.1.40) Ver: 0x9f9b Flags: S P, FGID: 9234, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 Outgoing Interface List TenGigE0/0/0/4 Flags: II LI, Up: 00:06:54 (*,232.0.0.0/8) Ver: 0x517d Flags: D P, FGID: 9236, Statistics enabled: 0x0, Tunnel RIF: Oxfffffff, Tunnel LIF: Oxfffffff Up: 00:06:54 (4.4.4.4,232.1.0.1) Ver: 0xc19e RPF nbr: 4.4.4.4 Flags: RPF ME MH, FGID: 9242, Statistics enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2 MVPN TID: 0xe000002 MVPN Remote TID: 0x0 MVPN Payload: IPv4 MDT IFH: 0x2000806c Up: 00:06:49 RPF-ID: 1, Encap-ID: 0 Incoming Interface List Loopback0 Flags: F A, Up: 00:06:49 Outgoing Interface List Loopback0 Flags: F A, Up: 00:06:49 TenGigE0/0/0/4 Flags: F NS, Up: 00:04:13 (21.21.21.21,232.1.0.1) Ver: 0xa354 RPF nbr: 10.2.0.2 Flags: RPF MD MH CD, FGID: 9244, Statistics enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2 MVPN TID: 0xe0000002 MVPN Remote TID: 0x0 MVPN Payload: IPv4 MDT IFH: 0x2000806c Up: 00:04:13 RPF-ID: 1, Encap-ID: 0 Incoming Interface List TenGigE0/0/0/4 Flags: A, Up: 00:04:13 Outgoing Interface List Loopback0 Flags: F NS, Up: 00:04:13 (4.4.4.4,232.2.0.1) Ver: 0xbab2 RPF nbr: 4.4.4.4 Flags: RPF ME MH, FGID: 9243, Statistics enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2 MVPN TID: 0x0 MVPN Remote TID: 0xe0800002 MVPN Payload: IPv6 MDT IFH: 0x2000806c Up: 00:06:49 RPF-ID: 1, Encap-ID: 0

```
Incoming Interface List
   Loopback0 Flags: F A, Up: 00:06:49
 Outgoing Interface List
   Loopback0 Flags: F A, Up: 00:06:49
(4.4.4.4,232.100.1.0) Ver: 0x86b RPF nbr: 4.4.4.4 Flags: RPF ME MH, FGID: 9246, Statistics
enabled: 0x0, Tunnel RIF: 0x35, Tunnel LIF: 0xc000, Flags2: 0x2
 MVPN TID: 0xe0000002
 MVPN Remote TID: 0x0
 MVPN Pavload: IPv4
 MDT IFH: 0x2000806c
 Up: 00:01:17
 RPF-ID: 1, Encap-ID: 0
 Incoming Interface List
   Loopback0 Flags: F A, Up: 00:01:17
 Outgoing Interface List
   Loopback0 Flags: F A, Up: 00:01:17
   TenGigE0/0/0/4 Flags: F NS, Up: 00:01:17
```

Configure mVPN using RSVP-TE P2MP (Profile 22)

Table 12: Feature History Table

Feature Name	Release Information	
mVPN using RSVP-TE P2MP (Profile 22)	Release 7.5.1	This feature uses RSVP-TE to establish MPLS transport LSPs through traffic engineering and securely transmits multicast traffic between the PE routers in a MPLS network.

Profile 22 is a mVPN profile used for multicast traffic engineering using RSVP-TE P2MP. RSVP-TE is used to establish MPLS transport LSPs when there are traffic engineering requirements. The Default MDT consists of a full mesh of P2MP-TE tree. The P2MP tunnels are P2MP-TE auto-tunnels. PIM is used for C-Multicast signaling.

These are the characteristics of this profile:

- Dynamic P2MP-TE tunnels with BGP C-Multicast routing.
- All UMH options are supported.
- · Default and Data MDT are supported.
- Customer traffic can be SSM.

Benefits

- More flexible designs per VPN.
- Proven functionality (Default-MDT and Data-MDT).
- Supports mLDP and P2MP-TE core tree protocols.
- Traffic engineering for multicast along with mVPN.

Configuration

Perform the following tasks on the edge routers (PE devices):

- Configure VRF
- Enable PIM with Profile 22

```
vrf one
 address-family ipv4 unicast
  import route-target
   1:1
  1
  export route-target
  1:1
  1
 !
router pim
 vrf one
 address-family ipv4
  rpf topology route-policy rpf-vrf-one
   mdt c-multicast-routing bgp
   interface GigabitEthernet0/0/0/1.100
   enable
route-policy rpf-vrf-one
 set core-tree p2mp-te-default
end-policy
multicast-routing
vrf one
 address-family ipv4
  mdt source Loopback0
  mdt default p2mp-te
  rate-per-route
   interface all enable
   mdt data p2mp-te 100
   bgp auto-discovery p2mp-te
   1
   accounting per-prefix
ipv4 unnumbered mpls traffic-eng Loopback0
mpls traffic-eng
interface GigabitEthernet0/0/0/0
 1
 interface GigabitEthernet0/0/0/2
 !
 auto-tunnel p2mp
```

Verification

tunnel-id min 1000 max 2000

```
Router# show mrib vrf p22_20 route detail
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
C - Directly-Connected Check, S - Signal, IA - Inherit Accep
IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
```

```
MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
   MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy
   NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
   II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
   LD - Local Disinterest, DI - Decapsulation Interface
  EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
  EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
  MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
IRMI - IR MDT Interface, TRMI - TREE SID MDT Interface, MH - Multihome Interface
(80.0.0.11,232.1.1.1) Ver: 0xb009 RPF nbr: 80.0.0.11 Flags: RPF EID,
PD: Slotmask: 0x0
    MGID: 592
 Up: 00:07:14
 RPF-ID: 0, Encap-ID: 262145
  Incoming Interface List
   TenGigE0/1/0/1.2 Flags: A, Up: 00:07:14
  Outgoing Interface List
   Tmdtp22/ssm/v4/vrf2 Flags: F TMI, Up: 00:07:14, Head LSM-ID: 0x4000360
```

Restrictions for MVPN Profiles

The following restriction applies to the configuration of MVPN profile:

• A router being Route Reflector (RR) and Provider Edge (PE) at that same time for BGP mVPN implementation is not supported, a type 7 and type 6 IPv4 mVPN route is not advertised by a RR, which is also a PE router, if the PE router has the VRF locally configured and when there is a local receiver.

Use full mesh for iBGP mVPN address-family or elect any core (P) router to be the RR.

Configuration Examples for MVPN Profiles

This section provides profile-wise configuration examples for the various MVPN profiles.

Configuration Examples for Inband mLDP Profiles

Profile-6: VRF Inband mLDP

```
router bgp 100
mvpn
1
multicast-routing
vrf v61
 address-family ipv4
   mdt source Loopback0
    mdt mtu 1600
    mdt mldp in-band-signaling ipv4
   interface all enable
   Т
  address-family ipv6
   mdt mtu 1600
    mdt mldp in-band-signaling ipv4
   interface all enable
!
```

```
router pim
vrf v61
address-family ipv4
rpf topology route-policy mldp-inband
!
address-family ipv6
rpf topology route-policy mldp-inband
!
!
route-policy mldp-inband
set core-tree mldp-inband
end-policy
!
```

Profile-7: Global Inband mLDP

```
multicast-routing
address-family ipv4
  mdt source Loopback0
  mdt mldp in-band-signaling ipv4
  ssm range Global-SSM-Group
 interface all enable
!
address-family ipv6
 mdt source Loopback0
 mdt mldp in-band-signaling ipv4
 ssm range Global-SSM-Group-V6
 interface all enable
1
router pim
 address-family ipv4
  rpf topology route-policy mldp-inband
 !
 address-family ipv6
  rpf topology route-policy mldp-inband
 !
!
route-policy mldp-inband
 set core-tree mldp-inband
end-policy
1
```

I