

© 2022 Cisco and/or its affiliates. All rights reserved. This document is Cisco Confidential Information. Page 1 of 11

Cisco 8000 Hardware Emulator

Installation Guide

Last updated: 05/30/2024

Install Guide

Cisco public

D

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 11

Introduction

The Cisco 8000 Series Hardware Emulator is a groundbreaking virtual router platform that

emulates the physical hardware design of Cisco's router series. Thus, a focus on accurate

modeling of the router chassis, whether fixed form factor or modules chassis, and accurate

ASIC models deployed in dataplane and fabric roles. Designed to be Network Operating

System (NOS) agnostic, the emulator can run IOS-XR ISO or SONIC NOS on the same virtual

hardware, functioning like a hypervisor.

The 8000-simulation platform consists of two key components: One for one emulator for

each 8000 router in the portfolio, and a Python cli/library for orchestrating topologies.

The Python library is key as most NOS orchestrating systems assume a one-to-one

relationship between the router and a virtual machine/container. Our orchestrator can

interconnect single VM/process and multi-VM/process routers in the same topology.

To ensure seamless integration with external orchestration systems, two distinct options are

offered:

● Docker wrapped instances for deployment in docker centric environments such as

containerLab and KNE.

● A specialized 8xxx instance which integrates seamlessly with graphical user

environments such as Cisco Modeling Labs, GNS3, and EVG-NG. There is alpha

release of this software from EFT7.7.

Release Files

Each Cisco 8000 Hardware Emulator software release consists of the following files:

File Content

8000-emulator-rrrr.tar The main software package. “rrrr” represents the release version

8000-xxxx-f-images-rrrr.tar Prebuilt IOS-XR virtual disk files for fixed chassis

8000-xxxx-d-images-rrrr.tar Prebuilt IOS-XR virtual disk files for modular chassis

8000-xxxx-iso-rrrr.tar Production IOS-XR ISO installation file

8000-sonic-rrrr.tar Optional SONIC related images

8000-yyyy-rrrr.tar Additional optional packages

SHA256SUM Sha256 checksum of the respective tar files

8000*_installation_guide.pdf This file

To validate the tar file, run the Linux command:

sha256sum -c SHA256SUM

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 11

Minimal Required Tar files

Use Case Tar Files

Minimal Fix chassis Simulation 8000-emulator-rrr.tar

8000-xxxx-f-images-rrrr.tar

Minimal modular chassis Simulation 8000-emulator-rrr.tar

8000-xxxx-d-images-rrrr.tar

8000-xxxx-iso-rrrr.tar

Minimal SONIC chassis Simulation 8000-emulator-rrr.tar

8000-sonic-rrrr-tar

Contact your Cisco Account Manager to download the Cisco 8000 Emulator software

package. Then, follow the steps below to install and access the Emulator.

Supported Platforms & Boards

Platform Type Platform

Fixed Chassis 8201

8201-32FH

8202

8202-32FH-M

8212-48FH-M

8101-32H

8102-64H

8111-32EH

Centralized chassis 86-MPA-14H2FH-M

Modular Chassis 8808

8804

Modular Chassis Boards 8800-RP

88-LC036FH-M

88-LC36FH

88-LC48H

88-LC1-36EH

8808-FC

88-LC0-34H14FH

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 11

Optical router NCS1010

NCS1014

Other routers Xrv9k

Included Images

Platform Type Platform

IOS-XR 7.3.6, 7.9.2, 7.11.1

SONIC SONIC 2305 BUILD 8748 (sdk: 1.71.10.2)

System Requirements

Optimal performance is achieved when the emulator is run directly on x86 hardware without

any intermediate virtualization layers. Specific recommendations are provided for different

system types, including bare metal servers, cloud instances, and virtual private clouds.

If the emulator is running on any environment other than baremetal, then nested virtualization

must be enabled on the underlying hypervisor. Please refer to documentation per platform on

how to enable this feature.

Currently the emulator binaries are compiled for Ubuntu 22. To support a wide range of router

topologies, use of high core and memory instances based on newer generation of X86 CPUs

is recommended. Servers should ideally use NVMe/SSD drives for the highest IO bandwidth.

Below is a list of compute options ranked from best to acceptable.

System Type Minimal System Operating System Note

Dedicated
Server

Bare

Metal Server

16+ cores

64G+ Mem

Ubuntu22 Optional: CentOS8(docker
(Ubuntu22))

AWS Bare Metal

Instance

Bare metal
Instance

M5d.metal

Ubuntu22 Optional: CentOS8(docker
(Ubuntu22))

Azure Virtual

Machine

16+ cores

64G+ Mem

Ubuntu22 Requires nested
Virtualization.

Google Virtual 16+ cores Ubuntu22 Requires nested
Virtualization.

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 11

Cloud Machine 64G+ Mem

ESXI Virtual

Private Cloud

16+ cores

64G+ Mem

Ubuntu22 Requires nested
Virtualization.

Windows10

Virtual

Desktop

8+ cores

16G+ Mem

Microsoft HyperV

(Ubuntu22)

Requires nested
Virtualization.

Windows10

Virtual

Desktop

 8+ cores

16G+ Mem

VMware

Workstation Pro

(Ubuntu22)

Requires nested
Virtualization

MacOS

Virtual

Desktop

8+ cores

16G+ Mem

Fusion

(Ubuntu22)

Requires Nested
Virtualization

Runtime Requirements

There are two parts to the runtime CPU and memory requirements: the emulator, and the

guest network operating system. The emulator normally requires 2 cores and 2Gbytes of

memory to run a virtual board. The supported “guest” network operating systems are

IOSXR7 and SONIC. The smallest instantiation of IOS-XR7 will be on the 8201 with default

setting of 4 virtual cores and 32 Gbytes of memory. In resource constraint settings, IOS-XR7

will run with as little as 2 cores and 12 Gbytes of memory.

The memory and CPU requirement per emulated router is dependent on the chassis size and

choice of guest network operating system.

Emulator Operating
System

CPU Memory Min
Memory

Disk Comment

8201 IOS-XR7 4 20-32G 12G 30G+

8802 IOS-XR7 4 20-32G 12G 30G/board

8804/8808 IOS-XR7 8*

(RP+LC)

64G*

(2x32)

40G*

(2x20)

30G+

8201 SONIC 2 8-12 8 30G+

* Modular chassis such as the 8808 consist of one or two route processors, and a range of linecards. Each will consume 2-4 cores, and 12-

32G.

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 11

Minimal Installation Options

For a minimal IOSXR installation, the 8000-emulator and one 8000-*-f-images.*.tar should

be downloaded. For modular chassis emulation, the 8804 and or the 8808 packages and the

relevant ISO file should be downloaded.

For a minimal SONIC installation, the 8000-emulator and the 8000-sonic tar files should be

downloaded.

Multiple IOSXR releases are supported, and users should download additional tar files

corresponding to each release.

Install Emulator on Linux Server

This section shows you how to install the Cisco 8000 emulator on a Linux Server:

1. Verify HW assist virtualization is enabled in system BIOS.

2. Install Ubuntu 22 onto server. Verify /dev/kvm present.

ls /dev/kvm

3. Download all the 8000*.tar files from the General EFTx.y Release folder.

4. Extract the contents of the tar files using the following command:

find . -name '*.tar' -exec tar -xvf {} \;

5. Run the set-up scripts as shown below:

cd 8000-xxxx
sudo scripts/UbuntuServerManualSetup.sh
sudo reboot

Install Emulator on Virtualized Environments

This section shows you how to install the Cisco 8000 emulator on a Virtualized Environment:

1. On cloud platforms, start with their marketplace reference Ubuntu 22 image.

On private clouds, install Ubuntu 22 onto the hypervisor.

2. Verify nested virtualization is configured correctly by checking presence of

/dev/kvm

ls /dev/kvm

3. Download all the 8000*.tar files from the General EFTx.y Release Emulator

software download page.

4. Extract the contents of the tar files using the following command:

find . -name '*.tar' -exec tar -xvf {} \;

5. Run the set-up scripts as shown below:

cd 8000-xxxx

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 11

sudo scripts/UbuntuServerManualSetup.sh

sudo reboot

All the tools and binaries will be installed to /opt/cisco. Follow the Cisco 8000 user guide for

running simulations.

Install Emulator on Docker Containers

If you prefer to use docker to run the emulator, this section shows you how to build and run a

docker image with Ubuntu 22 OS.

Requirements:

● A bare metal server meeting the requirements specified in the System Requirements

section.

● Docker 18+ must be installed and /dev/kvm should be available.

● The underlying operating system can be Redhat/CentOS7+, Ubuntu22+, or Fedora.

The following steps shows you how to build the docker image and run it:

1. Download all the 8000 tar files from the General EFTx.y Release Emulator

software download page.

2. Extract the contents of the downloaded tar files using the following command:

find . -name '*.tar' -exec tar -xvf {} \;

3. Change directory to the newly extracted 8000-x.y directory and run the script to

build the image for the docker container. This command takes at least 12 minutes

to complete execution. Assuming x.y is the current emulator release; you can use

the below command:

cd 8000-x.y; ./scripts/build_docker_image.sh 8000:x.y

./docker/Dockerfile.generic

Note: For the Cisco 8000 Emulator Notebooks, use the following command for this

step:

cd 8000-x.y; ./scripts/build_linux_docker_images.sh -v x.y -p <proxy>

4. Run the docker image using the command:

docker run --cap-add=NET_ADMIN -p 8889:8889 --device /dev/kvm:/dev/kvm

--rm -it 8000:x.y

5. Run this simple test on the docker container:

copy sample single router yaml file to /nobackup

cd /nobackup

cp /opt/cisco/pyvxr/examples/xr7/7.3.2/8201/8201-732.yaml .

launch

vxr.py start 8201-732.yaml

Wait for script to return to command line with "INFO Sim up" as last

status line.

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 11

Acquire route console connection information

vxr.py ports

telnet to "HostAgent" ip and "Serial0" port

telnet <HostAgent-ip> <Serial0-port>

to end simulation type, type the below at the docker prompt

vxr.py clean

The simulation life cycle is managed by the pyvxr python library. Instructions for unpacking

the pyvxr html documentation is available at 8000-x.y/docs/README.python_lib.

Install Emulator on AWS

Requirements:

● AWS cli installed and configured.

● AWS user access/secret keys

The following steps will guide you to launch the AWS instance with the emulator:

1. Download and extract the tar files of the software package.

2. Change directory to the newly extracted 8000-x.y. Assuming x.y is the current

emulator release; you can use the below commands:

cd 8000-x.y/

3. Create the AWS AMI using the command: This command takes at least 1 hour to

complete execution.

./scripts/aws/awsCreateAMI.sh -r region -t tar_files_path -v eft_version

Note:

 Choose an AWS region that is closest to you.

 eft_version: example “6.6”.

4. Launch an AWS instance with the newly created AWS AMI using the

“awsLaunchInstance.sh” under scripts folder:

./scripts/aws/awsLaunchInstance.sh -r region

Note: region must be the same as the previous step.

5. Follow the directions displayed to access to the launched AWS instance.

6. Follow step 5 on the previous section to run a simple test on the Emulator.

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 11

Cisco 8000 Emulator Notebooks

These notebooks combine narrative text, images, videos, interactive visualizations, runnable

code, and real-time outputs.

The notebook communicates with the Cisco 8000 emulator running in the background and at

the click of the play button in the notebook, brings up multi-router topologies within minutes.

This enables users to execute configurations/commands on the emulated routers directly

from the notebook.

The Cisco 8000 Emulator software package includes Cisco 8000 Emulator Notebooks as well.

The instructions in the following sections show how to get the notebook set up ready.

There are two options to install and access notebooks:

- Option 1: Notebooks on Docker Containers

Or

- Option 2: Notebooks on AWS

Option 1: Notebooks on Docker Containers

The following steps show how to install notebooks that interact with the emulator in a docker

container:

1. Execute steps 1-4 in the section “Install Emulator on Docker Containers”

2. Set the appropriate proxy settings if behind a firewall.

3. Run the script installJupyterNotebooks.sh to install and start jupyter notebooks service:

. /opt/cisco/notebooks/installJupyterNotebooks.sh

4. When prompted, set up a password for the notebooks.

5. From your external computer terminal, set up ssh tunnels to port 8889 of the server

that hosts the docker container, by using the command:

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 11

ssh -L 8889:localhost:8889 username@server

6. Open the browser on your computer and access jupyter using the URL

localhost:8889. Use the notebooks password that you have set up in step 4 of this

section.

7. Once Jupyter lab has opened in your browser, double-click the README file

README.ipynb from the file explorer on the left pane. This document explains how to

use notebooks and provides a list of available notebooks.

8. To exit Jupyter lab on the docker container, use ctrl-c twice. After that, if you want to

access the notebooks again, enter the following command on the docker container

and then follow the steps 5-6 above:

jupyter lab --no-browser --port=8889 --ip=0.0.0.0 --allow-root --notebook-

dir=~/notebooks

For more information on using notebooks, refer to the following files in the docker container:

 ~/notebooks/README_notebooks.pdf

~/notebooks/README_notebooks.txt

Option 2: Notebooks on AWS

The following steps show how to install notebooks on your AWS Instance:

1. Follow the steps 1-5 listed in the section “Install Emulator on AWS“ to launch and

access the AWS instance.

2. Run the Notebook installation script in the SSH terminal as shown below. This script

installs Jupyter notebooks and starts the notebooks service. When prompted, set up a

password for the notebooks.

. /opt/cisco/notebooks/installJupyterNotebooks.sh

3. Open browser on your computer and access notebooks by entering <public-ipv4-

address-of-AWS-instance>:8889 in the address-bar. Use the notebook password

that you have set up in step 1 of this section.

4. Once the Jupyter application has opened in your browser, double-click on the file

README.ipynb from the file explorer on the left pane. This notebook has links to

various other notebooks which can help you get started. It also provides a list of

available notebooks.

8201e-VM

The 8201e-vm is an experimental virtual machine which includes all required simulation

components of 8201 board along with a corresponding IOS-XR image. This form factor

enables easier integration with graphical network simulation environments as they expect

nodes to consist of a single VM. Validated environments include Cisco Modeling Lab (CML),

GNS3, and EVE-NG.

CML Installation

1. CML 241 or higher is required.

© 2024 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 11

2. A bare metal CML installation is highly recommended.

3. As admin (Linux shell) scp/wget cml241-8201e-x.y.z.tar into CML’s /var/tmp

directory

4. Unpack: tar -xvf cml241-8201e-x.y.z.tar

5. sudo bash

6. ./install-8201e.x.y.z.sh

7. restart CML services.

8. Verify 8201e x.y.z node type available.

GNS3 Installation

1. Install latest GNS3 onto a bare metal server.

2. scp gns3-8201e-x.y.z.tar into the server/VM and unpack content.

3. Start GNS3 GUI, import cisco-8201e-x.y.z.gns3a from the unpacked area as a new

appliance

