Configure Secure Accessto Use REST API with
Python

Contents

Introduction
Prereguisites
Requirements
Components Used
Configure
Create an APl Key

Python Code
Script 2:

Troubleshoot

Related I nfor mation

| ntroduction

This document describes the steps to configure APl access and use it to fetch resources information from the
Secure Access.

Prerequisites
Cisco recommends that you have knowledge of these topics:
1. Python 3.x

2. REST API
3. Cisco Secure Access

Requirements

These requirements must be fulfilled before proceeding further:

 Cisco Secure Access user account with theFull Adminuser role.
 Cisco Security Cloud Single Sign On (SCSO) account to sign in to Secure Access.

Components Used

The information in this document is based on these software and hardware versions:

¢ Secure Access Dashboard
* Python

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network islive, ensure
that you understand the potential impact of any command.

Configure

The Secure Access API provides astandard REST interface and supports the OAuth 2.0 Client Credentials
Flow. To get started, sign in to Secure Access and create your Secure Access API keys. Then, use your AP
credentials to generate an APl access token.

Note: API keys, passwords, secrets, and tokens allow access to your private data. Y ou must never
share your credentials with another user or organization.

Configure the API key from the Secure Access Dashboard before executing the scripts mentioned in this
article.

Createan API Key

Create an API key and secret with these steps. Sign in to Secure Access with the URL: Secure Access

1. From the | eft sidebar, select the option Admin.
2. Under Admin select the option API Keys:

https://dashboard.see.cisco.com

®

o Admin

4 Workflows

Secure Access Dashboard Admin - API Keys

Account Settings

Accounts
Add, invite and delete users

Authentication
View authentication information

Management @

APl Keys
Generate and manage APl keys

Log Management
View and manage logs

Subscription
View subscription, package, and
feature information

3. On the top right corner, click on the + button to Add anew API Key:

API Keys

Secure Access’s AP| keys are used to authenticate your Secure Access AP requests. You can create multiple keys and manage each key’s access controls to meet specific use cases.

API Keys Keyhdmin Keys

2 1

Secure Access - Add APl Key

4. Provide the API Key Name, Description(Optional), and select the Key scope and Expiry date as per your
requirement. Once done, click on the button create:

Add New API Key

To add this unique API key to Secure Access, select its scope—what it can do—and set an expiry date. The key and secret created here are unigue.
Deleting, refreshing or modifying this APl key may break or interrupt integrations that use this key.

APl Key Name Description (O
=== l —

@ Mame must not be empty

Key Scope 1 selected Remaove All
’ Select the appropriate access scopes o define what this APl key can do. So0pe
O adnin 4> B Deployments Read | Write v/ . 18 X
O auth 15
Deployments 16 >
0O Investigate 2>
O Ppolicies a >

————p Expiry Date
@ Mever expire

Q Expire on May 12 2024

Secure Access - APl Key Details

5. Copy the APl keyand the Key secret and then click on ACCEPT AND CLOSE:

Click Refresh to generate a new key and secret.

APl Key Key Secret
7e67701237¢ [| | ceb3azso A | 7
u Copy the Key Secret. For security reasons, it is only displayed once. If lost, it cannot be retrieved. ACCEPT AND CLOSE

Secure Access - APl Key and Secret

Note: Thereisonly one opportunity to copy your API secret. Secure Access does not save your
API secret and you cannot retrieve it after itsinitial creation.

Python Code

There are multiple ways to write this code considering that the generated token is valid for 3600 seconds (1
Hour). Y ou can either create 2 separate scripts in which the first script can be used to generate the Bearer
Token and then a second script in which that Bearer Token can be used to make the API call (fetch/update
or delete) to the resource you are interested in, or write a single script to take both the actions while making
surethat if abearer token is already generated, a condition is kept in the code that a new bearer token is not
generated every time the script is executed.

In order to make it working in python, please make sure to install these libraries:

pip install oauthlib
pip install requests_oauthlib

Script 1:

Make sure to mention the correct client_idand client_secretin this script:

import requests

from oauthlib.oauth2 import BackendApplicationClient
from oauthlib.oauth2 import TokenExpiredError

from requests_oauthlib import OAuth2Session

from requests.auth import HTTPBasicAuth

token_url = 'https://api.sse.cisco.com/auth/v2/token'

client_id = "XXXXXXXXXXXXXXXXXXXXXXXXXXXX"
client_secret = "XXXXXXXXXXXXXXXXXXXXXXXXX"

class SecureAccessAPI:
def __init__(self, url, ident, secret):
self.url = url
self.ident = ident
self.secret = secret
self.token = None

def GetToken(self):
auth = HTTPBasicAuth(self.ident, self.secret)
client = BackendApplicationClient(client_id=self.ident)
oauth = OAuth2Session(client=client)

self.token = oauth.fetch_token(token_url=self.url, auth=auth)
return self.token

Get token
api = SecureAccessAPI(token_url, client_id, client_secret)
print("Token: " + str(api.GetToken()))

Output:

The output from this script must look something like this:

Token: {'token_type': 'bearer', 'access_token': 'eyJhbGciOiJSUzIINiIsImtpZCI6IjcyNmI5SMGUZLWXXXXXXXXXXXX

The access_tokeniS very long with thousands of characters and, therefore, to keep the output readable, it has
been shortened just for this example.

Script 2:

The access_token from Script 1 can then be used in this script to make API calls. As an example, use Script 2 to

fetch the information about the Network Tunnel Groups using the resource /deployments/v2/networktunnelgroups:

import requests

import pprint

import json

url = "https://api.sse.cisco.com/deployments/v2/networktunnelgroups"”

BT = "eyJhbGciOiJSUzIINiIsImtpZCI6IjcyNmISMGUZLWXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX .+« "

headers = { "Authorization':f"Bearer {BT}"
,"Accept": "application/json" }

response = requests.request('GET', url, headers=headers)

json_object = json.loads(response.content)
pprint.pprint(json_object)

Output:
The output from this script must look something like this:

{'data": [{'createdAt’': '2023-11-01T10:17:097",
‘deviceType’: "ASA",
"hubs': [{’authId®: " y sse.cisco.com’,
‘createdAt’: '2023-11-01T1@:17:097",
‘datacenter’: {

'name’ :
"id': ’
"isPrimary’: True,
‘'modifiedAt': "2023-11-01T716:17:09Z°,
‘status’: None,
"tunnelsStatus’: None}l,
{"authId": sse.cisco.com’,
‘createdAt’: '2023-11-01T1@:17:097°,
'datacenter’: {'name’: -
"id': ’
False,

"isPrimary
‘'modifiedAt’: "2023-11-01T16:17:09Z°,
‘status’: None,

"tunnelsStatus’: None}],

id’: .
‘'modifiedAt’: "2024-82-12T03:09:147",
‘name” : 'DMZ ASA Tunnel NC®,
‘organizationId”: i
‘region’: b N
‘routing’: {'data’: {'networkCIDRs': ["7°" ~°° =7 ~ 7771},

"type': ‘static'},

'status’: 'connected'}],

"limit’: 18,

‘offset’: 8,

"total': 1}

Python output - Network Tunnel Groups

Y ou can aso fetch information about Policies, Roaming Computers, Reports, and so on, with the Secure
Access Developers User Guide.

Troubleshoot

The Secure Access APl endpoints use HT TP response codes to indicate success or failure of an API request.

In general, codes in the 2xx range indicate success, codes in the 4xx range indicate an error that resulted
from the provided information, and codes in the 5xx range indicate server errors. The approach to resolve
the issue would depend on the response code that is received:

200

201

202

204

400

401

403

404

409

429

413

OK

Created

Accepted

No Content

Bad Request

Unauthorized

Forbidden

Not Found

Conflict

Exceeded Limit

Content Too
Large

REST API - Response codes 1

500

503

Internal Server

Error

Service

Unavailable

REST API - Response codes 2

Success. Everything worked as expected.

New resource created.

Success. Action is queued.

Success. Response with no message body.

Likely missing a required parameter or malformed JSON. The syntax of your query may need to be revised.

Check for any spaces preceding, trailing, or in the domain name of the domain you are trying to query.

The authorization header is missing or the key and secret pair is invalid. Ensure your APl token is valid.

The client is unauthorized to access the content

The requested resource doesn't exist. Check the syntax of your query or ensure the IP and domain are
valid.

The client requests that the server create the resource, but the resource already exists in the collection

Too many requests received in a given amount of time. You may have exceeded the rate limits for your

organization or package.

The request payload is larger than the limits defined by the server.

Something wrong with the server,

Server is unable to complete request.

Related | nfor mation

» Cisco Secure Access User Guide
» Cisco Technical Support and Downloads

https://developer.cisco.com/docs/cloud-security/#!secure-access-api-authentication/token-authorization-request
https://developer.cisco.com/docs/cloud-security/#!secure-access-api-authentication/token-authorization-request
https://docs.sse.cisco.com/
https://www.cisco.com/c/en/us/support/index.html

* Add Secure Access APl Keys
» Developers User Guide

https://docs.sse.cisco.com/sse-user-guide/docs/add-secure-access-api-keys
https://developer.cisco.com/docs/cloud-security/#!secure-access-api-authentication/token-authorization-request

