
NX-API CLI

• About NX-API CLI, on page 1
• Using NX-API CLI, on page 3
• Kernel Stack ACL, on page 24
• Table of NX-API Response Codes, on page 25
• JSON and XML Structured Output, on page 27
• Sample NX-API Scripts, on page 29

About NX-API CLI
NX-API CLI is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API CLI
also supports JSON output format for specific commands.

On Cisco Nexus switches, command-line interfaces (CLIs) are run only on the switch. NX-API CLI improves
the accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You
can use this extension to the existing Cisco NX-OS CLI system on the switches. NX-API CLI supports show
commands, configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

Guidelines and Limitations
• NX-API CLI spawns VSH to execute Cisco NX-OS CLIs on a switch. The VSH timeout limit is 5
minutes. If the Cisco NX-OS CLIs take longer than 5 minutes to execute, the commands fail with the
message: "Back-end processing error.". This is governed by the NX-API command timeout, which
governs how long a command requested via NX-API can run. It is fixed at 300s and cannot be changed.

• Beginning with Cisco NX-OS Release 10.2(1)F, can use system server session cmd-timeout to increase
the timeout.

• NX-API spawns the worker processes and load balances the request between the worker processes.

• The number of nginx backend worker processes is 4.

• The number of nginx backend worker processes in N3k and the low memory-based platform is 2.

• Each worker process maintains a pool of 5 persistent VSH sessions. Each VSH session is uniquely
identified with a combination of username and remote IP from the incoming request. Whenever a new

NX-API CLI
1

request comes, the worker process checks if a matching username and remote IP entry is already present,
if yes then use the corresponding VSH session else a newVSH session is created based on the availability
in the pool and a new entry is added into the pool. If a worker process is already running with the max
allowed VSH sessions, then the new request will be rejected, and an appropriate error message will be
returned in the response.

• The number of VSH sessions per worker process is a hardcoded value and cannot be configured. The
total number of sessions that can exist at any point in time is 20.

Chunk-mode

• Chunk mode supports only 2 concurrent sessions. If the chunk option is selected, then it can be given
only in 2 parallel sessions at a time.

• The maximum size of response supported for chunk mode is 200MB until the release 10.3(1)F release.

• After the 10.3(1)F release, the chunk mode supports the response size, until the space is available in the
volatile (which is approximately 2.0GB). The size of chunk mode response supports depends on the
space in the volatile. Once volatile is 90% full, chunk mode returns failure when first the show output
is collected to file. The chunk size supported for each response is 10MB.

Transport
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

Starting with Cisco NX-OS Release 9.2(1), the NX-API feature is enabled by default on HTTPS port 443.
HTTP port 80 is disabled.

NX-API is also supported through UNIX Domain Sockets for applications running natively on the host or
within Guest Shell.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all its children processes, are
under the Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage
exceeds the cgroup limitations, the Nginx process is restarted and the NX-API configuration (the VRF, port,
and certificate configurations) is restored.

Message Format
NX-API is an enhancement to the Cisco Nexus 7000 Series CLI system, which supports XML output. NX-API
also supports JSON output format for specific commands.

• NX-API XML output presents information in a user-friendly format.

• NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.

• NX-API XML output can be converted into JSON.

Note

NX-API CLI
2

NX-API CLI
Transport

Security
• NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.

• NX-API does not support insecure HTTP by default.

• NX-API does not support weak TLSv1 protocol by default.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

You should consider using HTTPS to secure your user's login credentials.Note

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.Note

NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Note

Using NX-API CLI
The commands, command type, and output type for the Cisco Nexus 9000 Series switches are entered using
NX-API by encoding the CLIs into the body of a HTTP/HTTPS POST. The response to the request is returned
in XML or JSON output format.

For more details about NX-API response codes, see Table of NX-API Response Codes, on page 25.Note

NX-API CLI is enabled by default for local access. The remote HTTP access is disabled by default.

The following example shows how to configure and launch the NX-API CLI:

• Enable the management interface.
switch# conf t
Enter configuration commands, one per line.

NX-API CLI
3

NX-API CLI
Security

End with CNTL/Z.
switch(config)# interface mgmt 0
switch(config-if)# ip address 10.126.67.53/25
switch(config-if)# vrf context managment
switch(config-vrf)# ip route 0.0.0.0/0 10.126.67.1
switch(config-vrf)# end
switch#

• Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>

</ins_api>

Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>

</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>

</output>
</outputs>

</ins_api>

The following example shows a request and its response in JSON format:

Request:
{

"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"

}
}

Response:

NX-API CLI
4

NX-API CLI
Using NX-API CLI

{
"ins_api": {

"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {

"output": {
"body": {

"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"

}
}

}
}

There is a known issue where an attempt to delete a user might fail, resulting in an error message similar to
the following appearing every 12 hours or so:
user delete failed for username:userdel: user username is currently logged in - securityd

This issue might occur in a scenario where you try to delete a user who is still logged into a switch through
NX-API. Enter the following command in this case to try to log the user out first:
switch(config)# clear user username

Then try to delete the user again. If the issue persists after attempting this workaround, contact Cisco TAC
for further assistance.

Note

Escalate Privileges to Root on NX-API
For NX-API, the privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

• Only an admin user can escalate privileges to root.

• Escalation to root is password protected.

The following examples show how an admin escalates privileges to root and how to verify the escalation.
Note that after becoming root, the whoami command shows you as admin; however, the admin account has
all the root privileges.

First example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>

</ins_api>

NX-API CLI
5

NX-API CLI
Escalate Privileges to Root on NX-API

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>

</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>

</output>
</outputs>

</ins_api>

NX-API Management Commands
You can enable and manage NX-API with the CLI commands listed in the following table.

Table 1: NX-API Management Commands

DescriptionNX-API Management Command

Enables NX-API.feature nxapi

Disables NX-API.no feature nxapi

Specifies a port.nxapi {http | https} port port

Disables HTTP/HTTPS.no nxapi {http | https}

Displays port and certificate information.show nxapi

NX-API CLI
6

NX-API CLI
NX-API Management Commands

DescriptionNX-API Management Command

Specifies the upload of the following:

• HTTPS certificate when httpscrt is specified.

• HTTPS key when httpskey is specified.

Example of HTTPS certificate:
nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:
nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Enables a certificate.nxapi certificate enable

Beginning with Cisco NX-OS release 10.2(3)F, the user can now
import the certificate or use the CA certificate for the NX-API
using the trustpoint infra.

Refer to the Cisco Nexus 9000 Security
Configuration Guide to configure the crypto ca
import trustpoint to first import certificate.

Note

Currently only pkcs12 certificate import is
supported in this form. The NX-API certificate
enable/NX-API certificate trustpoint and NX-API
certificate sudi are mutually exclusive and each
configuration will overwrite the certificate/key.

Note

The maximum size of cert/key supported with
NX-API certificate enable is 8k. If the size is >8k,
use NX-API certificate trustpoint to import the
certificate.

Note

If you have configured a custom certificate in
NX-API using trustpoint infra, upon entering the
reload ascii command the configuration is lost. It
will revert to the default day-1 NX-API certificate.
After entering the reload ascii command, the switch
will reload. Once the switch is up again, you need
to reconfigure the NX-API certificate trustpoint
configuration.

Note

Config-replace will fail if the current running-config
do not contain the trustpoint and certificate
imported, but the target config contains the creation
of trustpoint "crypto ca trustpoint <trustpoint
name>" and "nxapi certificate trustpoint
<trustpoint-name>" CLI. If trustpoint is not present,
then first you need to create trustpoint and import
certificate before attempting "nxapi certificate
trustpoint <trustpoint-label>".

Note

nxapi certificate trustpoint <trustpoint
label>

NX-API CLI
7

NX-API CLI
NX-API Management Commands

DescriptionNX-API Management Command

This CLI provides a secure way of authenticating to the device
by using Secure Unique Device Identifier (SUDI).

The SUDI based authentication in nginx will be used by the
CISCO SUDI compliant controllers.

SUDI is an IEEE 802.1AR-compliant secure device identity in
an X.509v3 certificate which maintains the product identifier and
serial number of Cisco devices. The identity is implemented at
manufacturing and is chained to a publicly identifiable root
certificate authority.

WhenNX-API comes upwith the SUDI certificate,
it is not accessible by any third-party applications
like browser, curl, and so on.

Note

"nxapi certificate sudi" will overwrite the custom
certificate/key if configured, and there is no way to
get the custom certificate/key back.

Note

"nxapi certificate sudi" and "nxapi certificate
trustpoint" and "nxapi certificate enable" are
mutually exclusive , and configuring one will delete
the other configuration.

Note

NX-API do not support SUDI certificate-based
client certificate authentication. If client certificate
authentication is needed, then Identity certificate
need to be used.

Note

As NX-API certificate CLI is not present in show
run output, CR/Rollback case currently does not go
back to the custom certificate once it is overwritten
with "nxapi certificate sudi" options.

Note

nxapi certificate sudi

This will disable the SUDI and NX-API will come with a default
self-signed certificate.

no nxapi certificate sudi

Beginning with Cisco NX-OS Release 9.2(1), weak ciphers are
disabled by default. Running this command changes the default
behavior and enables the weak ciphers for NGINX. The no form
of the command changes it to the default (by default, the weak
ciphers are disabled).

nxapi ssl-ciphers weak

NX-API CLI
8

NX-API CLI
NX-API Management Commands

DescriptionNX-API Management Command

Beginning with Cisco NX-OS Release 10.2(4)M, TLSv1.3 is
supported on CiscoNexus 9000 series platform switches. Running
this command enables the TLS versions specified in the string.
Beginning with Cisco NX-OS Release 9.3(2), only TLSv1.2 is
enabled by default.

The no form of the command changes the TLS version to the
default version.

Note • It is recommended to use TLSv1.2 and
TLSv1.3 for backward compatibility.
switch(config)# nxapi ssl protocols
TLSv1.2 TLSv1.3

For example, if you are :

• Before configuring TLSv1.3, validate the
server and client certificates for TLSv1.3
support.

• NX-API server side SUDI certificate is not
supported with TLSv1.3.

nxapi ssl-protocols {TLSv1.0 TLSv1.1
TLSv1.2 TLSv1.3}

Specifies the default VRF, management VRF, or named VRF.nxapi use-vrf vrf

Beginningwith CiscoNX-OS release, 10.2(3)F, in NGINX server,
the default timeout to run any command is 5 minutes. The users
can increase the timeout to the desired value from 60 seconds (1
minute) to 3600 seconds (1 hour) according to their need and
time taken for executing the commands.

system server session cmd-timeout
<timeout>

Implements any access restrictions and can be run in management
VRF.

You must enable feature bash-shell and then run
the command from Bash Shell. For more
information on Bash Shell, see the chapter on Bash.

Note

Iptables is a command-line firewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

For more information about making iptables
persistent across reloads when they are modified in
a bash-shell, see Making an Iptable Persistent
Across Reloads, on page 23.

Note

ip netns exec management iptables

Starting with Release 9.3(5), you can configure the amount of
time before an idle NX-API session is invalidated. The time can
be 1 - 1440 minutes. The default time is 10 minutes. Return to
the default value by using the no form of the command: no nxapi
idle-timeout <timeout>

nxapi idle-timeout <timeout>

NX-API CLI
9

NX-API CLI
NX-API Management Commands

The following is an example for NX-API output for SUDI:
switch(config)# nxapi certificate sudi
switch# show nxapi
nxapi enabled
NXAPI timeout 10
NXAPI cmd timeout 300
HTTP Listen on port 80
HTTPS Listen on port 443
Certificate Information:

Issuer: issuer=CN = High Assurance SUDI CA, O = Cisco
Expires: Aug 9 20:58:26 2099 GMT

switch#
switch#
switch# show run | sec nxapi
feature nxapi
nxapi http port 80
nxapi certificate sudi
switch#

The following is an example for trustpoint configuration:
switch(config)# crypto ca trustpoint ngx
switch(config-trustpoint)# crypto ca import ngx pkcs12 bootflash:server.pfx cisco123
witch(config)# nxapi certificate trustpoint ngx
switch(config)# show nxapi
nxapi enabled
NXAPI timeout 10
NXAPI cmd timeout 300
HTTP Listen on port 80
Trustpoint label ngx
HTTPS Listen on port 443
Certificate Information:
Issuer: issuer=C = IN, ST = KA, L = bang, O = cisco, OU = nxpi, CN = %username%@cisco.com,
emailAddress = %username%@cisco.com
Expires: Jan 13 06:13:50 2023 GMT
switch(config)#
switch(config)# show run | sec nxapi
feature nxapi
nxapi http port 80
nxapi certificate trustpoint ngx

Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

You must configure the certificate and key before enabling the certificate.Note

Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#

NX-API CLI
10

NX-API CLI
NX-API Management Commands

Working With Interactive Commands Using NX-API
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:
terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Client Authentication

NX-API Client Basic Authentication
NX-API clients can authenticate with the NGINX server on the switch through basic authentication over
SSL/TLS. This authentication method is supported by configuring a username and password that is saved to
a database on the switch. When the NX-API client initiates a connection request, it sends the Hello message
which contains the username and password. Assuming the username and password exist in the database, the
switch responds by sending the Hello response, which contains a cookie. After this initial handshake is
complete, the communication session is open, and the client can begin sending API calls to the switch. For
additional information, see Security, on page 3.

For additional information about basic authentication, including how to configure the username and password
on the switch, refer to the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

NX-API Client Certificate Authentication
Beginning with NX-OS 9.3(3), NX-API supports client-initiated certificate-based authentication.
Certificate-based authentication offers stronger security by mutually authenticating both the client, using a
trusted party–the Certificate Authority (CA)–and the server during the TLS handshake. Certificate-based
authentication allows for human authentication, as well as machine authentication, for accessing the NX-OS
switch.

Client certificate authentication is supported by using an X509 SSL certificate that is assigned through a valid
CA (certificate authority) and stored on the NX-API client. A certificate is assigned to each NX-API username.

When the NX-API client initiates a connection request with a Hello message, the server Hello response contains
the list of valid CAs. The client’s response contains additional information elements, including the certificate
for the specific username that the NX-API client is using.

You can configure the NX-API client to use either basic authentication, certificate authentication, or give
priority to certificate but fallback to basic authentication if the certificate authenticationmethod is not available.

Guidelines and Limitations
Certificate authentication has the following guidelines and limitations:

• The NX-API client must be configured with a user name and password.

• The NX-API client and the switch communicate over HTTP by default on its well-known port. For
flexibility HTTP is also supported on its well-known port. However, you can configure additional ports.

NX-API CLI
11

NX-API CLI
Working With Interactive Commands Using NX-API

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

• Python scripting of client certificate authentication is supported. If the client certificate is encrypted with
a passphrase, python successfully prompts for the passphrase. However, the passphrase cannot be passed
into the script due to a current limitation with the Python requests library.

• The NX-API client and switch must use the same trustpoint.

• The maximum number of trustpoints supported is 26 for each switch.

• The list of trusted CAs must be the same for all NX-API clients and the switch. Separate lists of trusted
CAs are not supported.

• Certificate authentication is not supported for the NX-API sandbox.

• The following conditions determine if the NX-API sandbox loads on the switch:

• The NX-API sandbox loads only when nxapi client certificate authentication optional or no
nxapi client certificate authentication are configured.

• The NX-API sandbox does not load for strict and two-step authentication modes unless a valid
client certificate is presented to the browser when a connection is being established.

• The switch has an embedded NGINX server. If multiple trustpoints are configured, but a certificate
revocation list (CRL) is installed for only one of the trustpoints, NX-API client certificate authentication
fails because of an NGINX limitation. To workaround this limitation, configure CRLs for all trustpoints.

• Certificates can expire or become out of date, which can affect the validity of the CRL set by the CA
(trustpoint). To ensure the switch uses valid CRLs, always install CRLs for all of the configured trustpoints.
If no certificates were revoked by the trustpoints, an empty CRL should be generated, installed, and
updated periodically, for example, once a week.

After you update the CRLs through the crypto CLIs, issue nxapi client cert authentication to reapply
the newly updated CRLs.

• If you use ASCII reload when NX-API client certificate authentitcation is enabled, you must issue nxapi
client certificate authentication after the reload is complete.

• The certificate path must terminate with a trusted CA certificate.

• Server certificates that are presented for TLS must have the Server Authentication purpose (id-kp 1 with
OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

• Client certificates that are presented for TLS must have the Server Authentication purpose (id-kp 1 with
OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

• The feature supports CRLs (certificate revocation lists). Online Certificate Status Protocol (OSCP) is
not supported.

• Follow the additional Guidelines and Limitations in the NX-OS Security Guide.

• Use both certificate and basic authentication. By doing so, the correct user and password is still
required if the certificate somehow gets compromised.

• Keep private keys private, as the servers public key is accessible to anyone attempting a connection.

• CRLs should be downloaded from the central CA and kept current. Out-of-date CRLs can lead to
a security risk.

• Keep trustpoints updated. When a trust point or configuration change is made to the certificate
authentication feature, explicitly disable then reenable the feature to reload the updated information.

NX-API CLI
12

NX-API CLI
Guidelines and Limitations

• There is a maximum file size limit of 8K for the client certificate identity file associated to NX-API with
nxapi certificate httpscert certfile bootflash:<> " CLI." This is a day-1 limitation.

• In the NX-APIManagement Commands Table 1 for the row associatedwith the command nxapi certificate
{httpscrt certfile | httpskey keyfile} filename, the maximum certfile size supported is less than 8K.

NX-API Client Certificate Authentication Prerequisites
Before configuring certificate authentication, make sure the following are present on the switch:

1. Configure the client with a username and password. For information see Configuring User Accounts and
RBAC.

2. Configure the CA(s) (trustpoint) and CRL(s) (if any).

If no certificates were revoked by a trustpoint, create a blank CRL for each trustpoint.

For information, see the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

Configuring NX-API Client Certificate Authentication
You can configure the NX-API certificate authentication through the nxapi client certificate authentication
command. The command supports restriction options that control how authentication occurs.

You can disable this feature by using no nxapi client certificate authentication .

To configure certificate authentication for NX-API clients, follow this procedure:

SUMMARY STEPS

1. Make sure the prerequisites for the feature are complete.
2. config terminal
3. nxapi client certificate authentication [{optional | strict | two-step}]

DETAILED STEPS

PurposeCommand or Action

See NX-API Client Certificate Authentication Prerequisites,
on page 13.

Make sure the prerequisites for the feature are complete.Step 1

Enters configuration mode.config terminal

Example:

Step 2

switch-1# config terminal
Enter configuration commands, one per line. End
with CNTL/Z.
switch-1(config)#

Enables certificate authentication in any of the following
modes:

nxapi client certificate authentication [{optional | strict
| two-step}]

Example:

Step 3

• optional requests a client certificate:
switch-1# nxapi client certificate authentication
strict
switch-1(config)#

• If the client provides a certificate, mutual
verification occurs between the client and the
server.

NX-API CLI
13

NX-API CLI
NX-API Client Certificate Authentication Prerequisites

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

PurposeCommand or Action

• If the client provides an invalid certificate,
authentication fails and fall back to basic
authentication does not occur.

• If the client does not provide a certificate,
authentication falls back to basic authentication
(username and password).

• strict enables client certificate verification and
requires a valid client certificate to be presented for
authentication.

• two-step enables two-step verification in which both
the basic authentication and certificate authentication
methods are required.

If no trustpoints are configured on the switch,
this feature cannot be enabled, and the switch
displays an onscreen error message.
No trustpoints configured! Please
configure trustpoint using 'crypto ca
trustpoint <trustpoint-label>' and
associated commands, and then enable
this feature.

Note

Example Python Scripts for Certificate Authentication
The following example shows a Python script with a client certificate for authentication.
import requests
import json

"""
Modify these please
"""
switchuser='USERID'
switchpassword='PASSWORD'
mgmtip='NXOS MANAGEMENT IP/DOMAIN NAME'

client_cert_file='PATH_TO_CLIENT_CERTIFICATE'
client_key_file='PATH_TO_CLIENT_KEY_FILE'
ca_cert='PATH_TO_CA_CERT_THAT_SIGNED_NXAPI_SERVER_CERT'

url='https://' + mgmtip + '/ins'
myheaders={'content-type':'application/json-rpc'}
payload=[
{
"jsonrpc": "2.0",
"method": "cli",
"params": {
"cmd": "show clock",
"version": 1

},
"id": 1

}
]

NX-API CLI
14

NX-API CLI
Example Python Scripts for Certificate Authentication

response = requests.post(url,data=json.dumps(payload),
headers=myheaders,auth=(switchuser,switchpassword),cert=(client_cert_file_path,client_key_file),verify=ca_cert).json()

If needed, you can change the script:

• Depending on the client certificate authentication mode, you can omit the switch password by setting
the switch password to a null value (switchpassword=):

• For optional and strict modes, the switchpassword= can be left blank. In this situation, NX-API
authenticates the client based on username and client certificate alone.

• For two-step mode, a password is required, so you must specify a value for switchpassword=.

• You can bypass verifying that the NX-API server's certificate is valid by setting verify=False in the
POST command.

Example cURL Certificate Request
The following example shows a correctly structured cURL certificate request for NX-API client authentication.
/usr/bin/curl --user admin: --tlsv1.2 --cacert ./ca.pem --cert ./user.crt:pass123! --key
./user.key -v -X POST -H "Accept: application/json" -H "Content-type: application/json"
--data '{"ins_api":{"version": "1.0", "type": "cli_show", "chunk": "0", "sid": "1", "input":
"show clock","output_format": "json"}}' https://<device-management-ip>:443/ins

Syntax Elements

The following table shows the parameters that are used in this request.

DescriptionParameter

Takes the username that the user wants to log in as,
which should be same as the common name in
user.crt).

To provide a password for user, specify it after a
colon, for example: --user
username:password

--user

Takes the path to the CA that signed the NX-API
server certificate.

If the server certificate does not need to be verified,
specify cURL with the -k (insecure) option, for
example: /usr/bin/curl -k

--cacert

Takes the path to the client certificate.

If the client certificate is encrypted, specify the
password after a colon, for example: --cert
user.crt:pass123!

--cert

Takes the path to the client certificate's private key.--key

Validating Certificate Authentication
When correctly configured, certificate authentication occurs and the NX-API clients can access the switch.

NX-API CLI
15

NX-API CLI
Example cURL Certificate Request

If the NX-API client cannot access the switch, you can use the following guidelines to assist with
troubleshooting:

SUMMARY STEPS

1. Check user or cookie errors.
2. Check for client or certificate errors.
3. If errors occur, flap the feature to reload any changes to the trustpoint, CA, CRL, or NX-OS certificate

feature, by issuing no nxapi client certificate authentication , then nxapi client certificate
authentication .

DETAILED STEPS

PurposeCommand or Action

If any of the following errors occur:Check user or cookie errors.Step 1

• No username provided in auth header and no valid
cookie provided

• Incorrect user provided in auth header

• Invalid cookie provided

• Mismatch between username in auth header and
username in client certificate's CN field

You will see specific errors depending on the NX-API
method used:

• For JSON/XML, a 401 Authentication failure -

user not found. error occurs. For example:
{{{
"code": "400",
"msg": "Authentication failure - user not
found."
}}}

• For JSON RPC 2.0, a -32004 Invalid username or

password error occurs. For example:
{{
"code": -32004,
"message": "Invalid username or password"
}}

Look for HTTPs 400 errors which can indicate the
following:

Check for client or certificate errors.Step 2

• If an invalid or revoked client certificate was provided.

• If the CRL configured on the switch has expired.

For example:
<html>
<head><title>400 The SSL certificate
error</title></head>

NX-API CLI
16

NX-API CLI
Validating Certificate Authentication

PurposeCommand or Action
<body bgcolor="white">
<center><h1>400 Bad Request</h1></center>
<center>The SSL certificate error</center>
<hr<center>nginx/1.7.10</center>
</body>
</html>

Disables, then reenables certificate authentication.If errors occur, flap the feature to reload any changes to the
trustpoint, CA, CRL, or NX-OS certificate feature, by

Step 3

issuing no nxapi client certificate authentication , then
nxapi client certificate authentication .

NX-API Request Elements
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

Users need to have permission to execute "configure terminal" command. When JSON-RPC is the input
request format, the "configure terminal" command will always be executed before any commands in the
payload are executed.

Note

Table 2: NX-API Request Elements for XML or JSON Format

DescriptionNX-API Request Element

Specifies the NX-API version.version

NX-API CLI
17

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Specifies the type of command to be executed.

The following types of commands are supported:

• cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

• cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

• cli_conf

CLI configuration commands.

• bash

Bash commands. Most non-interactive Bash commands are
supported by NX-API.

Note • Each command is only executable with the
current user's authority.

• The pipe operation is supported in the output
when the message type is ASCII. If the output
is in XML format, the pipe operation is not
supported.

• Amaximum of 10 consecutive show commands
are supported. If the number of show commands
exceeds 10, the 11th and subsequent commands
are ignored.

• No interactive commands are supported.

type

NX-API CLI
18

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Note Do not chunk output.0

Chunk output.1

Note • Only show commands support chunking. When
a series of show commands are entered, only the
first command is chunked and returned.

• For the XML output message format (XML is
the default.), special characters, such as < or >,
are converted to form a valid XML message (<
is converted into < > is converted into >).

You can use XML SAX to parse the chunked
output.

When chunking is enabled, the message format is
limited to XML. JSON output format is not supported
when chunking is enabled.

Note

chunk

The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

sid

NX-API CLI
19

NX-API CLI
NX-API Request Elements

DescriptionNX-API Request Element

Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, show commands are cli_show message type
and are not supported in cli_conf mode.

Except for bash, multiple commands are separated
with " ; ". (The ; must be surrounded with single blank
characters.)

Prepend commandswith terminal dont-ask to avoid
timing out with an error code 500. For example:
terminal dont-ask ; cli_conf ; interface
Eth4/1 ; no shut ; switchport

For bash, multiple commands are separated with ";".
(The ; is not surrounded with single blank characters.)

Note

The following are examples of multiple commands:

Note show version ; show interface brief
; show vlan

cli_show

interface Eth4/1 ; no shut ;
switchport

cli_conf

cd /bootflash;mkdir new_dirbash

input

The available output message formats are the following:

Note Specifies output in XML format.xml

Specifies output in JSON format.json

The Cisco NX-OS CLI supports XML output, which
means that the JSON output is converted from XML.
The conversion is processed on the switch.

To manage the computational overhead, the JSON
output is determined by the amount of output. If the
output exceeds 1 MB, the output is returned in XML
format. When the output is chunked, only XML
output is supported.

The content-type header in the HTTP/HTTPS headers
indicate the type of response format (XML or JSON).

Note

output_format

NX-API CLI
20

NX-API CLI
NX-API Request Elements

NX-API Response Elements
The NX-API elements that respond to a CLI command are listed in the following table:

Table 3: NX-API Response Elements

DescriptionNX-API Response Element

NX-API version.version

Type of command to be executed.type

Session ID of the response. This element is valid only when the response
message is chunked.

sid

Tag that encloses all command outputs.

Whenmultiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

outputs

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

output

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

input

Body of the command response.body

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

code

Error message associated with the returned error code.msg

Restricting Access to NX-API
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured NXAPI to use a
specific VRF. For information about configuring ACLs, see the Cisco Nexus Series NX-OS Security
Configuration Guide for your switch family.

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,
on page 22.

NX-API CLI
21

NX-API CLI
NX-API Response Elements

Updating an iptable
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF has been configured for
NX-API communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP
and HTTPS access to an existing iptable.

Step 1 To create a rule that blocks HTTP access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP

The management mentioned in this step is the VRF name. It can be management | default | custom vrf
name.

Note

Step 2 To create a rule that blocks HTTPS access:
bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

Step 3 To verify the applied rules:
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 4 To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Step 5 To remove and verify previously applied rules:

This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)

NX-API CLI
22

NX-API CLI
Updating an iptable

target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

What to do next

The rules in iptables are not persistent across reloads when they are modified in a bash-shell. To make the
rules persistent, see Making an Iptable Persistent Across Reloads, on page 23.

Making an Iptable Persistent Across Reloads
The rules in iptables are not persistent across reloads when they are modified in a bash-shell. This section
explains how to make a modified iptable persistent across a reload.

Before you begin

You have modified an iptable.

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:
bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log

Step 2 Create the /etc/sys/iptables file where your iptables changes will be saved:
bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables

Step 3 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

BEGIN INIT INFO

Provides: iptables_init

Required-Start:

Required-Stop:

Default-Start: 2 3 4 5

Default-Stop:

Short-Description: init for iptables

Description: sets config for iptables

during boot time

END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
start_script() {

ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables

NX-API CLI
23

NX-API CLI
Making an Iptable Persistent Across Reloads

echo "iptables init script executed" > /etc/iptables_init.log
}
case "$1" in
start)
start_script
;;
stop)
;;

restart)
sleep 1
$0 start
;;

*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1

esac
exit 0

Step 4 Set the appropriate permissions to the startup script:
bash-4.3# chmod 777 /etc/init.d/iptables_int

Step 5 Set the iptables_int startup script to on with the chkconfig utility:
bash-4.3# chkconfig iptables_init on

The iptables_init startup script will now execute each time that you perform a reload, making the iptable rules persistent.

Kernel Stack ACL
The Kernel Stack ACL is a common CLI infrastructure to configure ACLs for management of inband and
outband components.

The Kernel Stack ACL uses NX-OS ACL CLI to secure management applications on management and front
panel ports. Configuring a single ACL must be able to secure all management applications on NX-OS.

Kernel Stack ACL is the component that fixes the manual intervention of the user and automatically programs
iptable entries when the ACL is applied to mgmt0 interface.

The following is an example for configuring Kernel Stack ACL:
swtich# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ip access-list kacl1
switch(config-acl)# statistics per-entry
switch(config-acl)# 10 deny tcp any any eq 443
switch(config-acl)# 20 permit ip any any
switch(config-acl)# end
switch#

switch(config-if)# interface mgmt0
switch(config-if)# ip access-group acl1 in
switch(config-if)# ipv6 traffic-filter acl6 in
switch(config-if)#

switch# sh ip access-lists kacl1
IP access list kacl1
statistics per-entry
10 deny tcp any any eq 443 [match=136]

NX-API CLI
24

NX-API CLI
Kernel Stack ACL

20 permit ip any any [match=44952]
switch(config)#

The following is the Kernel Stack filtering for iptables entries based on the configuration:
bash-4.4# ip netns exec management iptables -L -n -v --line-numbers
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
1 9 576 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443
2 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0
3 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
bash-4.4#

The following are the limitations for the Kernel Stack ACL support:

• This feature is supported only on mgmt0 interface and not on other inband interfaces.

• Five tuples (protocol, source-ip, destination-ip, source-port, and destination-port) of the ACL entry are
programmed in the iptables. Rest of the options provided in the ACL entry are not programmed in the
iptables and throws a warning syslog in such instances.

For example, "WARNING: Some ACL options are not supported in kstack. Only partial rule will be
installed".

• If the device user has host bash access, then the user can manually update the iptables. This update could
potentially corrupt the iptable rules for which they are programmed.

• The verified maximum number of ACEs is 100 for IPv4 traffic and an additional 100 for IPv6 traffic.
Throughput may be impacted if more than this scale is applied.

Table of NX-API Response Codes

The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Note

Table 4: NX-API Response Codes

MessageCodeNX-API Response

Success.200SUCCESS

Output is piped elsewhere due to request.204CUST_OUTPUT_PIPED

Bash command error.400BASH_CMD_ERR

Chunking honors only one command.400CHUNK_ALLOW_ONE_CMD_ERR

CLI execution error.400CLI_CLIENT_ERR

NX-API CLI
25

NX-API CLI
Table of NX-API Response Codes

Input CLI command error.400CLI_CMD_ERR

Incoming message is invalid.400IN_MSG_ERR

Unable to retrieve remote ip of request.400INVALID_REMOTE_IP_ERR

No input command.400NO_INPUT_CMD_ERR

Permission denied.401PERM_DENY_ERR

Configuration mode does not allow show .405CONF_NOT_ALLOW_SHOW_ERR

Show mode does not allow configuration.405SHOW_NOT_ALLOW_CONF_ERR

Maximum number of consecutive show
commands exceeded. The maximum is 10.

413EXCEED_MAX_SHOW_ERR

Response size too large.413MSG_SIZE_LARGE_ERR

Max sessions reached. If you are a new
user/client, please try again later.

429MAX_SESSIONS_ERR

Backend processing error.500BACKEND_ERR

Error creating a checkpoint.500CREATE_CHECKPOINT_ERR

System internal file operation error.500FILE_OPER_ERR

System internal LIBXML NS error. This is a
request format error.

500LIBXML_NS_ERR

System internal LIBXML parse error. This is a
request format error.

500LIBXML_PARSE_ERR

System internal LIBXML path context error. This
is a request format error.

500LIBXML_PATH_CTX_ERR

System internal memory allocation error.500MEM_ALLOC_ERR

Request is rejected because the server is busy.500SERVER_BUSY_ERR

User not found from input or cache.500USER_NOT_FOUND_ERR

XML to JSON conversion error.500XML_TO_JSON_CONVERT_ERR

Bash command not supported.501BASH_CMD_NOT_SUPPORTED_ERR

Chunking allows only XML output.501CHUNK_ALLOW_XML_ONLY_ERR

JSON not supported due to a potential large
amount of output.

501JSON_NOT_SUPPORTED_ERR

Message type not supported.501MSG_TYPE_UNSUPPORTED_ERR

Pipe XML for this command is not allowed in
input.

501PIPE_XML_NOT_ALLOWED_IN_INPUT

NX-API CLI
26

NX-API CLI
Table of NX-API Response Codes

Structured output unsupported.501STRUCT_NOT_SUPPORTED_ERR

Unknown error.600ERR_UNDEFINED

JSON and XML Structured Output
The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

• XML
• JSON. The limit for JSON output is 60 MB.
• JSON Pretty, which makes the standard block of JSON-formatted output easier to read. The limit for
JSON output is 60 MB.

Converting the standard NX-OS output to any of these formats occurs on the NX-OS CLI by "piping" the
output to a JSON or XML interpreter. For example, you can issue the show ip access command with the
logical pipe (|) and specify the output format. If you do, the NX-OS command output is properly structured
and encoded in that format. This feature enables programmatic parsing of the data and supports streaming
data from the switch through software streaming telemetry. Most commands in Cisco NX-OS support JSON,
JSON Pretty, and XML output. Some, for example, consistency checker commands, do not support all formats.
Consistency checker commands support XML, but not any variant of JSON.

To avoid validation error, use file redirection to redirect the JSON output to a file, and use the file output.

Example:
Switch#show version | json > json_output ; run bash cat /bootflash/json_output

Note

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)
JSON is a light-weight text-based open standard that is designed for human-readable data and is an alternative
to XML. JSON was originally designed from JavaScript, but it is language-independent data format. JSON
and JSON Pretty format are supported for command output.

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

• Ordered List :: Array
• Unordered List (Name/Value pair) :: Objects

JSON or XML output for a show command can be accessed through the NX-API sandbox also.

CLI Execution
switch-1-vxlan-1# show cdp neighbors | json
{"TABLE_cdp_neighbor_brief_info": {"ROW_cdp_neighbor_brief_info": [{"ifindex": "
83886080", "device_id": "SW-SWITCH-1", "intf_id": "mgmt0", "ttl": "148"
, "capability": ["switch", "IGMP_cnd_filtering"], "platform_id": "cisco AA-C0000
S-29-L", "port_id": "GigabitEthernet1/0/24"}, {"ifindex": "436207616", "device
_id": "SWITCH-1-VXLAN-1(FOC1234A01B)", "intf_id": "Ethernet1/1", "ttl": "166

NX-API CLI
27

NX-API CLI
JSON and XML Structured Output

", "capability": ["router", "switch", "IGMP_cnd_filtering", "Supports-STP-Disput
e"], "platform_id": "N3K-C3132Q-40G", "port_id": "Ethernet1/1"}]}}
BLR-VXLAN-NPT-CR-179#

Examples of XML and JSON Output
This section documents selected examples of NX-OS commands that are displayed as XML and JSON output.

This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch(config)# show hardware profile status | json
{"total_lpm": ["8191", "1024"], "total_host": "8192", "max_host4_limit": "4096",
"max_host6_limit": "2048", "max_mcast_limit": "2048", "used_lpm_total": "9", "u
sed_v4_lpm": "6", "used_v6_lpm": "3", "used_v6_lpm_128": "1", "used_host_lpm_tot
al": "0", "used_host_v4_lpm": "0", "used_host_v6_lpm": "0", "used_mcast": "0", "
used_mcast_oifl": "2", "used_host_in_host_total": "13", "used_host4_in_host": "1
2", "used_host6_in_host": "1", "max_ecmp_table_limit": "64", "used_ecmp_table":
"0", "mfib_fd_status": "Disabled", "mfib_fd_maxroute": "0", "mfib_fd_count": "0"
}
switch(config)#

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML__OPT_Cmd_dynamic_tcam_status>
<__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
<__readonly__>
<total_lpm>8191</total_lpm>
<total_host>8192</total_host>
<total_lpm>1024</total_lpm>
<max_host4_limit>4096</max_host4_limit>
<max_host6_limit>2048</max_host6_limit>
<max_mcast_limit>2048</max_mcast_limit>
<used_lpm_total>9</used_lpm_total>
<used_v4_lpm>6</used_v4_lpm>
<used_v6_lpm>3</used_v6_lpm>
<used_v6_lpm_128>1</used_v6_lpm_128>
<used_host_lpm_total>0</used_host_lpm_total>
<used_host_v4_lpm>0</used_host_v4_lpm>
<used_host_v6_lpm>0</used_host_v6_lpm>
<used_mcast>0</used_mcast>
<used_mcast_oifl>2</used_mcast_oifl>
<used_host_in_host_total>13</used_host_in_host_total>
<used_host4_in_host>12</used_host4_in_host>
<used_host6_in_host>1</used_host6_in_host>
<max_ecmp_table_limit>64</max_ecmp_table_limit>
<used_ecmp_table>0</used_ecmp_table>
<mfib_fd_status>Disabled</mfib_fd_status>
<mfib_fd_maxroute>0</mfib_fd_maxroute>
<mfib_fd_count>0</mfib_fd_count>
</__readonly__>

NX-API CLI
28

NX-API CLI
Examples of XML and JSON Output

</__XML__OPT_Cmd_dynamic_tcam_status___readonly__>
</__XML__OPT_Cmd_dynamic_tcam_status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in JSON format:

switch(config)# show lldp timers | json
{"ttl": "120", "reinit": "2", "tx_interval": "30", "tx_delay": "2", "hold_mplier
": "4", "notification_interval": "5"}
switch(config)#

This example shows how to display LLDP timers that are configured on the switch in XML format:

switch(config)# show lldp timers | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:lldp">
<nf:data>
<show>
<lldp>
<timers>
<__XML__OPT_Cmd_lldp_show_timers___readonly__>
<__readonly__>
<ttl>120</ttl>
<reinit>2</reinit>
<tx_interval>30</tx_interval>
<tx_delay>2</tx_delay>
<hold_mplier>4</hold_mplier>
<notification_interval>5</notification_interval>
</__readonly__>
</__XML__OPT_Cmd_lldp_show_timers___readonly__>
</timers>
</lldp>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
switch(config)#

Sample NX-API Scripts
You can access sample scripts that demonstrate how to use a script with NX-API. To access a sample script,
click the following link then choose the directory that corresponds to the required software release: Cisco
Nexus 9000 NX-OS NX-API

NX-API CLI
29

NX-API CLI
Sample NX-API Scripts

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/
https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

NX-API CLI
30

NX-API CLI
Sample NX-API Scripts

	NX-API CLI
	About NX-API CLI
	Guidelines and Limitations
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Client Authentication
	NX-API Client Basic Authentication
	NX-API Client Certificate Authentication
	Guidelines and Limitations
	NX-API Client Certificate Authentication Prerequisites
	Configuring NX-API Client Certificate Authentication
	Example Python Scripts for Certificate Authentication
	Example cURL Certificate Request
	Validating Certificate Authentication

	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Kernel Stack ACL
	Table of NX-API Response Codes
	JSON and XML Structured Output
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

	Sample NX-API Scripts

