
Network-Based Recording

The Network-Based Recording feature supports software-based forking for Real-time Transport Protocol
(RTP) streams. Media forking provides the ability to create midcall multiple streams (or branches) of audio
and video associated with a single call and then send the streams of data to different destinations. To enable
network-based recording using CiscoUnified Border Element (CUBE), you can configure specific commands
or use a call agent. CUBE acts as a recording client andMediaSense Session Initiation Protocol (SIP) recorder
acts a recording server.

• Feature Information for Network-Based Recording, on page 1
• Restrictions for Network-Based Recording, on page 2
• Information About Network-Based Recording Using CUBE, on page 3
• How to Configure Network-Based Recording, on page 7
• Additional References for Network-Based Recording, on page 27

Feature Information for Network-Based Recording
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco
Feature Navigator enables you to determine which software images support a specific software release, feature
set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on
Cisco.com is not required.

Table 1: Feature Information for Network-Based Recording

Feature InformationReleasesFeature Name

Command show sip-ua calls is modified to display
local crypto key and remote cryto key.

Cisco IOS XE Gibraltar
Release 16.11.1a

Security Readiness Criteria
(SRC)—Modified the
command show sip-ua calls.

The Audio-only Stream Forking of Video Call
feature supports CUBE-based forking and recording
of only audio calls in a call that includes both audio
and video. The following commands were
introduced: media-type audio.

Cisco IOS 15.4(3)M

Cisco IOS XE 3.13S

Audio-only Stream Forking
of Video Call

Network-Based Recording
1

http://www.cisco.com/go/cfn


Feature InformationReleasesFeature Name

TheNetwork-BasedRecording of Video Calls using
CUBE feature supports forking and recording of
video calls.

Cisco IOS 15.3(3)M

Cisco IOS XE 3.10S

Network-Based Recording of
Video Calls Using CUBE

TheNetwork-BasedRecording ofAudio Calls using
CUBE feature supports forking for RTP streams.

The following commands were introduced or
modified: media class, media profile recorder,
media-recording, recorder parameter, recorder
profile, show voip recmsp session.

Cisco IOS 15.2(1)T

Cisco IOS XE 3.8S

Network-Based Recording of
Audio Calls Using CUBE

Restrictions for Network-Based Recording
• Network-based recording is not supported for the following calls:

• Calls that do not use Session Initiation Protocol (SIP). Must be a SIP-to-SIP call flow

• Flow-around calls

• Session Description Protocol (SDP) pass-through calls

• Real-time Transport Protocol (RTP) loopback calls

• High-density transcoder calls

• IPv6-to-IPv6 calls

• IPv6-to-IPv4 calls with IPv4 endpoint.

• Secure Real-time Transport Protocol (SRTP) passthrough calls

• SRTP-RTP calls with forking for SRTP leg (forking is supported for the RTP leg)

• Resource Reservation Protocol (RSVP)

• Multicast music on hold (MOH)

Mid-call gateway recording session stops when the call is on hold. For the use
case demonstrating the Hold function on the IP phone, see Call Recording
Examples for Network-Based and Phone-Based Recording.

Note

• Anymedia service parameter change via Re-INVITE or UPDATE fromRecording server is not supported
Midcall renegotiation and supplementary services can be done through the primary call only.

• Media service parameter change via Re-INVITE or UPDATE message from the recording server is not
supported

• Recording is not supported if CUBE is running a TCL IVR application with the exception of
survivability.tcl, which is supported with network based recording.

Network-Based Recording
2

Network-Based Recording
Restrictions for Network-Based Recording

https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/configExamples/cucm_b_recording-use-cases.html#reference_A752E53270E1CE6F8E806A0B8A1BB08F
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/configExamples/cucm_b_recording-use-cases.html#reference_A752E53270E1CE6F8E806A0B8A1BB08F


• Media mixing on forked streams is not supported

• Digital Signal Processing (DSP) resources are not supported on forked legs

• RecordTone insertion is not supported with SRTP calls.

• Forking does not stop when RTP stream changes mid call to RTP stream. This is for backward
compatibility.

• MediaForkingReason tag is to notify midcall stream events. Notification for codec change is not supported.

• Server Groups in outbound dial-peers towards recorders is not supported.

• Forking a single call on a CUBE using both dial-peer based recording and SIPREC is not supported.

Restrictions for Video Recording

• If the main call has multiple video streams (m-lines), the video streams other than the first video m-line
are not forked.

• Application media streams of the primary call are not forked to the recording server.

• Forking is not supported if the anchor leg or recording server is on IPv6.

• High availability is not supported on forked video calls.

Information About Network-Based Recording Using CUBE

Deployment Scenarios for CUBE-based Recording
CUBE as a recording client has the following functions:

• Acts as a SIP user agent and sets up a recording session (SIP dialog) with the recording server.

• Acts as the source of the recorded media and forwards the recorded media to the recording server.

• Sends information to a server that helps the recording server associate the call with media streams and
identifies the participants of the call. This information sent to the recording server is called metadata.

CUBE simply forwards the RTP streams it receives to the SIP recorder. It does not support omitting any
pre-agent VRU activity from the recording.

If you want to omit the VRU segment from a recording, you must use the Unified CVP to route the agent
segment of the call back through CUBE. To do this, you need to separate ingress and media forking function
from one another, which means you must either route the call through the ingress router a second time, or
route it through a second router.

Note

Given below is a typical deployment scenario of a CUBE-based recording solution. The information flow is
described below:

Network-Based Recording
3

Network-Based Recording
Information About Network-Based Recording Using CUBE



Figure 1: Deployment Scenario for CUBE-based Recording Solution

1. Incoming call from SIP trunk.

2. Outbound call to a Contact Centre

3. Media between endpoints flowthrough CUBE

4. CUBE sets up a new SIP session with MediaSense based on policy.

5. CUBE forks RTP media to MediaSense. For an audio call, audio is forked. For a video call, both audio
and video are .forked. For an audio-only configuration in a audio-video call, only audio is forked. There
will be two or four m-lines to the recording server, based on the type of recording

The metadata carried in the SIP session between the recording client and the recording server is to:

• Carry the communication session data that describes the call.

• Send the metadata to the recording server. The recording server uses the metadata to associate
communication sessions involving two or more participants with media streams.

The call leg that is created between the recording client and the recording server is known as the recording
session.

Open Recording Architecture
The Open Recording Architecture (ORA) comprises of elements, such as application management server and
SIP bridge, to support IP-based recording. The ORA IP enables recording by solving topology issues, which
accelerates the adoption of Cisco unified communication solutions.

Network-Based Recording
4

Network-Based Recording
Open Recording Architecture



Following are the three layers of the ORA architecture:

Network Layer
The ORA network layer is comprises call control systems, media sources, and IP foundation components,
such as routers and switches.

Capture and Media Processing Layer
The ORA capture and media processing layer includes core functions of ORA—terminating media streams,
storage of media and metadata, and speech analytics that can provide real-time events for applications.

Application Layer
The ORA application layer supports in-call and post-call applications through open programming interfaces.

In-call applications include applications that make real-time business decisions (for example, whether to
record a particular call or not), control pause and resume from Interactive Voice Response (IVR) or agent
desktop systems, and perform metadata tagging and encryption key exchange at the call setup.

Post-call applications include the following:

• Traditional compliance search, replay, and quality monitoring.

• Advanced capabilities, such as speech analytics, transcription, and phonetic search.

• Custom enterprise integration.

Network-Based Recording
5

Network-Based Recording
Network Layer



• Enterprise-wide policy management.

Media Forking Topologies
The following topologies support media forking:

Media Forking with Cisco UCM
The figure below illustrates media forking with Cisco Unified CallManager (Cisco UCM) topology. This
topology supports replication of media packets to allow recording by the caller agent. It also enables CUBE
to establish full-duplex communication with the recording server. In this topology, SIP recording trunk is
enhanced to have additional call metadata.

Media Forking without Cisco UCM
The topology below shows media forking without the Cisco UCM topology. This topology supports static
configuration on CUBE and the replication of media packets to allow recording caller-agent and full-duplex
interactions at an IP call recording server.

SIP Recorder Interface
SIP is used as a protocol between CUBE and the MediaSense SIP server. Extensions are made to SIP to carry
the recording session information needed for the recording server. This information carried in SIP sessions
between the recording client and the recording server is called metadata.

Metadata
Metadata is the information that is passed by the recording client to the recording server in a SIP session.
Metadata describes the communication session and its media streams.

Network-Based Recording
6

Network-Based Recording
Media Forking Topologies



Metadata is used by the recording server to:

• Identify participants of the call.

• Associate media streams with the participant information. Each participant can have one or more media
streams, such as audio and video.

• Identify the participant change due to transfers during the call.

The recording server uses the metadata information along with other SIP message information, such as dialog
ID and time and date header, to derive a unique key. The recording server uses this key to store media streams
and associate the participant information with the media streams.

How to Configure Network-Based Recording

Configuring Network-Based Recording (with Media Profile Recorder)

SUMMARY STEPS

1. enable
2. configure terminal
3. media profile recorder profile-tag

4. (Optional) media-type audio
5. media-recording dial-peer-tag [dial-peer-tag2...dial-peer-tag5]
6. exit
7. media class tag

8. recorder profile tag

9. exit
10. dial-peer voice dummy-recorder-dial-peer-tag voip
11. media-class tag

12. destination-pattern [+] string [T]
13. session protocol sipv2
14. session target ipv4:[recording-server-destination-address | recording-server-dns]
15. session transport tcp
16. end

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Network-Based Recording
7

Network-Based Recording
How to Configure Network-Based Recording



PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures the media profile recorder and enters media
profile configuration mode.

media profile recorder profile-tag

Example:

Step 3

Device(config)# media profile recorder 100

Configures recording of audio only in a call with both
audio and video. If this configuration is not done, both
audio and video are recorded.

(Optional) media-type audio

Example:

Device(cfg-mediaprofile)# media-type audio

Step 4

Configures the dial-peers that need to be configured.media-recording dial-peer-tag
[dial-peer-tag2...dial-peer-tag5]

Step 5

You can specify a maximum of five dial-peer
tags.

Note
Example:

Device(cfg-mediaprofile)# media-recording 8000
8001 8002

Exits media profile configuration mode.exit

Example:

Step 6

Device(cfg-mediaprofile)# exit

Configures a media class and enters media class
configuration mode.

media class tag

Example:

Step 7

Device(config)# media class 100

Configures the media profile recorder.recorder profile tag

Example:

Step 8

Device(cfg-mediaclass)# recorder profile 100

Exits media class configuration mode.exit

Example:

Step 9

Device(cfg-mediaclass)# exit

Configures a recorder dial peer and enters dial peer voice
configuration mode.

dial-peer voice dummy-recorder-dial-peer-tag voip

Example:

Step 10

Device(config)# dial-peer voice 8000 voip

Network-Based Recording
8

Network-Based Recording
Configuring Network-Based Recording (with Media Profile Recorder)



PurposeCommand or Action

Configures media class on a dial peer.media-class tag

Example:

Step 11

Device(config-dial-peer)# media-class 100

Specifies either the prefix or the full E.164 telephone
number (depending on your dial plan) to be used for a dial
peer.

destination-pattern [+] string [T]

Example:

Device(config-dial-peer)# destination-pattern
595959

Step 12

The predefined valid entries for string are the digits
0 to 9, the letters A to F and, the following special
characters:

• The asterisk (*) and pound sign (#) that appear
on standard touch-tone dial pads.

• Plus sign (+), which indicates that the preceding
digit occurred one or more times.

• Backslash symbol (\), which is followed by a
single character, and matches that character.

Media Forking functionality does not work with the
wildcard entries other than the predefined set.

Note

Configures the VoIP dial peer to use Session Initiation
Protocol (SIP).

session protocol sipv2

Example:

Step 13

Device(config-dial-peer)# session protocol sipv2

Specifies a network-specific address for a dial peer.
Keyword and argument are as follows:

session target
ipv4:[recording-server-destination-address |
recording-server-dns]

Step 14

• ipv4: destination address --IP address of the dial peer,
in this format: xxx.xxx.xxx.xxxExample:

Device(config-dial-peer)# session target
ipv4:10.42.29.7

Configures a VoIP dial peer to use Transmission Control
Protocol (TCP).

session transport tcp

Example:

Step 15

Device(config-dial-peer)# session transport tcp

Returns to privileged EXEC mode.end

Example:

Step 16

Device(config-dial-peer)# end

Network-Based Recording
9

Network-Based Recording
Configuring Network-Based Recording (with Media Profile Recorder)



Configuring Network-Based Recording (without Media Profile Recorder)

SUMMARY STEPS

1. enable
2. configure terminal
3. media class tag

4. recorder parameter
5. (Optional) media-type audio
6. media-recording dial-peer-tag

7. exit
8. exit
9. dial-peer voice dummy-recorder-dial-peer-tag voip
10. media-class tag

11. destination-pattern [+] string [T]
12. session protocol sipv2
13. session target ipv4:[recording-server-destination-address | recording-server-dns]
14. session transport tcp
15. end

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures the media class and enters media class
configuration mode.

media class tag

Example:

Step 3

Device(config)# media class 100

Enters media class recorder parameter configuration mode
to enable you to configure recorder-specific parameters.

recorder parameter

Example:

Step 4

Device(cfg-mediaclass)# recorder parameter

Network-Based Recording
10

Network-Based Recording
Configuring Network-Based Recording (without Media Profile Recorder)



PurposeCommand or Action

Configures recording of audio only in a call with both
audio and video.

(Optional) media-type audio

Example:

Step 5

If this configuration is not done, both audio
and video are recorded.

Note
Device(cfg-mediaprofile)# media-type audio

Configures voice-class recording parameters.media-recording dial-peer-tagStep 6

Example: You can specify a maximum of five dial-peer
tags.

Note

Device(cfg-mediaclass-recorder)# media-recording
8000, 8001, 8002

Exits media class recorder parameter configuration mode.exit

Example:

Step 7

Device(cfg-mediaclass-recorder)# exit

Exits media class configuration mode.exit

Example:

Step 8

Device(cfg-mediaclass)# exit

Configures a recorder dial peer and enters dial peer voice
configuration mode.

dial-peer voice dummy-recorder-dial-peer-tag voip

Example:

Step 9

Device(config)# dial-peer voice 8000 voip

Configures media class on a dial peer.media-class tag

Example:

Step 10

Device(config-dial-peer)# media-class 100

Specifies either the prefix or the full E.164 telephone
number (depending on your dial plan) to be used for a dial
peer.

destination-pattern [+] string [T]

Example:

Device(config-dial-peer)# destination-pattern
595959

Step 11

Network-Based Recording
11

Network-Based Recording
Configuring Network-Based Recording (without Media Profile Recorder)



PurposeCommand or Action

The predefined valid entries for string are the digits
0 to 9, the letters A to F and, the following special
characters:

• The asterisk (*) and pound sign (#) that appear
on standard touch-tone dial pads.

• Plus sign (+), which indicates that the preceding
digit occurred one or more times.

• Backslash symbol (\), which is followed by a
single character, and matches that character.

Media Forking functionality does not work with the
wildcard entries other than the predefined set.

Note

Configures the VoIP dial peer to use Session Initiation
Protocol (SIP).

session protocol sipv2

Example:

Step 12

Device(config-dial-peer)# session protocol sipv2

Specifies a network-specific address for a dial peer.
Keyword and argument are as follows:

session target
ipv4:[recording-server-destination-address |
recording-server-dns]

Step 13

• ipv4: destination address --IP address of the dial peer,
in this format: xxx.xxx.xxx.xxxExample:

Device(config-dial-peer)# session target
ipv4:10.42.29.7

Configures a VoIP dial peer to use Transmission Control
Protocol (TCP).

session transport tcp

Example:

Step 14

Device(config-dial-peer)# session transport tcp

Returns to privileged EXEC mode.end

Example:

Step 15

Device(config-dial-peer)# end

Verifying the Network-Based Recording Using CUBE
Perform this task to verify the configuration of the Network-Based Recording Using CUBE. The show and
debug commands can be entered in any order.

SUMMARY STEPS

1. enable
2. show voip rtp connections
3. show voip recmsp session

Network-Based Recording
12

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



4. show voip recmsp session detail call-id call-id

5. show voip rtp forking
6. show call active voice compact
7. show call active video compact
8. show sip-ua calls
9. show call active video brief
10. debug ccsip messages (for audio calls)
11. debug ccsip messages (for video calls)
12. debug ccsip messages (for audio-only recording in a call with both audio and video)
13. Enter one of the following:

• debug ccsip all
• debug voip recmsp all
• debug voip ccapi all
• debug voip fpi all (for ASR devices only)

DETAILED STEPS

Procedure

Step 1 enable

Enables privileged EXEC mode.

Example:

Device> enable

Step 2 show voip rtp connections

Displays Real-Time Transport Protocol (RTP) connections. Two extra connections are displayed for forked legs.

Example:
Device# show voip rtp connections

VoIP RTP Port Usage Information:
Max Ports Available: 8091, Ports Reserved: 101, Ports in Use: 8
Port range not configured, Min: 16384, Max: 32767

Ports Ports Ports
Media-Address Range Available Reserved In-use

Default Address-Range 8091 101 8

VoIP RTP active connections :
No. CallId dstCallId LocalRTP RmtRTP LocalIP RemoteIP

1 1 2 16384 20918 10.104.45.191 10.104.8.94

2 2 1 16386 17412 10.104.45.191 10.104.8.98

3 3 4 16388 29652 10.104.45.191 10.104.8.98

4 4 3 16390 20036 10.104.45.191 10.104.8.94

Network-Based Recording
13

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



5 6 5 16392 58368 10.104.45.191 10.104.105.232

6 7 5 16394 53828 10.104.45.191 10.104.105.232

7 8 5 16396 39318 10.104.45.191 10.104.105.232

8 9 5 16398 41114 10.104.45.191 10.104.105.232

Found 8 active RTP connections

Step 3 show voip recmsp session

Displays active recording Media Service Provider (MSP) session information internal to CUBE.

Example:

Device# show voip recmsp session

RECMSP active sessions:
MSP Call-ID AnchorLeg Call-ID ForkedLeg Call-ID
143 141 145
Found 1 active sessions

Step 4 show voip recmsp session detail call-id call-id

Displays detailed information about the recording MSP Call ID.

Example:

Device# show voip recmsp session detail call-id 145
RECMSP active sessions:
Detailed Information
=========================
Recording MSP Leg Details:
Call ID: 143
GUID : 7C5946D38ECD

AnchorLeg Details:
Call ID: 141
Forking Stream type: voice-nearend
Participant: 708090

Non-anchor Leg Details:
Call ID: 140
Forking Stream type: voice-farend
Participant: 10000

Forked Leg Details:
Call ID: 145
Near End Stream CallID 145
Stream State ACTIVE
Far End stream CallID 146
Stream State ACTIVE
Found 1 active sessions

Device# show voip recmsp session detail call-id 5

RECMSP active sessions:
Detailed Information
=========================
Recording MSP Leg Details:
Call ID: 5
GUID : 1E01B6000000

Network-Based Recording
14

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



AnchorLeg Details:
Call ID: 1
Forking Stream type: voice-nearend
Forking Stream type: video-nearend
Participant: 1777

Non-anchor Leg Details:
Call ID: 2
Forking Stream type: voice-farend
Forking Stream type: video-farend
Participant: 1888

Forked Leg Details:
Call ID: 6
Voice Near End Stream CallID 6
Stream State ACTIVE
Voice Far End stream CallID 7
Stream State ACTIVE
Video Near End stream CallID 8
Stream State ACTIVE
Video Far End stream CallID 9
Stream State ACTIVE
Found 1 active sessions

DescriptionOutput Field

Displays the state of the call. This can be ACTIVE or HOLD.Stream State

Displays an internal Media service provider call ID and forking related statistics for an active
forked call.

Msp Call-Id

Displays an internal anchor leg ID, which is the dial peer where forking enabled. The output
displays the participant number and stream type. Stream type voice-near end indicates the called
party side.

Anchor Leg Call-id

Displays an internal non-anchor leg ID, which is the dial peer where forking is not enabled. The
output displays the participant number and stream type. Stream type voice-near end indicates
the called party side.

Non-AnchorCall-id

This forking leg call-id will show near-end and far-end stream call-id details with state of the
Stream .

Displays an internal foked leg ID. The output displays near-end and far-end details of a stream.

Forked Call-id

Step 5 show voip rtp forking

Displays RTP media-forking connections.

Example:

Device# show voip rtp forking
VoIP RTP active forks :
Fork 1
stream type voice-only (0): count 0
stream type voice+dtmf (1): count 0
stream type dtmf-only (2): count 0
stream type voice-nearend (3): count 1
remote ip 10.42.29.7, remote port 38526, local port 18648
codec g711ulaw, logical ssrc 0x53

Network-Based Recording
15

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



packets sent 29687, packets received 0
stream type voice+dtmf-nearend (4): count 0
stream type voice-farend (5): count 1
remote ip 10.42.29.7, remote port 50482, local port 17780
codec g711ulaw, logical ssrc 0x55
packets sent 29686, packets received 0

stream type voice+dtmf-farend (6): count 0
stream type video (7): count

DescriptionOutput Field

Recording server IP, recording server port, and local CUBE device
port where data for stream 1 was first sent from.

remote ip 10.42.29.7, remote port 38526, local
port 18648

Recording server IP, recording server port, and local CUBE device
port where data for stream 2 was first sent from.

remote ip 10.42.29.7, remote port 50482, local
port 17780

Number of packets sent to the recorderpackets sent 29686

Codec negotiated for the recording leg.codec g711ulaw

Step 6 show call active voice compact

Displays a compact version of voice calls in progress. An additional call leg is displayed for media forking.

Example:

Device# show call active voice compact
<callID> A/O FAX T<sec> Codec type Peer Address IP R<ip>:<udp>
Total call-legs: 3

140 ANS T644 g711ulaw VOIP P10000 10.42.30.32:18638
141 ORG T644 g711ulaw VOIP P708090 10.42.30.189:26184
145 ORG T643 g711ulaw VOIP P595959 10.42.29.7:38526

Step 7 show call active video compact

Displays a compact version of video calls in progress.

Example:
Device# show call active video compact

<callID> A/O FAX T<sec> Codec type Peer Address IP R<ip>:<udp>
Total call-legs: 3

1 ANS T14 H264 VOIP-VIDEO P1777 10.104.8.94:20036
2 ORG T14 H264 VOIP-VIDEO P1888 10.104.8.98:29652
6 ORG T13 H264 VOIP-VIDEO P1234 10.104.105.232:39318

Step 8 show sip-ua calls

Displays active user agent client (UAC) and user agent server (UAS) information on SIP calls.

Example:

Device# show sip-ua calls
Total SIP call legs:2, User Agent Client:1, User Agent Server:1
SIP UAC CALL INFO
Call 1
SIP Call ID : C9A3AA00-B49A11E8-8018A74B-CD0B0450@10.0.0.1

State of the call : STATE_ACTIVE (7)
Substate of the call : SUBSTATE_NONE (0)
Calling Number : 1234

Network-Based Recording
16

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



Called Number : 9876
Called URI : sip:9876@10.0.0.2:9800
Bit Flags : 0xC04018 0x90000100 0x80
CC Call ID : 13
Local UUID : 7d14e2d622ec504f9aaa4ba029ddd136
Remote UUID : 2522eaa82f505c868037da95438fc49b
Source IP Address (Sig ): 10.0.0.1
Destn SIP Req Addr:Port : [10.0.0.2]:9800
Destn SIP Resp Addr:Port: [10.0.0.2]:9800
Destination Name : 10.0.0.2
Number of Media Streams : 2
Number of Active Streams: 2
RTP Fork Object : 0x0
Media Mode : flow-through
Media Stream 1
State of the stream : STREAM_ACTIVE
Stream Call ID : 13
Stream Type : voice-only (0)
Stream Media Addr Type : 1
Negotiated Codec : g711ulaw (160 bytes)
Codec Payload Type : 0
Negotiated Dtmf-relay : inband-voice
Dtmf-relay Payload Type : 0
QoS ID : -1
Local QoS Strength : BestEffort
Negotiated QoS Strength : BestEffort
Negotiated QoS Direction : None
Local QoS Status : None
Media Source IP Addr:Port: [10.0.0.1]:8022
Media Dest IP Addr:Port : [10.0.0.2]:6008
Local Crypto Suite : AES_CM_128_HMAC_SHA1_80 (

AEAD_AES_256_GCM
AEAD_AES_128_GCM
AES_CM_128_HMAC_SHA1_80
AES_CM_128_HMAC_SHA1_32 )

Remote Crypto Suite : AES_CM_128_HMAC_SHA1_80
Local Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z1234tVb2
Remote Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z9876tVb2

Media Stream 2
State of the stream : STREAM_ACTIVE
Stream Call ID : 14
Stream Type : video (7)
Stream Media Addr Type : 1
Negotiated Codec : h264 (0 bytes)
Codec Payload Type : 97
Negotiated Dtmf-relay : inband-voice
Dtmf-relay Payload Type : 0
QoS ID : -1
Local QoS Strength : BestEffort
Negotiated QoS Strength : BestEffort
Negotiated QoS Direction : None
Local QoS Status : None
Media Source IP Addr:Port: [10.0.0.1]:8020
Media Dest IP Addr:Port : [10.0.0.2]:9802
Local Crypto Suite : AES_CM_128_HMAC_SHA1_80 (

AEAD_AES_256_GCM
AEAD_AES_128_GCM
AES_CM_128_HMAC_SHA1_80
AES_CM_128_HMAC_SHA1_32 )

Remote Crypto Suite : AES_CM_128_HMAC_SHA1_80
Local Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z2345tVb2
Remote Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z8765tVb2

Mid-Call Re-Assocation Count: 0
SRTP-RTP Re-Assocation DSP Query Count: 0

Network-Based Recording
17

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



Options-Ping ENABLED:NO ACTIVE:NO
Number of SIP User Agent Client(UAC) calls: 1

SIP UAS CALL INFO
Call 1
SIP Call ID : 1-12049@10.0.0.2

State of the call : STATE_ACTIVE (7)
Substate of the call : SUBSTATE_NONE (0)
Calling Number : 1234
Called Number : 9876
Called URI : sip:9876@10.0.0.1:5060
Bit Flags : 0xC0401C 0x10000100 0x4
CC Call ID : 11
Local UUID : 2522eaa82f505c868037da95438fc49b
Remote UUID : 7d14e2d622ec504f9aaa4ba029ddd136
Source IP Address (Sig ): 10.0.0.1
Destn SIP Req Addr:Port : [10.0.0.2]:5060
Destn SIP Resp Addr:Port: [10.0.0.2]:5060
Destination Name : 10.0.0.2
Number of Media Streams : 2
Number of Active Streams: 2
RTP Fork Object : 0x0
Media Mode : flow-through
Media Stream 1
State of the stream : STREAM_ACTIVE
Stream Call ID : 11
Stream Type : voice-only (0)
Stream Media Addr Type : 1
Negotiated Codec : g711ulaw (160 bytes)
Codec Payload Type : 0
Negotiated Dtmf-relay : inband-voice
Dtmf-relay Payload Type : 0
QoS ID : -1
Local QoS Strength : BestEffort
Negotiated QoS Strength : BestEffort
Negotiated QoS Direction : None
Local QoS Status : None
Media Source IP Addr:Port: [10.0.0.1]:8016
Media Dest IP Addr:Port : [10.0.0.2]:6009
Local Crypto Suite : AES_CM_128_HMAC_SHA1_80
Remote Crypto Suite : AES_CM_128_HMAC_SHA1_80
Local Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z9876tVb2
Remote Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z1234tVb2

Media Stream 2
State of the stream : STREAM_ACTIVE
Stream Call ID : 12
Stream Type : video (7)
Stream Media Addr Type : 1
Negotiated Codec : h264 (0 bytes)
Codec Payload Type : 97
Negotiated Dtmf-relay : inband-voice
Dtmf-relay Payload Type : 0
QoS ID : -1
Local QoS Strength : BestEffort
Negotiated QoS Strength : BestEffort
Negotiated QoS Direction : None
Local QoS Status : None
Media Source IP Addr:Port: [10.0.0.1]:8018
Media Dest IP Addr:Port : [10.0.0.2]:5062
Local Crypto Suite : AES_CM_128_HMAC_SHA1_80
Remote Crypto Suite : AES_CM_128_HMAC_SHA1_80
Local Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z8765tVb2

Network-Based Recording
18

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



Remote Crypto Key : bTQqZXbgFJddA1hE9wJGV3aKxo5vPV+Z2345tVb2
Mid-Call Re-Assocation Count: 0
SRTP-RTP Re-Assocation DSP Query Count: 0

Options-Ping ENABLED:NO ACTIVE:NO
Number of SIP User Agent Server(UAS) calls: 1

Step 9 show call active video brief

Displays a truncated version of video calls in progress.

Example:
Device# show call active video brief

Telephony call-legs: 0
SIP call-legs: 3
H323 call-legs: 0
Call agent controlled call-legs: 0
SCCP call-legs: 0
Multicast call-legs: 0
Total call-legs: 3

0 : 1 87424920ms.1 (*12:23:53.573 IST Wed Jul 17 2013) +1050 pid:1 Answer 1777 active
dur 00:00:46 tx:5250/1857831 rx:5293/1930598 dscp:0 media:0 audio tos:0xB8 video tos:0x88
IP 10.104.8.94:20036 SRTP: off rtt:0ms pl:0/0ms lost:0/0/0 delay:0/0/0ms H264 TextRelay: off
Transcoded: No
…
0 : 2 87424930ms.1 (*12:23:53.583 IST Wed Jul 17 2013) +1040 pid:2 Originate 1888 active
dur 00:00:46 tx:5293/1930598 rx:5250/1857831 dscp:0 media:0 audio tos:0xB8 video tos:0x88
IP 10.104.8.98:29652 SRTP: off rtt:0ms pl:0/0ms lost:0/0/0 delay:0/0/0ms H264 TextRelay: off
Transcoded: No
…
0 : 6 87425990ms.1 (*12:23:54.643 IST Wed Jul 17 2013) +680 pid:1234 Originate 1234 active
dur 00:00:46 tx:10398/3732871 rx:0/0 dscp:0 media:0 audio tos:0xB8 video tos:0x0
IP 10.104.105.232:39318 SRTP: off rtt:0ms pl:0/0ms lost:0/0/0 delay:0/0/0ms H264 TextRelay: off
Transcoded: No
…

Step 10 debug ccsip messages (for audio calls)
Sent:
INVITE sip:22222@10.42.29.7:5060 SIP/2.0
Via: SIP/2.0/TCP 10.42.30.10:5060;branch=z9hG4bKB622CF
X-Cisco-Recording-Participant: sip:708090@10.42.30.5;media-index="0"
X-Cisco-Recording-Participant: sip:10000@10.42.30.32;media-index="1"
From: <sip:10.42.30.10>;tag=5096700-1E1A
To: <sip:595959@10.42.29.7>
Date: Fri, 18 Mar 2011 07:01:50 GMT
Call-ID: 6E6CF813-506411E0-80EAE01B-4C27AA62@10.42.30.10
Supported: 100rel,timer,resource-priority,replaces,sdp-anat
Min-SE: 1800
Cisco-Guid: 1334370502-1348997600-2396699092-3395863316
User-Agent: Cisco-SIPGateway/IOS-15.2(0.0.2)PIA16
Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY, INFO, REGISTER
CSeq: 101 INVITE
Max-Forwards: 70
Timestamp: 1300431710
Contact: <sip:10.42.30.10:5060;transport=tcp>
Expires: 180
Allow-Events: telephone-event
Content-Type: application/sdp
Content-Disposition: session;handling=required

Network-Based Recording
19

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



Content-Length: 449
v=0
o=CiscoSystemsSIP-GW-UserAgent 3021 3526 IN IP4 10.42.30.10
s=SIP Call
c=IN IP4 10.42.30.10
t=0 0
m=audio 24544 RTP/AVP 0 101 19
c=IN IP4 10.42.30.10
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=rtpmap:19 CN/8000
a=ptime:20
a=sendonly
m=audio 31166 RTP/AVP 0 101 19
c=IN IP4 10.42.30.10
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=rtpmap:19 CN/8000
a=ptime:20
a=sendonly
Received:
SIP/2.0 200 Ok
Via: SIP/2.0/TCP 10.104.46.198:5060;branch=z9hG4bK13262B
To: <sip:23232323@10.104.46.201>;tag=ds457251f
From: <sip:10.104.46.198>;tag=110B66-1CBC
Call-ID: 7142FB-9A5011E0-801EF71A-59B4D258@10.104.46.198
CSeq: 101 INVITE
Content-Length: 206
Contact: <sip:23232323@10.104.46.201:5060;transport=tcp>
Content-Type: application/sdp
Allow: INVITE, BYE, CANCEL, ACK, NOTIFY, INFO, UPDATE
Server: Cisco-ORA/8.5
v=0
o=CiscoORA 2187 1 IN IP4 10.104.46.201
s=SIP Call
c=IN IP4 10.104.46.201
t=0 0
m=audio 54100 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=recvonly
m=audio 39674 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=recvonly

Sent:
ACK sip:23232323@10.104.46.201:5060;transport=tcp SIP/2.0
Via: SIP/2.0/TCP 10.104.46.198:5060;branch=z9hG4bK141B87
From: <sip:10.104.46.198>;tag=110B66-1CBC
To: <sip:23232323@10.104.46.201>;tag=ds457251f
Date: Mon, 20 Jun 2011 08:42:01 GMT
Call-ID: 7142FB-9A5011E0-801EF71A-59B4D258@10.104.46.198
Max-Forwards: 70
CSeq: 101 ACK
Allow-Events: telephone-event
Content-Length: 0

Network-Based Recording
20

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



DescriptionOutput Field

22222 is the destination pattern or the
number of recording server and is
configured under the recorder dial
peer.

INVITE sip:22222@10.42.29.7:5060 SIP/2.0

Cisco proprietary header with
originating and terminating participant
number and IP address used to
communicate to the recording server

X-Cisco-Recording-Participant: sip:708090@10.42.30.5;media-index="0"

GUID is the same for the primary call
and forked call .

Cisco-Guid: 1334370502-1348997600-2396699092-3395863316

First m-line of participant with payload
type and codec information .

m=audio 24544 RTP/AVP 0 101 19

Second m- line of another participant
with codec info and payload type.

m=audio 31166 RTP/AVP 0 101 19

CUBE is always in send only mode
towards Recording server.

a=sendonly

Recording server is in receive mode
only.

a=recvonly

Step 11 debug ccsip messages (for video calls)
Sent: INVITE sip:575757@9.45.38.39:7686 SIP/2.0

.

.
Via: SIP/2.0/UDP 9.41.36.41:5060;branch=z9hG4bK2CC2408
X-Cisco-Recording-Participant: sip:1777@10.104.45.207;media-
index="0 2“
X-Cisco-Recording-Participant: sip:1888@10.104.45.207;media- index="1 3“
.
.
Cisco-Guid: 0884935168-0000065536-0000000401-3475859466
.
.
v=0
.
.
.
m=audio 17232 RTP/AVP 0 19
.
.
a=sendonly
m=audio 17234 RTP/AVP 0 19
.
.
a=sendonly

m=video 17236 RTP/AVP 126
.
.
.

Network-Based Recording
21

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



a=fmtp:126 profile-level-id=42801E;packetization-mode=1
a=sendonly
m=video 17238 RTP/AVP 126
.
.

.
a=fmtp:126 profile-level-id=42801E;packetization-mode=1
a=sendonly

DescriptionOutput Field

22222 is the destination pattern or the number of recording server
and is configured under the recorder dial peer.

Sent: INVITE sip:575757@9.45.38.39:7686 SIP/2.0

Cisco proprietary header with originating and terminating
participant number and IP address used to communicate to the
recording server

X-Cisco-Recording-Participant:
sip:1777@10.104.45.207;media- index="0 2“
X-Cisco-Recording-Participant:
sip:1888@10.104.45.207;media- index="1 3“

GUID is the same for the primary call and forked call .Cisco-Guid:
0884935168-0000065536-0000000401-3475859466

First m-line of participant with payload type and audio codec.m=audio 17232 RTP/AVP 0 19

Secondm-line of another participant with payload type and audio
codec.

m=audio 17234 RTP/AVP 0 19

Third m-line of participant with video payload type and codec
info .

m=video 17236 RTP/AVP 126

Fourth m-line of another participant with video payload type and
codec info .

m=video 17238 RTP/AVP 126

CUBE is always in send only mode towards Recording server.a=sendonly

Receive:
SIP/2.0 200 OK
.
.
.

v=0
.
.
m=audio 1592 RTP/AVP 0
.
.
a=recvonly
m=audio 1594 RTP/AVP 0
.
.
a=recvonly
m=video 1596 RTP/AVP 126
.
.
a=fmtp:97 profile-level-id=420015

Network-Based Recording
22

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



a=recvonly
m=video 1598 RTP/AVP 126
.
.
a=fmtp:126 profile-level-id=420015
a=recvonly
Sent:
ACK sip:9.45.38.39:7686;transport=UDP SIP/2.0

Via: SIP/2.0/UDP 9.41.36.41:5060;branch=z9hG4bK2CD7

From: <sip:9.41.36.41>;tag=1ECFD128-24DF

To: <sip:575757@9.45.38.39>;tag=16104SIPpTag011

Date: Tue, 19 Mar 2013 11:40:01 GMT

Call-ID: FFFFFFFF91E00FE6-FFFFFFFF8FC011E2-FFFFFFFF824DF469-FFFFFFFFB6661C06@9.41.36.41

Max-Forwards: 70

CSeq: 101 ACK

Allow-Events: telephone-event

Content-Length: 0

DescriptionOutput Field

First m-line of recording server after it started listening.m=audio 1592 RTP/AVP 0

Second m-line of recording server after it started listening.m=audio 1594 RTP/AVP 0

Third m-line of recording server after it started listening.m=video 1596 RTP/AVP 126

Fourth m-line of recording server after it started listening.m=video 1598 RTP/AVP 126

Recording server in receive only mode.a=recvonly

Step 12 debug ccsip messages (for audio-only recording in a call with both audio and video)

Displays offer sent to MediaSense having only audio m-lines, when the media-type audio command is configured.

Sent:
INVITE sip:54321@9.45.38.39:36212 SIP/2.0
Via: SIP/2.0/UDP 9.41.36.15:5060;branch=z9hG4bK2216B
X-Cisco-Recording-Participant: sip:4321@9.45.38.39;media-index="0"
X-Cisco-Recording-Participant: sip:1111000010@9.45.38.39;media-index="1"
From: <sip:9.41.36.15>;tag=A2C74-5D9
To: <sip:54321@9.45.38.39>……
Content-Type: application/sdp
Content-Disposition: session;handling=required
Content-Length: 337

v=0
o=CiscoSystemsSIP-GW-UserAgent 9849 5909 IN IP4 9.41.36.15
s=SIP Call
c=IN IP4 9.41.36.15
t=0 0
m=audio 16392 RTP/AVP 0 19

Network-Based Recording
23

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



c=IN IP4 9.41.36.15
a=rtpmap:0 PCMU/8000
a=rtpmap:19 CN/8000
a=ptime:20
a=sendonly
m=audio 16394 RTP/AVP 0 19
c=IN IP4 9.41.36.15
a=rtpmap:0 PCMU/8000
a=rtpmap:19 CN/8000
a=ptime:20
a=sendonly

Response from CUBE has inactive video m-lines.
Received:
SIP/2.0 200 OK
Via: SIP/2.0/UDP 9.41.36.15:5060;branch=z9hG4bK2216B
…..
v=0
…
m=audio 36600 RTP/AVP 0
c=IN IP4 9.45.38.39
a=rtpmap:0 PCMU/8000
a=ptime:20
a=recvonly
m=audio 36602 RTP/AVP 0
c=IN IP4 9.45.38.39
a=rtpmap:0 PCMU/8000
a=ptime:20
a=recvonly
m=video 0 RTP/AVP 98
c=IN IP4 9.45.38.39
b=TIAS:1500000
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=420015
a=inactive
m=video 0 RTP/AVP 98
c=IN IP4 9.45.38.39
b=TIAS:1500000
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=420015
a=inactive

Step 13 Enter one of the following:

• debug ccsip all
• debug voip recmsp all
• debug voip ccapi all
• debug voip fpi all (for ASR devices only)

Displays detailed debug messages.

For Audio:

Media forking initialized:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_trigger_media_forking: MF: Recv Ack..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_trigger_media_forking: MF: Recv Ack & it's
Anchor leg. Start MF.
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_preprocess_event: MF:
initial-call. State = 1 & posting the event E_IPIP_MEDIA_FORKING_CALLSETUP_IND

Media forking started:

Network-Based Recording
24

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_service_get_event_data: Event
id = 30
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Function/sipSPIUisValidCcb:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Function/ccsip_is_valid_ccb:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking: MF: Current State = 1,
event =30
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking: MF: State & Event
combination is cracked..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Function/sipSPIGetMainStream:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Function/sipSPIGetMainStream:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_precondition: MF: Can
be started with current config.
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecParticipant:
MF: Populate rec parti header from this leg.

Forking header populated:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_get_recording_participant_header: MF: X-Cisco
header is RPID..

Media forking setup record session is successful:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_get_recording_participant_header: MF:
Building SIP URL..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_get_recording_participant_header: MF: Sipuser
= 98459845
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_get_recording_participant_header: MF: Host
= 9.42.30.34
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Function/sipSPIGetFirstStream:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Function/voip_media_dir_to_cc_media_dir:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecStream: MF:
direction type =3 3
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecStream: MF:
callid 103 set to nearend..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecStream: MF:
dtmf is inband
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecStream: MF:
First element..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecParticipant:
MF: First element..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_BuildMediaRecParticipant:
MF: Populate rec parti header from peer leg.
*Jun 15 10:37:55.404: //104/3E7E90AE8006/SIP/Info/ccsip_get_recording_participant_header: MF: X-Cisco
header is RPID..
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_write_to_TDContainer:
MF: Data written to TD Container..
*Jun 15 10:37:55.404: //-1/xxxxxxxxxxxx/Event/recmsp_api_setup_session: Event: E_REC_SETUP_REQ
anchor call ID:103, msp call ID:105 infunction recmsp_api_setup_session
*Jun 15 10:37:55.404: //-1/xxxxxxxxxxxx/Inout/recmsp_api_setup_session: Exit with Success
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/act_sip_mf_idle_callsetup_ind: MF:
setup_record_session is success..

Media forking forked stream started:
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/sipSPIMFChangeState: MF: Prev state = 1 & New
state = 2
*Jun 15 10:37:55.404: //103/3E7E90AE8006/SIP/Info/ccsip_gen_service_process_event: MF: 30 event
handled.
*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_call_setup_request: Set Protocol information
*Jun 15 10:37:55.406: //106/xxxxxxxxxxxx/CCAPI/cc_set_post_tagdata:
*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_ipip_media_forking_read_from_TDContainer:
MF: Data read from TD container..
*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_ipip_media_forking_forked_leg_config: MF:
MSP callid = 105
*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_ipip_media_forking_forked_leg_config: MF:
Overwriting the GUID with the value got from MSP.

Network-Based Recording
25

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_iwf_handle_peer_event:
*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_iwf_map_ccapi_event_to_iwf_event: Event
Category: 1, Event Id: 179
*Jun 15 10:37:55.406: //106/000000000000/SIP/Info/ccsip_iwf_process_event:
*Jun 15 10:37:55.406: //106/000000000000/SIP/Function/sipSPIUisValidCcb:
*Jun 15 10:37:55.406: //106/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_add_forking_stream: MF:
Forked stream added..
*Jun 15 10:37:55.406: //106/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_read_from_TDContainer:
MF: Data read from TD container..
*Jun 15 10:37:55.406: //106/3E7E90AE8006/SIP/Function/sipSPIGetFirstStream:
*Jun 15 10:37:55.406: //106/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_Display_TDContainerData:
** DISPLAY REC PART ***
*Jun 15 10:37:55.406: //106/3E7E90AE8006/SIP/Info/ccsip_ipip_media_forking_Display_TDContainerData:
recorder tag = 5

For Video:

Media Forking Initialized:
*Mar 19 16:40:01.784 IST: //522/34BF0A000000/SIP/Info/notify/32768/ccsip_trigger_media_forking: MF:
Recv Ack & it's Anchor leg. Start MF.
*Mar 19 16:40:01.784 IST:
//522/34BF0A000000/SIP/Info/info/32768/ccsip_ipip_media_forking_preprocess_event: MF: initial-call.
State = 1 & posting the event E_IPIP_MEDIA_FORKING_CALLSETUP_IND

Media forking started:
*Mar 19 16:40:01.784 IST: //522/34BF0A000000/SIP/Info/info/36864/ccsip_ipip_media_forking: MF:
Current State = 1, event =31
*Mar 19 16:40:01.784 IST: //522/34BF0A000000/SIP/Info/info/36864/ccsip_ipip_media_forking: MF: State
& Event combination is cracked..
*Mar 19 16:40:01.784 IST: //522/34BF0A000000/SIP/Function/sipSPIGetMainStream:
*Mar 19 16:40:01.784 IST: //522/34BF0A000000/SIP/Function/sipSPIGetMainStream:
*Mar 19 16:40:01.787 IST:
//522/34BF0A000000/SIP/Info/info/34816/ccsip_ipip_media_forking_precondition: MF: Can be started
with current config.
*Mar 19 16:40:01.787 IST: //-1/xxxxxxxxxxxx/Event/recmsp_api_create_session: Event:
E_REC_CREATE_SESSION anchor call ID:522, msp call ID:526
*Mar 19 16:40:01.787 IST: //-1/xxxxxxxxxxxx/Inout/recmsp_api_create_session: Exit with Success

Recording participant for anchor leg:
//522/34BF0A000000/SIP/Info/verbose/32768/ccsip_ipip_media_forking_BuildMediaRecParticipant: MF:
Populate rec parti header from this leg.
*Mar 19 16:40:01.788 IST:
//522/34BF0A000000/SIP/Info/info/33792/ccsip_get_recording_participant_header: MF: X-Cisco header
is PAI..

Adding an audio stream:
*Mar 19 16:40:01.788 IST: //522/34BF0A000000/SIP/Function/sipSPIGetFirstStream:
*Mar 19 16:40:01.788 IST:
//522/34BF0A000000/SIP/Info/verbose/32768/ccsip_ipip_media_forking_BuildMediaRecStream: MF: Adding
a Audio stream..
*Mar 19 16:40:01.789 IST: //522/34BF0A000000/SIP/Function/voip_media_dir_to_cc_media_dir:
*Mar 19 16:40:01.789 IST:
//522/34BF0A000000/SIP/Info/info/32768/ccsip_ipip_media_forking_BuildAudioRecStream: MF: direction
type =3 3
*Mar 19 16:40:01.789 IST:
//522/34BF0A000000/SIP/Info/info/32768/ccsip_ipip_media_forking_BuildAudioRecStream: MF: callid 522
set to nearend..
*Mar 19 16:40:01.789 IST:
//522/34BF0A000000/SIP/Info/info/32768/ccsip_ipip_media_forking_BuildAudioRecStream: MF: This
rcstream has 522 callid
*Mar 19 16:40:01.789 IST:
//522/34BF0A000000/SIP/Info/verbose/32768/ccsip_ipip_media_forking_BuildAudioRecStream: MF: Setting

Network-Based Recording
26

Network-Based Recording
Verifying the Network-Based Recording Using CUBE



data for audio stream..
*Mar 19 16:40:01.789 IST:
//522/34BF0A000000/SIP/Info/info/32800/ccsip_ipip_media_forking_BuildAudioRecStream: MF: dtmf is
inband
.

Video forking:
*Mar 19 16:40:01.789 IST: //522/34BF0A000000/SIP/Function/sipSPIGetVideoStream:
*Mar 19 16:40:01.789 IST:
//522/34BF0A000000/SIP/Info/verbose/32772/ccsip_ipip_media_forking_BuildMediaRecStream: MF:
video_codec present,Continue with Video Forking..

For Video

Additional References for Network-Based Recording
Related Documents

Cisco MediaSense Installation and Administration GuideMediaSense Installation
andAdministrationGuide

Standards and RFCs

TitleRFCs

RTP Payload Format for H.264 VideoRFC 3984

Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)RFC 5104

XML Schema for Media ControlRFC 5168

Network-Based Recording
27

Network-Based Recording
Additional References for Network-Based Recording

http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-installation-guides-list.html


Network-Based Recording
28

Network-Based Recording
Additional References for Network-Based Recording


	Network-Based Recording
	Feature Information for Network-Based Recording
	Restrictions for Network-Based Recording
	Information About Network-Based Recording Using CUBE
	Deployment Scenarios for CUBE-based Recording
	Open Recording Architecture
	Network Layer
	Capture and Media Processing Layer
	Application Layer

	Media Forking Topologies
	Media Forking with Cisco UCM
	Media Forking without Cisco UCM

	SIP Recorder Interface
	Metadata


	How to Configure Network-Based Recording
	Configuring Network-Based Recording (with Media Profile Recorder)
	Configuring Network-Based Recording (without Media Profile Recorder)
	Verifying the Network-Based Recording Using CUBE

	Additional References for Network-Based Recording


