Configure Advanced gRPC Wor kflow with
Telegraf, InfluxDB and Grafana on Catalyst 9800

Contents

Introduction
Prerequisites
Reguirements

Components Used

Configure
Network Diagram

Configurations
Step 1. Prepare the Database
Step 2. Prepare Telegraf
Step 3. Determine Telemetry Subscription Containing the Desired Metric
Step 4. Enable NETCONF on the Controller
Step 5. Configure the Telemetry Subscription on the Controller
Step 6. Configure Grafana Data Source
Step 7. Create a Dashboard
Step 8. Add a Visualization to the Dashboard
Verify
WL C Running Configuration
Telegraf Configuration
InfluxDB Configuration
Grafana Configuration
Troubleshoot

WL C One Stop-Shop Reflex
Confirm Network Reachability
Logging and Debugging

Making Sure Metrics Reach the TIG Stack
Erom InfluxDB CLI

Erom Telegraf

References

| ntroduction

This document describes how to deploy the Telegraf, InfluxDB and Grafana (T1G) stack and interconnect it
with the Catalyst 9800.

Prerequisites

This document demonstrates Catalyst 9800's programmiatic interfaces capacities through a complex
integration. This document aims at showing how these can be fully customizable based on any need and be
daily time savers. The deployment showcased here relies on gRPC and presents telemetry configuration to

make wireless data from the Catalyst 9800 available in any Telegraf, InfluxDB, Grafana (T1G) observability
stack.

Requirements

Cisco recommends that you have knowledge of these topics:

o Catalyst Wireless 9800 configuration model.
* Network programmability and data models.
* TIG stack basics.

Components Used

The information in this document is based on these software and hardware versions:

Catalyst 9800-CL (v. 17.12.03).
Ubuntu (v. 22.04.03).

InfluxDB (v. 1.06.07).

Telegraf (v. 1.21.04).

Grafana (v. 10.02.01).

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network islive, ensure
that you understand the potential impact of any command.

Configure

Network Diagram

©) telegraf

influxdb

I5 Grafana

g

9800-CL

Configurations

In this example, telemetry is configured on a 9800-CL using gRPC dial-out to push information on a
Telegraf application storing them into an InfluxDB database. Here, two devices were used,

* An Ubuntu server hosting the whole TI1G stack.
* A Catalyst 9800-CL.

This configuration guide does not focus on the whole deployment of these devices but rather on the
configurations required on each application for the 9800 information to be sent, received and presented

properly.
Step 1. Prepare the Database

Before going into the configuration part, make sure your Influx instance is running properly. This can be
easily done using the systemctl status command, if you are using a Linux distribution.

admin@tig:~$ systemctl status influxd
e influxdb.service - InfluxDB is an open-source, distributed, time series database
Loaded: loaded (/lib/systemd/system/influxdb.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2023-06-14 13:06:18 UTC; 2 weeks 5 days ago
Docs: https://docs.influxdata.com/influxdb/
Main PID: 733 (influxd)
Tasks: 15 (limit: 19180)
Memory: 4.2G
CPU: 1h 28min 47.366s
CGroup: /system.slice/influxdb.service
L733 /usr/bin/influxd -config /etc/influxdb/influxdb.conf

For the example to work, Telegraf needs a database to store the metrics as well as a user to connect to this
one. These can be easily created from the InfluxDB CLI, using these commands:

admin@tig:~$ influx

Connected to http://Tocalhost:8086 version 1.8.10
InfluxDB shell version: 1.8.10

> create database TELEGRAF

> create user telegraf with password 'YOUR_PASSWORD'

The database now created, Telegraf can be configured to store metricsinto it properly.
Step 2. Prepare Telegraf

Only two Telegraf configurations are interesting for this example to work. These can be made (as usual for
applications running on Unix) from the /etc/telegraf/telegraf.conf configuration file.

The first one declares the output used by Telegraf. As previoudy stated, InfluxDB is used hereand is
configured in the output section of the telegraf.conf file as follow:

i e e i e e e i i
OUTPUT PLUGINS
i e e i e e e i
Output PTugin InfluxDB

[[outputs.influxdb]]

The full HTTP or UDP URL for your InfluxDB instance.

##

Multiple URLs can be specified for a single cluster, only ONE of the

urls will be written to each interval.

urls = ["http://127.0.0.1:8086"]
The target database for metrics; will be created as needed.
For UDP url endpoint database needs to be configured on server side.
database = "TELEGRAF"
HTTP Basic Auth
username = "telegraf"
password = "YOUR_PASSWORD"

Thisinstructs the Telegraf process to store the data it receives in the InfluxDB running on the same host on
port 8086 and to use the database called “ TELEGRAF" (as well as the credentials
telegraf/Y OUR_PASSWORD to accessit).

If the first thing declared was the output format, the second one s, of course, the input one. To inform
Telegraf that the data it receives comes from a Cisco device using telemetry, you can use the
cisco_telemetry _mdt” input module. To configure this, you just need to add these linesin

the /etcitelegraf/telegraf.conf file:

HAHHRBRH R R R R RR AR R AR R H R R AR R R R AR R BB R RS R

INPUT PLUGINS

HAHHRBRH R R R R RR AR R AR R H R R AR R R R AR R BB R RS R

Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS XE and NX-0S platforms
[[inputs.cisco_telemetry_mdt]]

Telemetry transport can be "tcp" or "grpc". TLS is only supported when

using the grpc transport.

transport = "grpc"

#

Address and port to host telemetry listener
service_address = ":57000"

Define aliases to map telemetry encoding paths to simple measurement names
[inputs.cisco_telemetry_mdt.aliases]
ifstats = "jetf-interfaces:interfaces-state/interface/statistics"

This makes the Telegraf application running on the host (on default port 57000) able to decode the received
data coming from the WLC.

Once the configuration saved, make sure to restart Telegraf to apply it to the service. Make sure also that the
service restarted properly:

admin@tig:~$ sudo systemct] restart telegraf
admin@tig:~$ systemctl status telegraf.service
e telegraf.service - Telegraf
Loaded: loaded (/lib/systemd/system/telegraf.service; enabled; vendor preset: enabled)
Active: active (running) since Mon 2023-07-03 17:12:49 UTC; 2min 18s ago
Docs: https://github.com/influxdata/telegraf
Main PID: 110182 (telegraf)
Tasks: 10 (limit: 19180)
Memory: 47.6M
CPU: 614ms
CGroup: /system.slice/telegraf.service
L-110182 /usr/bin/telegraf -config /etc/telegraf/telegraf.conf -config-directory /etc/telegraf/teleg

https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cisco_telemetry_mdt/README.md

Step 3. Determine Telemetry Subscription Containing the Desired Metric

As stated, on Cisco devices as on many others, metrics are organized according to the YANG model. The
particular Cisco YANG models for each version of 10S XE (used on the 9800) can be found here, in
particular the one for IOS XE Dublin 17.12.03 used in this example.

In this example, we focus on collecting CPU utilization metrics from the 9800-CL instance used. By
inspecting the Y ANG model for Cisco IOS XE Dublin 17.12.03, one can determine which module contains
the CPU utilization of the controller, and in particular for the last 5 seconds. These are part of the Cisco-
|OS-X E-process-cpu-oper module, under the cpu-utilization grouping (leaf five-seconds).

Step 4. Enable NETCONF on the Controller

The gRPC dial out framework relies on NETCONF to work the same. Therefore, this feature must be
enabled on the 9800 and thisis achieved by running these commands:

WLC(config)#netconf ssh
WLC(config)#netconf-yang

Step 5. Configurethe Telemetry Subscription on the Controller

Once the XPaths (a.k.a, XML Paths Language) of the metrics determined from the YANG model, a
telemetry subscription can be easily configured from the 9800 CL1 in order to start streaming these to the
Telegraf instance configured in Step 2. Thisis done by executing these commands:

WLC(config)#telemetry ietf subscription 101

WLC(config-mdt-subs)#encoding encode-kvgpb

WLC(config-mdt-subs)#filter xpath /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-seconds
WLC(config-mdt-subs)#source-address 10.48.39.130

WLC(config-mdt-subs)#stream yang-push

WLC(config-mdt-subs)#update-policy periodic 100

WLC(config-mdt-subs)#receiver ip address 10.48.39.98 57000 protocol grpc-tcp

In this code block, first the telemetry subscription with identifier 101 is defined. The subscription Identifier
can be any number between <0-2147483647> aslong as it does not overlap with another subscription. For
this subscription are configured, in this order:

» The encoding method used, which must be kvGPB when working with the gRPC transport protocol.

» Thefilter for the metrics sent by the subscription, being the X Path defining the metric interesting us
(tO know, /process-cpu-ios-xe-oper: cpu-usage/cpu-utili zati on/fiveseconds) .

» The source IP address used by the controller to send the metrics.

» The stream type used to communicate the metrics, in this case YANG Push |ETF standard.

« Thefrequency used by the controller to send data to the subscriber in 100" of seconds. In this case, it
was configured to send update periodically every second.

» Thereceiver |P address and port number as well as the protocol used for the communication between
the controller and the subscriber. In this example, gRPC-TCPis used to send metric to host
10.48.39.98 on port 57000.

https://github.com/YangModels/yang/tree/main/vendor/cisco/xe
https://en.wikipedia.org/wiki/NETCONF
https://en.wikipedia.org/wiki/XPath

Step 6. Configure Grafana Data Source

Now that the controller starts sending datato Telegraf and that these are stored in the TELEGRAF InfluxDB
database, it istime to configure Grafanato let it browse these metrics.

From your Grafana GUI, navigate to Home > Connections > Connect data and use the search bar to find the
InfluxDB data source.

@ Connections Connect data

Connoct data
infiux

Your connections

B Data sources

FlightSQL 5 Influx Adrmin (7)) InfluxDB

Select this data source type and use the "Create a InfluxDB data source” button to connect Grafana and
the TELEGRAPH database created at Step 1.

@ Connections) InfluxDB

Connoct data

Your connections
InfluxDE data source
Crafans Ships with Bult-in support for InusDE releases >0.9.%
Thare afe separyte cats souwces for MuxDE in Grafana: the latest InfuxDE releass and |nflux that Grafana maintaing ¢ & corveniance for its existing users. InfiuxDE no longer maintaing releass 0.6,

The AR &

Fill the form appearing to the screen, especialy provide:

A name for the data source.

The URL of the InfluxDB instance used.

The database name used (in this example, "TELEGRAF").

The credential of the user defined to access it (in this example, telegraf/Y OUR_PASSWORD).

ot o+ Da1S SouUrces

2 InfluxDB

Custam HTTP Haaders

+ Add header

InfluxDB Details

Step 7. Create a Dashboard

Grafana visualizations are organized into Dashboards. To create a dashboard containing the Catalyst 9800
metrics visualizations, navigate to Home > Dashboards and use the "New dashboard" button

& Dashboards Dashboards o>

Naw dashbaard

New folder

Impart

This opens the new dashboard created. Click on the gear icons to access the dashboard parameter and
change its name. In the example, "Catalyst 9800 Telemetry" is used. Once this performed, use the "Save
dashboard" button to save your dashboard.

= Home : Dashboards : Maw

Start your new dashboard by adding a visualization

Add a library panel Import a dashboard

grafana.com

= Home : Dashboards : MNaw dashboard Close Seveas | Sive deshbosd || -

52 Settings General
Thie

Catalyst 8800 Telemnatry

Duseription

Tags

Foider

Dashboards

Exitable

Editable

Time options

Tima Eane

Detault

Week stan

Dofault
Aute refresh

58,102,308, 1m,5m,15m, 30m_ 18, 2h,1d

How delay

Step 8. Add a Visualization to the Dashboard

Now that data are sent, received and stored properly and that Grafana has access to this storage location, it is
time to create avisualization for them.

From any of your Grafana dashboard, use the “Add” button and select “Visualization" from the menu
appearing to create a visualization of your metrics.

= Home : Dashboards

Start your new dashboard by adding a visualization

Add a library panel Import a dashboard

gratans.com

This opens the Edit panel of the created visualization:

= Home : Dashboards : Catalyst 8500 Telemetry

Panel Title

Transparent Racigraund

Panel links

+ i ik

= Rapast aptions

Rapast by varkible

defaul select memsuremant W

fedivaus) % mean] X e

From this panel, select

The name of the data source you created in Step 6, TELEGRAF in this example.

The measurement (schema) containing the data you want to visualize, " Cisco-10S-X E-process-cpu-
oper:cpu-usage/cpu-utilization™ in this example.

The field from the database representing the metrics you want to visualize, “five_seconds’ in this
example.

Thetitle of the visualization, “CPU Utilisation 9800-CL” in this example.

= Home : Dashbcards « Catalyst 9800 Telemetry
@ LastBhours ~ & O Time series
EPU Unilisation B8800-CL
an
Panel apticns

CPU Unilsation D800-CL

Daxcription

Transparent background

Panel links
+ i link
B Query 1

- Repeat options
Cata source TELEGRAF 0] JuBy ot L g - Quary inspector P ¥

Repast by varable

S | ClioteHOS-XE-(oteii-tie- Spanip- ageepu-etlizaties | x W
feid(five.seconds] § & memn{) x +

X fHfeal] X
Tooltip

Tocitip mods

Single

* Logend

Once the "Save/Apply" button from the previous figure pressed, the visualization showing the CPU usage of
the Catalyst 9800 controller over timeis added to the dashboard. The changes made to the dashboard can be
saved by using the floppy disk icon button.

Verify

WL C Running Configuration

Building configuration...

Current configuration : 112215 bytes
!

! Last configuration change at 14:28:36 UTC Thu May 23 2024 by admin
! NVRAM config Tast updated at 14:28:23 UTC Thu May 23 2024 by admin
!

version 17.12

[...]

aaa new-model

!

!

aaa authentication login default Tocal

aaa authentication Tlogin Tocal-auth Tocal

aaa authentication dotlx default group radius
aaa authorization exec default Tocal

aaa authorization network default group radius
[...]

vlan internal allocation policy ascending

!

vlan 39

!

vlan 1413

name VLAN_1413

!

!

interface GigabitEthernetl
switchport access vlan 1413
negotiation auto

no mop enabled

no mop sysid

!

interface GigabitEthernet2

switchport trunk allowed vlan 39,1413
switchport mode trunk

negotiation auto

no mop enabled

no mop sysid

|

interface Vlanl

no ip address

no ip proxy-arp

no mop enabled

no mop sysid

|

interface Vl1an39

ip address 10.48.39.130 255.255.255.0
no ip proxy-arp

no mop enabled

no mop sysid

[...]
telemetry 1ietf subscription 101
encoding encode-kvgpb

filter xpath /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization
source-address 10.48.39.130

stream yang-push

update-policy periodic 1000

receiver ip address 10.48.39.98 57000 protocol grpc-tcp
[...]

netconf-yang

Telegraf Configuration

Configuration for telegraf agent

[agent]
metric_buffer_limit = 10000
collection_jitter = "0s"

debug = true

quiet = false
flush_jitter = "0s"
hostname = ""
omit_hostname = false

HHARHHHHBHBHBHRHHH AR HBHBH R AR HB AR B R R LR R AR R R R R B R R AR HBH R B R R AR R R R H R AR AR R R RS S A
OUTPUT PLUGINS
HHARHHHHBHBHBHHHHH AR R B AR B R AR B AR B R HH LR ABHBHH B R R AR R R R R B R AR R R R R H R AR AR R R RS S A
Configuration for sending metrics to InfluxDB
[[outputs.influxdb]]

urls = ["http://127.0.0.1:8086"]

database = "TELEGRAF"
username = "telegraf"
password = "Wireless123#"

HARHR AR AR AR A RRR R R R R R R R R R AR R R R R R R R R R R 7 ##
INPUT PLUGINS
HARHR AR AR AR A RRR R R R R R R R R R AR R R R R R R R R S R 3 #

i R g
SERVICE INPUT PLUGINS
i R g
Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS XE and NX-0S platforms

[[inputs.cisco_telemetry_mdt]]
transport = "grpc"
service_address = "10.48.39.98:57000"
[inputs.cisco_telemetry_mdt.aliases]
ifstats = "ietf-interfaces:interfaces-state/interface/statistics’

InfluxDB Configuration

Welcome to the InfluxDB configuration file.
reporting-enabled = false
[metal

dir = "/var/1ib/influxdb/meta"

[datal]
dir = "/var/1ib/influxdb/data"
wal-dir = "/var/1lib/influxdb/wal"

[retention]
enabled = true
check-interval = "30m"

Grafana Configuration

HARARARARBRBRBRBRBRBRBBBBHBHBRBRARRH Server BB BBBBHHHHHHHHH
[server]

http_addr = 10.48.39.98

domain = 10.48.39.98

Troubleshoot

WL C One Stop-Shop Reflex

From the WL C side, the very first thing to verify is that processes related to programmatic interfaces are up
and running.

#show platform software yang-management process
confd : Running

nesd : Running

syncfd : Running

ncsshd : Running <-- NETCONF / gRPC Dial-Out
dmiauthd : Running <-- For all of them, Device Managment Interface needs to be up.
nginx : Running <-- RESTCONF

ndbmand : Running
pubd : Running
gnmib : Running <-- gNMI

For NETCONF (used by gRPC dial-out), these command can a so help checking the status of the process.

WLC#show netconf-yang status

netconf-yang: enabled

netconf-yang candidate-datastore: disabled

netconf-yang side-effect-sync: enabled

netconf-yang ssh port: 830

netconf-yang turbocli: disabled

netconf-yang ssh hostkey algorithms: rsa-sha2-256,rsa-sha2-512,ssh-rsa

netconf-yang ssh encryption algorithms: aesl28-ctr,aesl92-ctr,aes256-ctr,aesl28-cbc,aes256-cbhc
netconf-yang ssh MAC algorithms: hmac-sha2-256,hmac-sha2-512,hmac-shal

netconf-yang ssh KEX algorithms: diffie-hellman-groupl4-shal,diffie-hellman-groupl4-sha256,ecdh-sha2-ni

Once the process status checked, another important check is the telemetry connection status between the
Catalyst 9800 and the Telegraf receiver. It can be viewed using the “ show telemetry connection al”
command.

WLC#show telemetry connection all
Telemetry connections

Index Peer Address Port VRF Source Address State State Description

28851 10.48.39.98 57000 0 10.48.39.130 Active Connection up

If the telemetry connection is up between the WL C and the receiver, one can also ensure that the
subscriptions configured are valid using the show telemetry ietf subscription all brief command.

WLC#show telemetry ietf subscription all brief
ID Type State State Description
101 Configured Valid Subscription validated

The detailed version of this command, show telemetry ietf subscription all detail, provide more information about
subscriptions and can help pointing out an issue from its configuration.

WLC#show telemetry ietf subscription all detail
Telemetry subscription detail:

Subscription ID: 101
Type: Configured
State: Valid
Stream: yang-push
Filter:
Filter type: xpath
XPath: /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization
Update policy:
Update Trigger: periodic
Period: 1000

Encoding: encode-kvgpb

Source VRF:

Source Address: 10.48.39.130
Notes: Subscription validated

Named Receivers:
Name Last State Change State ExpTlanat

grpc-tcp://10.48.39.98:57000 05/23/24 08:00:25 Connected

Confirm Network Reachability

The Catalyst 9800 controller sends gRPC data to the receiver port configured for each telemetry
subscription.

WLC#show run | include receiver ip address
receiver ip address 10.48.39.98 57000 protocol grpc-tcp

To verify the network connectivity between the WL C and the receiver on this configured port, several tools
are available.

From the WL C, one can use telnet on the configured receiver 1P/port (here 10.48.39.98:57000) to verify that
this one is open and reachable from the controller itself. If traffic is not being blocked, port must show up as
open in the output:

WLC#teTnet 10.48.39.98 57000
Trying 10.48.39.98, 57000 ... Open <-------

Alternatively, one can use Nmap from any host to ensure that the receiver is exposed properly on the
configured port.

$ sudo nmap -sU -p 57000 10.48.39.98

Starting Nmap 7.95 (https://nmap.org) at 2024-05-17 13:12 CEST
Nmap scan report for air-1852e-i-1.cisco.com (10.48.39.98)

Host 1is up (0.020s latency).

PORT STATE SERVICE
57000/udp open|filtered unknown

Nmap done: 1 IP address (1 host up) scanned in 0.35 seconds

L ogging and Debugging

2024/05/23 14:40:36.566486156 {pubd_RO-0}{2}: [mdt-ctrl1] [30214]: (note): **** Event Entry: Configured

https://nmap.org/

2024/05/23
2024/05/23
[...]

2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
[...]

2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
2024/05/23
[...]

14:
14:

14:
14:
14:
14:

14

14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:

14:
14:
14:
14:
14:
14:
14:
14:
14:
14:

14

14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:

40:
40:

40:
40:
40:
40:
:40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:

40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
:40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:

36.
36.

36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.
36.

37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.
37.

566598609
566600301

572402901
572405081
572670046
572670761
572671763
572675434
572688399
572715384
572740734
573135594
573147953
573159482
573166451
573197750
573198408
575467870
575470867
575481078
575539723
575558274
577274757
577279206
577314397
577326609
579099782
580979429
580988867
581175013
581176173
581504331

173223406
173226005
173226315
173230769
173235969
173241290
173257944
173289128
173307771
173310050
173329761
173334681
173340313
173343079
173345689
173350431
173353194
173355275
173380121
173390655
173393529
173395693
173397974
173406311
173408937
173411575

{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:

{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:

{ndbmand_R0-0}{2}:
{ndbmand_R0-0}{2}:
{ndbmand_R0-0}{2}:
{ndbmand_R0-0}{2}:
{iosrp_R0O-0}{1}:

{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:

{iosrp_R0O-0}{2}:

{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:
{pubd_R0O-0}{2}:

[mdt-ctrl1] [30214]:
[mdt-ctrl1] [30214]:

[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]

[mdt-ctr1] [30214]:

[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:

[30214]:

(info):

(debug):

(info):

(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(note): {subscription receiver event=

(note): Use count for named receiver
(note): {subscription receiver event=

Collated data collector filters f
Creating periodic sensor for sub
Creating data collector type 'ei_
Creating crimson data collector
Need new data collector instance
Creating CRIMSON periodic data c

tree rooted at cpu-usage

last container/Tlist node 0

1 non leaf children to render fr
URI:/cpu_usage;singleton_id=0 SI
0 non leaf children to render fr
Timer created for subscription 1

[pubd] [30214]: (debug): Starting batch from periodic col
[pubd] [30214]: (debug): Building from the template
[pubd] [30214]: (debug): Created dbal batch:133, for crim
[pubd] [30214]: (debug): Done building from the template
[pubd] [30214]: (debug): Executing batch:133 for periodic

[mdt-ctr1] [30214]:
[mdt-ctrl1] [30214]:

[parser_cmd] [26295]:

[parser_cmd] [24367]:

[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]
[pubd]

[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:
[30214]:

(info):

(debug):

(note):

(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):
(debug):

(note): {subscription id=101 receiver
(note): {subscription receiver event=
[ndbmand] [30690]: (info): get__next_table reached the
[ndbmand] [30690]: (debug): Cleanup table for /service
[ndbmand] [30690]: (info): get__next_object cp=ewlc-op
[ndbmand] [30690]: (debug):
(note):
[pubd] [30214]: (debug): Batch
[pubd] [30214]: (debug): Green
[pubd] [30214]: (debug): Green
[pubd] [30214]: (debug): There
(note):

yield ewlc-oper-db

id= A.B.C.D@vtyO:user= cmd
response received for crim
response: Result rc 0, Len
Resp cursor Ten 63

is no more data left to be
id= 10.227.65.133@vtyl:use

Added queue (wq: tc_inst 60293411
New subscription (subscription 1
Added subscription for monitoring
Stats updated for Q (wqg: tc_inst
(grpc::events) Processing event
GRPC telemetry connector update
Encoding path is Cisco-IOS-XE-pr

Creating kvgpb encoder

Creating combined parser
Beginning MDT yang container wal
Dispatching new container [data_
Container 'Cisco-IOS-XE-process-
add data in progress

GRPC telemetry connector continu
(grpc::events) Processing event
Dispatching new container [data_
Deferred container cpu-utilizati
Container 'cpu-utilization' star
Dispatching new leaf [name=five-
Leaf 'five-seconds' added succes
add data in progress

GRPC telemetry connector continu
(grpc::events) Processing event
Dispatching new leaf [name=five-
Leaf 'five-seconds-intr' added s
add data in progress

Making Sure Metrics Reach the TIG Stack

From InfluxDB CLI

Just like any other database system, InfluxDB comes with a CLI which can be used to check metrics are
received correctly by Telegraf and stored in the database defined. InfluxDB organize metrics, so called
points, into measurements which are themselves organized as series. Some basic commands presented here
can be used to verify the data scheme on InfluxDB side and make sure data reach this application.

First, you can check that the series, measurements and their structure (keys) are properly generated. These
are automatically generated by Telegraf and InfluxDB based on the structure of the RPC used.

Note: Of course, this structure is fully customisable from the Telegraf and
InfluxDB configurations. However, this goes behind the scope of this configuration guide.

$ influx

Connected to http://localhost:8086 version 1.6.7~rcO
InfluxDB shell version: 1.6.7~rcO

> USE TELEGRAF

Using database TELEGRAF

> SHOW SERIES

key
Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization,host=ubuntu-virtual-machine,path=Cisco-I0S-XE-p
> SHOW MEASUREMENTS

name: measurements

name

Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization

> SHOW FIELD KEYS FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"

name: Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization

fieldKey fieldType
Cpu_usage_processes/cpu_usage_process/avg_run_time integer
Ccpu_usage_processes/cpu_usage_process/five_minutes float
Ccpu_usage_processes/cpu_usage_process/five_seconds float
cpu_usage_processes/cpu_usage_process/invocation_count integer
Cpu_usage_processes/cpu_usage_process/name string
Ccpu_usage_processes/cpu_usage_process/one_minute float
Ccpu_usage_processes/cpu_usage_process/pid integer
Ccpu_usage_processes/cpu_usage_process/total_run_time integer
Cpu_usage_processes/cpu_usage_process/tty integer
five_minutes integer
five_seconds integer
five_seconds_intr integer
one_minute integer

Once the data structure clarified (integer, string, boolean, ...), one can get the number of data points being
stored on these measurements based for a particular field.

Get the number of points from "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization" for the field
> SELECT COUNT(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization”

name: Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization

time count

0 1170

> SELECT COUNT(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization”

name: Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization

time count

Fix timestamp display

> precision rfc3339

Get the Tast point stored in "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization" for the field
> SELECT LAST(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"

name: Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization

time last

2024-05-23T13:18:53.51Z 0

> SELECT LAST(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"

name: Cisco-I0S-XE-process-cpu-oper:cpu-usage/cpu-utilization

time Tast

2024-05-23T13:19:03.5897 2

If the number of points for a particular field and the timestamp for the last occurrence increase, it is good
sign that the T1G stack receives and stores properly the data sent by the WLC.

From Telegraf

To verify that the Telegraf receiver actually gets some metrics from the controller and checks their format,
you can redirect the Telegraf metrics to an output file on the host. This can be very handy when it comesto
device interconnection troubleshooting. In order to achieve this, smply make use of the “file” output plugin
from Telegraf, configurable from the /etc/telegraf/telegrat..conf.

Send telegraf metrics to file(s)

[[outputs.file]]

Files to write to, "stdout" is a specially handled file.
files = ["stdout", "/tmp/metrics.out", "other/path/to/the/file"]

Use batch serialization format instead of 1line based delimiting. The

batch format allows for the production of non line based output formats and
may more efficiently encode metric groups.

use_batch_format = false

The file will be rotated after the time interval specified. When set
to 0 no time based rotation is performed.
rotation_interval = "0d"

The Togfile will be rotated when it becomes larger than the specified
size. When set to 0 no size based rotation is performed.
rotation_max_size = "OMB"

Maximum number of rotated archives to keep, any older Togs are deleted.
If set to -1, no archives are removed.
rotation_max_archives = 5

Data format to output.

Each data format has its own unique set of configuration options, read

more about them here:

https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
data_format = "influx"

FHOFH OH OH H H H OH K H K HOH K KR H WK KRR H K

References

Hardware sizing quidelines

Grafana requirements

https://github.com/influxdata/telegraf/blob/master/plugins/outputs/file/README.md
https://docs.influxdata.com/influxdb/v1/guides/hardware_sizing/#main-nav
https://grafana.com/docs/enterprise-traces/latest/setup/hardware-requirements/#:%7E:text=CPU%20and%20memory&text=For%20most%20clusters%2C%20Grafana%20Labs,be%20of%20the%20same%20type

