

Upgrading the Cisco cBR Series Converged Broadband Routers for Cisco IOS XE Fuji 16.7.x

First Published: 2017-11-23 **Last Modified:** 2020-02-07

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387)

Fax: 408 527-0883

© 2018, 2020 Cisco Systems, Inc. All rights reserved.

CONTENTS

C				
				1

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.2 1

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.2 2

Upgrading Manually 2

Upgrading with Ansible 8

Upgrading from Cisco IOS XE Everest 16.5.1 to Cisco IOS XE Fuji 16.7.2 11

Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU 14

CHAPTER 2

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1b 19

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1b 19

Upgrading Manually 20

Upgrading with Ansible 23

Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1b 27

Upgrading Manually 28

Upgrading with Ansible 31

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1b with ISSU 33

CHAPTER 3

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1a 39

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1a 39

Upgrading Manually 40

Upgrading with Ansible 43

Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1a 47

Upgrading Manually 48

Upgrading with Ansible 51

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU 53

CHAPTER 4

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1 59

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1 59	
Upgrading Manually 60	
Upgrading with Ansible 63	
Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1 67	
Upgrading Manually 68	
Upgrading with Ansible 71	
Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU	73

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.2

This section contains the upgrade procedures for the Cisco cBR-8 Router System.

The latest firmware versions after upgrade are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 1: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag

Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag
RF-PIC Firmware	CBR-RF-PIC	00000746	show platform diag
RF-PROT-PIC Firmware	CBR-RF-PROT-PIC	0000071E	show platform diag

- Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.2, on page 2
- Upgrading from Cisco IOS XE Everest 16.5.1 to Cisco IOS XE Fuji 16.7.2, on page 11
- Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU, on page 14

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.2

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware.
- Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first:

http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html#task E0B78DCCC88A41749DA2783736CE37A6

• Download two files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

- IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin
- IOS XE Hardware Programmable Devices Version 16.7.2: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.
- Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.

Noto

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.2 package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.02.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.02.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.2 package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.02.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.02.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.2 image.

```
Configure terminal no boot system boot system bootflash:cbrsup-universalk9.16.07.02.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

```
Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end
```

Step 9 Confirm all line cards are in normal state.

```
show platform | inc LC
```

Step 10 Configure config-register to manual boot.

Configure terminal config-register 0x0 end

Step 11 Upgrade Docsis 3.1 downstream modules in all the slots.

upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg

Step 12 Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log:

Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload

Step 13 Upgrade Supervisor 0/1 CPLD.

upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg

Note Check the current Viper version.

```
Router# show platform diag
Load for five secs: 6%/1%; one minute: 7%; five minutes: 8%
Time source is NTP, 16:05:43.546 PST Thu Feb 8 2018
Chassis type: CBR-8-CCAP-CHASS
<SNTP>
Slot: SUP0, CBR-CCAP-SUP-160G
       Physical insert detect time: 00:01:58 (1d03h ago)
       CPLD version : 16052011

ViperSO CPLD version : 15111401
   ViperSIO CPLD version : 15111301
       Rommon version : 16.7(1r)S
                                : 00000112
       Blackbird version
       Raptor MAC version
SUP-PIC CPID ---
                                : 0001003b
: 00010031
                                : 14071504
       SUP-PIC CPLD version
       SUP-DC CPLD version
                                : 14072207
       DTI Client FPGA version : 00000005
       DTI Firmware version : 00000A03
       Cortina PHY version
                                  : 201402061607
       SUP PSOC 0 version
                                 : v4.0.9
       SUP PSOC 1 version
                                : v4.0.8
       SUP PSOC 2 version
                                : v4.1.0 IVB
                                : v4.0.6
       SUP PSOC 3 version
       SUP-DC PSOC 0 version
                                  : v4.0.8
       SUP-DC PSOC 1 version
                                  : v4.0.5
       SUP-PIC PSOC 0 version
                                  : V2.0.6
       SUP-PIC PSOC 1 version
                                : V2.0.6
<SNTP>
Slot: SUP1, CBR-CCAP-SUP-160G
       Physical insert detect time : 00:02:26 (1d03h ago)
       CPLD version
                              : 16052011
       ViperSO CPLD version : 15111401
    ViperSIO CPLD version : 15111301
       Rommon version : 16.7(1r)S
                                : 00000112
       Blackbird version
                                : 0001003b
       Raptor ESI version
Raptor MAC version
                                  : 00010031
       SUP-PIC CPLD version : 14071504
SUP-DC CPLD version : 14072207
       DTI Client FPGA version : 00000005
       DTI Firmware version : 00000A03
       Cortina PHY version
                                  : 201402061607
                                 : v4.0.9
       SUP PSOC 0 version
                                : v4.0.8
       SUP PSOC 1 version
       SUP PSOC 2 version
                                : v4.1.0 IVB
                                : v4.0.6
       SUP PSOC 3 version
       SUP-DC PSOC 0 version
       SUP-DC PSOC 1 version
                                  : v4.0.5
       SUP-PIC PSOC 0 version
                                 : V3.0.0
       SUP-PIC PSOC 1 version
                                 : V3.0.0
```

If ViperSO CPLD version is 15111401 and ViperSIO CPLD version is 1511130 on both supervisors, then proceed to if you want to update SUP CPLD without manually powre cycling the chassis. Otherwise perform the following substeps:

a) Reload the cBR-8 router. Answer **no** to not save the configuration.

<SNIP>

```
cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#
```

b) Configure to automatic boot by typing following command in **rommon** > prompt.

```
rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >
```

- c) Power cycle chassis, wait for both SUPs to auto boot to 16.7.2 image.
- d) Proceed to What to do next:.
- **Step 14** Set Active Sup (assuming R0) to ROMMON using supervisor switchover command.

```
Redundancy force-switchover
This will cause SUPO to go to ROMMOM prompt
```

Step 15 Using a console connection of current active SUP (SUP1), power cycle the supervisor (SUP0) using test command to set it to ROMMON:

```
test platform hardware slot RO oir power-cycle
This command will cause the ROMMON to reset and re-initialize. The new version of the Viper will
now take effect. Please verify it matches the new version

New Version = Viper version register: 0x16052011
```

Step 16 Using a console connection of SUP0 (the one in ROMMON) issue the following commands to boot that SUP:

```
Confreg 0x2 sync reset This will make the sup to reload twice
```

- **Step 17** Wait for SUP0 to become STANDBY HOT.
- **Step 18** Set the current active SUP (R1) to ROMMON using supervisor switchover command.

```
Redundancy force-switchover
This will cause SUP1 to go to ROMMOM prompt
```

Step 19 Using a console connection of current active SUP (SUP0), power cycle the supervisor (SUP1) using test command to set it to ROMMON:

```
test platform hardware slot R1 oir power-cycle
This command will cause the ROMMON to reset and re-initialize. The new version of the Viper will
now take effect. Please verify it matches the new version

New Version = Viper version register: 0x16052011
```

Step 20 Using a console connection of SUP1 (the one in ROMMON) issue the following commands to boot that SUP:

```
Confreg 0x2 sync reset This will make the sup to reload twice
```

- **Step 21** Wait for SUP1 to become STANDBY HOT.
- **Step 22** Reload the standby line card to set DOCSIS 3.1 downstrem module firmware active.

Hw-module slot 0 reload

- **Step 23** Wait for Slot 0 to become Stdby Warm.
- **Step 24** Reload primary line card one at a time by following these steps:
 - a) hw-module slot 1 reload
 - b) Wait for slot 1 to become Stdby Hot by examining output of show redundancy linecard all
 - c) Redundancy linecard-group switchover from slot 0.
 - d) Wait for slot 0 to become Stdby Warm.
- **Step 25** Proceed to What to do next:.

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using **show facility-alarm status** command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using **show platform hardware slot P<0-5> mcu status** command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using show log command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- show platform diag
- show environment
- show redundancy linecard all
- · show isis neighbors
- · show ip ospf neighbor
- show ip route rip
- show ip mroute
- show cops servers
- show cable modem voice
- show cable calls
- · show cable metering verbose
- · show cable licenses all

show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed.
 For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8(config)#username cisco privilege 15 password 0 cisco
cBR8(config)#enable secret cisco
cBR8(config)#line vty 0 15
cBR8(config)#login local
cBR8(config)#exec-timeout 0 0
cBR8(config)#session-timeout 0
cBR8(config)#exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8(config)# ip domain-name domain.com
cBR8(config)#crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

cBR8(config)#end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- **5.** Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts.
Password:
cBR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

- IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin
- IOS XE Hardware Programmable Devices Version 16.7.1:
 cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.
- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.2
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
ereds:
username: cisco
password: cisco
auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file_info:
   image_name: cbrsup-universalk9.16.07.02.SPA.bin
   pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
   #if the pkg file in the TB, just modify dst_dir to the pkg location
   #the four examples shows the usage
   #example1
   #src_dir: "ftp://username:password@20.11.0.42:~/"
   #example2
```

```
#src_dir: "tftp://192.168.3.47/ "
#example3
#src_dir: "usb0:"
#example4
src_dir: "harddisk:"

slot_info:
#slot_to_upgrade: [2,3,6,7,8,9]
slot to upgrade: "ALL"
```

Step 7 Modify md5 map.yaml file in the folder **version_file** to add new image label and md5 value.

```
pkg_md5:
    cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg: 292e26e20b038147f3443a5977415465
image_md5:
    cbrsup-universalk9.16.07.02.SPA.bin: a05c281922eb56adc2fe025cf174360c
```

Step 8 Execute following command to start the playbook to upgrade firmware.

```
./run_mop_upgrade
```

Step 9 Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration.

```
cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#
```

Step 10 From ROMMON issue the following command on both SUPs.

```
rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >
```

Step 11 Power cycle chassis, wait for both SUPs to auto boot to 16.7.2 image.

```
rommon 1>
Initializing Hardware ...
?

System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE
Copyright (c) 1994-2016 by cisco Systems, Inc.

Current image running: Boot ROM1

Last reset cause: PowerOn

Viper version register: 0x16052011
Set Chassis Type to 13RU
Cisco cBR-8 platform with 50331648 Kbytes of main memory
```

Step 12 After system bootup and stable, execute following command to start the playbook to check the upgrade result.

Step 13 Exit the container if finished upgrading this time to stop the container.

exit

Step 14 If user wants to start the container again, use following command to start the container and enter its shell.

```
docker start mop docker attach mop
```

Step 15 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.5.1 to Cisco IOS XE Fuji 16.7.2

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.2: cbrsup-programmable_firmware.16.07.01.SPA.pkg

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.2 package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.02.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.02.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.2 package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.02.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.02.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.2 image.

```
Configure terminal no boot system boot system boot system bootflash:cbrsup-universalk9.16.07.02.SPA.bin end write mem
```

Step 7 If the system is not set to autoboot, set the system to autoboot on reload.

```
Configure terminal config-register 0x2102 end
```

CII

Step 8

Confirm all line card are in OK state.

```
show platform | include LC
```

Step 9 Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

Step 10 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

Step 11 Reload the cBR-8 router.

reload

Note The system will reload twice.

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using **show platform hardware slot P<0-5> mcu status** command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- · show isis neighbors
- · show ip ospf neighbor
- show ip route rip
- show ip mroute
- · show cops servers
- show cable modem voice
- · show cable calls
- · show cable metering verbose
- · show cable licenses all
- · show inventory

Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.2: cbrsup-universalk9.16.07.02.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.2: cbrsup-programmable_firmware.16.07.01.SPA.pkg

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.2 package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.02.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.02.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.2 package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.02.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.02.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

Step 5 Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.

Step 6 Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg name/harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg
```

Step 7 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

- **Step 8** Before the ISSU upgrade please check and make sure:
 - The cBR-8 is in Subpackage mode.
 - Both SUPs are running same image from same path.
 - Autoboot is enabled.
 - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode.
 - All linecards are in normal state in LCHA group. Use show redundancy linecard all command, active cards should be in Stdby Warm state.
 - There is enough bootflash disk space on both SUP.
- **Step 9** Copy 16.7.2 image in the same folder of current boot package on active SUP.
- **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed.
- **Step 11** Perform ISSU.

request platform software package install node file bootflash:cbrsup-universalk9.16.07.02.SPA.bin

Step 12 To monitor the ISSU progress, use the command below.

request platform software package install node attach

Step 13 Use these CLI to check status after ISSU.

```
show version
show version r0 running
show version r1 running
show version r0 provisioned
show version r1 provisioned
```

Note If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a Docsis 3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is:

a. Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example:

```
configure terminal
   controller Integrated-Cable 2/0/0
        rf-chan 158
        shut
end
```

- **b.** Wait for 30 seconds.
- **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example:

d. Reset all Docsis 31 CMs. For example:

```
clear cable modem d31-capable reset
```

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using **show platform hardware slot P<0-5> mcu status** command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using show log command.

These **show** commands may be useful in the verification test:

- show redundancy
- show platform
- show platform diag
- show environment
- show redundancy linecard all
- show isis neighbors

- show ip ospf neighbor
- show ip route rip
- show ip mroute
- show cops servers
- show cable modem voice
- show cable calls
- show cable metering verbose
- show cable licenses all
- show inventory

Upgrading from Cisco IOS XE Everest 16.6.x to Cisco IOS XE Fuji 16.7.2 with ISSU

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1b

This section contains the upgrade procedures for the Cisco cBR-8 Router System.

- Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1b, on page 19
- Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1b, on page 27
- Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1b with ISSU, on page 33

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1b

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 2: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag

Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag
RF-PIC Firmware	CBR-RF-PIC	00000746	show platform diag
RF-PROT-PIC Firmware	CBR-RF-PROT-PIC	0000071E	show platform diag

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware.
- Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first:

 $http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html\#task_E0B78DCCC88A41749DA2783736CE37A6$

• Download two files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

• IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin

- IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.
- Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1b package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1b package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01b.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01b.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1b image.

```
Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01b.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end

Step 9 Configure config-register to manual boot.

Configure terminal config-register 0x0 end

Step 10 Upgrade Docsis 3.1 downstream modules in all the slots.

upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg

Step 11 Upgrade Supervisor 0/1 CPLD.

upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg

Step 12 Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log:

Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload

Step 13 Reload the cBR-8 router. Answer **no** to not save the configuration.

cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#

Step 14 Configure to automatic boot by typing following command in **rommon** > prompt.

rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >

Step 15 Power cycle chassis, wait for both SUPs to auto boot to 16.7.1b image.

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using **show facility-alarm status** command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- show isis neighbors
- show ip ospf neighbor
- · show ip route rip
- show ip mroute
- · show cops servers
- · show cable modem voice
- · show cable calls
- · show cable metering verbose
- show cable licenses all
- show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8(config) #username cisco privilege 15 password 0 cisco
cBR8(config) #enable secret cisco
cBR8(config) #line vty 0 15
cBR8(config) #login local
cBR8(config) #exec-timeout 0 0
cBR8(config) #session-timeout 0
cBR8(config) #exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8(config)# ip domain-name domain.com
cBR8(config)#crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

cBR8(config)#end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- 5. Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts.
Password:
cBR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

- IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin
- IOS XE Hardware Programmable Devices Version 16.7.1:
 cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.

- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8 upgrade ansible 16.7.1a.tar ansible mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.1a
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
creds:
   username: cisco
   password: cisco
   auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file info:
  image name: cbrsup-universalk9.16.07.01b.SPA.bin
 pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
  #if the pkg file in the TB, just modify dst dir to the pkg location
  #the four examples shows the usage
  #example1
  #src dir: "ftp://username:password@20.11.0.42:~/"
  #example2
  #src dir: "tftp://192.168.3.47/ "
  #example3
  #src_dir: "usb0:"
  #example4
  src dir: "harddisk:"
slot info:
  \#slot to upgrade: [2,3,6,7,8,9]
 slot_to_upgrade: "ALL"
```

Step 7 Modify md5 map.yaml file in the folder **version_file** to add new image label and md5 value.

```
pkg_md5:
    cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg: 292e26e20b038147f3443a5977415465
image_md5:
    cbrsup-universalk9.16.07.01b.SPA.bin: 1bc67f5266665043bd9336cacad1bac6
```

Step 8 Execute following command to start the playbook to upgrade firmware.

```
./run_mop_upgrade
```

Step 9 Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration.

```
cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#
```

Step 10 From ROMMON issue the following command on both SUPs.

```
rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >
```

Step 11 Power cycle chassis, wait for both SUPs to auto boot to 16.7.1b image.

```
rommon 1>
Initializing Hardware ...

?

System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc.

Current image running: Boot ROM1

Last reset cause: PowerOn

Viper version register: 0x16052011

Set Chassis Type to 13RU

Cisco cBR-8 platform with 50331648 Kbytes of main memory
```

Step 12 After system bootup and stable, execute following command to start the playbook to check the upgrade result.

Step 13 Exit the container if finished upgrading this time to stop the container.

exit

Step 14 If user wants to start the container again, use following command to start the container and enter its shell.

docker start mop docker attach mop

Step 15 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1b

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 3: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag
Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag

Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL:
 - https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1b package to bootflash: and stby-bootflash:.

copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin bootflash:

copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin stby-bootflash:

Step 2 Verify Cisco IOS-XE Fuji 16.7.1b package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01b.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01b.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1b image.

```
Configure terminal no boot system boot system bootflash:cbrsup-universalk9.16.07.01b.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

```
Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end
```

Step 9 Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

Step 10 Wait for the system log message asking the user to reload the line card that was upgraded.

001860: Jun 15 19:05:05.904 PDT: σ FORME-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot σ reload

Step 11 Reload Docsis 3.1 downstream modules in all the slots.

hw slot <slot> reload

Step 12 Add secondary line card into line card redundancy group.

configure terminal
redundancy
linecard-group 0 internal-switch
member slot 0 secondary
end

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using **show platform hardware slot P<0-5> mcu status** command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- show isis neighbors
- · show ip ospf neighbor
- · show ip route rip
- show ip mroute
- show cops servers

- show cable modem voice
- · show cable calls
- show cable metering verbose
- · show cable licenses all
- show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8(config) #username cisco privilege 15 password 0 cisco
cBR8(config) #enable secret cisco
cBR8(config) #line vty 0 15
cBR8(config) #login local
cBR8(config) #exec-timeout 0 0
cBR8(config) #session-timeout 0
cBR8(config) #exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8(config) # ip domain-name domain.com
cBR8(config) #crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

CBR8(config) #end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- **5.** Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
```

```
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts. Password: cBR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

- IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin
- IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.
- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8 upgrade ansible 16.x to 16.7.1a
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
creds:
   username: cisco
   password: cisco
   auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file_info:
    image_name: cbrsup-universalk9.16.07.01b.SPA.bin
    pkg_name: cbrsup-programmable_firmware.16.07.01.SPA.pkg
    #if the pkg file in the TB, just modify dst_dir to the pkg location
    #the four examples shows the usage
    #example1
    #src_dir: "ftp://username:password@20.11.0.42:~/"
    #example2
    #src_dir: "tftp://192.168.3.47/ "
    #example3
    #src_dir: "usb0:"
    #example4
    src_dir: "harddisk:"

slot_info:
    #slot_to_upgrade: [2,3,6,7,8,9]
    slot to upgrade: "ALL"
```

Step 7 Modify md5 map.yaml file in the folder **version_file** to add new image label and md5 value.

```
pkg_md5:
    cbrsup-programmable_firmware.16.07.01.SPA.pkg: c99c25ae470364b905369efaec30c1f0
image_md5:
    cbrsup-universalk9.16.07.01b.SPA.bin: 1bc67f5266665043bd9336cacad1bac6
```

Step 8 Execute following command to start the playbook to upgrade firmware.

```
./run mop upgrade
```

Step 9 Exit the container if finished upgrading this time to stop the container.

exit

Step 10 If user wants to start the container again, use following command to start the container and enter its shell.

```
docker start mop docker attach mop
```

Step 11 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1b with ISSU

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 4: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag
Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.1b: cbrsup-universalk9.16.07.01b.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1b package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01b.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1b package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01b.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01b.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

Step 7 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

Step 8 Before the ISSU upgrade please check and make sure:

- The cBR-8 is in Subpackage mode.
- Both SUPs are running same image from same path.
- Autoboot is enabled.
- The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode.
- All linecards are in normal state in LCHA group. Use **show redundancy linecard all** command, active cards should be in **Stdby Warm** state.
- There is enough bootflash disk space on both SUP.
- **Step 9** Copy 16.7.1b image in the same folder of current boot package on active SUP.
- **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed.
- **Step 11** Perform ISSU.

request platform software package install node file bootflash:cbrsup-universalk9.16.07.01b.SPA.bin

Step 12 To monitor the ISSU progress, use the command below.

request platform software package install node attach

Step 13 Use these CLI to check status after ISSU.

show version r0 running show version r1 running show version r0 provisioned show version r1 provisioned

Note If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a Docsis 3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is:

a. Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example:

```
configure terminal
   controller Integrated-Cable 2/0/0
        rf-chan 158
        shut
end
```

- **b.** Wait for 30 seconds.
- **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example:

d. Reset all Docsis 31 CMs. For example:

```
clear cable modem d31-capable reset
```

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using **show platform hardware slot P<0-5> mcu status** command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using show log command.

These **show** commands may be useful in the verification test:

- show redundancy
- show platform
- show platform diag
- show environment
- show redundancy linecard all
- · show isis neighbors

- show ip ospf neighbor
- show ip route rip
- show ip mroute
- show cops servers
- show cable modem voice
- · show cable calls
- show cable metering verbose
- show cable licenses all
- show inventory

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1a

This section contains the upgrade procedures for the Cisco cBR-8 Router System.

- Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1a, on page 39
- Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1a, on page 47
- Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU, on page 53

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1a

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 5: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag

Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag
RF-PIC Firmware	CBR-RF-PIC	00000746	show platform diag
RF-PROT-PIC Firmware	CBR-RF-PROT-PIC	0000071E	show platform diag

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware.
- Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first:

 $http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html\#task_E0B78DCCC88A41749DA2783736CE37A6$

• Download two files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

• IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin

- IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.
- Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1a package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1a package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01a.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01a.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1a image.

```
Configure terminal no boot system boot system bootsystem bootsystem bootflash:cbrsup-universalk9.16.07.01a.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end

Step 9 Configure config-register to manual boot.

Configure terminal config-register 0x0 end

Step 10 Upgrade Docsis 3.1 downstream modules in all the slots.

upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg

Step 11 Upgrade Supervisor 0/1 CPLD.

upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg

Step 12 Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log:

Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload

Step 13 Reload the cBR-8 router. Answer **no** to not save the configuration.

cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#

Step 14 Configure to automatic boot by typing following command in **rommon** > prompt.

rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >

Step 15 Power cycle chassis, wait for both SUPs to auto boot to 16.7.1a image.

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- show isis neighbors
- · show ip ospf neighbor
- · show ip route rip
- show ip mroute
- · show cops servers
- show cable modem voice
- show cable calls
- · show cable metering verbose
- show cable licenses all
- show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8 (config) #username cisco privilege 15 password 0 cisco
cBR8 (config) #enable secret cisco
cBR8 (config) #line vty 0 15
cBR8 (config) #login local
cBR8 (config) #exec-timeout 0 0
cBR8 (config) #session-timeout 0
cBR8 (config) #exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8 (config) # ip domain-name domain.com
cBR8 (config) #crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

cBR8 (config) #end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- 5. Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts.
Password:
cBR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

- IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin
- IOS XE Hardware Programmable Devices Version 16.7.1:
 cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- **7.** Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.

- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.1a
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
creds:
   username: cisco
   password: cisco
   auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file info:
  image name: cbrsup-universalk9.16.07.01a.SPA.bin
 pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
  #if the pkg file in the TB, just modify dst dir to the pkg location
  #the four examples shows the usage
  #example1
  #src dir: "ftp://username:password@20.11.0.42:~/"
  #example2
  #src dir: "tftp://192.168.3.47/ "
  #example3
  #src_dir: "usb0:"
  #example4
  src dir: "harddisk:"
slot info:
  #slot to upgrade: [2,3,6,7,8,9]
 slot_to_upgrade: "ALL"
```

Step 7 Execute following command to start the playbook to upgrade firmware.

```
./run mop upgrade
```

Step 8 Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration.

```
cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#
```

Step 9 From ROMMON issue the following command on both SUPs.

```
rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >
```

Step 10 Power cycle chassis, wait for both SUPs to auto boot to 16.7.1a image.

```
rommon 1>
Initializing Hardware ...

?

System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE Copyright (c) 1994-2016 by cisco Systems, Inc.

Current image running: Boot ROM1

Last reset cause: PowerOn

Viper version register: 0x16052011
Set Chassis Type to 13RU
Cisco cBR-8 platform with 50331648 Kbytes of main memory
```

Step 11 After system bootup and stable, execute following command to start the playbook to check the upgrade result.

Step 12 Exit the container if finished upgrading this time to stop the container.

exit

Step 13 If user wants to start the container again, use following command to start the container and enter its shell.

docker start mop docker attach mop

Step 14 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1a

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 6: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag
Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag

Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1a package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1a package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01a.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01a.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1a image.

```
Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01a.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

```
Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end
```

Step 9 Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg name/harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg
```

Step 10 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

Step 11 Reload Docsis 3.1 downstream modules in all the slots.

hw slot <slot> reload

Step 12 Add secondary line card into line card redundancy group.

configure terminal
redundancy
linecard-group 0 internal-switch
member slot 0 secondary
end

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using **show facility-alarm status** command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- show isis neighbors
- · show ip ospf neighbor
- · show ip route rip
- show ip mroute
- show cops servers
- show cable modem voice
- show cable calls
- show cable metering verbose
- · show cable licenses all
- show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8(config) #username cisco privilege 15 password 0 cisco
cBR8(config) #enable secret cisco
cBR8(config) #line vty 0 15
cBR8(config) #login local
cBR8(config) #exec-timeout 0 0
cBR8(config) #session-timeout 0
cBR8(config) #exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8(config)# ip domain-name domain.com
cBR8(config)#crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

cBR8(config)#end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- **5.** Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts.
Password:
cBR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

• IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin

- IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.
- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8_upgrade_ansible_16.x_to_16.7.1a
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
creds:
   username: cisco
   password: cisco
   auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file_info:
   image_name: cbrsup-universalk9.16.07.01a.SPA.bin
   pkg_name: cbrsup-programmable_firmware.16.07.01.SPA.pkg
   #if the pkg file in the TB, just modify dst_dir to the pkg location
   #the four examples shows the usage
   #example1
   #src_dir: "ftp://username:password@20.11.0.42:~/"
   #example2
   #src_dir: "tftp://192.168.3.47/ "
   #example3
```

```
#src_dir: "usb0:"
#example4
src_dir: "harddisk:"

slot_info:
#slot_to_upgrade: [2,3,6,7,8,9]
slot_to_upgrade: "ALL"
```

Step 7 Execute following command to start the playbook to upgrade firmware.

```
./run mop upgrade
```

Step 8 Exit the container if finished upgrading this time to stop the container.

exit

Step 9 If user wants to start the container again, use following command to start the container and enter its shell.

```
docker start mop docker attach mop
```

Step 10 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 7: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform

Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag
Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.1a: cbrsup-universalk9.16.07.01a.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1a package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01a.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1a package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01a.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01a.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

Step 7 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

- **Step 8** Before the ISSU upgrade please check and make sure:
 - The cBR-8 is in Subpackage mode.
 - Both SUPs are running same image from same path.
 - · Autoboot is enabled.
 - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode.
 - All linecards are in normal state in LCHA group. Use show redundancy linecard all command, active cards should be in Stdby Warm state.
 - There is enough bootflash disk space on both SUP.

- **Step 9** Copy 16.7.1a image in the same folder of current boot package on active SUP.
- **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed.
- **Step 11** Perform ISSU.

```
request platform software package install node file bootflash:cbrsup-universalk9.16.07.01a.SPA.bin
```

Step 12 To monitor the ISSU progress, use the command below.

```
request platform software package install node attach
```

Step 13 Use these CLI to check status after ISSU.

```
show version r0 running show version r1 running show version r1 running show version r0 provisioned show version r1 provisioned
```

Note If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a Docsis 3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is:

a. Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example:

```
configure terminal
controller Integrated-Cable 2/0/0
rf-chan 158
shut
end
```

- **b.** Wait for 30 seconds.
- **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example:

```
configure terminal
   controller Integrated-Cable 2/0/0
        rf-chan 158
        no shut
end
```

d. Reset all Docsis 31 CMs. For example:

```
clear cable modem d31-capable reset
```

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using **show facility-alarm status** command.
- Check the status of the power supplies using **show environment power** command.

- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using show log command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- · show isis neighbors
- show ip ospf neighbor
- · show ip route rip
- show ip mroute
- · show cops servers
- show cable modem voice
- show cable calls
- show cable metering verbose
- show cable licenses all
- · show inventory

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1a with ISSU

Upgrading the Cisco cBR-8 Router System to Cisco IOS XE Fuji 16.7.1

This section contains the upgrade procedures for the Cisco cBR-8 Router System.

- Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1, on page 59
- Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1, on page 67
- Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU, on page 73

Upgrading from Cisco IOS-XE 3.18.1aSP to Cisco IOS XE Fuji 16.7.1

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 8: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag

Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag
RF-PIC Firmware	CBR-RF-PIC	00000746	show platform diag
RF-PROT-PIC Firmware	CBR-RF-PROT-PIC	0000071E	show platform diag

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- The firmware versions are not lower than the ones listed in Firmware versions table. Otherwise upgrade the firmware versions, see Upgrading the Cisco cBR-8 Router Firmware.
- Make sure Line Card CPLD version is 00000025. If the value is lower than 00000025, follow this procedure to upgrade the Line Card CPLD to version 00000025 first:

 $http://www.cisco.com/c/en/us/td/docs/cable/cbr/upgrade/guide/b_cbr_upgrade-3-18s/b_cbr_upgrade_hardware.html\#task_E0B78DCCC88A41749DA2783736CE37A6$

• Download two files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

• IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin

- IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.
- Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1 package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1 package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1 image.

```
Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end

Step 9 Configure config-register to manual boot.

Configure terminal config-register 0x0 end

Step 10 Upgrade Docsis 3.1 downstream modules in all the slots.

upgrade hw-programmable cable <slot> dsphy auto pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg

Step 11 Upgrade Supervisor 0/1 CPLD.

upgrade hw-programmable cable r0 viper pkg_name /harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg upgrade hw-programmable cable r1 viper pkg_name /harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg

Step 12 Make sure the line card Docsis 3.1 downstream modules upgrade has completed successfully by examining the system log:

Show logging | include slot-id 001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload

Step 13 Reload the cBR-8 router. Answer **no** to not save the configuration.

cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#

Step 14 Configure to automatic boot by typing following command in **rommon** > prompt.

rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >

Step 15 Power cycle chassis, wait for both SUPs to auto boot to 16.7.1 image.

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- show isis neighbors
- · show ip ospf neighbor
- · show ip route rip
- show ip mroute
- · show cops servers
- show cable modem voice
- show cable calls
- · show cable metering verbose
- · show cable licenses all
- show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8(config) #username cisco privilege 15 password 0 cisco
cBR8(config) #enable secret cisco
cBR8(config) #line vty 0 15
cBR8(config) #login local
cBR8(config) #exec-timeout 0 0
cBR8(config) #session-timeout 0
cBR8(config) #exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8(config)# ip domain-name domain.com
cBR8(config)#crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

cBR8(config)#end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- 5. Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts.
Password:
CBR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

- IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin
- IOS XE Hardware Programmable Devices Version 16.7.1:
 cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.

- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8_upgrade_ansible_3.18sp_to_16.7.1a
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
creds:
   username: cisco
   password: cisco
   auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file info:
  image name: cbrsup-universalk9.16.07.01.SPA.bin
 pkg_name: cbrsup-programmable_firmware.16.07.01_compat_with_3.18SP.SSA.pkg
  #if the pkg file in the TB, just modify dst dir to the pkg location
  #the four examples shows the usage
  #example1
  #src dir: "ftp://username:password@20.11.0.42:~/"
  #example2
  #src dir: "tftp://192.168.3.47/ "
  #example3
  #src_dir: "usb0:"
  #example4
  src dir: "harddisk:"
slot info:
  #slot to upgrade: [2,3,6,7,8,9]
 slot_to_upgrade: "ALL"
```

Step 7 Execute following command to start the playbook to upgrade firmware.

```
./run_mop_upgrade
```

Step 8 Reload the system by typing **reload** on the active SUP and answering **no** to not save the configuration.

```
cBR8#reload
System configuration has been modified. Save? [yes/no]: no
Proceed with reload? [confirm]
cBR8#
```

Step 9 From ROMMON issue the following command on both SUPs.

```
rommon 1 > confreg 0x2102
rommon 2 > sync
rommon 3 >
```

Step 10 Power cycle chassis, wait for both SUPs to auto boot to 16.7.1 image.

```
rommon 1>
Initializing Hardware ...
?

System Bootstrap, Version 16.6(2r)S, RELEASE SOFTWARE
Copyright (c) 1994-2016 by cisco Systems, Inc.

Current image running: Boot ROM1

Last reset cause: PowerOn

Viper version register: 0x16052011
Set Chassis Type to 13RU
Cisco cBR-8 platform with 50331648 Kbytes of main memory
```

Step 11 After system bootup and stable, execute following command to start the playbook to check the upgrade result.

Step 12 Exit the container if finished upgrading this time to stop the container.

exit

Step 13 If user wants to start the container again, use following command to start the container and enter its shell.

docker start mop docker attach mop

Step 14 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.x to Cisco IOS XE Fuji 16.7.1

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 9: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform
Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag
Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag

Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag

Upgrading Manually

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Console access for both SUPs are required.

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1 package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1 package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Configure the chassis to boot the system with Cisco IOS-XE Fuji 16.7.1 image.

```
Configure terminal no boot system boot system bootsystem bootflash:cbrsup-universalk9.16.07.01.SPA.bin end write mem
```

Step 7 Reload the cBR-8 router.

Reload

Note The system will reload twice.

Step 8 Remove the secondary line card from line card redundancy group if redundancy is configured.

```
Configure terminal redundancy linecard-group 0 internal-switch no member slot 0 secondary end
```

Step 9 Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg name/harddisk/cbrsup-programmable firmware.16.07.01.SPA.pkg
```

Step 10 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

Step 11 Reload Docsis 3.1 downstream modules in all the slots.

hw slot <slot> reload

Step 12 Add secondary line card into line card redundancy group.

configure terminal
redundancy
linecard-group 0 internal-switch
member slot 0 secondary
end

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.
- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using **show log** command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- show isis neighbors
- · show ip ospf neighbor
- show ip route rip
- show ip mroute
- show cops servers
- show cable modem voice
- show cable calls
- show cable metering verbose
- · show cable licenses all
- show inventory

Upgrading with Ansible

Before you begin

Before upgrading the firmware, make sure the following requirements are met:

1. Prepare Ansible Server, operating system can be Linux/Windows/Mac, with docker service pre-installed. For docker installation guide, please check following link:

https://docs.docker.com/engine/installation/

2. Check if the chassis supports AAA or local authentication with username & password. If not configured, use following CLI to enable local authentication, for example:

```
Cbr8#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
cBR8(config) #username cisco privilege 15 password 0 cisco
cBR8(config) #enable secret cisco
cBR8(config) #line vty 0 15
cBR8(config) #login local
cBR8(config) #exec-timeout 0 0
cBR8(config) #session-timeout 0
cBR8(config) #exit
```

3. If SSH is not enabled, use following CLI to enable SSH on cBR8, skip the domain name configuration if already configured.

```
cBR8(config)# ip domain-name domain.com
cBR8(config)#crypto key generate rsa
The name for the keys will be: cbr8.domain.com
Choose the size of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 0 seconds)

cBR8(config)#end
cBR8#copy running-config startup-config
cBR8#show ip ssh
SSH Enabled - version 1.99
```

- **4.** Check if there is enough bootflash disk space on both SUP (>1.8GB).
- **5.** Verify if the Ansible server can access cBR-8 using SSH.

```
[ansible@server ~]$ ssh cisco@100.0.0.1
The authenticity of host '100.0.0.1 (100.0.0.1)' can't be established.
RSA key fingerprint is c3:be:8f:cf:76:f4:31:4b:80:d8:2e:f0:76:6d:ff:bf.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '100.0.0.1' (RSA) to the list of known hosts.
Password:
cRR8#
```

6. Download three files from the following Cisco.com Software Center URL:

https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842

• IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin

- IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg
- Ansible upgrade script: cbr-8_upgrade_ansible_16.7.1a.tar
- 7. Copy IOS XE Software package and IOS XE Hardware Programmable Devices package to TFTP/FTP/SCP server or usb disk. Upload Ansible upgrade script to Ansible server.
- **8.** Console access for both SUPs are required.
- 9. Ability to power cycle the chassis. Power cycle chassis is required to upgrade Supervisor CPLD.
- **Step 1** Run following CLI on the Ansible server to create the docker image.

```
docker import cbr-8_upgrade_ansible_16.7.1a.tar ansible_mop
```

Step 2 Start docker container with the image and enter the container shell.

```
docker run -it --name=mop ansible mop /bin/bash
```

Step 3 Change current directory to the playbook folder for this software and firmware upgrade.

```
cd /opt/cbr-8_upgrade_ansible_16.x_to_16.7.1a
```

Step 4 Modify hosts file to add target cBR-8 ip addresses, can be multiple lines if customer wants to upgrade firmware on multiple cBR8 routers simultaneously, sample file is as below:

```
[cbr]
100.110.110.110
100.185.185.185
```

Step 5 Modify secrets.yaml file, change the username/password/enable password to reflect the real username/password/enable configuration for target cBR. If no enable password is set, just keep the sample **cisco** for **auth_pass**.

```
creds:
   username: cisco
   password: cisco
   auth pass: cisco
```

Step 6 Modify upgrade_vars.yaml file to indicate the firmware package name, ios image name and source (Optional if the package files are already on cbr-8 harddisk:).

```
file_info:
   image_name: cbrsup-universalk9.16.07.01.SPA.bin
   pkg_name: cbrsup-programmable_firmware.16.07.01.SPA.pkg
   #if the pkg file in the TB, just modify dst_dir to the pkg location
   #the four examples shows the usage
   #example1
   #src_dir: "ftp://username:password@20.11.0.42:~/"
   #example2
   #src_dir: "tftp://192.168.3.47/ "
   #example3
```

```
#src_dir: "usb0:"
#example4
src_dir: "harddisk:"

slot_info:
#slot_to_upgrade: [2,3,6,7,8,9]
slot_to_upgrade: "ALL"
```

Step 7 Execute following command to start the playbook to upgrade firmware.

```
./run mop upgrade
```

Step 8 Exit the container if finished upgrading this time to stop the container.

exit

Step 9 If user wants to start the container again, use following command to start the container and enter its shell.

```
docker start mop docker attach mop
```

Step 10 All the file changes are kept in the container, user can run step 4-11 to upgrade again.

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU

The correct firmware versions are listed in the tables below. Use the commands in the tables to verify the firmware versions.

Table 10: Firmware Versions

Internal Name	Component Name	Correct Version	Command
Supervisor CPLD	CBR-CCAP-SUP-160G Rommon CPLD	16052011	show platform
Supervisor ROMMON	CBR-CCAP-SUP-160G Rommon	16.6(1r)S	show platform
Linecard CPLD	CBR-CCAP-LC-40G CPLD	00000025	show platform
Linecard Uboot	CBR-CCAP-LC-40G Rommon	2011.03.18	show platform

Linecard PSOC	CBR-CCAP-LC-40G PSOC	4.6	show platform diag
Docsis 3.0 downstream module PSOC	CBR-CCAP-LC-40G Gemin1 PSOC	3.9	show platform diag
Docsis 3.0 downstream module CPLD	CBR-CCAP-LC-40G Gemini1 CPLD	0.7	show platform diag
Docsis 3.0 downstream module Micro	CBR-CCAP-LC-40G Gemin1 Micro	1.E	show platform diag
Docsis 3.0 downstream module FPGA	CBR-CCAP-LC-40G Gemini1 Apollo	2.F	show platform diag
Docsis 3.1 downstream module PSOC	CBR-CCAP-LC-40G Gemin2 PSOC	4.4	show platform diag
Docsis 3.1 downstream module CPLD	CBR-CCAP-LC-40G Gemini2 CPLD	0.7	show platform diag
Docsis 3.1 downstream module Micro	CBR-CCAP-LC-40G Gemin2 Micro	3.1A	show platform diag
Docsis 3.1 downstream module FPGA	CBR-CCAP-LC-40G Gemini2 Apollo	4.484B	show platform diag

Before you begin

Before upgrading the system, make sure the following requirements are met:

- Download two files from the following Cisco.com Software Center URL: https://software.cisco.com/download/type.html?mdfid=286283913&flowid=73842
 - IOS XE Software Version 16.7.1: cbrsup-universalk9.16.07.01.SPA.bin
 - IOS XE Hardware Programmable Devices Version 16.7.1: cbrsup-programmable_firmware.16.07.01.SPA.pkg

Note

Do not power cycle the cBR-8 router during the firmware upgrade process. Power cycling the chassis may corrupt the ROMMON/Uboot image.

Step 1 Copy Cisco IOS-XE Fuji 16.7.1 package to bootflash: and stby-bootflash:.

```
copy <location>/cbrsup-universalk9.16.07.01.SPA.bin bootflash:
copy <location>/cbrsup-universalk9.16.07.01.SPA.bin stby-bootflash:
```

Step 2 Verify Cisco IOS-XE Fuji 16.7.1 package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 bootflash:cbrsup-universalk9.16.07.01.SPA.bin verify /md5 stby-bootflash:cbrsup-universalk9.16.07.01.SPA.bin
```

Step 3 Copy the hardware programmable devices upgrade package to harddisk: and stby-harddisk:.

```
copy <location>/cbrsup-programmable_firmware.16.07.01.SPA.pkg harddisk:
copy <location>/cbrsup-programmable firmware.16.07.01.SPA.pkg stby-harddisk:
```

Step 4 Verify the hardware programmable devices upgrade package against the md5 hash as provided in the Cisco.com Software center.

```
verify /md5 harddisk:cbrsup-programmable_firmware.16.07.01.SPA.pkg
verify /md5 stby-harddisk:cbrsup-programmable firmware.16.07.01.SPA.pkg
```

- **Step 5** Check system status prior to upgrade. Save the information to compare against the system status after upgrade. For the commands to use to check the status, see the **show** commands at the end of this section.
- **Step 6** Upgrade Docsis 3.1 downstream modules in all the slots.

```
upgrade hw-programmable cable <slot> dsphy micro pkg_name/harddisk/cbrsup-programmable_firmware.16.07.01.SPA.pkg
```

Step 7 Wait for the system log message asking the user to reload the line card that was upgraded.

```
001860: Jun 15 19:05:05.904 PDT: %IOSXE-5-PLATFORM: CLCO: cdman: Suggest reload the line card for new FW to take effect using CLI: hw slot <slot-id> reload
```

- **Step 8** Before the ISSU upgrade please check and make sure:
 - The cBR-8 is in Subpackage mode.
 - Both SUPs are running same image from same path.
 - · Autoboot is enabled.
 - The cBR-8 has two SUP and in SSO mode, standby SUP is in standby hot mode.
 - All linecards are in normal state in LCHA group. Use show redundancy linecard all command, active cards should be in Stdby Warm state.
 - There is enough bootflash disk space on both SUP.

- **Step 9** Copy 16.7.1 image in the same folder of current boot package on active SUP.
- **Step 10** Make sure .issu folder and config files exists on both active and standby SUP harddisk. If no such folder exists or files missing, create a new one and generate files needed.
- **Step 11** Perform ISSU.

```
request platform software package install node file bootflash:cbrsup-universalk9.16.07.01.SPA.bin
```

Step 12 To monitor the ISSU progress, use the command below.

```
request platform software package install node attach
```

Step 13 Use these CLI to check status after ISSU.

```
show version r0 running show version r1 running show version r1 running show version r0 provisioned show version r1 provisioned
```

Note If both Docsis 3.1 OFDM channels and downstream load balancing are configured, then Docsis 3.1 CMs will come up in a D3.0 bonding group after ISSU from Cisco IOS XE Everest 16.6.x. The workaround procedure is:

a. Admin shut all OFDM channels. This can be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive shuts. For example:

```
configure terminal
   controller Integrated-Cable 2/0/0
        rf-chan 158
        shut
end
```

- **b.** Wait for 30 seconds.
- **c.** Admin perform no-shut on all OFDM channels. This may be done from a script, or from cut and paste of the CLI. There is no need to have a delay between successive no-shuts. For example:

d. Reset all Docsis 31 CMs. For example:

```
clear cable modem d31-capable reset
```

What to do next

Perform verification test to determine if the upgrade is successful, include:

- Verify the router is running the new IOS-XE release using **show version** command.
- Check facility alarms using show facility-alarm status command.
- Check the status of the power supplies using **show environment power** command.

- Check PS status using show platform hardware slot P<0-5> mcu status command.
- Complete trace routes to known good off-network IP address using the source address of customer CPE blocks to verify routing is working.
- Check logs for error messages using show log command.

These **show** commands may be useful in the verification test:

- · show redundancy
- show platform
- · show platform diag
- show environment
- · show redundancy linecard all
- · show isis neighbors
- show ip ospf neighbor
- · show ip route rip
- show ip mroute
- · show cops servers
- show cable modem voice
- · show cable calls
- show cable metering verbose
- show cable licenses all
- show inventory

Upgrading from Cisco IOS XE Everest 16.6.1 to Cisco IOS XE Fuji 16.7.1 with ISSU