Upgrading the Cisco cBR Series Converged Broadband Routers for Cisco IOS XE Fuji 16.7.x **First Published:** 2017-11-23 **Last Modified:** 2020-02-07 #### **Americas Headquarters** Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 © 2018, 2020 Cisco Systems, Inc. All rights reserved. #### CONTENTS | C | | | | | |---|--|--|--|---| | | | | | 1 | | | | | | | #### Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.2 1 Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.2 2 Upgrading Manually 2 Upgrading with Ansible 8 Upgrading from Cisco IOS XE Everest 16.5.1 to Cisco IOS XE Fuji 16.7.2 11 Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU 14 #### CHAPTER 2 #### Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1b 19 Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1b 19 Upgrading Manually 20 Upgrading with Ansible 23 Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1b 27 Upgrading Manually 28 Upgrading with Ansible 31 Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1b with ISSU 33 #### CHAPTER 3 #### Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1a 39 Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1a 39 Upgrading Manually 40 Upgrading with Ansible 43 Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1a 47 Upgrading Manually 48 Upgrading with Ansible 51 Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU 53 #### CHAPTER 4 #### Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1 59 | Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1 59 | | |--|----| | Upgrading Manually 60 | | | Upgrading with Ansible 63 | | | Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1 67 | | | Upgrading Manually 68 | | | Upgrading with Ansible 71 | | | Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU | 73 | # Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.2 This section contains the upgrade procedures for the Cisco cBR-8 Router System. The latest firmware versions after upgrade are listed in the tables below. Use the commands in the tables to verify the firmware versions. **Table 1: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |--|-----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G
Rommon CPLD | 16052011 | show platform | | Supervisor
ROMMON | CBR-CCAP-SUP-160G
Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G
CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G
Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G
PSOC | 4.6 | show platform diag | | Docsis 3.0
downstream module
Micro | CBR-CCAP-LC-40G
Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0
downstream module
FPGA | CBR-CCAP-LC-40G
Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1
downstream module
Micro | CBR-CCAP-LC-40G
Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1
downstream module
FPGA | CBR-CCAP-LC-40G
Gemini2 Apollo | 4.484B | show platform diag | |---|-----------------------------------|----------|--------------------| | RF-PIC Firmware | CBR-RF-PIC | 00000746 | show platform diag | | RF-PROT-PIC
Firmware | CBR-RF-PROT-PIC | 0000071E | show platform diag | - Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.2, on page 2 - Upgrading from Cisco IOS XE Everest 16.5.1 to Cisco IOS XE Fuji 16.7.2, on page 11 - Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU, on page 14 ## Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.2 ### **Upgrading Manually** #### Before you begin Before upgrading the system, make sure the following requirements are met: - The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware. - Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first: http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html#task E0B78DCCC88A41749DA2783736CE37A6 • Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.2: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. - Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. Noto Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.2 package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.02.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.02.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.2 package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.02.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.02.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.2 image. ``` Configure terminal no boot system boot system bootflash:cbrsup-universalk9.16.07.02.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. ``` Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end ``` **Step 9** Confirm all line cards are in normal state. ``` show platform | inc LC ``` #### **Step 10** Configure config-register to manual boot. Configure terminal config-register 0x0 end #### **Step 11** Upgrade Docsis 3.1 downstream modules in all the slots. upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg ## **Step 12** Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log: Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload #### **Step 13** Upgrade Supervisor 0/1 CPLD. upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg #### **Note** Check the current Viper version. ``` Router# show platform diag Load for five secs: 6%/1%; one minute: 7%; five minutes: 8% Time source is NTP, 16:05:43.546 PST Thu Feb 8 2018 Chassis type: CBR-8-CCAP-CHASS <SNTP> Slot: SUP0, CBR-CCAP-SUP-160G Physical insert detect time: 00:01:58 (1d03h ago) CPLD version : 16052011 ViperSO CPLD version : 15111401 ViperSIO CPLD version : 15111301 Rommon version : 16.7(1r)S : 00000112 Blackbird version Raptor MAC version SUP-PIC CPID --- : 0001003b : 00010031 : 14071504 SUP-PIC CPLD version SUP-DC CPLD version : 14072207 DTI Client FPGA version : 00000005 DTI Firmware version : 00000A03 Cortina PHY version : 201402061607 SUP PSOC 0 version : v4.0.9 SUP PSOC 1 version : v4.0.8 SUP PSOC 2 version : v4.1.0 IVB : v4.0.6 SUP PSOC 3 version SUP-DC PSOC 0 version : v4.0.8 SUP-DC PSOC 1 version : v4.0.5 SUP-PIC PSOC 0 version : V2.0.6 SUP-PIC PSOC 1 version : V2.0.6 <SNTP> Slot: SUP1, CBR-CCAP-SUP-160G Physical insert detect time : 00:02:26 (1d03h ago) CPLD version : 16052011 ViperSO CPLD version : 15111401 ViperSIO CPLD version : 15111301 Rommon version : 16.7(1r)S : 00000112 Blackbird version : 0001003b Raptor ESI version Raptor MAC version : 00010031 SUP-PIC CPLD version : 14071504 SUP-DC CPLD version : 14072207 DTI Client FPGA version : 00000005 DTI Firmware version : 00000A03 Cortina PHY version : 201402061607 : v4.0.9 SUP PSOC 0 version : v4.0.8 SUP PSOC 1 version SUP PSOC 2 version : v4.1.0 IVB : v4.0.6 SUP PSOC 3 version SUP-DC PSOC 0 version SUP-DC PSOC 1 version : v4.0.5 SUP-PIC PSOC 0 version : V3.0.0 SUP-PIC PSOC 1 version : V3.0.0 ``` If ViperSO CPLD version is 15111401 and ViperSIO CPLD version is 1511130 on both supervisors, then proceed to if you want to update SUP CPLD without manually powre cycling the chassis. Otherwise perform the following substeps: a) Reload the cBR-8 router. Answer **no** to not save the configuration. <SNIP> ``` cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8#
``` b) Configure to automatic boot by typing following command in **rommon** > prompt. ``` rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ``` - c) Power cycle chassis, wait for both SUPs to auto boot to 16.7.2 image. - d) Proceed to What to do next:. - **Step 14** Set Active Sup (assuming R0) to ROMMON using supervisor switchover command. ``` Redundancy force-switchover This will cause SUPO to go to ROMMOM prompt ``` Step 15 Using a console connection of current active SUP (SUP1), power cycle the supervisor (SUP0) using test command to set it to ROMMON: ``` test platform hardware slot RO oir power-cycle This command will cause the ROMMON to reset and re-initialize. The new version of the Viper will now take effect. Please verify it matches the new version New Version = Viper version register: 0x16052011 ``` **Step 16** Using a console connection of SUP0 (the one in ROMMON) issue the following commands to boot that SUP: ``` Confreg 0x2 sync reset This will make the sup to reload twice ``` - **Step 17** Wait for SUP0 to become STANDBY HOT. - **Step 18** Set the current active SUP (R1) to ROMMON using supervisor switchover command. ``` Redundancy force-switchover This will cause SUP1 to go to ROMMOM prompt ``` Step 19 Using a console connection of current active SUP (SUP0), power cycle the supervisor (SUP1) using test command to set it to ROMMON: ``` test platform hardware slot R1 oir power-cycle This command will cause the ROMMON to reset and re-initialize. The new version of the Viper will now take effect. Please verify it matches the new version New Version = Viper version register: 0x16052011 ``` **Step 20** Using a console connection of SUP1 (the one in ROMMON) issue the following commands to boot that SUP: ``` Confreg 0x2 sync reset This will make the sup to reload twice ``` - **Step 21** Wait for SUP1 to become STANDBY HOT. - **Step 22** Reload the standby line card to set DOCSIS 3.1 downstrem module firmware active. Hw-module slot 0 reload - **Step 23** Wait for Slot 0 to become Stdby Warm. - **Step 24** Reload primary line card one at a time by following these steps: - a) hw-module slot 1 reload - b) Wait for slot 1 to become Stdby Hot by examining output of show redundancy linecard all - c) Redundancy linecard-group switchover from slot 0. - d) Wait for slot 0 to become Stdby Warm. - **Step 25** Proceed to What to do next:. #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using **show facility-alarm status** command. - Check the status of the power supplies using **show environment power** command. - Check PS status using **show platform hardware slot P<0-5> mcu status** command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using show log command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - show platform diag - show environment - show redundancy linecard all - · show isis neighbors - · show ip ospf neighbor - show ip route rip - show ip mroute - show cops servers - show cable modem voice - show cable calls - · show cable metering verbose - · show cable licenses all show inventory ### **Upgrading with Ansible** #### Before you begin Before upgrading the firmware, make sure the following requirements are met: Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8(config)#username cisco privilege 15 password 0 cisco cBR8(config)#enable secret cisco cBR8(config)#line vty 0 15 cBR8(config)#login local cBR8(config)#exec-timeout 0 0 cBR8(config)#session-timeout 0 cBR8(config)#exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8(config)# ip domain-name domain.com cBR8(config)#crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) cBR8(config)#end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - **5.** Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cBR8# ``` **6.** Download three files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.2 ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` ereds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file_info: image_name: cbrsup-universalk9.16.07.02.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg #if the pkg file in the TB, just modify dst_dir to the pkg location #the four examples shows the usage #example1 #src_dir: "ftp://username:password@20.11.0.42:~/" #example2 ``` ``` #src_dir: "tftp://192.168.3.47/ " #example3 #src_dir: "usb0:" #example4 src_dir: "harddisk:" slot_info: #slot_to_upgrade: [2,3,6,7,8,9] slot to upgrade: "ALL" ``` **Step 7** Modify md5 map.yaml file in the folder **version_file** to add new image label and md5 value. ``` pkg_md5: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg: 292e26e20b038147f3443a5977415465 image_md5: cbrsup-universalk9.16.07.02.SPA.bin: a05c281922eb56adc2fe025cf174360c ``` **Step 8** Execute following command to start the playbook to upgrade firmware. ``` ./run_mop_upgrade ``` **Step 9** Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration. ``` cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# ``` **Step 10** From ROMMON issue the following command on both SUPs. ``` rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ``` **Step 11** Power cycle chassis, wait for both SUPs to auto boot to 16.7.2 image. ``` rommon 1> Initializing Hardware ... ? System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc. Current image running: Boot ROM1 Last reset cause: PowerOn Viper version register: 0x16052011 Set Chassis Type to 13RU Cisco cBR-8 platform with 50331648 Kbytes of main memory ``` **Step 12** After system bootup and stable, execute following command to start the playbook to check the upgrade result. **Step 13** Exit the container if finished upgrading this time to stop the container. exit **Step 14** If user wants to start the container again, use following command to start the container and enter its shell. ``` docker start mop docker attach mop ``` **Step 15** All the file changes are kept in the container, user can run step 4-11 to upgrade again. ## Upgrading from Cisco IOS XE Everest 16.5.1 to Cisco IOS XE Fuji 16.7.2 #### Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.2: cbrsup-programmable_firmware.16.07.01.SPA.pkg Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1**
Copy Cisco IOS-XE Fuji 16.7.2 package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.02.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.02.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.2 package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.02.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.02.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.2 image. ``` Configure terminal no boot system boot system boot system bootflash:cbrsup-universalk9.16.07.02.SPA.bin end write mem ``` **Step 7** If the system is not set to autoboot, set the system to autoboot on reload. ``` Configure terminal config-register 0x2102 end ``` CII Step 8 Confirm all line card are in OK state. ``` show platform | include LC ``` **Step 9** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` **Step 10** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` #### **Step 11** Reload the cBR-8 router. reload **Note** The system will reload twice. #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using **show platform hardware slot P<0-5> mcu status** command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - · show isis neighbors - · show ip ospf neighbor - show ip route rip - show ip mroute - · show cops servers - show cable modem voice - · show cable calls - · show cable metering verbose - · show cable licenses all - · show inventory ## Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU #### Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.2: cbrsup-programmable_firmware.16.07.01.SPA.pkg Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.2 package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.02.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.02.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.2 package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.02.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.02.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg name/harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg ``` **Step 7** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` - **Step 8** Before the ISSU upgrade please check and make sure: - The cBR-8 is in Subpackage mode. - Both SUPs are running same image from same path. - Autoboot is enabled. - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode. - All linecards are in normal state in LCHA group. Use show redundancy linecard all command, active cards should be in Stdby Warm state. - There is enough bootflash disk space on both SUP. - **Step 9** Copy 16.7.2 image in the same folder of current boot package on active SUP. - **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed. - **Step 11** Perform ISSU. request platform software package install node file bootflash:cbrsup-universalk9.16.07.02.SPA.bin **Step 12** To monitor the ISSU progress, use the command below. request platform software package install node attach **Step 13** Use these CLI to check status after ISSU. ``` show version show version r0 running show version r1 running show version r0 provisioned show version r1 provisioned ``` **Note** If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a Docsis 3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is: **a.** Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example: ``` configure terminal controller Integrated-Cable 2/0/0 rf-chan 158 shut end ``` - **b.** Wait for 30 seconds. - **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example: **d.** Reset all Docsis 31 CMs. For example: ``` clear cable modem d31-capable reset ``` #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using **show platform hardware slot P<0-5> mcu status** command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using show log command. These **show** commands may be useful in the verification test: - show redundancy - show platform - show platform diag - show environment - show redundancy linecard all - show isis neighbors - show ip ospf neighbor - show ip route rip - show ip mroute - show cops servers - show cable modem voice - show cable calls - show cable metering verbose - show cable licenses all - show inventory Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU # Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1b This section contains the upgrade procedures for the Cisco cBR-8 Router System. - Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1b, on page 19 - Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1b, on page 27 - Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1b with ISSU, on page 33 ## Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1b The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. #### **Table 2: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |-----------------------------------------|----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | 
------------------------------------------|-----------------------------------|----------|--------------------| | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | | RF-PIC Firmware | CBR-RF-PIC | 00000746 | show platform diag | | RF-PROT-PIC<br>Firmware | CBR-RF-PROT-PIC | 0000071E | show platform diag | ### **Upgrading Manually** #### Before you begin Before upgrading the system, make sure the following requirements are met: - The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware. - Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first: $http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html\#task_E0B78DCCC88A41749DA2783736CE37A6$ • Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 • IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. - Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1b package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1b package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01b.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01b.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1b image. ``` Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01b.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end **Step 9** Configure config-register to manual boot. Configure terminal config-register 0x0 end **Step 10** Upgrade Docsis 3.1 downstream modules in all the slots. upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg **Step 11** Upgrade Supervisor 0/1 CPLD. upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg **Step 12** Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log: Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload **Step 13** Reload the cBR-8 router. Answer **no** to not save the configuration. cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# **Step 14** Configure to automatic boot by typing following command in **rommon** > prompt. rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > #### **Step 15** Power cycle chassis, wait for both SUPs to auto boot to 16.7.1b image. #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using **show facility-alarm status** command. - Check the status of the power supplies using **show environment power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - show isis neighbors - show ip ospf neighbor - · show ip route rip - show ip mroute - · show cops servers - · show cable modem voice - · show cable calls - · show cable metering verbose - show cable licenses all - show inventory ### **Upgrading with Ansible** #### Before you begin Before upgrading the firmware, make sure the following requirements are met: 1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8(config) #username cisco privilege 15 password 0 cisco cBR8(config) #enable secret cisco cBR8(config) #line vty 0 15 cBR8(config) #login local cBR8(config) #exec-timeout 0 0 cBR8(config) #session-timeout 0 cBR8(config) #exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8(config)# ip domain-name domain.com cBR8(config)#crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) cBR8(config)#end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - 5. Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cBR8# ``` **6.** Download three files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8 upgrade ansible 16.7.1a.tar ansible mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.1a ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` creds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file info: image name:
cbrsup-universalk9.16.07.01b.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg #if the pkg file in the TB, just modify dst dir to the pkg location #the four examples shows the usage #example1 #src dir: "ftp://username:password@20.11.0.42:~/" #example2 #src dir: "tftp://192.168.3.47/ " #example3 #src_dir: "usb0:" #example4 src dir: "harddisk:" slot info: \#slot to upgrade: [2,3,6,7,8,9] slot_to_upgrade: "ALL" ``` **Step 7** Modify md5 map.yaml file in the folder **version_file** to add new image label and md5 value. ``` pkg_md5: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg: 292e26e20b038147f3443a5977415465 image_md5: cbrsup-universalk9.16.07.01b.SPA.bin: 1bc67f5266665043bd9336cacad1bac6 ``` **Step 8** Execute following command to start the playbook to upgrade firmware. ``` ./run_mop_upgrade ``` **Step 9** Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration. ``` cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# ``` **Step 10** From ROMMON issue the following command on both SUPs. ``` rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ``` **Step 11** Power cycle chassis, wait for both SUPs to auto boot to 16.7.1b image. ``` rommon 1> Initializing Hardware ... ? System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc. Current image running: Boot ROM1 Last reset cause: PowerOn Viper version register: 0x16052011 Set Chassis Type to 13RU Cisco cBR-8 platform with 50331648 Kbytes of main memory ``` **Step 12** After system bootup and stable, execute following command to start the playbook to check the upgrade result. **Step 13** Exit the container if finished upgrading this time to stop the container. exit **Step 14** If user wants to start the container again, use following command to start the container and enter its shell. docker start mop docker attach mop **Step 15** All the file changes are kept in the container, user can run step 4-11 to upgrade again. ## Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1b The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. **Table 3: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |-----------------------------------------|----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | |------------------------------------------|-----------------------------------|--------|--------------------| | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | ### **Upgrading Manually** #### Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: - https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1b package to bootflash: and stby-bootflash:. copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin stby-bootflash: **Step 2** Verify Cisco IOS-XE Fuji 16.7.1b package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01b.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01b.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1b image. ``` Configure terminal no boot system boot system bootflash:cbrsup-universalk9.16.07.01b.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. ``` Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end ``` **Step 9** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` **Step 10** Wait for the system log message asking the user to reload the line card that was upgraded. 001860: Jun 15 19:05:05.904 PDT: $\sigma$ FORME-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot $\sigma$ reload #### **Step 11** Reload Docsis 3.1 downstream modules in all the slots. hw slot <slot> reload #### **Step 12** Add secondary line card into line card redundancy group. configure terminal redundancy linecard-group 0 internal-switch member slot 0 secondary end #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using **show platform hardware slot P<0-5> mcu status** command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - show isis neighbors - · show ip ospf neighbor - · show ip route rip - show ip mroute - show cops servers - show cable modem voice - · show cable calls - show cable metering verbose - · show cable licenses all - show inventory ### **Upgrading with Ansible** #### Before you begin Before upgrading the firmware, make sure the following requirements are met: 1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8(config) #username cisco privilege 15 password 0 cisco cBR8(config) #enable secret cisco cBR8(config) #line vty 0 15 cBR8(config) #login local cBR8(config) #exec-timeout 0 0 cBR8(config) #session-timeout 0 cBR8(config) #exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8(config) # ip domain-name domain.com cBR8(config) #crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) CBR8(config) #end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - **5.** Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes ``` ``` Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cBR8# ``` **6.** Download three files from the following Cisco.com Software Center URL:
https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8 upgrade ansible 16.x to 16.7.1a ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` creds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file_info: image_name: cbrsup-universalk9.16.07.01b.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01.SPA.pkg #if the pkg file in the TB, just modify dst_dir to the pkg location #the four examples shows the usage #example1 #src_dir: "ftp://username:password@20.11.0.42:~/" #example2 #src_dir: "tftp://192.168.3.47/ " #example3 #src_dir: "usb0:" #example4 src_dir: "harddisk:" slot_info: #slot_to_upgrade: [2,3,6,7,8,9] slot to upgrade: "ALL" ``` **Step 7** Modify md5 map.yaml file in the folder **version_file** to add new image label and md5 value. ``` pkg_md5: cbrsup-programmable_firmware.16.07.01.SPA.pkg: c99c25ae470364b905369efaec30c1f0 image_md5: cbrsup-universalk9.16.07.01b.SPA.bin: 1bc67f5266665043bd9336cacad1bac6 ``` **Step 8** Execute following command to start the playbook to upgrade firmware. ``` ./run mop upgrade ``` **Step 9** Exit the container if finished upgrading this time to stop the container. exit **Step 10** If user wants to start the container again, use following command to start the container and enter its shell. ``` docker start mop docker attach mop ``` **Step 11** All the file changes are kept in the container, user can run step 4-11 to upgrade again. # Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1b with ISSU The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. **Table 4: Firmware Versions** | Internal Name | <b>Component Name</b> | <b>Correct Version</b> | Command | |------------------------------------------|-----------------------------------|------------------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | ## Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1b package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1b package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01b.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01b.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` **Step 7** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` ### **Step 8** Before the ISSU upgrade please check and make sure: - The cBR-8 is in Subpackage mode. - Both SUPs are running same image from same path. - Autoboot is enabled. - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode. - All linecards are in normal state in LCHA group. Use **show redundancy linecard all** command, active cards should be in **Stdby Warm** state. - There is enough bootflash disk space on both SUP. - **Step 9** Copy 16.7.1b image in the same folder of current boot package on active SUP. - **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed. - **Step 11** Perform ISSU. request platform software package install node file bootflash:cbrsup-universalk9.16.07.01b.SPA.bin **Step 12** To monitor the ISSU progress, use the command below. request platform software package install node attach **Step 13** Use these CLI to check status after ISSU. show version r0 running show version r1 running show version r0 provisioned show version r1 provisioned **Note** If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a Docsis 3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is: **a.** Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example: ``` configure terminal controller Integrated-Cable 2/0/0 rf-chan 158 shut end ``` - **b.** Wait for 30 seconds. - **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example: **d.** Reset all Docsis 31 CMs. For example: ``` clear cable modem d31-capable reset ``` ### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using **show platform hardware slot P<0-5> mcu status** command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using show log command. These **show** commands may be useful in the verification test: - show redundancy - show platform - show platform diag - show environment - show redundancy linecard all - · show isis neighbors - show ip ospf neighbor - show ip route rip - show ip mroute - show cops servers - show cable modem voice - · show cable calls - show cable metering verbose - show cable licenses all - show inventory # Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1a This section contains the upgrade procedures for the Cisco cBR-8 Router System. - Upgrading from
Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1a, on page 39 - Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1a, on page 47 - Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU, on page 53 # Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1a The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. **Table 5: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |-----------------------------------------|----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | |------------------------------------------|-----------------------------------|----------|--------------------| | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | | RF-PIC Firmware | CBR-RF-PIC | 00000746 | show platform diag | | RF-PROT-PIC<br>Firmware | CBR-RF-PROT-PIC | 0000071E | show platform diag | # **Upgrading Manually** ### Before you begin Before upgrading the system, make sure the following requirements are met: - The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware. - Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first: $http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html\#task_E0B78DCCC88A41749DA2783736CE37A6$ • Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 • IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. - Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1a package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1a package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01a.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01a.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1a image. ``` Configure terminal no boot system boot system bootsystem bootsystem bootflash:cbrsup-universalk9.16.07.01a.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end **Step 9** Configure config-register to manual boot. Configure terminal config-register 0x0 end **Step 10** Upgrade Docsis 3.1 downstream modules in all the slots. upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg **Step 11** Upgrade Supervisor 0/1 CPLD. upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg **Step 12** Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log: Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload **Step 13** Reload the cBR-8 router. Answer **no** to not save the configuration. cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# **Step 14** Configure to automatic boot by typing following command in **rommon** > prompt. rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ## **Step 15** Power cycle chassis, wait for both SUPs to auto boot to 16.7.1a image. #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - show isis neighbors - · show ip ospf neighbor - · show ip route rip - show ip mroute - · show cops servers - show cable modem voice - show cable calls - · show cable metering verbose - show cable licenses all - show inventory # **Upgrading with Ansible** ### Before you begin Before upgrading the firmware, make sure the following requirements are met: 1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8 (config) #username cisco privilege 15 password 0 cisco cBR8 (config) #enable secret cisco cBR8 (config) #line vty 0 15 cBR8 (config) #login local cBR8 (config) #exec-timeout 0 0 cBR8 (config) #session-timeout 0 cBR8 (config) #exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8 (config) # ip domain-name domain.com cBR8 (config) #crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) cBR8 (config) #end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - 5. Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cBR8# ``` **6.** Download three files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - **7.** Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to
power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.1a ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` creds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file info: image name: cbrsup-universalk9.16.07.01a.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg #if the pkg file in the TB, just modify dst dir to the pkg location #the four examples shows the usage #example1 #src dir: "ftp://username:password@20.11.0.42:~/" #example2 #src dir: "tftp://192.168.3.47/ " #example3 #src_dir: "usb0:" #example4 src dir: "harddisk:" slot info: #slot to upgrade: [2,3,6,7,8,9] slot_to_upgrade: "ALL" ``` **Step 7** Execute following command to start the playbook to upgrade firmware. ``` ./run mop upgrade ``` **Step 8** Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration. ``` cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# ``` **Step 9** From ROMMON issue the following command on both SUPs. ``` rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ``` **Step 10** Power cycle chassis, wait for both SUPs to auto boot to 16.7.1a image. ``` rommon 1> Initializing Hardware ... ? System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc. Current image running: Boot ROM1 Last reset cause: PowerOn Viper version register: 0x16052011 Set Chassis Type to 13RU Cisco cBR-8 platform with 50331648 Kbytes of main memory ``` **Step 11** After system bootup and stable, execute following command to start the playbook to check the upgrade result. **Step 12** Exit the container if finished upgrading this time to stop the container. exit **Step 13** If user wants to start the container again, use following command to start the container and enter its shell. docker start mop docker attach mop **Step 14** All the file changes are kept in the container, user can run step 4-11 to upgrade again. # Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1a The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. #### Table 6: Firmware Versions | Internal Name | Component Name | Correct Version | Command | |------------------------------------------|-----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | |------------------------------------------|-----------------------------------|--------|--------------------| | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | # **Upgrading Manually** ### Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1a package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1a package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01a.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01a.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1a image. ``` Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01a.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. ``` Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end ``` **Step 9** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg name/harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg ``` **Step 10** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` **Step 11** Reload Docsis 3.1 downstream modules in all the slots. hw slot <slot> reload ## **Step 12** Add secondary line card into line card redundancy group. configure terminal redundancy linecard-group 0 internal-switch member slot 0 secondary end #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using **show facility-alarm status** command. - Check the status of the power supplies using **show environment power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - show isis neighbors - · show ip ospf neighbor - · show ip route rip - show ip mroute - show cops servers - show cable modem voice - show cable calls - show cable metering verbose - · show cable licenses all - show inventory ## **Upgrading with Ansible** ### Before you begin Before upgrading the firmware, make sure the following requirements are met: 1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8(config) #username cisco privilege 15 password 0 cisco cBR8(config) #enable secret cisco cBR8(config) #line vty 0 15 cBR8(config) #login local cBR8(config) #exec-timeout 0 0 cBR8(config) #session-timeout 0 cBR8(config) #exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8(config)# ip domain-name domain.com cBR8(config)#crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size
of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) cBR8(config)#end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - **5.** Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cBR8# ``` **6.** Download three files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 • IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8_upgrade_ansible_16.x_to_16.7.1a ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` creds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file_info: image_name: cbrsup-universalk9.16.07.01a.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01.SPA.pkg #if the pkg file in the TB, just modify dst_dir to the pkg location #the four examples shows the usage #example1 #src_dir: "ftp://username:password@20.11.0.42:~/" #example2 #src_dir: "tftp://192.168.3.47/ " #example3 ``` ``` #src_dir: "usb0:" #example4 src_dir: "harddisk:" slot_info: #slot_to_upgrade: [2,3,6,7,8,9] slot_to_upgrade: "ALL" ``` **Step 7** Execute following command to start the playbook to upgrade firmware. ``` ./run mop upgrade ``` **Step 8** Exit the container if finished upgrading this time to stop the container. exit **Step 9** If user wants to start the container again, use following command to start the container and enter its shell. ``` docker start mop docker attach mop ``` **Step 10** All the file changes are kept in the container, user can run step 4-11 to upgrade again. # Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. Table 7: Firmware Versions | Internal Name | Component Name | Correct Version | Command | |----------------------|----------------------------------|-----------------|---------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | |------------------------------------------|-----------------------------------|--------|--------------------| | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | ## Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1a package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1a package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01a.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01a.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` **Step 7** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` - **Step 8** Before the ISSU upgrade please check and make sure: - The cBR-8 is in Subpackage mode. - Both SUPs are running same image from same path. - · Autoboot is enabled. - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode. - All linecards are in normal state in LCHA group. Use show redundancy linecard all command, active cards should be in Stdby Warm state. - There is enough bootflash disk space on both SUP. - **Step 9** Copy 16.7.1a image in the same folder of current boot package on active SUP. - **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed. - **Step 11** Perform ISSU. ``` request platform software package install node file bootflash:cbrsup-universalk9.16.07.01a.SPA.bin ``` **Step 12** To monitor the ISSU progress, use the command below. ``` request platform software package install node attach ``` **Step 13** Use these CLI to check status after ISSU. ``` show version r0 running show version r1 running show version r1 running show version r0 provisioned show version r1 provisioned ``` **Note** If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a Docsis 3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is: **a.** Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example: ``` configure terminal controller Integrated-Cable 2/0/0 rf-chan 158 shut end ``` - **b.** Wait for 30 seconds. - **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example: ``` configure terminal controller Integrated-Cable 2/0/0 rf-chan 158 no shut end ``` **d.** Reset all Docsis 31 CMs. For example: ``` clear cable modem d31-capable reset ``` ### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using **show facility-alarm status** command. - Check the status of the power supplies using **show environment
power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using show log command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - · show isis neighbors - show ip ospf neighbor - · show ip route rip - show ip mroute - · show cops servers - show cable modem voice - show cable calls - show cable metering verbose - show cable licenses all - · show inventory Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU # Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1 This section contains the upgrade procedures for the Cisco cBR-8 Router System. - Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1, on page 59 - Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1, on page 67 - Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU, on page 73 # Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1 The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. #### **Table 8: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |-----------------------------------------|----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | |------------------------------------------|-----------------------------------|----------|--------------------| | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | | RF-PIC Firmware | CBR-RF-PIC | 00000746 | show platform diag | | RF-PROT-PIC<br>Firmware | CBR-RF-PROT-PIC | 0000071E | show platform diag | # **Upgrading Manually** ### Before you begin Before upgrading the system, make sure the following requirements are met: - The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware. - Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first: $http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html\#task_E0B78DCCC88A41749DA2783736CE37A6$ • Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 • IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. - Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1 package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1 package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1 image. ``` Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end **Step 9** Configure config-register to manual boot. Configure terminal config-register 0x0 end **Step 10** Upgrade Docsis 3.1 downstream modules in all the slots. upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg **Step 11** Upgrade Supervisor 0/1 CPLD. upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg **Step 12** Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log: Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload **Step 13** Reload the cBR-8 router. Answer **no** to not save the configuration. cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# **Step 14** Configure to automatic boot by typing following command in **rommon** > prompt. rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ## **Step 15** Power cycle chassis, wait for both SUPs to auto boot to 16.7.1 image. ### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - show isis neighbors - · show ip ospf neighbor - · show ip route rip - show ip mroute - · show cops servers - show cable modem voice - show cable calls - · show cable metering verbose - · show cable licenses all - show inventory # **Upgrading with Ansible** ### Before you begin Before upgrading the firmware, make sure the following requirements are met: 1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8(config) #username cisco privilege 15 password 0 cisco cBR8(config) #enable secret cisco cBR8(config) #line vty 0 15 cBR8(config) #login local cBR8(config) #exec-timeout 0 0 cBR8(config) #session-timeout 0 cBR8(config) #exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8(config)# ip domain-name domain.com cBR8(config)#crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) cBR8(config)#end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - 5. Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host
'100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: CBR8# ``` **6.** Download three files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.1a ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` creds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file info: image name: cbrsup-universalk9.16.07.01.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg #if the pkg file in the TB, just modify dst dir to the pkg location #the four examples shows the usage #example1 #src dir: "ftp://username:password@20.11.0.42:~/" #example2 #src dir: "tftp://192.168.3.47/ " #example3 #src_dir: "usb0:" #example4 src dir: "harddisk:" slot info: #slot to upgrade: [2,3,6,7,8,9] slot_to_upgrade: "ALL" ``` **Step 7** Execute following command to start the playbook to upgrade firmware. ``` ./run_mop_upgrade ``` **Step 8** Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration. ``` cBR8#reload System configuration has been modified. Save? [yes/no]: no Proceed with reload? [confirm] cBR8# ``` **Step 9** From ROMMON issue the following command on both SUPs. ``` rommon 1 > confreg 0x2102 rommon 2 > sync rommon 3 > ``` **Step 10** Power cycle chassis, wait for both SUPs to auto boot to 16.7.1 image. ``` rommon 1> Initializing Hardware ... ? System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc. Current image running: Boot ROM1 Last reset cause: PowerOn Viper version register: 0x16052011 Set Chassis Type to 13RU Cisco cBR-8 platform with 50331648 Kbytes of main memory ``` **Step 11** After system bootup and stable, execute following command to start the playbook to check the upgrade result. **Step 12** Exit the container if finished upgrading this time to stop the container. exit **Step 13** If user wants to start the container again, use following command to start the container and enter its shell. docker start mop docker attach mop **Step 14** All the file changes are kept in the container, user can run step 4-11 to upgrade again. # Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1 The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. #### **Table 9: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |------------------------------------------|-----------------------------------|-----------------|--------------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | |------------------------------------------|-----------------------------------|--------|--------------------| | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | # **Upgrading Manually** ### Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Console access for both SUPs are required. Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1 package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1 package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1 image. ``` Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01.SPA.bin end write mem ``` **Step 7** Reload the cBR-8 router. Reload **Note** The system will reload twice. **Step 8** Remove the secondary line card from line card redundancy group if redundancy is configured. ``` Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end ``` **Step 9** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg name/harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg ``` **Step 10** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` **Step 11** Reload Docsis 3.1 downstream modules in all the slots. hw slot <slot> reload ## **Step 12** Add secondary line card into line card redundancy group. configure terminal redundancy linecard-group 0 internal-switch member slot 0 secondary end #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using **show log** command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - show isis neighbors - · show ip ospf neighbor - show ip route rip - show ip mroute - show cops servers - show cable modem voice - show cable calls - show cable metering verbose - · show cable licenses all - show inventory # **Upgrading with Ansible** ### Before you begin Before upgrading the firmware, make sure the following requirements are met: 1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker
service pre-installed. For docker installation guide, please check following link: https://docs.docker.com/engine/installation/ 2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example: ``` Cbr8#configure terminal Enter configuration commands, one per line. End with CNTL/Z. cBR8(config) #username cisco privilege 15 password 0 cisco cBR8(config) #enable secret cisco cBR8(config) #line vty 0 15 cBR8(config) #login local cBR8(config) #exec-timeout 0 0 cBR8(config) #session-timeout 0 cBR8(config) #exit ``` **3.** If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured. ``` cBR8(config)# ip domain-name domain.com cBR8(config)#crypto key generate rsa The name for the keys will be: cbr8.domain.com Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes. How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable... [OK] (elapsed time was 0 seconds) cBR8(config)#end cBR8#copy running-config startup-config cBR8#show ip ssh SSH Enabled - version 1.99 ``` - **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB). - **5.** Verify if the Ansible server can access cBR-8 using SSH. ``` [ansible@server ~]$ ssh cisco@100.0.0.1 The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established. RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cRR8# ``` **6.** Download three files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 • IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg - Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar - 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server. - **8.** Console access for both SUPs are required. - 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD. - **Step 1** Run following CLI on the Ansible server to create the docker image. ``` docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop ``` **Step 2** Start docker container with the image and enter the container shell. ``` docker run -it --name=mop ansible mop /bin/bash ``` **Step 3** Change current directory to the playbook folder for this software and firmware upgrade. ``` cd /opt/cbr-8_upgrade_ansible_16.x_to_16.7.1a ``` **Step 4** Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below: ``` [cbr] 100.110.110.110 100.185.185.185 ``` **Step 5** Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**. ``` creds: username: cisco password: cisco auth pass: cisco ``` **Step 6** Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:). ``` file_info: image_name: cbrsup-universalk9.16.07.01.SPA.bin pkg_name: cbrsup-programmable_firmware.16.07.01.SPA.pkg #if the pkg file in the TB, just modify dst_dir to the pkg location #the four examples shows the usage #example1 #src_dir: "ftp://username:password@20.11.0.42:~/" #example2 #src_dir: "tftp://192.168.3.47/ " #example3 ``` ``` #src_dir: "usb0:" #example4 src_dir: "harddisk:" slot_info: #slot_to_upgrade: [2,3,6,7,8,9] slot_to_upgrade: "ALL" ``` **Step 7** Execute following command to start the playbook to upgrade firmware. ``` ./run mop upgrade ``` **Step 8** Exit the container if finished upgrading this time to stop the container. exit **Step 9** If user wants to start the container again, use following command to start the container and enter its shell. ``` docker start mop docker attach mop ``` **Step 10** All the file changes are kept in the container, user can run step 4-11 to upgrade again. # Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions. ### **Table 10: Firmware Versions** | Internal Name | Component Name | Correct Version | Command | |----------------------|----------------------------------|-----------------|---------------| | Supervisor CPLD | CBR-CCAP-SUP-160G<br>Rommon CPLD | 16052011 | show platform | | Supervisor<br>ROMMON | CBR-CCAP-SUP-160G<br>Rommon | 16.6(1r)S | show platform | | Linecard CPLD | CBR-CCAP-LC-40G<br>CPLD | 00000025 | show platform | | Linecard Uboot | CBR-CCAP-LC-40G<br>Rommon | 2011.03.18 | show platform | | Linecard PSOC | CBR-CCAP-LC-40G<br>PSOC | 4.6 | show platform diag | |------------------------------------------|-----------------------------------|--------|--------------------| | Docsis 3.0<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin1 PSOC | 3.9 | show platform diag | | Docsis 3.0<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini1 CPLD | 0.7 | show platform diag | | Docsis 3.0<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin1 Micro | 1.E | show platform diag | | Docsis 3.0<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini1 Apollo | 2.F | show platform diag | | Docsis 3.1<br>downstream module<br>PSOC | CBR-CCAP-LC-40G<br>Gemin2 PSOC | 4.4 | show platform diag | | Docsis 3.1<br>downstream module<br>CPLD | CBR-CCAP-LC-40G<br>Gemini2 CPLD | 0.7 | show platform diag | | Docsis 3.1<br>downstream module<br>Micro | CBR-CCAP-LC-40G<br>Gemin2 Micro | 3.1A | show platform diag | | Docsis 3.1<br>downstream module<br>FPGA | CBR-CCAP-LC-40G<br>Gemini2 Apollo | 4.484B | show platform diag | ## Before you begin Before upgrading the system, make sure the following requirements are met: - Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842 - IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg Note Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image. **Step 1** Copy Cisco IOS-XE Fuji 16.7.1 package to bootflash: and stby-bootflash:. ``` copy <location>/cbrsup-universalk9.16.07.01.SPA.bin bootflash: copy <location>/cbrsup-universalk9.16.07.01.SPA.bin stby-bootflash: ``` **Step 2** Verify Cisco IOS-XE Fuji 16.7.1 package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 bootflash:cbrsup-universalk9.16.07.01.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01.SPA.bin ``` **Step 3** Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:. ``` copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk: copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk: ``` **Step 4** Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center. ``` verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg ``` - **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section. - **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots. ``` upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg ``` **Step 7** Wait for the system log message asking the user to reload the line card that was upgraded. ``` 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload ``` - **Step 8** Before the ISSU upgrade please check and make sure: - The cBR-8 is in Subpackage mode. - Both SUPs are running same image from same path. - · Autoboot is enabled. - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode. - All linecards are in normal state in LCHA group. Use show redundancy linecard all command, active cards should be in Stdby Warm state. - There is enough bootflash disk space on both SUP. - **Step 9** Copy 16.7.1 image in the same folder of current boot package on active SUP. - **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed. - **Step 11** Perform ISSU. ``` request platform software package install node file bootflash:cbrsup-universalk9.16.07.01.SPA.bin ``` **Step 12** To monitor the ISSU progress, use the command below. ``` request platform software package install node attach ``` **Step 13** Use these CLI to check status after ISSU. ``` show version r0 running show version r1 running show version r1 running show version r0 provisioned show version r1 provisioned ``` **Note** If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a D3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is: **a.** Admin shut all OFDM channels. This can be done from a script, or from cut and paste of
the CLI. There is no need to have a delay between successive shuts. For example: ``` configure terminal controller Integrated-Cable 2/0/0 rf-chan 158 shut end ``` - **b.** Wait for 30 seconds. - **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example: **d.** Reset all Docsis 31 CMs. For example: ``` clear cable modem d31-capable reset ``` #### What to do next Perform verification test to determine if the upgrade is successful, include: - Verify the router is running the new IOS-XE release using **show version** command. - Check facility alarms using show facility-alarm status command. - Check the status of the power supplies using **show environment power** command. - Check PS status using show platform hardware slot P<0-5> mcu status command. - Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working. - Check logs for error messages using show log command. These **show** commands may be useful in the verification test: - · show redundancy - show platform - · show platform diag - show environment - · show redundancy linecard all - · show isis neighbors - show ip ospf neighbor - · show ip route rip - show ip mroute - · show cops servers - show cable modem voice - · show cable calls - show cable metering verbose - show cable licenses all - show inventory Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU