
Implementing Secure Shell

Secure Shell (SSH) is an application and a protocol that provides a secure replacement to the Berkeley r-tools.
The protocol secures sessions using standard cryptographic mechanisms, and the application can be used
similarly to the Berkeley rexec and rsh tools.

Two versions of the SSH server are available: SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2). SSHv1
uses Rivest, Shamir, and Adelman (RSA) keys and SSHv2 uses either Digital Signature Algorithm (DSA)
keys or Rivest, Shamir, and Adelman (RSA) keys, or Ed25519 keys. Cisco software supports both SSHv1
and SSHv2.

This module describes how to implement Secure Shell.

Feature History for Implementing Secure Shell

ModificationRelease

This feature was introduced.Release 6.0

Support was added for these features:

• SSH Configuration Option to Restrict Cipher Public Key and HMAC
Algorithm

• Automatic Generation of SSH Host-Key Pairs

• SSH and SFTP in Baseline Cisco IOS XR Software Image

Release
7.0.1

Support was added for these features:

• Ed25519 Public-Key Algorithm Support for SSH

• User Configurable Maximum Authentication Attempts for SSH

• X.509v3 Certificate-based Authentication for SSH

Release
7.3.1

• Information About Implementing Secure Shell, on page 2
• Prerequisites for Implementing Secure Shell, on page 6
• SSH and SFTP in Baseline Cisco IOS XR Software Image, on page 6
• Restrictions for Implementing Secure Shell, on page 7
• Configure SSH, on page 8
• Automatic Generation of SSH Host-Key Pairs, on page 11

Implementing Secure Shell
1

• Ed25519 Public-Key Signature Algorithm Support for SSH, on page 13
• Configure SSH Client, on page 14
• Order of SSH Client Authentication Methods, on page 16
• Configuring CBC Mode Ciphers , on page 17
• Multi-channeling in SSH, on page 18
• User Configurable Maximum Authentication Attempts for SSH, on page 20
• X.509v3 Certificate-based Authentication for SSH, on page 22
• OpenSSH Certificate based Authentication for Router, on page 30
• Certificate-based user authentication using TACACS+ server, on page 40
• Public Key-Based Authentication of SSH Clients, on page 42
• Public key-based Authentication to SSH Server on Routers, on page 47
• Multi-Factor Authentication for SSH, on page 52
• Selective Authentication Methods for SSH Server, on page 57
• SSH Port Forwarding, on page 59
• Non-Default SSH Port, on page 62
• DSCP Marking for SSH Packets, on page 67

Information About Implementing Secure Shell
To implement SSH, you should understand the following concepts:

SSH Server
The SSH server feature enables an SSH client to make a secure, encrypted connection to a Cisco router. This
connection provides functionality that is similar to that of an inbound Telnet connection. Before SSH, security
was limited to Telnet security. SSH allows a strong encryption to be used with the Cisco software authentication.
The SSH server in Cisco software works with publicly and commercially available SSH clients.

SSH Client
The SSH client feature is an application running over the SSH protocol to provide device authentication and
encryption. The SSH client enables a Cisco router to make a secure, encrypted connection to another Cisco
router or to any other device running the SSH server. This connection provides functionality that is similar
to that of an outbound Telnet connection except that the connection is encrypted. With authentication and
encryption, the SSH client allows for a secure communication over an insecure network.

The SSH client works with publicly and commercially available SSH servers. The SSH client supports the
ciphers of AES, 3DES, message digest algorithm 5 (MD5), SHA1, and password authentication. User
authentication is performed in the Telnet session to the router. The user authentication mechanisms supported
for SSH are RADIUS, TACACS+, and the use of locally stored usernames and passwords.

The SSH client supports setting DSCP value in the outgoing packets.
ssh client dscp <value from 0 – 63>

If not configured, the default DSCP value set in packets is 16 (for both client and server).

The SSH client supports the following options:

• DSCP—DSCP value for SSH client sessions.

Implementing Secure Shell
2

Implementing Secure Shell
Information About Implementing Secure Shell

RP/0/5/CPU0:router#configure
RP/0/5/CPU0:router(config)#ssh ?
client Provide SSH client service
server Provide SSH server service
timeout Set timeout value for SSH

RP/0/5/CPU0:router(config)#ssh client ?

• Knownhost—Enable the host pubkey check by local database.
• Source-interface—Source interface for SSH client sessions.
RP/0/5/CPU0:router(config)#ssh client source-interface ?
ATM ATM Network Interface(s)
BVI Bridge-Group Virtual Interface
Bundle-Ether Aggregated Ethernet interface(s)
CEM Circuit Emulation interface(s)
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s)
IMA ATM Network Interface(s)
IMtestmain IM Test Interface
Loopback Loopback interface(s)
MgmtEth Ethernet/IEEE 802.3 interface(s)
Multilink Multilink network interface(s)
Null Null interface
PFItestmain PFI Test Interface
PFItestnothw PFI Test Not-HW Interface
PW-Ether PWHE Ethernet Interface
PW-IW PWHE VC11 IP Interworking Interface
Serial Serial network interface(s)
VASILeft VASI Left interface(s)
VASIRight VASI Right interface(s)
test-bundle-channel Aggregated Test Bundle interface(s)
tunnel-ipsec IPSec Tunnel interface(s)
tunnel-mte MPLS Traffic Engineering P2MP Tunnel interface(s)
tunnel-te MPLS Traffic Engineering Tunnel interface(s)
tunnel-tp MPLS Transport Protocol Tunnel interface

RP/0/5/CPU0:router(config)#ssh client source-interface
RP/0/5/CPU0:router(config)#

SSH also supports remote command execution as follows:
RP/0/5/CPU0:router#ssh ?
A.B.C.D IPv4 (A.B.C.D) address
WORD Hostname of the remote node
X:X::X IPv6 (A:B:C:D...:D) address
vrf vrf table for the route lookup

RP/0/5/CPU0:router#ssh 10.1.1.1 ?
cipher Accept cipher type
command Specify remote command (non-interactive)
source-interface Specify source interface
username Accept userid for authentication
<cr>

RP/0/5/CPU0:router#ssh 192.68.46.6 username admin command "show redundancy sum"
Password:

Wed Jan 9 07:05:27.997 PST
Active Node Standby Node
----------- ------------

0/4/CPU0 0/5/CPU0 (Node Ready, NSR: Not Configured)

RP/0/5/CPU0:router#

Implementing Secure Shell
3

Implementing Secure Shell
SSH Client

SFTP Feature Overview
SSH includes support for standard file transfer protocol (SFTP) , a new standard file transfer protocol introduced
in SSHv2. This feature provides a secure and authenticated method for copying router configuration or router
image files.

The SFTP client functionality is provided as part of the SSH component and is always enabled on the router.
Therefore, a user with the appropriate level can copy files to and from the router. Like the copy command,
the sftp command can be used only in XR EXEC mode.

The SFTP client is VRF-aware, and you may configure the secure FTP client to use the VRF associated with
a particular source interface during connections attempts. The SFTP client also supports interactive mode,
where the user can log on to the server to perform specific tasks via the Unix server.

The SFTP Server is a sub-system of the SSH server. In other words, when an SSH server receives an SFTP
server request, the SFTP API creates the SFTP server as a child process to the SSH server. A new SFTP server
instance is created with each new request.

The SFTP requests for a new SFTP server in the following steps:

• The user runs the sftp command with the required arguments

• The SFTP API internally creates a child session that interacts with the SSH server

• The SSH server creates the SFTP server child process

• The SFTP server and client interact with each other in an encrypted format

• The SFTP transfer is subject to LPTS policer "SSH-Known". Low policer values will affect SFTP transfer
speeds

In IOS-XR SW release 4.3.1 onwards the default policer value for SSH-Known has been reset from 2500pps
to 300pps. Slower transfers are expected due to this change. You can adjust the lpts policer value for this punt
cause to higher values that will allow faster transfers

Note

When the SSH server establishes a new connection with the SSH client, the server daemon creates a new SSH
server child process. The child server process builds a secure communications channel between the SSH client
and server via key exchange and user authentication processes. If the SSH server receives a request for the
sub-system to be an SFTP server, the SSH server daemon creates the SFTP server child process. For each
incoming SFTP server subsystem request, a new SSH server child and a SFTP server instance is created. The
SFTP server authenticates the user session and initiates a connection. It sets the environment for the client
and the default directory for the user.

Once the initialization occurs, the SFTP server waits for the SSH_FXP_INIT message from the client, which
is essential to start the file communication session. This message may then be followed by any message based
on the client request. Here, the protocol adopts a 'request-response' model, where the client sends a request
to the server; the server processes this request and sends a response.

The SFTP server displays the following responses:

• Status Response

• Handle Response

• Data Response

Implementing Secure Shell
4

Implementing Secure Shell
SFTP Feature Overview

• Name Response

The server must be running in order to accept incoming SFTP connections.Note

RSA Based Host Authentication
Verifying the authenticity of a server is the first step to a secure SSH connection. This process is called the
host authentication, and is conducted to ensure that a client connects to a valid server.

The host authentication is performed using the public key of a server. The server, during the key-exchange
phase, provides its public key to the client. The client checks its database for known hosts of this server and
the corresponding public-key. If the client fails to find the server's IP address, it displays a warning message
to the user, offering an option to either save the public key or discard it. If the server’s IP address is found,
but the public-key does not match, the client closes the connection. If the public key is valid, the server is
verified and a secure SSH connection is established.

The IOS XR SSH server and client had support for DSA based host authentication. But for compatibility with
other products, like IOS, RSA based host authentication support is also added.

RSA Based User Authentication
One of the method for authenticating the user in SSH protocol is RSA public-key based user authentication.
The possession of a private key serves as the authentication of the user. This method works by sending a
signature created with a private key of the user. Each user has a RSA keypair on the client machine. The
private key of the RSA keypair remains on the client machine.

The user generates an RSA public-private key pair on a unix client using a standard key generation mechanism
such as ssh-keygen. The max length of the keys supported is 4096 bits, and the minimum length is 512 bits.
The following example displays a typical key generation activity:

bash-2.05b$ ssh-keygen –b 1024 –t rsa
Generating RSA private key, 1024 bit long modulus

The public key must be in base64 encoded (binary) formats for it to be imported correctly into the router.

You can use third party tools available on the Internet to convert the key to the binary format.Note

Once the public key is imported to the router, the SSH client can choose to use the public key authentication
method by specifying the request using the “-o” option in the SSH client. For example:

client$ ssh -o PreferredAuthentications=publickey 1.2.3.4

If a public key is not imported to a router using the RSA method, the SSH server initiates the password based
authentication. If a public key is imported, the server proposes the use of both the methods. The SSH client
then chooses to use either method to establish the connection. The system allows only 10 outgoing SSH client
connections.

Currently, only SSH version 2 and SFTP server support the RSA based authentication.

Implementing Secure Shell
5

Implementing Secure Shell
RSA Based Host Authentication

The preferred method of authentication would be as stated in the SSH RFC. The RSA based authentication
support is only for local authentication, and not for TACACS/RADIUS servers.

Note

Authentication, Authorization, and Accounting (AAA) is a suite of network security services that provide the
primary framework through which access control can be set up on your Cisco router or access server.

SSHv2 Client Keyboard-Interactive Authentication
An authentication method in which the authentication information is entered using a keyboard is known as
keyboard-interactive authentication. This method is an interactive authentication method in the SSH protocol.
This type of authentication allows the SSH client to support different methods of authentication without having
to be aware of their underlying mechanisms.

Currently, the SSHv2 client supports the keyboard-interactive authentication. This type of authentication
works only for interactive applications.

The password authentication is the default authentication method. The keyboard-interactive authentication
method is selected if the server is configured to support only the keyboard-interactive authentication.

Note

Prerequisites for Implementing Secure Shell
The following prerequisites are required to implement Secure Shell:

• Download the required image on your router. The SSH server and SSH client require you to have a a
crypto package (data encryption standard [DES], 3DES and AES) fromCisco downloaded on your router.

From Cisco IOS XR Software Release 7.0.1 and later, the SSH and SFTP
components are available in the baseline Cisco IOS XR software image itself.
For details, see, SSH and SFTP in Baseline Cisco IOS XR Software Image, on
page 6.

Note

• Configure user authentication for local or remote access. You can configure authentication with or without
authentication, authorization, and accounting (AAA).

• AAA authentication and authorizationmust be configured correctly for Secure Shell File Transfer Protocol
(SFTP) to work.

SSH and SFTP in Baseline Cisco IOS XR Software Image
From Cisco IOS XR Software Release 7.0.1 and later, the management plane and control plane components
that were part of the Cisco IOS XR security package (k9sec package) are moved to the base Cisco IOS XR
software image. These include SSH, SCP, SFTP and IPSec control plane. However, 802.1X protocol

Implementing Secure Shell
6

Implementing Secure Shell
SSHv2 Client Keyboard-Interactive Authentication

(Port-Based Network Access Control) and data plane components likeMACsec remain as a part of the security
package as per the export compliance regulations. This segregation of package components makes the software
more modular. It also gives you the flexibility of including or excluding the security package as per your
requirements.

The base package and the security package allow FIPS, so that the control plane can negotiate FIPS-approved
algorithms.

Restrictions for Implementing Secure Shell
The following are some basic SSH restrictions and limitations of the SFTP feature:

• In order for an outside client to connect to the router, the router needs to have an RSA (for SSHv1 or
SSHv2) or DSA (for SSHv2) key pair configured. DSA and RSA keys are not required if you are initiating
an SSH client connection from the router to an outside routing device. The same is true for SFTP: DSA
and RSA keys are not required because SFTP operates only in client mode.

• In order for SFTP to work properly, the remote SSH server must enable the SFTP server functionality.
For example, the SSHv2 server is configured to handle the SFTP subsystem with a line such as
/etc/ssh2/sshd2_config:

• subsystem-sftp /usr/local/sbin/sftp-server

• The SFTP server is usually included as part of SSH packages from public domain and is turned on by
default configuration.

• SFTP is compatible with sftp server version OpenSSH_2.9.9p2 or higher.

• RSA-based user authentication is supported in the SSH and SFTP servers. The support however, is not
extended to the SSH client.

• Execution shell and SFTP are the only applications supported.

• The SFTP client does not support remote filenames containing wildcards (* ?, []). The user must issue
the sftp command multiple times or list all of the source files from the remote host to download them
on to the router. For uploading, the router SFTP client can support multiple files specified using a wildcard
provided that the issues mentioned in the first through third bullets in this section are resolved.

• The cipher preference for the SSH server follows the order AES128, AES192, AES256, and, finally,
3DES. The server rejects any requests by the client for an unsupported cipher, and the SSH session does
not proceed.

• Use of a terminal type other than vt100 is not supported, and the software generates a warning message
in this case.

• Password messages of “none” are unsupported on the SSH client.

• Files created on the local device lose the original permission information because the router infrastructure
does not provide support for UNIX-like file permissions. For files created on the remote file system, the
file permission adheres to the umask on the destination host and the modification and last access times
are the time of the copy.

Implementing Secure Shell
7

Implementing Secure Shell
Restrictions for Implementing Secure Shell

Configure SSH
Perform this task to configure SSH.

For SSHv1 configuration, Step 1 to Step 4 are required. For SSHv2 configuration, Step to Step 4 are optional.Note

From Cisco IOS XR Software Release 7.0.1 and later, the SSH host-key pairs are auto-generated at the time
of router boot up. Hence you need not perform steps 5 to 7 to generate the host keys explicilty. See, Automatic
Generation of SSH Host-Key Pairs, on page 11 for details.

Note

SUMMARY STEPS

1. configure
2. hostname hostname

3. domain name domain-name

4. Use the commit or end command.
5. crypto key generate rsa [usage keys | general-keys] [keypair-label]
6. crypto key generate dsa
7. configure
8. ssh timeout seconds

9. Do one of the following:

• ssh server [vrf vrf-name]
• ssh server v2

10. Use the commit or end command.
11. show ssh
12. show ssh session details

DETAILED STEPS

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 hostname hostname

Example:

Implementing Secure Shell
8

Implementing Secure Shell
Configure SSH

RP/0/RP0/CPU0:router(config)# hostname router1

Configures a hostname for your router.

Step 3 domain name domain-name

Example:

RP/0/RP0/CPU0:router(config)# domain name cisco.com

Defines a default domain name that the software uses to complete unqualified host names.

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 crypto key generate rsa [usage keys | general-keys] [keypair-label]

Example:

RP/0/RP0/CPU0:router# crypto key generate rsa general-keys

Generates an RSA key pair. The RSA key modulus can be in the range of 512 to 4096 bits.

• To delete the RSA key pair, use the crypto key zeroize rsa command.

• This command is used for SSHv1 only.

Step 6 crypto key generate dsa

Example:

RP/0/RP0/CPU0:router# crypto key generate dsa

Enables the SSH server for local and remote authentication on the router. The supported key sizes are: 512, 768 and
1024 bits.

• The recommended minimum modulus size is 1024 bits.

• Generates a DSA key pair.

To delete the DSA key pair, use the crypto key zeroize dsa command.

• This command is used only for SSHv2.

Step 7 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters mode.

Implementing Secure Shell
9

Implementing Secure Shell
Configure SSH

Step 8 ssh timeout seconds

Example:

RP/0/RP0/CPU0:router(config)# ssh timeout 60

(Optional) Configures the timeout value for user authentication to AAA.

• If the user fails to authenticate itself to AAA within the configured time, the connection is terminated.

• If no value is configured, the default value of 30 seconds is used. The range is from 5 to 120.

Step 9 Do one of the following:

• ssh server [vrf vrf-name]
• ssh server v2

Example:

RP/0/RP0/CPU0:router(config)# ssh server v2

• (Optional) Brings up an SSH server using a specified VRF of up to 32 characters. If no VRF is specified, the
default VRF is used.

To stop the SSH server from receiving any further connections for the specified VRF, use the no form of this
command. If no VRF is specified, the default is assumed.

The SSH server can be configured for multiple VRF usage.Note

• (Optional) Forces the SSH server to accept only SSHv2 clients if you configure the SSHv2 option by using the
ssh server v2 command. If you choose the ssh server v2 command, only the SSH v2 client connections are
accepted.

Step 10 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 11 show ssh

Example:

RP/0/RP0/CPU0:router# show ssh

(Optional) Displays all of the incoming and outgoing SSHv1 and SSHv2 connections to the router.

Step 12 show ssh session details

Example:

RP/0/RP0/CPU0:router# show ssh session details

Implementing Secure Shell
10

Implementing Secure Shell
Configure SSH

(Optional) Displays a detailed report of the SSHv2 connections to and from the router.

Automatic Generation of SSH Host-Key Pairs
This feature brings in the functionality of automatically generating the SSH host-key pairs for the DSA,
ECDSA (such as ecdsa-nistp256, ecdsa-nistp384, and ecdsa-nistp521) and RSA algorithms. This in turn
eliminates the need for explicitly generating each SSH host-key pair after the router boots up. Because the
keys are already present in the system, the SSH client can establish connection with the SSH server soon after
the router boots up with the basic SSH configuration. This is useful especially during zero touch provisioning
(ZTP) and Golden ISO boot up scenarios.

Before this automation, you had to execute the crypto key generate command to generate the required
host-key pairs.

Although the host-key pairs are auto-generated with the introduction of this feature, you still have the flexibility
to select only the required algorithms on the SSH server. You can use the ssh server algorithms host-key
command in XR Config mode to achieve the same. Alternatively, you can also use the existing crypto key
zeroize command in XR EXEC mode to remove the algorithms that are not required.

Prior to the introduction of this feature, you had to execute the crypto key generate command in XR EXEC
mode to generate the required host-key pairs.

In a system upgrade scenario from version 1 to version 2, the system does not generate the SSH host-key pairs
automatically if they were already generated in version 1. The host-key pairs are generated automatically only
if they were not generated in version 1.

Note

Configure the Allowed SSH Host-Key Pair Algorithms
When the SSH client attempts a connection with the SSH server, it sends a list of SSH host-key pair algorithms
(in the order of preference) internally in the connection request. The SSH server, in turn, picks the first matching
algorithm from this request list. The server establishes a connection only if that host-key pair is already
generated in the system, and if it is configured (using the ssh server algorithms host-key command) as the
allowed algorithm.

If this configuration of allowed host-key pairs is not present in the SSH server, then you can consider that the
SSH server allows all host-key pairs. In that case, the SSH client can connect with any one of the host-key
pairs. Not having this configuration also ensures backward compatibility in system upgrade scenarios.

Note

Configuration Example

You may perform this (optional) task to specify the allowed SSH host-key pair algorithm (in this example,
ecdsa) from the list of auto-generated host-key pairs on the SSH server:

Implementing Secure Shell
11

Implementing Secure Shell
Automatic Generation of SSH Host-Key Pairs

/* Example to select the ecdsa algorithm */
Router(config)#ssh server algorithms host-key ecdsa-nistp521

Similarly, you may configure other algorithms.

Running Configuration

ssh server algorithms host-key ecdsa-nistp521
!

Verify the SSH Host-Key Pair Algorithms

With the introduction of the automatic generation of SSH host-key pairs, the output of the show crypto key
mypubkey command displays key information of all the keys that are auto-generated. Before its introduction,
the output of this show command displayed key information of only those keys that you explicitly generated
using the crypto key generate command.

Note

Router#show crypto key mypubkey ecdsa
Mon Nov 19 12:22:51.762 UTC
Key label: the_default
Type : ECDSA General Curve Nistp256
Degree : 256
Created : 10:59:08 UTC Mon Nov 19 2018
Data :
04AC7533 3ABE7874 43F024C1 9C24CC66 490E83BE 76CEF4E2 51BBEF11 170CDB26
14289D03 6625FC4F 3E7F8F45 0DA730C3 31E960FE CF511A05 2B0AA63E 9C022482
6E

Key label: the_default
Type : ECDSA General Curve Nistp384
Degree : 384
Created : 10:59:08 UTC Mon Nov 19 2018
Data :
04B70BAF C096E2CA D848EE72 6562F3CC 9F12FA40 BE09BFE6 AF0CA179 F29F6407
FEE24A43 84C5A5DE D7912208 CB67EE41 58CB9640 05E9421F 2DCDC41C EED31288
6CACC8DD 861DC887 98E535C4 893CB19F 5ED3F6BC 2C90C39B 10EAED57 87E96F78
B6

Key label: the_default
Type : ECDSA General Curve Nistp521
Degree : 521
Created : 10:59:09 UTC Mon Nov 19 2018
Data :
0400BA39 E3B35E13 810D8AE5 260B8047 84E8087B 5137319A C2865629 8455928F
D3D9CE39 00E097FF 6CA369C3 EE63BA57 A4C49C02 B408F682 C2153B7F AAE53EF8
A2926001 EF113896 5F1DA056 2D62F292 B860FDFB 0314CE72 F87AA2C9 D5DD29F4
DA85AE4D 1CA453AC 412E911A 419E9B43 0A13DAD3 7B7E88E4 7D96794B 369D6247
E3DA7B8A 5E

The following example shows the output for ed25519:

Router#show crypto key mypubkey ed25519
Wed Dec 16 16:12:21.464 IST
Key label: the_default
Type : ED25519

Implementing Secure Shell
12

Implementing Secure Shell
Configure the Allowed SSH Host-Key Pair Algorithms

Size : 256
Created : 15:08:28 IST Tue Oct 13 2020
Data :
649CC355 40F85479 AE9BE26F B5B59153 78D171B6 F40AA53D B2E48382 BA30E5A9

Router#

Related Topics

Automatic Generation of SSH Host-Key Pairs, on page 11

Associated Commands

• ssh server algorithms host-key

• show crypto key mypubkey

Ed25519 Public-Key Signature Algorithm Support for SSH
Table 1: Feature History Table

Feature DescriptionRelease InformationFeature Name

This algorithm is now supported on
Cisco IOS XR 64-bit platforms
when establishing SSH sessions. It
is a modern and secure public-key
signature algorithm that provides
several benefits, particularly
resistance against several
side-channel attacks. Prior to this
release, DSA, ECDSA, and RSA
public-key algorithms were
supported.

This command is modified for this
feature:

ssh server algorithms host-key

Release 7.3.1Ed25519 Public-Key Signature
Algorithm Support for SSH

This feature introduces the support for Ed25519 public-key algorithm, when establishing SSH sessions, on
Cisco IOS XR 64-bit platforms. This algorithm offers better security with faster performance when compared
to DSA or ECDSA signature algorithms.

The order of priority of public-key algorithms during SSH negotiation between the client and the server is:

• ecdsa-sha2-nistp256

• ecdsa-sha2-nistp384

• ecdsa-sha2-nistp521

• ssh-ed25519

Implementing Secure Shell
13

Implementing Secure Shell
Ed25519 Public-Key Signature Algorithm Support for SSH

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp2724890588

• ssh-rsa

• ssh-dsa

Restrictions for ED25519 Public Key for SSH

The Ed25519 public key algorithm is not FIPS-certified. That is, if FIPS mode is enabled on the router, the
list of public-key algorithms sent during the SSH key negotiation phase does not contain the Ed25519 key.
This behavior is applicable only for new SSH connections. Any existing SSH session that has already negotiated
Ed25519 public-key algorithm remains intact and continues to execute until the session is disconnected.

Further, if you have configured the router to negotiate only the Ed25519 public-key algorithm (using the ssh
server algorithms host-key command), and if FIPS mode is also enabled, then the SSH connection to the
router fails.

How to Generate Ed25519 Public Key for SSH
To generate Ed25519 public key for SSH, see .

You must also specify Ed25519 as the permitted SSH host-key pair algorithm from the list of auto-generated
host-key pairs on the SSH server. For details, see .

To remove the Ed25519 key from the router, use the crypto key zeroize ed25519 command in XR EXEC
mode.

Configure SSH Client
Perform this task to configure an SSH client.

SUMMARY STEPS

1. configure
2. ssh client knownhost device : /filename

3. Use the commit or end command.
4. ssh {ipv4-address | ipv6-address | hostname} [username user- cipher | source-interface type

instance]

DETAILED STEPS

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 ssh client knownhost device : /filename

Implementing Secure Shell
14

Implementing Secure Shell
How to Generate Ed25519 Public Key for SSH

Example:

RP/0/RP0/CPU0:router(config)# ssh client knownhost slot1:/server_pubkey

(Optional) Enables the feature to authenticate and check the server public key (pubkey) at the client end.

The complete path of the filename is required. The colon (:) and slash mark (/) are also required.Note

Step 3 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 4 ssh {ipv4-address | ipv6-address | hostname} [username user- cipher | source-interface type instance]

Enables an outbound SSH connection.

• To run an SSHv2 server, you must have a VRF. This may be the default or a specific VRF. VRF changes are
applicable only to the SSH v2 server.

• The SSH client tries to make an SSHv2 connection to the remote peer. If the remote peer supports only the SSHv1
server, the peer internally spawns an SSHv1 connection to the remote server.

• The cipher des option can be used only with an SSHv1 client.

• The SSHv1 client supports only the 3DES encryption algorithm option, which is still available by default for those
SSH clients only.

• If the hostname argument is used and the host has both IPv4 and IPv6 addresses, the IPv6 address is used.

• If you are using SSHv1 and your SSH connection is being rejected, the reason could be that the RSA
key pair might have been zeroed out. Another reason could be that the SSH server to which the user is
connecting to using SSHv1 client does not accept SSHv1 connections. Make sure that you have specified
a hostname and domain. Then use the crypto key generate rsa command to generate an RSA host-key
pair, and then enable the SSH server.

• If you are using SSHv2 and your SSH connection is being rejected, the reason could be that the DSA,
RSA host-key pair might have been zeroed out. Make sure you follow similar steps as mentioned above
to generate the required host-key pairs, and then enable the SSH server.

• When configuring the RSA or DSA key pair, you might encounter the following error messages:

• No hostname specified

You must configure a hostname for the router using the hostname command.

• No domain specified

You must configure a host domain for the router using the domain-name command.

Implementing Secure Shell
15

Implementing Secure Shell
Configure SSH Client

• The number of allowable SSH connections is limited to the maximum number of virtual terminal lines
configured for the router. Each SSH connection uses a vty resource.

• SSH uses either local security or the security protocol that is configured through AAA on your router
for user authentication. When configuring AAA, you must ensure that the console is not running under
AAA by applying a keyword in the global configuration mode to disable AAA on the console.

If you are using Putty version 0.63 or higher to connect to the SSH client, set the
'Chokes on PuTTYs SSH2 winadj request' option under SSH > Bugs in your
Putty configuration to 'On.' This helps avoid a possible breakdown of the session
whenever some long output is sent from IOS XR to the Putty client.

Note

Configuring Secure Shell

The following example shows how to configure SSHv2 by creating a hostname, defining a domain
name, enabling the SSH server for local and remote authentication on the router by generating a DSA
key pair, bringing up the SSH server, and saving the configuration commands to the running
configuration file.

After SSH has been configured, the SFTP feature is available on the router.

From Cisco IOS XR Software Release 7.0.1 and later, the crypto keys are auto-generated at the time
of router boot up. Hence, you need to explicitly generate the host-key pair only if it is not present in
the router under some scenarios.

configure
hostname router1
domain name cisco.com
exit
crypto key generate rsa/dsa
configure
ssh server
end

Order of SSH Client Authentication Methods
The default order of authentication methods for SSH clients on Cisco IOS XR routers is as follows:

• On routers running Cisco IOS XR SSH:

• public-key, password and keyboard-interactive (prior to Cisco IOS XR Software Release 24.1.1)

• public-key, keyboard-interactive and password (from Cisco IOS XR Software Release 24.1.1
and later)

• On routers running CiscoSSH (open source-based SSH):

• public-key, keyboard-interactive and password

Implementing Secure Shell
16

Implementing Secure Shell
Order of SSH Client Authentication Methods

How to Set the Order of Authentication Methods for SSH Clients
To set the preferred order of authentication methods for SSH clients on Cisco IOS XR routers, use the ssh
client auth-method command in the XR Config mode. This command is available from Cisco IOS XR
Software Release 7.9.2/Release 7.10.1and later.

Configuration Example

In this example, we set the order of SSH client authentication methods in such a way that public key
authentication is negotiated first, followed by keyboard-interactive, and then password-based authentication.

Router#configure
Router(config)#ssh client auth-method public-key keyboard-interactive password
Router(config-ssh)#commit

Running Configuration

Router#show run ssh client auth-methods
Tue Nov 21 17:55:44.688 IST
ssh client auth-methods public-key keyboard-interactive password
Router#

Configuring CBC Mode Ciphers
In Cisco IOS XR Release 7.0.1, you can enable CBC mode ciphers 3DES-CBC and AES-CBC for SSHv2
server and client connections. The ciphers are disabled by default.

Procedure

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure

Enters global configuration mode.

Step 2 ssh server enable cipher aes-cbc 3des-cbc

Example:
Router(config)# ssh server enable cipher aes-cbc 3des-cbc

Step 3 ssh client enable cipher aes-cbc 3des-cbc

Example:
Router(config)# ssh client enable cipher aes-cbc 3des-cbc

Step 4 Use the commit or end command.

commit —Saves the configuration changes and remains within the configuration session.

end —Prompts user to take one of these actions:

Implementing Secure Shell
17

Implementing Secure Shell
How to Set the Order of Authentication Methods for SSH Clients

• Yes — Saves configuration changes and exits the configuration session.

• No —Exits the configuration session without committing the configuration changes.

• Cancel —Remains in the configuration session, without committing the configuration changes.

Step 5 show ssh session details

Example:
Router# show ssh session details

Configuring CBC Mode Ciphers

/*Enable CBC mode ciphers 3DES-CBC and AES-CBC */
Router# configure
Router(config)# ssh server enable cipher aes-cbc 3des-cbc
Router(config)# ssh client enable cipher aes-cbc 3des-cbc
Router(config)# commit

Verify CBC Mode Cipher Configuration.
Router# show ssh session details

Thu Sep 6 10:16:26.346 UTC
SSH version : Cisco-2.0

id key-exchange pubkey incipher outcipher inmac outmac
--
Incoming Session
2 ecdh-sha2-nistp256 ssh-rsa aes128-cbc aes128-cbc hmac-sha2-256 hmac-sha2-256

Multi-channeling in SSH
The multi-channeling (also called multiplexing) feature on the Cisco IOS XR software server allows you to
establish multiple channels over the same TCP connection. Thus, rather than opening a new TCP socket for
each SSH connection, all the SSH connections are multiplexed into one TCP connection. For example, with
multiplexing support on your XR software server, on a single SSH connection you can simultaneously open
a pseudo terminal, remotely execute a command and transfer a file using any file transfer protocol. Multiplexing
offers the following benefits:

• You are required to authenticate only once at the time of creating the session. After that, all the SSH
clients associated with a particular session use the same TCP socket to communicate to the server.

• Saves time consumed otherwise wasted in creating a new connection each time.

Multiplexing is enabled by default in the Cisco IOS XR software server. If your client supports multiplexing,
you must explicitly set up multiplexing on the client for it to be able to send multi-channel requests to the
server. You can use OpenSSH, Putty, Perl, WinSCP, Putty, FileZilla, TTSSH, Cygwin or any other SSH-based
tool to set up multiplexing on the client. Configure Client for Multiplexing, on page 19 provides an example
of how you can configure the client for multiplexing using OpenSSH.

Implementing Secure Shell
18

Implementing Secure Shell
Multi-channeling in SSH

Restrictions for Multi-channeling Over SSH

• Do not use client multiplexing for heavy transfer of data as the data transfer speed is limited by the TCP
speed limit. Hence, for a heavy data transfer it is advised that you run multiple SSH sessions, as the TCP
speed limit is per connection.

• Client multiplexing must not be used for more than 15 concurrent channels per session simultaneously.

• You must ensure that the first channel created at the time of establishing the session is always kept alive
in order for other channels to remain open.

• The line template default session-limit command is not supported for SSH.

Client and Server Interaction Over Multichannel Connection

The following figure provides an illustration of a client-server interaction over a SSHmultichannel connection.

As depicted in the illustration,

• The client multiplexes the collection of channels into a single connection. This allows different operations
to be performed on different channels simultaneously. The dotted lines indicate the different channels
that are open for a single session.

• After receiving a request from the client to open up a channel, the server processes the request. Each
request to open up a channel represents the processing of a single service.

The Cisco IOS XR software supports server-side multiplexing only.Note

Configure Client for Multiplexing
The SSH client opens up one TCP socket for all the connections. In order to do so, the client multiplexes all
the connections into one TCP connection. Authentication happens only once at the time of creating the session.
After that, all the SSH clients associated with the particular session uses the same TCP socket to communicate
to the server. Use the following steps to configure client multiplexing using OpenSSH:

1. Edit the ssh_config file.

Implementing Secure Shell
19

Implementing Secure Shell
Configure Client for Multiplexing

Open the ssh_config file with your favorite text editor to configure values for session multiplexing. The
system-wide SSH configuration file is located under /etc/ssh/ssh_config. The user configuration file is
located under ~/.ssh/config or $HOME/.ssh/config.

2. Add entries ControlMaster auto and ControlPath

Add the entry ControlMaster auto and ControlPath to the ssh_config file, save it and exit.

• ControlMaster determines whether SSH will listen for control connections and what to do about
them. Setting the ControlMaster to 'auto' creates a primary session automatically but if there is a
primary session already available, subsequent sessions are automatically multiplexed.

• ControlPath is the location for the control socket used by the multiplexed sessions. Specifying the
ControlPath ensures that any time a connection to a particular server uses the same specified primary
connection.

Example:
Host *
ControlMaster auto
ControlPath ~/.ssh/tmp/%r@%h:%p

3. Create a temporary folder.

Create a temporary directory inside the /.ssh folder for storing the control sockets.

User Configurable Maximum Authentication Attempts for SSH
Table 2: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature allows you to set a
limit on the number of user
authentication attempts allowed for
SSH connection, using the three
authentication methods that are
supported by Cisco IOS XR. The
limit that you set is an overall limit
that covers all the authentication
methods together. If the user fails
to enter the correct login credentials
within the configured number of
attempts, the connection is denied
and the session is terminated.

This command is introduced for
this feature:

ssh server max-auth-limit

Release 7.3.1User Configurable Maximum
Authentication Attempts for SSH

The three SSH authentication methods that are supported by Cisco IOS XR are public-key (which includes
certificate-based authentication), keyboard-interactive, and password authentication. The limit count that you
set as part of this feature comes into effect whichever combination of authentication methods you use. The

Implementing Secure Shell
20

Implementing Secure Shell
User Configurable Maximum Authentication Attempts for SSH

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp2574225528

limit ranges from 3 to 20; default being 20 (prior to Cisco IOS XR Software Release 7.3.2, the limit range
was from 4 to 20).

Restrictions for Configuring Maximum Authentication Attempts for SSH

These restrictions apply to configuring maximum authentication attempts for SSH:

• This feature is available only for Cisco IOS XR routers functioning as SSH server; not for the ones
functioning as SSH clients.

• This configuration is not user-specific; the limit remains same for all the users.

• Due to security reasons, the SSH server limits the number of authentication attempts that explicitly uses
the password authentication method to a maximum of 3. You cannot change this particular limit of 3 by
configuring the maximum authentication attempts limit for SSH.

For example, even if you configure the maximum authentication attempts limit as 5, the number of
authentication attempts allowed using the password authentication method still remain as 3.

Configure Maximum Authentication Attempts for SSH
You can use the ssh server max-auth-limit command to specify the maximum number of authentication
attempts allowed for SSH connection.

Configuration Example

Router#configure
Router(config)#ssh server max-auth-limit 5
Router(config)#commit

Running Configuration

Router#show running-configuration ssh
ssh server max-auth-limit 5
ssh server v2
!

Verification

The system displays the following SYSLOG on the router console when maximum authentication attempts
is reached:

RP/0/RP0/CPU0:Oct 6 10:03:58.029 UTC: SSHD_[68125]: %SECURITY-SSHD-3-ERR_GENERAL : Max
authentication tries reached-exiting

Associated Commands

• ssh server max-auth-limit

Implementing Secure Shell
21

Implementing Secure Shell
Configure Maximum Authentication Attempts for SSH

X.509v3 Certificate-based Authentication for SSH
Table 3: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature adds new public-key
algorithms that use X.509v3 digital
certificates for SSH authentication.
These certificates use a chain of
signatures by a trusted certification
authority to bind a public key to the
digital identity of the user who is
authenticating with the SSH server.
These certificates are difficult to
falsify and therefore used for
identity management and access
control across many applications
and networks.

Commands introduced for this
feature are:

ssh server certificate

ssh server trustpoint

This command is modified for this
feature:

ssh server algorithms host-key

Release 7.3.1X.509v3 Certificate-based
Authentication for SSH

This feature adds new public-key algorithms that use X.509v3 digital certificates for SSH authentication. This
feature support is available for the SSH server for server and user authentication.

The X.509v3 certificate-based authentication for SSH feature supports the following public-key algorithms:

• x509v3-ssh-dss

• x509v3-ssh-rsa

• x509v3-ecdsa-sha2-nistp256

• x509v3-ecdsa-sha2-nistp384

• x509v3-ecdsa-sha2-nistp521

While user authentication by using X.509v3 certificate-based authentication for the SSH server is supported
using all algorithms listed above, server authentication is supported only with the x509v3-ssh-rsa algorithm.

Note

There are two SSH protocols that use public-key cryptography for authentication:

Implementing Secure Shell
22

Implementing Secure Shell
X.509v3 Certificate-based Authentication for SSH

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp3120599367
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp3063638977
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp2724890588

• Transport Layer Protocol (TLP) described in RFC4253—this protocol mandates that you use a digital
signature algorithm (called the public-key algorithm) to authenticate the server to the client.

• User Authentication Protocol (UAP) described in RFC4252—this protocol allows the use of a digital
signature to authenticate the client to the server (public-key authentication).

For TLP, the Cisco IOS XR SSH server provides its server certificate to the client, and the client verifies the
certificate. Similarly, for UAP, the client provides an X.509 certificate to the server. The peer checks the
validity and revocation status of the certificate. Based on the result, access is allowed or denied.

Server Authentication using X.509v3 Certificate

The server authentication process involves these steps:

1. The SSH server procures a valid identity certificate from a well-known certificate authority. This certificate
can be obtained manually (through cut-and-paste mechanism) or through protocol implementations such
as Simple Certificate Enrollment Protocol (SCEP).

2. The certificate authority provides valid identity certificates and associated root certificates. The requesting
device stores these certificates locally.

3. The SSH server presents the certificate to the SSH client for verification.

4. The SSH client validates the certificate and starts the next phase of the SSH connection.

Implementing Secure Shell
23

Implementing Secure Shell
X.509v3 Certificate-based Authentication for SSH

User Authentication using X.509v3 Certificate

The user authentication phase starts after the SSH transport layer is established. At the beginning of this phase,
the client sends the user authentication request to the SSH server with required parameters. The user
authentication process involves these steps:

1. The SSH client requests a valid identity certificate from a well-known certificate authority.

2. The certificate authority provides valid identity certificates and associated root certificates. The requesting
device stores these certificates locally.

3. The SSH client presents the certificate to the SSH server for verification.

4. The SSH server validates the certificate and starts the next phase of the SSH connection.

The certificate-based authentication uses public key as the authentication method. The certificate validation
process by the SSH server involves these steps:

• The SSH server retrieves the user authentication parameters, verifies the certificate, and also checks for
the certificate revocation list (CRL).

• The SSH server extracts the username from the certificate attributes, such as subject name or subject
alternate name (SAN) and presents them to the AAA server for authorization.

• The SSH server then takes the extracted username and validates it against the incoming username string
present in the SSH connection parameter list.

Restrictions for X.509v3 Certificate-based Authentication for SSH

These restrictions apply to the X.509v3 certificate-based authentication feature for SSH:

• Supported only for Cisco IOS XR devices acting as the SSH server; not for the Cisco IOS XR devices
acting as the SSH client.

• Supported only for local users because TACACS and RADIUS server do not support public-key
authentication. As a result, you must include the local option for AAA authentication configuration.

Implementing Secure Shell
24

Implementing Secure Shell
X.509v3 Certificate-based Authentication for SSH

Although this feature supports only local authentication, you can enforce remote
authorization and accounting using the TACACS server.

Note

• Certificate verification using the Online Certificate Status Protocol (OCSP) is currently not supported.
The revocation status of certificates is checked using a certificate revocation list (CRL).

• To avoid user authentication failure, the chain length of the user certificate must not exceed the maximum
limit of 9.

Configure X.509v3 Certificate-based Authentication for SSH
To enable X.509v3 certificate-based authentication for SSH, these tasks for server and user authentication:

Server Authentication:

• Configure the list of host key algorithms—With this configuration, the SSH server decides the list of
host keys to be offered to the client. In the absence of this configuration, the SSH server sends all available
algorithms to the user as host key algorithms. The SSH server sends these algorithms based on the
availability of the key or the certificate.

• Configure the SSH trust point for server authentication—With this configuration, the SSH server uses
the given trust point certificate for server authentication. In the absence of this configuration, the SSH
server does not send x509v3-ssh-rsa as a method for server verification. This configuration is not
VRF-specific; it is applicable to SSH running in all VRFs.

The above two tasks are for server authentication and the following ones are for user authentication.

User Authentication:

• Configure the trust points for user authentication—With this configuration, the SSH server uses the given
trust point for user authentication. This configuration is not user-specific; the configured trust points are
used for all users. In the absence of this configuration, the SSH server does not authenticate using
certificates. This configuration is not specific to a VRF; it is applicable to SSH running in all VRFs.

You can configure up to ten user trust points.

• Specify the username to be picked up from the certificate—This configuration specifies which field in
the certificate is to be considered as the username. The common-name from the subject name or the
user-principle-name(othername) from the subject alternate name, or both can be configured.

• Specify the maximum number of authentication attempts allowed by the SSH server—The value ranges
from 4 to 20. The default value is 20. The server closes the connection if the number of user attempts
exceed the configured value.

• AAA authentication configuration—The AAA configuration for public key is the same as that for the
regular or keyboard-interactive authentication, except that it mandates local method in the authentication
method list.

Implementing Secure Shell
25

Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH

Configuration Example

In this example, the x509v3-ssh-rsa is specified as the allowed host key algorithm to be sent to the client.
Similarly, you can configure other algorithms, such as ecdsa-sha2-nistp521, ecdsa-sha2-nistp384,
ecdsa-sha2-nistp256, ssh-rsa, and ssh-dsa.

/* Configure the lits of host key algorithms */
Router#configure
Router(config)#ssh server algorithms host-key x509v3-ssh-rsa
Router(config)#commit

/* Configure the SSH trustpoint for server authentication */
Router#configure
Router(config)#ssh server certificate trustpoint host tp1
Router(config)#commit

/* Configure the trustpoints to be used for user authentication */
Router#configure
Router(config)#ssh server trustpoint user tp1
Router(config)#ssh server trustpoint user tp2
Router(config)#commit

/* Specifies the username to be picked up from the certificate.
In this example, it specifies the user common name to be picked up from the subject name
field */
Router#configure
Router(config)#ssh server certificate username common-name
Router(config)#commit

/* Specifies the maximum authentication limit for the SSH server */
Router#configure
Router(config)#ssh server max-auth-limit 5
Router(config)#commit

/* AAA configuration for local authentication with certificate and
remote authorization with TACACS+ or RADIUS */
Router#configure
Router(config)#aaa authentication login default group tacacs+ local
Router(config)#aaa authorization exec default group radius group tacacs+
Router(config)#commit

Running Configuration

ssh server algorithms host-key x509v3-ssh-rsa
!
ssh server certificate trustpoint host tp1
!
ssh server trustpoint user tp1
ssh server trustpoint user tp2
!
ssh server certificate username common-name
!
ssh server max-auth-limit 5
!

Implementing Secure Shell
26

Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH

Verification of Certificate-based Authentication for SSH

You can use the show ssh server command to see various parameters of the SSH server. For certificate-based
authentication for SSH, the Certificate Based field displays Yes. Also, the two new fields, Host Trustpoint
and User Trustpoints, display the respective trust point names.

Router#show ssh server
Wed Feb 19 15:23:38.752 IST

SSH Server Parameters

Current supported versions := v2
SSH port := 22
SSH vrfs := vrfname:=default(v4-acl:=, v6-acl:=)

Netconf Port := 830
Netconf Vrfs := vrfname:=default(v4-acl:=, v6-acl:=)

Algorithms

Hostkey Algorithms := x509v3-ssh-rsa,
ecdsa-sha2-nistp521,ecdsa-sha2-nistp384,ecdsa-sha2-nistp256,ssh-rsa,ssh-dsa

Key-Exchange Algorithms :=
ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group14-sha1

Encryption Algorithms :=
aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com

Mac Algorithms := hmac-sha2-512,hmac-sha2-256,hmac-sha1

Authetication Method Supported

PublicKey := Yes
Password := Yes

Keyboard-Interactive := Yes
Certificate Based := Yes

Others

DSCP := 16
Ratelimit := 60

Sessionlimit := 100
Rekeytime := 60

Server rekeyvolume := 1024
TCP window scale factor := 1

Backup Server := Enabled, vrf:=default, port:=11000
Host Trustpoint := tp1
User Trustpoints := tp1 tp2

You can use the show ssh session details command to see the chosen algorithm for an SSH session:

Router#show ssh session details
Wed Feb 19 15:33:00.405 IST
SSH version : Cisco-2.0

id key-exchange pubkey incipher outcipher inmac
outmac
--

Incoming Sessions
1 ecdh-sha2-nistp256 x509v3-ssh-rsa aes128-ctr aes128-ctr hmac-sha2-256
hmac-sha2-256

Implementing Secure Shell
27

Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH

Similarly, you can use the show ssh command to verify the authentication method used. In this example, it
shows as x509-rsa-pubkey:

Router#show ssh
Sun Sep 20 18:14:04.122 UTC
SSH version : Cisco-2.0

id chan pty location state userid host ver authentication connection
type
--
Incoming sessions
4 1 vty0 0/RP0/CPU0 SESSION_OPEN 9chainuser 10.105.230.198 v2 x509-rsa-pubkey
Command-Line-Interface

Outgoing sessions

SYSLOGS

You can observe relevant SYSLOGS on the router console in various scenarios listed here:

• On successful verification of peer certificate:

RP/0/RP0/CPU0:Aug 10 15:01:34.793 UTC: locald_DLRSC[133]: %SECURITY-PKI-6-LOG_INFO :
Peer certificate verified successfully

• When user certificate CA is not found in the trust point:

RP/0/RP0/CPU0:Aug 9 22:06:43.714 UTC: locald_DLRSC[260]: %SECURITY-PKI-3-ERR_GENERAL
: issuer not found in trustpoints configured
RP/0/RP0/CPU0:Aug 9 22:06:43.714 UTC: locald_DLRSC[260]: %SECURITY-PKI-3-ERR_ERRNO :
Error:='Crypto Engine' detected the 'warning' condition 'Invalid trustpoint or trustpoint
not exist'(0x4214c000), cert verificationn failed

• When there is no CA certificate or host certificate in the trust point:

RP/0/RP1/CPU0:Aug 10 00:23:28.053 IST: SSHD_[69552]: %SECURITY-SSHD-4-WARNING_X509 :
could not get the host cert chain, 'sysdb' detected the 'warning' condition 'A SysDB
client tried to access a nonexistent item or list an empty directory', x509 host auth
will not be used
RP/0/RP1/CPU0:Aug 10 00:23:30.442 IST: locald_DLRSC[326]: %SECURITY-PKI-3-ERR_ERRNO :
Error:='Crypto Engine' detected the 'warning' condition 'Invalid trustpoint or trustpoint
not exist'(0x4214c000), Failed to get trustpoint name from

How to Disable X.509v3 Certificate-based Authentication for SSH

• Server Authentication — You can disable X.509v3 certificate-based server authentication for SSH by
using the ssh server algorithms host-key command. From the list of auto-generated host-key pairs
algorithms on the SSH server, this command configures allowed SSH host-key pair algorithms. Hence,
if you have this configuration without specifying the x509-ssh-rsa option in the preceding command, it
is equivalent to disabling the X.509v3 certificate-based server authentication for the SSH server.

• User Authentication — You can remove the user trust point configuration (ssh server trustpoint user)
so that the SSH server does not allow the X.509v3 certificate-based authentication.

Implementing Secure Shell
28

Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH

Failure Modes for X.509v3 Certificate-based Authentication for SSH

If the ssh server certificate trustpoint host configuration is missing, or if the configuration is present, but
the router certificate is not present under the trust point, then the SSH server does not add x509-ssh-rsa to
the list of supported host key methods during key exchange.

Also, the user authentication fails with an error message if:

• User certificate is in an incorrect format.

• The chain length of the user certificate is more than the maximum limit of 9.

• Certificate verification fails due to any reason.

Related Topics

• X.509v3 Certificate-based Authentication for SSH, on page 22

Associated Commands

• ssh server algorithms hostkey

• ssh server certificate username

• ssh server max-auth-limit

• ssh server trustpoint host

• ssh server trustpoint user

• show ssh server

• show ssh session details

Implementing Secure Shell
29

Implementing Secure Shell
Configure X.509v3 Certificate-based Authentication for SSH

OpenSSH Certificate based Authentication for Router
Table 4: Feature History Table

Feature DescriptionRelease InformationFeature Name

You can now use OpenSSH
certificates to authenticate to the
remote routers from a client
machine. This feature uses the
ssh-keygen utility, a standard SSH
component to generate andmanage
authentication keys, available in
OpenSSH to create a CA
(Certificate Authority) like
infrastructure for logging into the
router.

In this feature, the certificates that
are used to authenticate router and
client are both signed by the same
CA. This automatically establishes
trust between router and client, and
eliminates the need to establish
trust, while using the client for
remote logging to router for the first
time.

Release 7.5.3OpenSSH Certificate based
Authentication for Router

OpenSSH is the open-source implementation of the SSH Protocol. In OpenSSH certificate-based authentication,
you can use the ssh-keygen utility to create a certificate signing infrastructure. A digital certificate with public
and private key pair, created using the ssh-keygen utility, authenticates the host and the user certificates. The
user certificate authenticates the client machine to the router. The client machine is a system that the user
utilizes to establish remote access to the router. When a user attempts to log in to the router using the client
machine, the client machine presents its certificate to the router. The router checks for the identity and validity
of the certificate to decide whether to allow or deny the connection request. The host certificate in the router
authenticates the router to the client. Overall, the host and user certificates together establish a two-way secure
communication channel.

The OpenSSH based authentication for the router has the following major phases:

Establishing the trustpoints: In the router, you must create a trustpoint and configure the router to use this
trustpoint for the host and user authentication. You can have a same or different trustpoints for these entities.
While the router can have only one trustpoint, the user can have up to ten trustpoints.

Creating the CA: Any system with the OpenSSH feature acts like the CA. The ssh-keygen creates the CA
certificate and utilizes it to sign the router and user certificate.

Router authentication: You must copy the CA public key in the CA server to the router and ensure to create
a CSR (Certificate Signing Request) in the router. The CSR file is further copied to the CA server and signed
using the CA certificate. The CA signed certificate is copied back to the router to complete its authentication
with CA.

Implementing Secure Shell
30

Implementing Secure Shell
OpenSSH Certificate based Authentication for Router

User authentication: You must create a digital certificate for the user using the ssh-keygen utility and sign
the public key using the CA certificate. The CA signed user certificate must be copied to the client system
using which you would log into the router using the specified user.

Implementing Secure Shell
31

Implementing Secure Shell
OpenSSH Certificate based Authentication for Router

Remote access to the router: After the host and user authentication, you can access the router using SSH in
the client system that is used to authenticate the user.

Feature Highlights
• OpenSSH certificates use the Certificate Authority (CA) infrastructure to act as a trusted entity while
signing the host or user certificates.

• OpenSSH certificates contain a public and private key pair, including identity and validity information.
These are signed using a standard SSH public key using the ssh-keygen utility.

• The router certificate includes information such as the host public key, public key of the signing CA,
type (host), certificate validity, Key ID, serial number of the certificate, and so on.

• The user certificate contains the user's public key, the public key of the signing CA, Key ID, type (user),
serial number, certificate validity, principals matched against the login username, and so forth.

• The CA is just another SSH key created using the ssh-keygen utility. However, rather than utilizing it
for authenticating the router or user directly, it's used to sign and validate the other keys that are used for
authenticating the router and the user.

• You can view the router and user certificate properties using the ssh-keygen.

• The OpenSSH certificates support the following encryptions:

• RSA

• DSA

• ECDSA

• ED25519

Prerequisites
• You must have a client machine which has OpenSSH feature with the ssh-keygen utility to act as CA.

Configuration Example
The following high-level steps help you set up OpenSSH based Authentication:

1. Create a trustpoint in the router and configure the router to use this trustpoint for the host and user
authentication.

2. Creating CA, the CA here is a dedicated system with OpenSSH feature that provides a certificate signing
infrastructure using the ssh-keygen utility.

3. Host authentication, the host here is the Cisco IOS XR router.

4. User authentication, a user is any entity attempting to access the router. Generally refers to system to
access the router CLI remotely. User is also referred to as client.

5. Access the router in the client using the OpenSSH authentication

Implementing Secure Shell
32

Implementing Secure Shell
Feature Highlights

This section contains the detailed procedure to enable this feature in your router.

1. Create a trustpoint in the router and configure the router to use this trustpoint for the host and user
authentication.

a. [Router Config mode] Create a trustpoint in the router.
Router# config
Router(config)# crypto ca openssh trustpoint test
Router(config)# commit

b. [Router Config mode] Configure the trustpoint for host authentication.
Router# config
Router(config)# ssh server openssh trustpoint host test
Router(config)# commit

c. [Router Config mode] Configure the trustpoint for user authentication
Router# config
Router(config)# ssh server openssh trustpoint user test
Router(config)# commit

2. Creating CA

a. [CA Server] In the dedicated machine with OpenSSH feature to act as CA, generate a certificate using
the ssh-keygen utility:
[root@CAServer test]# ssh-keygen -t rsa -f cacert
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in cacert.
Your public key has been saved in cacert.pub.
The key fingerprint is:
SHA256:/B2b8V7jKXwGphf75fkO74U/mpuHgDHmvF4okexdKhY root@CAServer
The key's randomart image is:
+---[RSA 2048]----+
| |
| |
| |
| ...+ |
| ES +.o |
| . +=+o X . |
| = +o.O O.+|
| . o... B+@*|
| .. .=XBX|
+----[SHA256]-----+

[root@CAServer test]# ls
cacert cacert.pub

Leave the passphrase empty.Note

3. Host (Router) authentication

a. [CA Server] Open the CA public key from CA server and copy it contents.
[root@CAServer test]# cat cacert.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76
HBaROV0pVS4Lx3pf1jcjrFkVibPKKkVeX/lE7sZIJ0anU9vYSJZW8zrl8z06G

Implementing Secure Shell
33

Implementing Secure Shell
Configuration Example

qzmnJqRRaXa9vfwNmjvNdRwxuBA3Uk/G1sbmcusMXBXoY6z0IEMhlVN0hCqE4
cIFgLxgHpYAaqyl2hISaomTCNhkbD770Ot8zbyRjl6G0Ps0ggYHWmfLZf/tbF
IBPWpuuuA3LvpZIiTaztevQaWYSyK22h3tp3K62IOBX3gUd4Yr+Gvo4PNA26e
21cUE2aVJsl6J9MeFITR2NzY1cmZ44KWi6bglkPlE4KBiRsbHCvs4wlaUaO5q
hNj1BdH3/Hha4x root@CAServer

b. [Router EXEC mode] Add the contents of the CA public key to router trustpoint.
Router#crypto ca openssh authenticate test
Enter the CA pubkey.
End with a blank line or the word "quit" on a line by itself
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL7
6HBaROV0pVS4Lx3pf1jcjrFkVibPKKkVeX/lE7sZIJ0anU9vYSJZW8zrl8z0
6GqzmnJqRRaXa9vfwNmjvNdRwxuBA3Uk/G1sbmcusMXBXoY6z0IEMhlVN0hC
qE4cIFgLxgHpYAaqyl2hISaomTCNhkbD770Ot8zbyRjl6G0Ps0ggYHWmfLZf
/tbFIBPWpuuuA3LvpZIiTaztevQaWYSyK22h3tp3K62IOBX3gUd4Yr+Gvo4P
NA26e21cUE2aVJsl6J9MeFITR2NzY1cmZ44KWi6bglkPlE4KBiRsbHCvs4wl
aUaO5qhNj1BdH3/Hha4x root@CAServer
Do you accept this certificate? [yes/no]: yes

c. [Router EXEC mode] Validate the copied CA public key by viewing the OpenSSH certificates in the
CA trustpoint configured in the router.
Router#show crypto ca openssh certificates
Fri Sep 16 06:59:38.347 UTC

Trustpoint : test
===
CA certificate
===

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76HBa
ROV0pVS4Lx3pf1jcjrFkVibPKKkVeX/lE7sZIJ0anU9vYSJZW8zrl8z06GqzmnJq
RRaXa9vfwNmjvNdRwxuBA3Uk/G1sbmcusMXBXoY6z0IEMhlVN0hCqE4cIFgLxgHp
YAaqyl2hISaomTCNhkbD770Ot8zbyRjl6G0Ps0ggYHWmfLZf/tbFIBPWpuuuA3Lv
pZIiTaztevQaWYSyK22h3tp3K62IOBX3gUd4Yr+Gvvcjdvjwevfo4PNA26e21cUE
2aVJsl6J9eFITR2NzY1cmZ44KWi6bglkPlE4KBiRsbHCvs4wlaUaO5qhNj1BdH3/
Hha4x root@CAServer

d. [Router EXEC mode] Generate a CSR for the CA public key in the router.
Router#crypto ca openssh enroll test
Fri Sep 16 06:34:41.230 UTC
Display Certificate Request to terminal? [yes/no]: yes
---Hostkey follows---

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCaXqjc45LohfiHJ1iq8sSpaJmdR
QQJo6bRMhkdxY1pbjEYrwjPTn5SnC1NZYwsTPSHlbYBxQRLBHLv80Gbb0v+uJ1T0T
4tAmLgSYPXaHqYIyepCeMKSkSKLgZ0Pf+oGBMtf3uUuLqCgnFAwjrzDBXJYfF+bd/
ieXMwKKNH3YiceLOqe4BAYRU6m+wiuZ8is+bIfy32Eq7gWuPUz8XpxaCt3icpqfrj
7/vm7amKf1GpiheaRJH0Cg4JAmJpAQkuPjx+Y9SZw2yTJP+IKr9tSoSWyiHo2B/Yg
3yERd7M8dQEsvrGy5KIf92x+eLPlGl5gB9ykEPDUpXeaYTu5wtDR/Jd

---End - This line not part of hostkey---
Redisplay enrollment request? [yes/no]: n

e. [Router EXEC mode] Select the hostkey contents of the CSR file and copy the hostkey of the CSR.

f. [CA server] Create a .pub file in the CA server for the CSR hostkey and paste the copied hostkey
contents in this file.
[root@CAServer test]# vim host.pub
/* Here we are using the vim text editor to create the host.pub file */
/* You can use any text editor of your choice */

Implementing Secure Shell
34

Implementing Secure Shell
Configuration Example

g. [CA server] Execute the following block to sign the CSR file using the CA certificate
[root@CAServer test]# ssh-keygen -h -s cacert -I "server" -V +10w -z 10 host.pub
Signed host key host-cert.pub: id "server" serial 10 valid from 2022-09-16T12:26:00
to 2022-11-25T12:27:17

Use the following command to sign the CSR file using the CA certificate:

ssh-keygen -h -s <CACert> -I <IdentityOfCSRSys> -V <CertValidity> -z
<CertSerialNo> <CopiedCSRFile>

Note

DescriptionParameter

Specify the filename of the CA Server private keyCACert

Specify the validity period for the certificate.CertValidity

Specify a serial number for the certificate.CertSerialNo

Specify the name of the file created to copy the
contents of CSR in the router.

CopiedCSRFile

h. [CA server] Open the signed host certificate and copy the contents.
[root@CAServer test]# cat host-cert.pub
ssh-rsa-cert-v01@openssh.com AAAAHHNzaC1yc2EtY2VydC12MDFAb3BlbnNza
C5jb20AAAAgzv0OXl42NNK9C4PtLZniRwBk5jbeS8quNhzVKsRpO7UAAAADAQABAAA
BAQCaXqjc45LohfiHJ1iq8sSpaJmdRQQJo6bRMhkdxY1pbjEYrwjPTn5SnC1NZYwsT
PSHlbYBxQRLBHLv80Gbb0v+uJ1T0T4tAmLgSYPXaHqYIyepCeMKSkSKLgZ0Pf+oGBM
tf3uUuLqCgnFAwjrzDBXJYfF+bd/ieXMwKKNH3YiceLOqe4BAYRU6m+wiuZ8is+bIf
y32Eq7gWuPUz8XpxaCt3icpqfrj7/vm7amKf1GpiheaRJH0Cg4JAmJpAQkuPjx+Y9S
Zw2yTJP+IKr9tSoSWyiHo2B/Yg3yERd7M8dQEsvrGy5KIf92x+eLPlGl5gB9ykEPDU
pXeaYTu5wtDR/JdAAAAAAAAAAoAAAACAAAABnNlcnZlcgAAAAAAAAAAYyQeAAAAAAB
jgGdNAAAAAAAAAAAAAAAAAAABFwAAAAdzc2gtcnNhAAAAAwEAAQAAAQEAooJf84co7
hjgWM+W7vhi++hwWkTldKVUuC8d6X9Y3I6xZFYmzyipFXl/5RO7GSCdGp1Pb2EiWVv
M65fM9Ohqs5pyakUWl2vb38DZo7zXUcMbgQN1JPxtbG5nLrDFwV6GOs9CBDIZVTdIQ
qhOHCBYC8YB6WAGqspdoSEmqJkwjYZGw++9DrfM28kY5ehtD7NIIGB1pny2X/7WxSA
T1qbrrgNy76WSIk2s7Xr0GlmEsittod7adyutiDgV94FHeGK/hr6ODzQNunttXFBNm
lSbJeifTHhSE0djc2NXJmeOCloum4JZD5ROCgYkbGxwr7OMJWlGjuaoTY9QXR9/x4W
uMQAAAQ8AAAAHc3NoLXJzYQAAAQAIywc9o2OWzFq32MnE9IZVVRRiItdXaMVE1EvYu
G92JK7wnMJd50M6QDyfkNmGF4ramF90/bVQpl3UYJzVxCJSEodAq6OmlG3zx/MVayT
unMwV2Fq75PpaoZVpyEKx4kLKA6rNU5Tmbht2OfMQKFvIWyxTDmeLFMvnpt8R0Yrz4
sG5EP1+4E3WthfzZr42Mq2LQJt6aBeYHZDZSp++j7RpA7+T/6n1aGtAjtDIKprOQuE
1higCZmdI+kUZDOXjMJlPmJAnV8fdtnnEpYCyzYeD+rSSF7dlDVrTaiFdqrfCXh+uY
jR1E621sP7UEJOWeiBqSDTJxSRdRBNZq9TLmgJH host.pub

i. [Router EXEC mode] Import the signed host certificate to the router.
Router# crypto ca openssh import test certificate
/* This command opens the CA trustpoint and you must paste the contents of signed
certificate copied from the CA server */
Fri Sep 16 07:00:27.573 UTC

Enter the OpenSSH certificate.
End with a blank line

ssh-rsa-cert-v01@openssh.com AAAAHHNzaC1yc2EtY2VydC12MDFAb3BlbnNzaC
5jb20AAAAgzv0OXl42NNK9C4PtLZniRwBk5jbeS8quNhzVKsRpO7UAAAADAQABAAABA

Implementing Secure Shell
35

Implementing Secure Shell
Configuration Example

QCaXqjc45LohfiHJ1iq8sSpaJmdRQQJo6bRMhkdxY1pbjEYrwjPTn5SnC1NZYwsTPSH
lbYBxQRLBHLv80Gbb0v+uJ1T0T4tAmLgSYPXaHqYIyepCeMKSkSKLgZ0Pf+oGBMtf3u
UuLqCgnFAwjrzDBXJYfF+bd/ieXMwKKNH3YiceLOqe4BAYRU6m+wiuZ8is+bIfy32Eq
7gWuPUz8XpxaCt3icpqfrj7/vm7amKf1GpiheaRJH0Cg4JAmJpAQkuPjx+Y9SZw2yTJ
P+IKr9tSoSWyiHo2B/Yg3yERd7M8dQEsvrGy5KIf92x+eLPlGl5gB9ykEPDUpXeaYTu
5wtDR/JdAAAAAAAAAAoAAAACAAAABnNlcnZlcgAAAAAAAAAAYyQeAAAAAABjgGdNAAA
AAAAAAAAAAAAAAAABFwAAAAdzc2gtcnNhAAAAAwEAAQAAAQEAooJf84co7hjgWM+W7v
hi++hwWkTldKVUuC8d6X9Y3I6xZFYmzyipFXl/5RO7GSCdGp1Pb2EiWVvM65fM9Ohqs
5pyakUWl2vb38DZo7zXUcMbgQN1JPxtbG5nLrDFwV6GOs9CBDIZVTdIQqhOHCBYC8YB
6WAGqspdoSEmqJkwjYZGw++9DrfM28kY5ehtD7NIIGB1pny2X/7WxSAT1qbrrgNy76W
SIk2s7Xr0GlmEsittod7adyutiDgV94FHeGK/hr6ODzQNunttXFBNmlSbJeifTHhSE0
djc2NXJmeOCloum4JZD5ROCgYkbGxwr7OMJWlGjuaoTY9QXR9/x4WuMQAAAQ8AAAAHc
3NoLXJzYQAAAQAIywc9o2OWzFq32MnE9IZVVRRiItdXaMVE1EvYuG92JK7wnMJd50M6
QDyfkNmGF4ramF90/bVQpl3UYJzVxCJSEodAq6OmlG3zx/MVayTunMwV2Fq75PpaoZV
pyEKx4kLKA6rNU5Tmbht2OfMQKFvIWyxTDmeLFMvnpt8R0Yrz4sG5EP1+4E3WthfzZr
42Mq2LQJt6aBeYHZDZSp++j7RpA7+T/6n1aGtAjtDIKprOQuE1higCZmdI+kUZDOXjM
JlPmJAnV8fdtnnEpYCyzYeD+rSSF7dlDVrTaiFdqrfCXh+uYjR1E621sP7UEJOWeiBq
SDTJxSRdRBNZq9TLmgJH host.pub

j. [Router EXEC mode] Verify the host certificate import in the router.
Router#show crypto ca openssh certificates
Fri Sep 16 07:00:49.488 UTC

Trustpoint : test
===
CA certificate
===
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76HBaROV
0pVS4Lx3pf1jcjrFkVibPKKkVeX/lE7sZIJ0anU9vYSJZW8zrl8z06GqzmnJqRRaXa9
vfwNmjvNdRwxuBA3Uk/G1sbmcusMXBXoY6z0IEMhlVN0hCqE4cIFgLxgHpYAaqyl2hI
SaomTCNhkbD770Ot8zbyRjl6G0Ps0ggYHWmfLZf/tbFIBPWpuuuA3LvpZIiTaztevQa
WYSyK22h3tp3K62IOBX3gUd4Yr+Gvo4PNA26e21cUE2aVJsl6J9MeFITR2NzY1cmZ44
KWi6bglkPlE4KBiRsbHCvs4wlaUaO5qhNj1BdH3/Hha4x root@CAServer

Router certificate
==
Type : Host Certificate
Key ID : server
Serial : 10
Valid : from Fri Sep 16 06:56:00 2022 to Fri Nov 25 06:57:17 2022

4. User authentication

a. [Client machine] Generate an SSH key pair in the client system using the ssh-keygen utility for the
user.
[root@userclient test]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa): /root/openssh_client/test/user
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/openssh_client/test/user.
Your public key has been saved in /root/openssh_client/test/user.pub.
The key fingerprint is:
SHA256:rNmS7P0u6l1pm75Kb4KhMxZThwaJ/AMnA9C//Z1GVEY root@userclient.cisco.com
The key's randomart image is:
+---[RSA 2048]----+
|++ . . .E |
| B + o |
| B . . o |
| + +.. . |
| * .S. |
| +.o= .. |

Implementing Secure Shell
36

Implementing Secure Shell
Configuration Example

| +*+oo+. |
| =..=++=o |
| . ++.+XO. |
+----[SHA256]-----+
[root@userclient test]# ls
user user.pub

b. [Client machine] Open the SSH public key file.

Copy the public key content for the user certificate.Note

[root@userclient test]# cat user.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCspUNwiwlEy0VXQ1Ruh2peRnAP12LSICNe9
H76xyBiCIXFLLXHTUZZM+W/Pa97pg3fObxaqyNYaeojfwmGeNyPLS9Ha0mqRuLmVCT/1got5I
Rn1AZhufZz7iz1AdW8DMC//KUnUS/T+cEwGrZ//sbIPTMsQZhhaQVk9xqFp9ghPMxwar3vaHa
t9NL6ThrR+viue9IOY5LKMeRnqrf2GFX3L6gHfcgYv9fQOKxI11WjTA645rQyB+NumVlrG6KI
as/xmBCEFHpChGZ1/GSB/atrKeVEWqzsJkpQHXEtE7hwK8gMrL+ad38mbV2Zz6Cc7KHJFEWaZ
sfjFscCP0kzU1gX root@userclient.cisco.com

c. [CA server] Create a .pub file in the CA server for the user certificate public key and paste the public
key contents from the previous step in this file.
[root@CAServer test]# vim user.pub
/* Here we are using the vim text editor to create the user.pub file */
/* You can use any text editor of your choice */

d. [CA server] Sign the user public key using the CA certificate private key.
[root@CAServer test]# ssh-keygen -s cacert -I "user" -V +10w -n testuser -z 20 user.pub

Signed user key user-cert.pub: id "user" serial 20 valid from 2022-09-16T12:42:00 to
2022-11-25T12:43:24

The command to sign the CSR file using the CA certificate:

ssh-keygen -s <CACert> -I <IdentityOfSysReqCert> -V <CertValidity> -n
<Username> -z <CertSerialNo> <CopiedUserCertName>

Note

In addition to the mandatory fields specified for the user certificate, you can also configure critical options
and extensions for the user certificate. For detailed information on the critical options and extensions, refer
ssh-keygen.

Note

DescriptionParameter

Specify the filename of the CA Server private key/CACert

Specify the identity of the certificate as UserIdentityOfSysReqCert

Specify the validity period for the certificate.CertValidity

Implementing Secure Shell
37

Implementing Secure Shell
Configuration Example

http://man.openbsd.org/ssh-keygen.1

DescriptionParameter

Specify the principals that you want to add to the
certificate.

During authentication to the router, the
principal in the user certificate is matched
against the login username and requests
with matching principal and username are
permitted for further communication.

Note

You can have multiple principals that are
associated with the same certificate. The
principals must be separated by commas in
the IdentityOfSysReqCert field in
command to sign the user certificate file
using CA certificate.

Note

<Username>

Specify a serial number for the certificate.CertSerialNo

Specify the name of the file created to copy the
contents of the user certificate file in the client
machine.

CopiedUserCertName

e. [CA server] Open the signed user certificate in the CA server and copy the contents.
[root@CAServer test]# cat user-cert.pub
ssh-rsa-cert-v01@openssh.com AAAAHHNzaC1yc2EtY2VydC12MDFAb3BlbnNzaC5jb20AA
AAg6xlcZNQTKmUO27dHFcUCk7UzVCPWFMCep7Ldb4lBF6MAAAADAQABAAABAQCspUNwiwlEy0V
XQ1Ruh2peRnAP12LSICNe9H76xyBiCIXFLLXHTUZZM+W/Pa97pg3fObxaqyNYaeojfwmGeNyPL
S9Ha0mqRuLmVCT/1got5IRn1AZhufZz7iz1AdW8DMC//KUnUS/T+cEwGrZ//sbIPTMsQZhhaQV
k9xqFp9ghPMxwar3vaHat9NL6ThrR+viue9IOY5LKMeRnqrf2GFX3L6gHfcgYv9fQOKxI11WjT
A645rQyB+NumVlrG6KIas/xmBCEFHpChGZ1/GSB/atrKeVEWqzsJkpQHXEtE7hwK8gMrL+ad38
mbV2Zz6Cc7KHJFEWaZsfjFscCP0kzU1gXAAAAAAAAABQAAAABAAAABHVzZXIAAAAAAAAAAGMkI
cAAAAAAY4BrFAAAAAAAAACCAAAAFXBlcm1pdC1YMTEtZm9yd2FyZGluZwAAAAAAAAAXcGVybWl
0LWFnZW50LWZvcndhcmRpbmcAAAAAAAAAFnBlcm1pdC1wb3J0LWZvcndhcmRpbmcAAAAAAAAAC
nBlcm1pdC1wdHkAAAAAAAAADnBlcm1pdC11c2VyLXJjAAAAAAAAAAAAAAEXAAAAB3NzaC1yc2E
AAAADAQABAAABAQCigl/zhyjuGOBYz5bu+GL76HBaROV0pVS4Lx3pf1jcjrFkVibPKKkVeX/lE
7sZIJ0anU9vYSJZW8zrl8z06GqzmnJqRRaXa9vfwNmjvNdRwxuBA3Uk/G1sbmcusMXBXoY6z0I
EMhlVN0hCqE4cIFgLxgHpYAaqyl2hISaomTCNhkbD770Ot8zbyRjl6G0Ps0ggYHWmfLZf/tbFI
BPWpuuuA3LvpZIiTaztevQaWYSyK22h3tp3K62IOBX3gUd4Yr+Gvo4PNA26e21cUE2aVJsl6J9
MeFITR2NzY1cmZ44KWi6bglkPlE4KBiRsbHCvs4wlaUaO5qhNj1BdH3/Hha4xAAABDwAAAAdzc
2gtcnNhAAABABKOHeuTo9OMg6K+HjASpRXD7rQgiiOdljKdkpw4FZlwCOdBegQwPQkFYTNHmrH
frQYY72ZINCAjseq+ZSUCkCqJjyXbvY+ZdmRyy76pQvjitgolZjppJqX38nz3uqz/81A/ZuJiF
811sgJF0Loj7XDN9wjF/zBtsxsXPp7R5c775dmmFgZWQHbSWDlNmnPd9vLZMyBwId//+HV/bCF
LjbqI/nr/amLVjcI0liOZXzsH7bcLFBSDZ3Epd6IAqFEe+URqvscjaaghcvnshvcafdgfaruO0
wedsZX53/pEBKhlGacsachFa+S2QuYqTafqnEtkvJoNKVe7UDq/R4kEXM1s9CclIMOficYJm5L
as+ALR4= root@CAServer.cisco.com

f. [CA server] Create a .pub file in the client machine fo the CA signed user certificate and past the
signed certificate contents in this file.
[root@CAServer test]# vim user-cert.pub
/* Here we are using the vim text editor to create the user-cert.pub file */
/* You can use any text editor of your choice */

g. [Client machine] View the user certificate in the client machine.

Implementing Secure Shell
38

Implementing Secure Shell
Configuration Example

[root@userclient test]# ssh-keygen -Lf user-cert.pub
user-cert.pub:

Type: ssh-rsa-cert-v01@openssh.com user certificate
Public key: RSA-CERT SHA256:rNmS7P0u6l1pm75Kb4KhMxZThwaJ/AMnA9C//Z1GVEY
Signing CA: RSA SHA256:/B2b8V7jKXwGphf75fkO74U/mpuHgDHmvF4okexdKhY
Key ID: "user"
Serial: 20
Valid: from 2022-09-16T12:44:00 to 2022-11-25T12:45:51
Principals:

testuser
Critical Options: (none)
Extensions:

permit-X11-forwarding
permit-agent-forwarding
permit-port-forwarding
permit-pty
permit-user-rc

h. [Client machine] Open the known hosts file in the client system and add the public key of the CA to
this file.

Add the CA public key to the known hosts file in the following format:

@cert-authority <hostname> <CA Public Key>

Note

cat testuser@192.0.2.2 /root/.ssh/known_hosts
@cert-authority ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCigl/zhyjuGOBYz5bu
+GL76HBaROV0pVS4Lx3pf1jcjrFkVibPKKkVeX/lE7sZIJ0anU9vYSJZW8zrl8z06GqzmnJq
RRaXa9vfwNmjvNdRwxuBA3Uk/G1sbmcusMXBXoY6z0IEMhlVN0hCqE4cIFgLxgHpYAaqyl2h
ISaomTCNhkbD770Ot8zbyRjl6G0Ps0ggYHWmfLZf/tbFIBPWpuuuA3LvpZIiTaztevQaWYSy
K22h3tp3K62IOBX3gUd4Yr+Gvo4PNA26e21cUE2aVJsl6J9MeFITR2NzY1cmZ44KWi6bglkP
lE4KBiRsbHCvs4wlaUaO5qhNj1BdH3/Hha4x root@CAServer.cisco.com

i. [Router Config mode] Configure the username in the router
Router# config
Router(config)# username testuser
Router(config-un)# group root-lr
Router(config-un)# commit

5. [Client machine] Access the router in the client using the OpenSSH certificate.
[root@userclient test]# ssh -o CertificateFile=user-cert.pub -i user testuser@192.0.2.2
-o StrictHostKeyChecking=yes
Router#

The command to access the router in the client machine remotely:

ssh -o CertificateFile=<CA_Signed_User_Certificate_Name> -i
<User_Certificate_Private_Key> <Username >@<Router_IP> -o
StrictHostKeyChecking=yes

Note

Implementing Secure Shell
39

Implementing Secure Shell
Configuration Example

Certificate-based user authentication using TACACS+ server
Table 5: Feature History Table

Feature DescriptionRelease InformationFeature Name

This feature enables the router login
for users in the remote TACACS+
server using the certificate-based
authentication methods. Here, the
router authenticates a user using the
OpenSSH certificates and
authorizes access according to the
configurations available for that
user in the external TACACS+
server. This feature provides an
option to configure the users in a
centralized TACACS+ server and
use them across multiple routers in
a network. Thus, it helps you
overcome the hassles of configuring
users in each router individually
while authenticating users based on
certificates.

This feature introduces the aaa
enable-cert-authentication
command.

Release 7.5.4Certificate-based user
authentication using TACACS+
server

In certificate-based authenticationmethods, the router permits a login bymatching the OpenSSH user certificate
with the user configurations available locally in the router database. It leads to the need to configure multiple
user profiles across all the individual routers in a network when using certificate-based authenticationmethods.
In turn, it locally creates a configuration overhead for the network administrators.

With this feature, you can configure the users in a centralized TACACS+ server and instruct the router to
allow authentication to these users through the certificate using the aaa enable-cert-authentication command.
On enabling this feature, when the router receives a certificate-based authentication request, the router validates
the user certificate using the host certificate. Once validation is successful, the router further queries the
external TACACS+ server to check if the user requesting access is a TACACS+ user. The router uses the
functionality of the aaa authorization exec command to make this query to the external TACACS+ server.
If there is a match between the user profiles in the external TACACS+ server and the user requesting access,
then the TACACS+ server processes the authorization. And the TACACS+ server sends the user group
associated with this user to the router. Else, the router checks its local database depending on the authorization
configuration, and further permits or denies the authentication for such a request.

The Router supports certificate-based authentication for users profiles in the external TACACS+ server.Note

Implementing Secure Shell
40

Implementing Secure Shell
Certificate-based user authentication using TACACS+ server

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/authentication-authorization-and-accounting-commands.html#wp4747453170
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/authentication-authorization-and-accounting-commands.html#wp4747453170

Restrictions

• Certificate based authentication for users in an external TACACS+ server is supported only in OpenSSH
implementation.

Prerequisites

• Enable certificate-based authentication for the Router. For more information, see OpenSSH Certificate
based Authentication for Router, on page 30.

• Configure the user profiles in the external TACACS+ Server.

• Configure the TACACS+ Server or TACACS+ Server Groups. For more information, see Configure
TACACS+ Server and Configure TACACS+ Server Groups.

• Configure user authorization using the TACACS+. For more information, see aaa authorization exec.

Configuration Example

This section contains the detailed procedure to enable the Certificate based authentication for users in an
external TACACS+ server in your router:

Configuration

Router#config

Router(config)#aaa enable-cert-authentication
/* Enables certificate based authentication for users in external TACACS+ Server */

Router(config)#aaa authorization exec default group tacacs+ local
/* Enables authorization for user list in TACACS+ and router database */

Router(config)#commit

Running Configuration

Router:ios#show running-config
...

aaa enable-cert-authentication
aaa authorization exec default group tacacs+ local
!

Implementing Secure Shell
41

Implementing Secure Shell
Certificate-based user authentication using TACACS+ server

b-system-security-cg-ncs5500-24xx_chapter4.pdf#nameddest=unique_120
b-system-security-cg-ncs5500-24xx_chapter4.pdf#nameddest=unique_120
b-system-security-cg-ncs5500-24xx_chapter4.pdf#nameddest=unique_122
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/authentication-authorization-and-accounting-commands.html#wp1664586636

Public Key-Based Authentication of SSH Clients
Table 6: Feature History Table

Feature DescriptionRelease InformationFeature Name

Release 7.10.1Public Key-Based
Authentication of SSHClients
on Cisco IOS XR Routers

Implementing Secure Shell
42

Implementing Secure Shell
Public Key-Based Authentication of SSH Clients

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS 5500
fixed port routers; NCS 5700 fixed port
routers; NCS 5500 modular routers (NCS
5500 line cards; NCS 5700 line cards
[Mode: Compatibility; Native])

You can now avail cryptographic strength
and automated password-less log in while
establishing SSH connections with the
server. Along with password and
keyboard-interactive authentication, Cisco
IOS XR routers configured as SSH clients
now support public key-based
authentication. In this authentication
method, passwords need not be sent over
the network and hence, it provides an
additional layer of security as well as aids
in automation processes. This feature is
available only for users locally configured
on the router, not those configured on
remote servers.

Previous releases supported SSH public
key-based authentication only for Cisco
IOSXR routers configured as SSH servers.

The feature introduces these changes:

• CLI:

• crypto key generate
authentication-ssh rsa

• crypto key zeroize
authentication-ssh rsa

• show crypto key mypubkey
authentication-ssh rsa

• Yang Data Models:

New Xpaths for:

• Cisco-IOS-XR-crypto-act.yang

• Cisco-IOS-XR-crypto-cepki-new-oper.yang

(see GitHub, YANG Data Models
Navigator)

Cisco IOS XR routers configured as SSH clients supported only password authentication and
keyboard-interactive authentication for establishing SSH connection with the SSH server. Whereas those IOS
XR routers that are configured as SSH servers supported public key-based user authentication as well. From

Implementing Secure Shell
43

Implementing Secure Shell
Public Key-Based Authentication of SSH Clients

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp2423216827
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp2423216827
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp4467661200
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp4467661200
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp8800652750
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp8800652750
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer
https://cfnng.cisco.com/ios-xr/yang-explorer

Cisco IOS XR Software Release 7.10.1 and later, you can use public-key based user authentication for Cisco
IOS XR routers configured as SSH clients as well. This feature thereby allows you to use password-less
authentication for secure file transfer and copy operations using SFTP and SCP protocols.

Remote AAA servers such as RADIUS and TACACS+ servers do not support public-key based authentication.
Hence this functionality is available only for users who are configured locally on the router and not for users
who are configured remotely.

How Does it Work

Public key encryption algorithm works with two keys—a public key and a private key. These keys form a
key pair that is specific to a user. They are cryptographically related. The public key is used to encrypt the
data and the private key is used to decrypt the data. The data encrypted by the SSH server that holds the public
key can then only be read by the entity who holds the corresponding private key.

This image shows the work flow of public key-based authentication of SSH clients.

Figure 1: Public Key-Based Authentication of SSH Clients: Work Flow

You can generate the key pair on the router that is configured as the SSH client. Once it is generated, copy
the public key to the SSH server that the user wants to connect to. When the user tries to log in to the server,
the SSH client sends a connection request to the SSH server. The SSH server allows access only to users who
can confirm that they have the corresponding private key. For this. the SSH server uses the public key of the
user to issue a challenge that can be rightly answered by the SSH client using the corresponding private key.
The SSH client thus automatically authenticates the user who is logging in to the server using the unique copy
of the private key. This process thereby establishes a secure SSH connection to the server in a way that does
not require the user to enter the password each time.

Enable Public Key-Based Authentication of SSH Client

Guidelines

These guidelines apply to enabling public key-based SSH authentication on Cisco IOS XR routers that are
configured as SSH clients.

• Supports only RSA key.

Implementing Secure Shell
44

Implementing Secure Shell
Enable Public Key-Based Authentication of SSH Client

• Remote AAA servers such as RADIUS and TACACS+ servers do not support public key-based
authentication. Hence this functionality is available only for users who are configured locally on the
router and not for users who are configured remotely.

• A user with root privileges has permission to create and delete keys for other users.

• If authentication keys are not created, then the SSH client does not proceed with public key-based
authentication.

• If user adds the incorrect public key in the SSH server, then the user authentication fails.

Configuration Example

Establishing SSH connection using public key-based authentication on SSH client involves these high-level
tasks:

1. Generate RSA key pair on the router that is configured as the SSH client.

Use the cyrpto key generate authentication-ssh rsa command to generate the RSA key pair:

Router#crypto key generate authentication-ssh rsa
Wed Dec 21 10:02:57.684 UTC
The name for the keys will be: cisco
Choose the size of the key modulus in the range of 512 to 4096. Choosing a key modulus
greater than 512 may take a few minutes.

How many bits in the modulus [2048]:
Generating RSA keys ...
Done w/ crypto generate keypair
[OK]

Router#

2. View the details of the generated key.

Use the show crypto key mypubkey authentication-ssh rsa command to view the details of the RSA
key. The key value starts with ssh-rsa in this output.

Router#show crypto key mypubkey authentication-ssh rsa
Wed Dec 21 10:24:34.226 UTC
Key label: cisco
Type : RSA Authentication
Size : 2048
Created : 10:02:59 UTC Wed Dec 21 2022
Data :
30820122 300D0609 2A864886 F70D0101 01050003 82010F00 3082010A 02820101
00A292B0 E45ACBB9 47B9EDA8 47E4664E 58FC3EA5 CE0F6B7A 3C6B7A73 537E6CEB
.
.
.
FF6BAF95 D9617CF6 65C058CC 7C6C22A9 9E48CC43 FDFF0EB7 ABADEB77 55A274DB
15020301 0001

OpenSSH Format:
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCikrDkWsu5R7ntqEfkZk5Y/.../2uvldlhfPZlwFjMfGwiqZ5IzEP9/w63q63rd1WidNsV

Router#

3. Copy the RSA public key from the SSH client to the SSH server.

Implementing Secure Shell
45

Implementing Secure Shell
Enable Public Key-Based Authentication of SSH Client

You can do this either by logging in to the remote SSH server with your established user credentials, or
have a system administrator on the remote system add the key on the SSH server.

If the SSH server is a Cisco IOS XR router, then you can use the crypto key import authentication rsa
command on the router prompt of the server to import the key from the SSH client. You will then be
prompted to enter the public key.

If the SSH server is a Linux server, then you must add the public key to the ~/.ssh/authorized_keys
file of the respective user account in that server. This file contains a list of all authorized public keys on
that server.

4. The user configured on the SSH client can now log in to the remote SSH server (209.165.200.225 in this
example) without providing the user account password.

Router#ssh user1@209.165.200.225

This process establishes a successful SSH connection between the client and the server using public
key-based authentication.

How to Delete the SSH Public Keys

Use the crypto key zeroize authentication-ssh rsa username command to delete the RSA keys.

Router#crypto key zeroize authentication-ssh rsa username user1

Implementing Secure Shell
46

Implementing Secure Shell
Enable Public Key-Based Authentication of SSH Client

Public key-based Authentication to SSH Server on Routers
Table 7: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5500 fixed port routers; NCS 5700
fixed port routers; NCS 5500
modular routers (NCS 5500 line
cards; NCS 5700 line cards [Mode:
Compatibility; Native])

We provide greater flexibility to
access secure routers by allowing
four public keys to be used for
authentication. With the ability to
associate multiple public keys with
your user account on the router,
we've also simplified the
authentication process by
eliminating the need to create
unique users for each SSH client
device.

The feature introduces these
changes:

CLI:

• The second, third, and fourth
keywords are introduced in the
crypto key import
authentication rsa
command.

• The second, third, and fourth
keywords are introduced in the
crypto key zeroize
authentication rsa command.

• The second, third, and fourth
keywords are introduced in the
keystring command.`

YANG Data Models:

• Cisco-IOS-XR-crypto-act

• Cisco-IOS-XR-um-ssh-cfg

(See GitHub, YANG Data Models
Navigator)

Release 7.11.1Multiple Public Keys per User for
Public Key-based Authentication

Implementing Secure Shell
47

Implementing Secure Shell
Public key-based Authentication to SSH Server on Routers

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6748152280
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6748152280
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6099901730
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6099901730
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp4139262970
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Public key-based authentication provides password-less authentication to the routers. In this method, the user
authentication relies on a cryptographic key pair: a public key and a private key. The user generates a key
pair in the client device using utilities such as ssh-keygen. The public key is imported and stored in the
router(SSH server), while the private key is in the user device(SSH client).While attempting public key-based
authentication from the client, the user presents a signature created using the private key to the router. The
router verifies the authenticity of that signature using the public key associated with that user in its database.
The authentication is successful when the signature matches the public key and user access is permitted.
Otherwise, the authentication fails, and the router denies the user access.With public key-based authentication,
the routers offer a more secure authentication method than traditional password-based authentication because
it is less vulnerable to brute force attacks and password theft.

From Cisco IOS XR Software Release 7.11.1, the routers support up to four public keys per user for public
key-based authentication to the routers. Previously, the users could have a single key pair. This constraint
restricts an individual user in the router from having multiple systems to access the routers. Also, it necessitates
creating a unique user in the router for each device to be an authorized SSH client to the router. However, the
multiple public keys per user for public key-based authentication feature overcome these restrictions by
allowing up to four public keys per user. As a result, the users can employ any corresponding private key to
access the router.

Figure 2: Multiple Public Keys per User for Public Key-based Authentication

You can generate the key pair on each of the SSH clients. You must then copy the public keys to the router.
When the user tries to log in to the router, the SSH client sends a connection request with a signature created
using the private key. The router then checks the authenticity of the request by matching it against the public
keys associated with that user in its database. Suppose one of the multiple public keys associated with that
user matches the signature; the router authenticates such user, confirming that the user has the corresponding
private key. This process thereby establishes a secure SSH connection to the router.

Implementing Secure Shell
48

Implementing Secure Shell
Public key-based Authentication to SSH Server on Routers

Guidelines and Restrictions for Public key-based authentication to Routers
• You can add public keys by importing the public key file or directly adding the public keystring to the
router.

• The maximum number of public keys supported per user is four.

• The router supports importing or adding only one public key at a time. Even though the router supports
up to four keys per user, you can only import or add them to the router one after the other and not
simultaneously.

• To import the public key files to the router, use the crypto key import authentication rsa command.

• The router supports importing public keys in the following formats:

• RSA

• Base 64

• PEM PKCS1

• PEM PKCS8

• To delete the public key files in the router, use the crypto key zeroize authentication rsa command.

• You can import the public keys using the crypto key import authentication rsa command in the XR
Config mode and XR EXEC mode. However, use the same operation mode to import and delete the
public keys. That is, if you import the public keys in the XR Config mode, delete such keys in XR Config
mode only. Similarly, if you import the public keys in the XR EXEC mode, delete such keys in XR
EXEC mode only.

• You can use SSH configurations to add or delete a public key in the router.

• The router supports only the RSA key format while using SSH configurations to add a public key for
public key-based authentication to the router.

Configure Public key-based Authentication to Routers
This section details different methods of enabling flexible public key-based authentication and importing
public keys to the router:

Configurations

Using public-key import:

1. [Router] Create a user in the router:
Router# config
Router(config)# username testuser1
Router(config)# commit

2. [Client] Generate RSA key pairs on the SSH clients.

3. [Router] Copy the public keys from the clients to the router.

Implementing Secure Shell
49

Implementing Secure Shell
Guidelines and Restrictions for Public key-based authentication to Routers

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6748152280
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6099901730
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6748152280

You can skip step 3 while using the tftp filepath in step 4. For more details, crypto key import authentication
rsa command.

Note

4. [Router] Import public keys to the router:
Router# configure
Router(config)# crypto key import authentication rsa username testuser1
disk0:/id_rsa_key1.pub
Router(config)# crypto key import authentication rsa username testuser1 second
disk0:/id_rsa_key2.pub
Router(config)# crypto key import authentication rsa username testuser1 third
disk0:/id_rsa_key3.pub
Router(config)# crypto key import authentication rsa username testuser1 fourth
disk0:/id_rsa_key4.pub
Router(config)# commit

You can now access the router from any of the four SSH clients using the same user.

5. [Client] Access the router in the client:

[root@userclient test]# ssh testuser1@192.0.2.2

Using SSH configurations:

1. [Router] Create a user in the router:
Router# config
Router(config)# ssh server username testuser2
Router((config-user-key))# commit

2. [Client] Generate RSA key pair on the SSH clients.

3. [Router] Add public keys from the SSH clients for a user to the router:
Router# configure
Router(config)# ssh server username testuser2
Router(config-user-key)# keystring ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDgX1C1LxQlvpRUI7pqbm6lOzgZ/D7eawdN6aBnxAC14cJXZ2zQzWXE4CqcG2EaPvIZoIot9WvuANShCWNuOkEG5JcbRLZORMryTxwJIy9js3RLyBBH+qi7NDwBMG9GkiEOn1FXsntgw3zo09KSE4EhtswhgXtSFx3bJmorN2jLBobrytB7pG8FcVFMpA1j5dx4Uvf7h0YVBqe3kLdMfevEkR8PL0IwlQRgHYmu0FClJteNyB2ewLm3G48R+wbjUPf8AJMTurtZ18H0LllZccmbK0jw9Fm3YJ+a1tDPBURfSCNoDIdMdfJ8jUPxWKF3qof3Fs3yH768qbie4y5ewSgek90PVo3cYQ8gw9PZbOgp4zqJr3y2r90eNtAeGakSx4xqB9LZ9XNJlJBhqgZWQxOP1mWL$
Router(config-user-key)# keystring ssh-rsa second
ABHJB8NzaC1yc2EAUJKIDAQABAAACAQDgX1C1LxQlvpRUI7pqbm6lOzgZ/D7eawdN6aBnxAC14cJXZ2zQzWXE4CqcG2EaPvIZoIot9WvuANShCWNuOkEG5JcbRLZORMryTxwJIy9js3RLyBBH+qi7NDwBMG9GkiEOn1FXsntgw3zo09KSE4EhtswhgXtSFx3bJmorN2jLBobrytB7pG8FcVFMpA1j5dx4Uvf7h0YVBqe3kLdMfevEkR8PL0IwlQRgHYmu0FClJteNyB2ewLm3G48R+wbjUPf8AJMTurtZ18H0LllZccmbK0jw9Fm3YJ+a1tDPBURfSCNoDIdMdfJ8jUPxWKF3qof3Fs3yH768NtAeGakSx4xqB9LZqbie4y5ewSgek90PVo3cYQ8gw9PZbOgp4zqJr3y2r90e9XNJlBhqgZWQxIL1mWL$
Router(config-user-key)# keystring ssh-rsa third
NKELY9NzaC1yc2EAAAADAQABAAACAQDgX1C1LxQlvpRUI7pqbm6lOzgZ/D7eawdN6aBnxAC14cJXZ2zQzWXE4CqcG2EaPvIZoIot9WvuANShCWNuOkEG5JcbRLZORMryTxwJIy9js3RLyBBH+qi7NDwBMG9GkiEOn1FXsntgw3zo09KSE4EhtswhgXtSFx3bJmorN2jLBobrytB7pG8FcVFMpA1j5dx4Uvf7h0YVBqe3kLdMfevEkR8PL0IwlQRgHYmu0FClJteNyB2ewLm3G48R+wbjUPf8AJMTurtZ18H0LllNJlBhqgZWQxCP1mW+a1tDPBURfSCNoDIdMdfJ8jUPxWKF3qof3Fs3yH768qbie4y5ewSgek90PVo3cYQ8gw9PZbOgp4zqJr3y2r90eNtAeGakSx4xqB9LZ9XJHQFVCJCBJCNSHCBL$
Router(config-user-key)# keystring ssh-rsa fourth
PUELI4NzaC1yc2EAAAADAQABAAACAQDgX1C1LxQlvpRUI7pqbm6lOzgZ/D7eawdN6aBnxAC14cJXZ2zQzWXE4CqcG2EaPvIZoIot9WvuANShCWNuOkEG5JcbRLZORMryTxwJIy9js3RLyBBH+qi7NDwBMG9GkiEOn1FXsntgw3zo09KSE4EhtswhgXtSFx3bJmorN2jLBobrytB7pG8FcVFMpA1j5dx4Uvf7h0YVBqe3kLdMfevEkR8PL0IwlQRgHYmu0FClJteNyB2ewLm3G48R+wbjUPf8AJMTurtZ18H0LllZccmbK0jw9Fm3YJ+a1tDPBURfSCNoDKF3qof3Fs3yH768qbie4y5ewSgek90PVo3cYQ8gw9PZbOgp4zqJr3y2r90eNtAeGakSx4xqB9LZ9XbTHSD78ahgsTHGBJU9qgZWQxBM1mWL$
Router(config)# commit

You can now access the router from any of the four SSH clients using the same user.

4. [Client] Access the router in the client:

[root@userclient test]# ssh testuser2@192.0.2.2

Verification

Public-key import:

Implementing Secure Shell
50

Implementing Secure Shell
Configure Public key-based Authentication to Routers

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6748152280
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/public-key-infrastructure-commands.html#wp6748152280

Router# show crypto key authentication rsa testuser1 all
Wed Sep 20 16:28:09.114 IST
Key label: testuser1firstkey
Type : RSA Signature
Size : 768
Created : 16:27:54 IST Wed Sep 20 2023
Data :
307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00BDD9A2 B8D61FA3
AED1B6EC FB975512 32BFE99E 65FDCC01 FA14956C 7B06C2A5 CEE9E637 56FE38F6
878ED2F4 CD1C1F28 3F535F23 9F5F8763 19BA0269 DA7B2507 0160A28B 7CD1A66D
75DF194B C217402E 7E74D466 4E39177B 81051774 25A71A0A 0F020301 0001

Key label: testuser1secondkey
Type : RSA Encryption
Size : 768
Created : 16:27:54 IST Wed Sep 20 2023
Data :
307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00B87C2F 9B4972AC
47B40FB2 B5C10DBB 1205AD30 7E146698 2A6179AD 8F1B030D 5146C097 3A2FB3E2
19820DA5 2132E7C7 1B7281C4 8427DF76 60E39E3A 70126DAD 108B7805 34B45915
853956AA 301CCF4B 78F06D75 D7D90320 BE667F1D 1A479713 FD020301 0001

Key label: testuser1thirdkey
Type : RSA General purpose
Size : 768
Created : 16:27:57 IST Wed Sep 20 2023
Data :
307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00E0DDF9 53C81AE1
35CE15E1 C7A9916F 4AED7887 65AC1E4E 48F420E4 2A56079E FD38D069 C97FC0F7
B6D8663D C7D6FC46 1CD27EA6 AC71D36C 40E35349 0A78DA64 465B7C8B B63E8627
BF074AF4 EC37AC0C 200AFAF3 C67E8E9B AE931964 8DF86CD9 E5020301 0001

Key label: testuser1fourthkey
Type : RSA General purpose
Size : 768
Created : 16:27:57 IST Wed Sep 20 2023
Data :
307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00E0DDF9 53C81AE1
35CE15E1 C7A9916F 4AED7887 65AC1E4E 48F420E4 2A56079E FD38D069 C97FC0F7
B6D8663D C7D6FC46 1CD27EA6 AC71D36C 40E35349 0A78DA64 465B7C8B B63E8627
BF074AF4 EC37AC0C 200AFAF3 C67E8E9B AE931964 8DF86CD9 E5020301 0001

SSH configurations:

Router# show ssh
SSH version : Cisco-2.0

id chan pty location state userid host ver
authentication connection type

Incoming sessions
26 1 vty1 0/RP0/CPU0 SESSION_OPEN testuser1 192.0.2.1 v2
rsa-pubkey Command-Line-Interface
27 1 vty2 0/RP0/CPU0 SESSION_OPEN testuser1 192.0.2.2 v2
rsa-pubkey Command-Line-Interface
28 1 vty3 0/RP0/CPU0 SESSION_OPEN testuser1 192.0.2.3 v2
rsa-pubkey Command-Line-Interface
29 1 vty4 0/RP0/CPU0 SESSION_OPEN testuser1 192.0.2.4 v2
rsa-pubkey Command-Line-Interface

Outgoing sessions
1 0/RP0/CPU0 SESSION_OPEN testuser3 192.0.2.6 v2
password Command-Line-Interface

Implementing Secure Shell
51

Implementing Secure Shell
Configure Public key-based Authentication to Routers

Delete Public Keys in the Routers
This section details different methods to delete public keys in the router:
Router# configure
Router(config)# crypto key zeroize authentication rsa all
Thu Sep 21 21:45:23.260 IST
Do you really want to remove all these keys ?? [yes/no]: yes
Router# commit
/* Deleting public keys for the user logged in to the router */

Router# configure
Router(config)# crypto key zeroize authentication rsa username testuser all
Thu Sep 21 21:45:23.260 IST
Do you really want to remove all these keys ?? [yes/no]: yes
Router# commit
/* Deleting public keys for any user in the router */

Router# configure
Router(config)# no ssh server username testuser
Router# commit
/* Deleting all SSH configurations for a user in the router */

Router# configure
Router(config)# no ssh server username testuser keystring third
Router# commit
/* Deleting a specific public-key for a user using SSH configurations in the router */

Multi-Factor Authentication for SSH
Table 8: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS 5500 fixed port routers;
NCS 5700 fixed port routers; NCS 5500 modular routers
(NCS 5500 line cards; NCS 5700 line cards [Mode:
Compatibility; Native])

You can now deploy robust authentication mechanisms for
SSH connections to your routers and reduce security risks
due to compromised or weak passwords. We now support
multi-factor authentication (MFA)—a secure access
management solution that verifies the identity of a user
usingmultiple verification factors—for SSH login on Cisco
IOS XR routers. These verification factors include a
combination of login credentials such as username and
password and a token, a cryptographic device, or a mobile
phone with MFA application installed.

No new commands or data models were introduced or
modified as part of this feature.

Release 24.1.1Multi-Factor
Authentication for SSH

Multi-factor authentication is a multi-step authentication process that requires users to enter two or more
verification factors to gain access to a system. These verification factors include something you know—such

Implementing Secure Shell
52

Implementing Secure Shell
Delete Public Keys in the Routers

as a username and a password, and something you have—such as a token, a cryptographic authentication
device, or a mobile phone with MFA application installed. MFA thereby enables stronger authentication
mechanism and reduces security risk to the network devices arising due to compromised or weak passwords.

To achieveMFA for SSH, the SSH server as well as the client must support keyboard-interactive authentication
method. The default order of SSH client authentication methods to support MFA in Cisco IOS XR routers is
public-key, keyboard-interactive, and password-based authentication. You can change this default order as
per your requirement using the ssh client auth-method command.

Multi-Factor Authentication Workflow
This is a sample topology to demonstrate the MFA workflow to establish SSH connection on a Cisco IOS
XR router. In this example we have considered Cisco IOS XR router as the SSH server, Cisco ISE as the
AAA server, and Cisco DUO authentication proxy and cloud services for MFA.

Figure 3: Multi-Factor Authentication Set-up for SSH Connection: Sample Topology

Key Components

The key components in this sample Duo MFA topology for SSH include:

• SSH client—from where the admin user initiates SSH connection to the SSH server.

• SSH server—which is the network device or router to which SSH connection is to be established.

• Cisco identity services engine (ISE)—that acts as the RADIUS or TACACS+ Server for AAA.

• DUO authentication proxy—is an on-premises software service that receives authentication requests
from your local devices and applications through RADIUS or LDAP, optionally performs primary
authentication against your existing LDAP directory or RADIUS authentication server, and then contacts
Duo to perform secondary authentication.

• DUO cloud service—Cisco cloud-based security platform that provides secure access to any device or
application.

• DUO authentication device—such as a mobile phone which has the Duo application installed.

The detailed workflow of Duo MFA for SSH is as follows:

Implementing Secure Shell
53

Implementing Secure Shell
Multi-Factor Authentication Workflow

1. The admin user initiates an SSH connection to the SSH server (Cisco IOS XR router, in this case) using
the login credentials of the users that are already configured on ISE.

2. The router forwards the request to the TACACS+ AAA server (Cisco ISE, in this case).

3. The Cisco ISE sends the authentication request to Duo authentication proxy. The proxy forwards the
request back to ISE for the 1st factor authentication. ISE informs the authentication proxy if the local
authentication was successful.

4. Upon successful ISE authentication, the authentication proxy sends an authentication request to Duo
cloud for 2nd factor authentication.

5. Duo cloud sends a PUSH notification to the DUO authentication device of the admin user.

6. The admin user approves the PUSH notification.

7. The Duo cloud informs the authentication proxy of the successful PUSH notification.

8. The authentication proxy informs ISE of a successful authentication.

9. The ISE authorizes the admin user.

10. The admin user successfully establishes an SSH connection with the router.

Set Up Multi-Factor Authentication for SSH
This section describes how to set up a sample topology for establishing SSH connection with Cisco IOS XR
router using Duo MFA.

Prerequisites

• The Cisco IOS XR router installed with Cisco IOS XR Software Release 24.1.1 or later, that acts as the
server to the SSH client, and as the client to the ISE server. The router must be already configured for
AAA with ISE.

• Cisco identity services engine (ISE) server that acts as the RADIUS or TACACS+ AAA server.

• Duo MFA proxy application must be installed on either Windows or on Linux machine. For details, see
https://duo.com/docs/authproxy-reference.

• DUO application must be installed on the DUO authentication device.

The procedure to set up MFA for SSH involves these high-level tasks:

• Configure Duo System

• Configure Duo Authentication Proxy

• Configure ISE

• Configure RADIUS Server Attributes on the Router

• Verify Duo MFA Set-up

Configure Duo System for MFA
Configuring Duo system for MFA involves these key steps:

Implementing Secure Shell
54

Implementing Secure Shell
Set Up Multi-Factor Authentication for SSH

https://duo.com/docs/authproxy-reference

1. Create a Duo account in https://duo.com/

2. Perform these Duo system configurations (for details, see the First Steps listed in
https://duo.com/docs/radius):

• Login to your Duo account and click on Applications.

• Search for Cisco ISE server and click on Protect This Application.

• In a notepad copy and paste your Integration Key, Secret Key, and API Hostname.

3. Add Duo mobile device:

Select Dashboard > Users > username > Add Phone

4. Activate Duo mobile:

Select Dashboard > 2FA Devices > phone-number > Activate Duo Mobile

Configure Duo Authentication Proxy for MFA
Configuring Duo authentication proxy for MFA involves these key steps (For more details, see
https://duo.com/docs/authproxy-reference)

1. Download and install the latest Duo authentication proxy on your Windows or Linux machine.

In this example, we have installed the primary authentication proxy on a Windows 2016 machine and the
secondary proxy on an Ubuntu server.

2. Configure the proxy for your primary authenticator.

Edit the Duo authentication proxy configuration file, authproxy.cfg, located in the conf subdirectory of
the proxy installation path in the server using a text editor. You can add multiple ISE servers as RADIUS
clients and multiple router subnets/IP addresses as part of the router.

3. Start the proxy server(s) and check the proxy logs for any configuration or connectivity error.

For installation on Windows, ensure sure that the Windows firewall is configured to allow connections for
the authentication proxy.

Note

Configure ISE for MFA
Configuring ISE for MFA involves these key steps (for more details, see Configure Duo Two Factor
Authentication for ISE Management Access)

1. Integrate ISE with Duo authentication proxy:

a. Add a new RADIUS token server:

Administration > Identity Management >External Identity Sources >RADIUS Token, and click
Add

Ensure that the Shared Secret matches the one that you already defined in the Configure Duo
Authentication Proxy task.

For details, see step1 listed under ISE Configuration.

Implementing Secure Shell
55

Implementing Secure Shell
Configure Duo Authentication Proxy for MFA

https://duo.com/
https://duo.com/docs/radius
https://duo.com/docs/authproxy-reference
https://duo.com/docs/authproxy-reference#installation
https://duo.com/docs/authproxy-reference#configuration
https://duo.com/docs/authproxy-reference#start-the-proxy
https://www.cisco.com/c/en/us/support/docs/security/identity-services-engine/214813-configure-duo-two-factor-authentication.html
https://www.cisco.com/c/en/us/support/docs/security/identity-services-engine/214813-configure-duo-two-factor-authentication.html
https://www.cisco.com/c/en/us/support/docs/security/identity-services-engine/214813-configure-duo-two-factor-authentication.html#anc7

b. Set the authentication method for the identity source:

Navigate toAdministration > System >Admin Access >Admin Access >Authentication Method,
and select previously configured RADIUS token server (for example,RADIUS:DUO) as the Identity
Source.

For details, see Step 2 listed under ISE Configuration.

2. Create device admin policies:

a. Create a policy set:

Navigate to Work Centers > Device Administration > Device Admin Policy Sets.

In this example, we created a policy set that matches on both protocols (RADIUS and TACACS+)
with the Allowed Protocols set to Default Device Admin.

b. Set the following policies inside the policy set:

• Authentication Policy: In this example, we have set a default rule to check the Identity Source
Sequence that we defined in the steps above which contains the RADIUS Token Servers (Duo
Authentication Proxies) and Active Directory.

• Authorization Policy: In this example, we have set a rule that checks if the authenticated user
belongs either to the Domain Users or NS-ISE-IOS-Admins groups that we have configured
in active directory (AD). If the user belongs to one of these groups, then the system returns the
pre-configured Command Sets and Shell Profile.

3. Add and onboard users in Duo:

You can configure Duo to automatically sync with your AD or manually add the user in Duo (for details,
see Enroll user with Duo).

Configure RADIUS Server Attributes for MFA
This topic describes how to configure RADIUS server attributes for MFA on the Cisco IOS XR router (for
more details, see configure-your-radius-client(s)).

Set the IP address of the RADIUS server to the IP address of your authentication proxy, the RADIUS server
port to 1812, and the RADIUS secret to the appropriate secret that you configured in the radius_server_auto
section in the authproxy.cfg file.

Router#configure
Router(config)#radius-server host 209.165.200.225auth-port 1812 acct-port 1813
Router(config-radius-host)#key test@1234
Router(config-radius-host)#commit

Verify MFA Set-up for SSH Connection
Once you complete the Duo MFA configurations, follow these steps to verify the set-up:

• Initiate an SSH connection from the SSH client router that is already added in the ISE, using the ssh
command.

• Use the AD credentials for the admin user to log in.

Implementing Secure Shell
56

Implementing Secure Shell
Configure RADIUS Server Attributes for MFA

https://www.cisco.com/c/en/us/support/docs/security/identity-services-engine/214813-configure-duo-two-factor-authentication.html#anc7
https://duo.com/docs/enrolling-users
https://duo.com/docs/radius#configure-your-radius-client(s)

• Upon successful authentication, confirm that the user received a Duo Push/Passcode notification on the
Duo authentication device based on what is set in the Duo authentication proxy configuration file,
authproxy.cfg.

• After approving the Duo Push or entering the correct Passcode, the admin user must be authenticated
and authorized to access the router through the SSH connection.

• The live logs of RADIUS in the ISE server must show authentication requests against the Duo
authentication proxies.

• Check the authproxy log file in your authentication proxy for any errors or issues.

Selective Authentication Methods for SSH Server
Table 9: Feature History Table

Feature DescriptionRelease InformationFeature Name

You now have the flexibility to choose the preferred SSH
server authenticationmethods on the router. These methods
include password authentication, keyboard-interactive
authentication, and public-key authentication. This feature
allows you to selectively disable these authentication
methods. By allowing the SSH clients to connect to the
server only through these permitted authenticationmethods,
this functionality provides additional security for router
access through SSH. Before this release, by default, the
SSH server allowed all these authentication methods for
establishing SSH connections.

The feature introduces these changes:

• CLI: New disable auth-methods command

• YANG Data Model: New XPaths for
Cisco-IOS-XR-crypto-ssh-cfg.yang Cisco native
model (see GitHub)

Release 7.8.1SelectiveAuthentication
Methods for SSH Server

By default, the SSH server on the Cisco IOS XR routers allowed various authentication methods such as
password authentication, keyboard-interactive authentication, and public-key authentication (including
certificate-based authentication) for the SSH connections on the router. The SSH clients could use any of
these authenticationmethods while attempting a connection to the SSH server on the router. FromCisco IOSXR
Software Release 7.8.1, you can selectively disable these authentication methods, and allow connection
attempts from the SSH client only through the remaining authentication methods. If the SSH client tries to
establish a connection to the server using nonpermitted authentication methods (the ones that are disabled),
then the login attempt fails.

Disable SSH Server Authentication Methods
Use the disable auth-methods command in ssh server configurationmode to disable the specific authentication
method for the SSH server.

Implementing Secure Shell
57

Implementing Secure Shell
Selective Authentication Methods for SSH Server

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp1180631142
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

Public-key authentication includes certificate-based authentication as well. Hence, disabling public-key
authentication automatically disables the certificate-based authentication.

Configuration Example

This example shows how to disable the keyboard-interactive authentication method for the SSH server on the
router using CLI. Similarly, you can disable other authentication methods.

Router#configure
Router(config)# ssh server
Router(config-ssh)# disable auth-methods keyboard-interactive
Router(config-ssh)# commit

Running Configuration

!
ssh server
disable auth-methods keyboard-interactive
!

Verification

Use the show ssh server command to see the list of authentication methods that the SSH server on the router
supports. In this example, the keyboard-interactive method is disabled and the SSH server allows all other
authentication methods.

Router#show ssh server

Wed Feb 23 10:38:37.716 UTC
RP/0/RP0/CPU0:ios(config)
Authentication Method Supported

PublicKey := Yes
Password := Yes

Keyboard-Interactive := No
Certificate Based := Yes

Implementing Secure Shell
58

Implementing Secure Shell
Disable SSH Server Authentication Methods

SSH Port Forwarding
Table 10: Feature History Table

Feature DescriptionRelease InformationFeature Name

With this feature enabled, the SSH
client on a local host forwards the
traffic coming on a given port to
the specified host and port on a
remote server, through an encrypted
SSH channel. Legacy applications
that do not otherwise support data
encryption can leverage this
functionality to ensure network
security and confidentiality to the
traffic that is sent to remote
application servers.

This feature introduces the ssh
server port-forwarding local
command.

Release 7.3.2SSH Port Forwarding

SSH port forwarding is a method of forwarding the otherwise insecure TCP/IP connections from the SSH
client to server through a secure SSH channel. Since the traffic is directed to flow through an encrypted SSH
connection, it is tough to snoop or intercept this traffic while in transit. This SSH tunneling provides network
security and confidentiality to the data traffic, and hence legacy applications that do not otherwise support
encryption can mainly benefit out of this feature. You can also use this feature to implement VPN and to
access intranet services across firewalls.

Figure 4: SSH Port Forwarding

Consider an application on the SSH client residing on a local host, trying to connect to an application server
residing on a remote host. With tunneling enabled, the application on the SSH client connects to a port on the
local host that the SSH client listens to. The SSH client then forwards the data traffic of the application to the
SSH server over an encrypted tunnel. The SSH server then connects to the actual application server that is
either residing on the same router or on the same data center as the SSH server. The entire communication of
the application is thus secured, without having to modify the application or the work flow of the end user.

The SSH port forwarding feature is disabled, by default. You can enable the feature by using the ssh server
port-forwarding local command in the XR Config mode.

Implementing Secure Shell
59

Implementing Secure Shell
SSH Port Forwarding

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp1149974546
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp1149974546

How Does SSH Port Forwarding Work?

Figure 5: Sample Topology for SSH Port Forwarding

Consider a scenario where port forwarding is enabled on the SSH server running on Router-1, in this topology.
An SSH client running on a local host tries to create a secure tunnel to the SSH server, for a local application
to eventually reach the remote application server running on Router-2.

The client tries to establish an SSH connection to Router-1 using the following command:

ssh -L local-port:remote-server-hostname:remote-port username@sshserver-hostname

where,

local-port is the local port number of the host where the SSH client and the application reside. Port 5678, in
this example.

remote-server-hostname:remote-port is the TCP/IP host name and port number of the remote application
server where the recipient (SSH server) must connect the channel from the SSH client to. 192.168.0.2 and
23, in this example.

sshserver-hostname is the domain name or IP address of the SSH server which is the recipient of the SSH
client request. 192.168.0.1, in this example.

For example,

ssh -L 5678:192.168.0.2:23 admin@192.168.0.1

When the SSH server receives a TCP/IP packet from the SSH client, it accepts the packet and opens a socket
to the remote server and port specified in that packet. Once the connection between SSH client and server is
established, the SSH server connects that communication channel to the newly created socket. From then
onwards, SSH server forwards all the incoming data from the client on that channel to that socket. This type
of connection is known as port-forwarded local connection. When the client closes the connection, the SSH
server closes the socket and the forwarded channel.

How to Enable SSH Port Forwarding

Guidelines for Enabling SSH Port Forwarding Feature

• The Cisco IOSXR software supports SSH port forwarding only on SSH server; not on SSH client. Hence,
to utilize this feature, the SSH client running at the end host must already have the support for SSH port
forwarding or tunneling.

• The remote host must be reachable on the same VRF where the current SSH connection between the
server and the client is established.

• Port numbers need not need match for SSH port forwarding to work. You can map any port on the SSH
server to any port on the client.

Implementing Secure Shell
60

Implementing Secure Shell
How to Enable SSH Port Forwarding

• If the SSH client tries to do port forwarding without the feature being enabled on the SSH server, the
port forwarding fails, and displays an error message on the console. Similarly the port-forwarded channel
closes in case there is any connectivity issue or if the server receives an SSH packet from the client in
an improper format.

Configuration Example

Router#configure
Router(config)#ssh server port-forwarding local
Router(config)#commit

Running Configuration

Router#show running-configuration

ssh server port-forwarding local
!

Verification

Use the show ssh command to see the details of the SSH sessions. The connection type field shows as
tcp-forwarded-local for the port-forwarded session.

Router#show ssh

Wed Oct 14 11:22:05.575 UTC
SSH version : Cisco-2.0

id chan pty location state userid host ver authentication connection
type
--
Incoming sessions
15 1 XXX 0/RP0/CPU0 SESSION_OPEN admin 192.168.122.1 v2 password
port-forwarded-local

Outgoing sessions

Router#

Use the show ssh server command to see the details of the SSH server. The Port Forwarding column shows
as local for the port-forwarded session. Whereas, for a regular SSH session, the field displays as disabled.

Router#show ssh server

Syslogs for SSH Port Forwarding Feature

The router console displays the following syslogs at various SSH session establishment events.

• When SSH port forwarding session is successfully established:

RP/0/RP0/CPU0:Aug 24 13:10:15.933 IST: SSHD_[66632]:
%SECURITY-SSHD-6-PORT_FWD_INFO_GENERAL : Port Forwarding, Target:=10.105.236.155,
Port:=22, Originator:=127.0.0.1,Port:=41590, Vrf:=0x60000000, Connection forwarded

• If SSH client tries to establish a port forwarding session without SSH port forwarding feature being
enabled on the SSH server:

Implementing Secure Shell
61

Implementing Secure Shell
How to Enable SSH Port Forwarding

RP/0/RP0/CPU0:Aug 24 13:20:31.572 IST: SSHD_[65883]: %SECURITY-SSHD-3-PORT_FWD_ERR_GENERAL
: Port Forwarding, Port forwarding is not enabled

Associated Command

• ssh server port-forwarding local

Non-Default SSH Port
Table 11: Feature History Table

Feature DescriptionRelease InformationFeature Name

We have enhanced the system
security to minimize the automated
attacks that may target the default
Secure Socket Shell (SSH) port on
your router. You can now specify
a non-default port number for the
SSH server on your router. The
SSH, Secure Copy Protocol (SCP),
and Secure File Transfer Protocol
(SFTP) client services can then
access your router only through this
non-default port. The new port
option also enables the SSH, SCP,
and SFTP clients on your router to
connect to SSH servers on the
network that use a wide range of
non-default port numbers. In earlier
releases, these SSH, SCP, and
SFTP connections were established
through the default SSH port, 22.
The non-default SSH port is
supported only on SSH version 2.

The feature introduces the ssh
server port command.

The feature modifies these
commands to include the port
option:

• ssh

• sftp

• scp

Release 7.7.1Non-Default SSH Port

Implementing Secure Shell
62

Implementing Secure Shell
Non-Default SSH Port

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp2625392426
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp2625392426
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp3319202130
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp1306967150

The SSH, SCP, and SFTP services on the Cisco IOS XR routers used the default SSH port number, 22, to
establish connections between the server and the client. From Cisco IOS XR Software Release 7.7.1 and later,
you can specify a non-default SSH port number within a specific range for these services on Cisco IOS XR
64-bit routers. This non-default port option is available for routers that are functioning as servers, or as clients
for the SSH, SCP and SFTP services. This feature helps to restrict insecure client services from accessing the
router through the default SSH server port. Similarly, for Cisco IOS XR routers that are running as SSH
clients, the non-default port number option enables them to connect to other SSH servers on the network that
listens on a wide range of non-default SSH port numbers.

The non-default SSH port number ranges from 5520 to 5529 for the SSH server, and from 1025 to 65535 for
the SSH client.

The SSH server on the router does not listen on both the default and non-default ports at the same time. If
you have configured a non-default SSH server port, then the server listens only on that non-default port for
the client connections. The SSH clients can then establish sessions through this non-default SSH port. The
SCP and SFTP services also use the same SSH port for their connections, and hence they establish the client
sessions through the newly configured port.

If a session was already established through the default port, then that session remains intact even if you
change the ssh server port to a non-default port. The further client sessions are attempted through the newly
configured non-default port.

Restrictions for Non-Default SSH Port

These restrictions apply to the non-default SSH port option:

• Available only on 64-bit Cisco IOS XR routers; not on 32-bit routers

• Available only on version 2 of SSH (SSHv2); not on version 1 (SSHv1)

How to Configure Non-Default SSH Port

To establish SSH connections on the non-default port, ensure that the non-default port that you select for the
SSH server is not used by any other application on the router.

Note

Configuration Example

SSH Server:

To configure the non-default SSH port for the SSH server on the router, use the ssh server port command in
the XR Config mode.

Router#configure
Router(config)#ssh server port 5520
Router(config)#commit

SSH Client:

Similarly, the port option is available for the SSH client also, to initiate a connection to another SSH server
that listens on a non-default SSH port number.

Implementing Secure Shell
63

Implementing Secure Shell
How to Configure Non-Default SSH Port

This example shows how to connect to an SSH server, with IP address 198.51.100.1, that is listening on
non-default SSH port 5525.

Router#ssh 198.51.100.1 port 5525 username user1

Running Configuration

This is a sample running configuration of the SSH server.

Router#show running-configuration
!
ssh server v2
ssh server port 5520
ssh server vrf default
!

Verification

Use the following show commands to verify the SSH server configuration and LPTS entries for SSH
connections.

In this example, the SSH port field displays the port number, '5520', that you have configured for the SSH
server.

Router#show ssh server
Fri May 20 07:22:57.579 UTC

SSH Server Parameters

Current supported versions := v2
SSH port := 5520
SSH vrfs := vrfname:=default(v4-acl:=, v6-acl:=)

Netconf Port := 830
Netconf Vrfs :=

Algorithms

Hostkey Algorithms :=
x509v3-ssh-rsa,ssh-rsa-cert-v01@openssh.com,ecdsa-sha2-nistp521,ecdsa-sha2-nistp384,ecdsa-sha2-nistp256,rsa-sha2-512,rsa-sha2-256,ssh-rsa,ssh-dsa,ssh-ed25519

Key-Exchange Algorithms :=
ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group14-sha1,curve25519-sha256,diffie-hellman-group14-sha256,diffie-hellman-group16-sha512,curve25519-sha256@libssh.org

Encryption Algorithms :=
aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com,chacha20-poly1305@openssh.com

Mac Algorithms := hmac-sha2-512,hmac-sha2-256,hmac-sha1

Authentication Method Supported

PublicKey := Yes
Password := Yes

Keyboard-Interactive := Yes
Certificate Based := Yes

Others

DSCP := 16
Ratelimit := 60

Implementing Secure Shell
64

Implementing Secure Shell
How to Configure Non-Default SSH Port

Sessionlimit := 64
Rekeytime := 60

Server rekeyvolume := 1024
TCP window scale factor := 1

Backup Server := Disabled
Host Trustpoint :=
User Trustpoint :=
Port Forwarding := Disabled

Max Authentication Limit := 20
Certificate username := Common name(CN)

OpenSSH Host Trustpoint :=
OpenSSH User Trustpoint :=

In the following example, the Port field in theLocal-Address,Port column for theTCP entry for SSH displays
the port number as '5520'. This is the port on which the SSH server listens for client connections.

Router#show lpts bindings brief
Fri May 20 07:23:21.416 UTC

@ - Indirect binding; Sc - Scope

Location Clnt Sc L3 L4 VRF-ID Interface Local-Address,Port Remote-Address,Port
---------- ---- -- ---- ------ --------- ------------ --------------------------------------
0/RP0/CPU0 IPV4 LO IPV4 ICMP * any any,ECHO any
0/RP0/CPU0 IPV4 LO IPV4 ICMP * any any,TSTAMP any
0/RP0/CPU0 IPV4 LO IPV4 ICMP * any any,MASKREQ any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,ECHOREQ any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRSLCT any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRADV any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRSLCT any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRADV any
0/RP0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDREDIRECT any
0/RP0/CPU0 BFD LO IPV4 UDP * any any any
0/0/CPU0 IPV4 LO IPV4 ICMP * any any,ECHO any
0/0/CPU0 IPV4 LO IPV4 ICMP * any any,TSTAMP any
0/0/CPU0 IPV4 LO IPV4 ICMP * any any,MASKREQ any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,ECHOREQ any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRSLCT any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDRTRADV any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRSLCT any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDNBRADV any
0/0/CPU0 IPV6 LO IPV6 ICMP6 * any any,NDREDIRECT any
0/0/CPU0 BFD LR IPV4 UDP * any any 128.64.0.0/16
0/RP0/CPU0 TCP LR IPV6 TCP default any any,5520 any
0/RP0/CPU0 TCP LR IPV4 TCP default any any,5520 any
0/RP0/CPU0 UDP LR IPV6 UDP default any any,33433 any
0/RP0/CPU0 UDP LR IPV4 UDP default any any,33433 any
0/RP0/CPU0 RAW LR IPV4 IGMP default any any any
0/RP0/CPU0 RAW LR IPV4 L2TPV3 default any any any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,MLDLQUERY any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,LSTNRREPORT any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,MLDLSTNRDN any
0/RP0/CPU0 RAW LR IPV6 ICMP6 default any any,LSTNRREPORT any

Router#

If the non-default port was not configured, then the SSH server listens on the default SSH port 22, and the
above Port field displays '22'.

If a session was already established through the default port, and if you change the ssh server port to a
non-default port, then the output still displays an entry for that session on the default port, 22. Another entry

Implementing Secure Shell
65

Implementing Secure Shell
How to Configure Non-Default SSH Port

shows that the SSH server is listening on the newly configured non-default port. New connections establish
through the non-default port, 5520, in this example.

Location Clnt Sc L3 L4 VRF-ID Interface Local-Address,Port Remote-Address,Port
---------- ---- -- ---- --- --------- --------- ----------------- ------------------
.
.
.
0/RP0/CPU0 TCP LR IPV4 TCP default any 192.0.2.1,5520 198.51.100.1,37764
0/RP0/CPU0 TCP LR IPV4 TCP default any any,5520 any
0/RP0/CPU0 TCP LR IPV6 TCP default any any,5520 any
0/RP0/CPU0 TCP LR IPV4 TCP default any 192.0.2.1,22 198.51.100.1,45722
.
.
.

Implementing Secure Shell
66

Implementing Secure Shell
How to Configure Non-Default SSH Port

DSCP Marking for SSH Packets
Table 12: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5700 fixed port routers

We now prevent SSH client packet
drops in the TCP connection (initial
handshake) phase as they travel
across transit routers in the
network. This is because you can
mark the DSCP values for SSH
client packets in the TCP
connection phase, which overrides
the transit routers' policies to filter
and drop packets with no DSCP
value marked. Using a new
command, you can also set the
DSCP value from the TCP
connection phase for SSH server
packets.

The feature introduces these
changes:

CLI:

• ssh server
set-dscp-connection-phase

YANG Data Model:

• New XPath,
set-dscp-connection-phase,
for
Cisco-IOS-XR-crypto-ssh-cfg.yang

(see GitHub, YANG Data
Models Navigator)

Release 24.1.1DSCP Marking from TCP
Connection Phase for SSH Packets

CiscoSSH is based on OpenSSH version 8.0 in which the the DSCP marking of the SSH packets happens
only after the authentication phase of SSH session establishment. Hence, the SSH packets originating from
the CiscoSSH routers did not have the DSCP value set in the initial handshake or the TCP connection phase.
This led to SSH packet drops during the TCP connection phase if routers in the transit network have specific
rules or filters to drop packets with zero or incorrect DSCP value.

From OpenSSH version 8.5 and later, the DSCP marking of SSH client packets happens from the TCP
connection phase itself. Cisco IOS XR Software Release 24.1.1 brings in this behavior change for DSCP
marking of SSH client packets into CiscoSSH. Whereas there is no change in behavior of the DSCP marking
for SSH server packets. The CiscoSSH routers that function as SSH servers continue to mark the DSCP value

Implementing Secure Shell
67

Implementing Secure Shell
DSCP Marking for SSH Packets

https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp1346993589
https://www.cisco.com/content/en/us/td/docs/iosxr/ncs5500/security/b-system-security-cr-ncs5500/secure-shell-commands.html#wp1346993589
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

for the packets only after the authentication phase. You can use the ssh server set-dscp-connection-phase
command to set the DSCP value for the SSH server packets from the TCP connection phase.

Set DSCP Marking for SSH Packets from TCP Connection Phase
To set the DSCP marking for SSH server packets from TCP connection phase, use the ssh server
set-dscp-connection-phase command in XR Config mode.

Although the ssh server set-dscp-connection-phase command is available on routers with CiscoSSH and
routers with Cisco IOS XR SSH, this configuration is relevant only on routers with CiscoSSH.

Note

Configuration Example

Router#configure
Router(config)#ssh server set-dscp-connection-phase
Router(config-ssh)#commit

Running Configuration

Router#show run ssh
!
ssh server set-dscp-connection-phase
!

Implementing Secure Shell
68

Implementing Secure Shell
Set DSCP Marking for SSH Packets from TCP Connection Phase

	Implementing Secure Shell
	Information About Implementing Secure Shell
	SSH Server
	SSH Client
	SFTP Feature Overview
	RSA Based Host Authentication
	RSA Based User Authentication
	SSHv2 Client Keyboard-Interactive Authentication

	Prerequisites for Implementing Secure Shell
	SSH and SFTP in Baseline Cisco IOS XR Software Image
	Restrictions for Implementing Secure Shell
	Configure SSH
	Automatic Generation of SSH Host-Key Pairs
	Configure the Allowed SSH Host-Key Pair Algorithms

	Ed25519 Public-Key Signature Algorithm Support for SSH
	How to Generate Ed25519 Public Key for SSH

	Configure SSH Client
	Order of SSH Client Authentication Methods
	How to Set the Order of Authentication Methods for SSH Clients

	Configuring CBC Mode Ciphers
	Multi-channeling in SSH
	Configure Client for Multiplexing

	User Configurable Maximum Authentication Attempts for SSH
	Configure Maximum Authentication Attempts for SSH

	X.509v3 Certificate-based Authentication for SSH
	Configure X.509v3 Certificate-based Authentication for SSH

	OpenSSH Certificate based Authentication for Router
	Feature Highlights
	Prerequisites
	Configuration Example

	Certificate-based user authentication using TACACS+ server
	Public Key-Based Authentication of SSH Clients
	Enable Public Key-Based Authentication of SSH Client

	Public key-based Authentication to SSH Server on Routers
	Guidelines and Restrictions for Public key-based authentication to Routers
	Configure Public key-based Authentication to Routers
	Delete Public Keys in the Routers

	Multi-Factor Authentication for SSH
	Multi-Factor Authentication Workflow
	Set Up Multi-Factor Authentication for SSH
	Configure Duo System for MFA
	Configure Duo Authentication Proxy for MFA
	Configure ISE for MFA
	Configure RADIUS Server Attributes for MFA
	Verify MFA Set-up for SSH Connection

	Selective Authentication Methods for SSH Server
	Disable SSH Server Authentication Methods

	SSH Port Forwarding
	How to Enable SSH Port Forwarding

	Non-Default SSH Port
	How to Configure Non-Default SSH Port

	DSCP Marking for SSH Packets
	Set DSCP Marking for SSH Packets from TCP Connection Phase

