FlexVPN Between a Router and an ASA with Next Generation Encryption Configuration Example

Document ID: 116008

Contributed by Graham Bartlett, Cisco TAC Engineer. Mar 26, 2013

Contents

Introduction

Prerequisites

Requirements

Components Used

Conventions

Dynamically Create IPSec Security Associations

Certificate Authority

Configuration

Steps Required to Enable the Router to use the ECDSA

Certificate Authority

FlexVPN

ASA

Configuration

FlexVPN

ASA

Connection Verification

Related Information

Introduction

This document describes how to configure a VPN between a router with FlexVPN and an Adaptive Security Appliance (ASA) that supports the Cisco Next Generation Encryption (NGE) algorithms.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- FlexVPN
- Internet Key Exchange version 2 (IKEv2)
- IPSec
- ASA
- Next Generation Cryptography

Components Used

The information in this document is based on these software and hardware versions:

- **Hardware:** IOS Generation 2 (G2) Router that runs the security license.
- **Software:** Cisco IOS® Software Release Version 15.2–3.T2. Any release of M or T for releases later than Cisco IOS® Software Release Version 15.1.2T can be used because this is included with the

introduction of Galois Counter Mode (GCM).

• Hardware: ASA that supports NGE.

Note: Only multi-core platforms support Advanced Encryption Standard (AES) GCM.

- Software: ASA Software Release 9.0 or later that supports NGE.
- OpenSSL.

For details, refer to Cisco Feature Navigator.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Refer to Cisco Technical Tips Conventions for more information on document conventions.

Dynamically Create IPSec Security Associations

The recommended IPSec interface on IOS is a Virtual Tunnel Interface (VTI), which creates a generic routing encapsulation (GRE) interface that is protected by IPsec. For a VTI, the Traffic Selector (what traffic should be protected by the IPSec security associations (SA)), consists of GRE traffic from the tunnel source to the tunnel destination. Because the ASA does not implement GRE interfaces, but instead creates IPSec SAs based on traffic defined in an access control list (ACL), we must enable a method that allows the router to respond to the IKEv2 initiation with a mirror of the proposed traffic selectors. The use of Dynamic Virtual Tunnel Interface (DVTI) on the FlexVPN router allows this device to respond to the presented Traffic Selector with a mirror of the Traffic Selector that was presented.

This example encrypts traffic between both internal networks. When the ASA presents the traffic selectors of the ASA internal network to the IOS internal network, 192.168.1.0/24 to 172.16.10.0/24, the DVTI interface responds with a mirror of the traffic selectors, which is 172.16.10.0/24 to 192.168.1.0/24.

Certificate Authority

Currently, IOS and ASA do not support a local Certificate Authority (CA) server with Elliptic Curve Digital Signature Algorithm (ECDSA) certificates, which is required for Suite–B. So a third–party CA Server must be implemented. For example, use OpenSSL to act as a CA.

Configuration

Network Topology

This guide is based on the topology shown in this diagram. You should amend IP addresses to suit.

Note: The setup includes a direct connection of the router and ASA. These could be separated by many hops. If so make sure that there is a route to get to the peer IP address. The following configuration only details the encryption used.

Steps Required to Enable the Router to use the ECDSA

Certificate Authority

1. Create an elliptic curve keypair.

```
openssl ecparam -out ca.key -name secp256r1 -genkey
```

2. Create an elliptic curve self-signed certificate.

```
openssl req -x509 -new -key ca.key -out ca.pem -outform PEM -days 3650
```

FlexVPN

1. Create **domain–name** and **hostname**, which are prerequisites in order to create an elliptic curve (EC) keypair.

```
ip domain-name cisco.com
hostname Router1
crypto key generate ec keysize 256 label router1.cisco.com
```

2. Create a local **trustpoint** in order to gain a certificate from the CA.

```
crypto pki trustpoint ec_ca
enrollment terminal
subject-name cn=router1.cisco.com
revocation-check none
eckeypair router1.cisco.com
hash sha256
```

Note: Because the CA is offline, revocation checking is disabled; revocation checking should be enabled for maximum security in a production environment.

3. Authenticate the **trustpoint**. This obtains a copy of the CA s certificate, which contains the public key.

```
crypto pki authenticate ec_ca
```

- 4. You are then prompted to enter the base 64 encoded certificate of the CA. This is the file ca.pem, which was created with OpenSSL. In order to view this file, open it in an editor or with the OpenSSL command **openssl x509** –**in ca.pem**. Enter **quit** when you paste this. Then type **yes** to accept.
- 5. Enroll the router into the Public Key Infrastructure (PKI) on the CA.

```
crypto pki enrol ec_ca
```

6. The output that you receive needs to be used in order to submit a certificate request to the CA. This can be saved as a text file (flex.csr) and signed with the OpenSSL command.

```
openssl ca -keyfile ca.key -cert ca.pem -md sha256 -in flex.csr -out flex.pem
```

7. Import the certificate, which is contained within the file flex.pem, generated from the CA, into the router after you enter this command. Then, enter **quit** when completed.

```
crypto pki import ec_ca certificate
```

ASA

1. Create **domain–name** and **hostname**, which are prerequisites in order to create an EC keypair.

```
domain-name cisco.com
hostname ASA1
crypto key generate ecdsa label asa1.cisco.com elliptic-curve 256
```

2. Create a local **trustpoint** in order to obtain a certificate from the CA.

```
crypto ca trustpoint ec_ca
enrollment terminal
subject-name cn=asal.cisco.com
revocation-check none
keypair asal.cisco.com
```

Note: Because the CA is offline, revocation checking is disabled; revocation checking should be enabled for maximum security in a production environment.

3. Authenticate the **trustpoint**. This obtains a copy of the CA s certificate, which contains the public key.

```
crypto ca authenticate ec_ca
```

- 4. You are then prompted to enter the base 64 encoded certificate of the CA. This is the file ca.pem, which was created with OpenSSL. In order to view this file, open it in an editor or with the OpenSSL command openssl x509 –in ca.pem. Enter quit when you paste this file, and then type yes to accept.
- 5. Enrol the ASA into the PKI on the CA.

```
crypto ca enrol ec ca
```

6. The output that you receive must be used in order to submit a certificate request to the CA. This can be saved as a text file (asa.csr) and then signed with the OpenSSL command.

```
openssl ca -keyfile ca.key -cert ca.pem -md sha256 -in asa.csr -out asa.pem 7. Import the certificate, which is contained within the file as a.pem, generated from the CA into the
```

router after this command is entered. Then **enter** quit when completed.

```
crypto ca import ec_ca certificate
```

Configuration

FlexVPN

Create a certificate map to match the certificate of the peer device.

```
crypto pki certificate map certmap 10
subject-name co cisco.com
```

Enter these commands for IKEv2 Proposal for Suite-B configuration:

Note: For maximum security, configure with the aes-cbc-256 with sha512 hash command.

```
crypto ikev2 proposal default
encryption aes-cbc-128
integrity sha256
group 19
```

Match the IKEv2 profile to the certificate map and use ECDSA with the **trustpoint** previously defined.

```
crypto ikev2 profile default
```

```
match certificate certmap
identity local dn
authentication remote ecdsa-sig
authentication local ecdsa-sig
pki trustpoint ec_ca
virtual-template 1
```

Configure IPSec transform set to use Galois Counter Mode (GCM).

```
crypto ipsec transform-set ESP\_GCM esp-gcm mode transport
```

Configure the IPSec profile with the parameters previously configured.

```
crypto ipsec profile default
  set transform-set ESP_GCM
  set pfs group19
  set ikev2-profile default
```

Configure the tunnel interface:

```
interface Virtual-Template1 type tunnel
  ip unnumbered GigabitEthernet0/0
  tunnel source GigabitEthernet0/0
  tunnel mode ipsec ipv4
  tunnel protection ipsec profile default
```

Here is the interface configuration:

```
interface GigabitEthernet0/0
  ip address 10.10.10.1 255.255.255.0
interface GigabitEthernet0/1
  ip address 172.16.10.1 255.255.255.0
```

ASA

Use this interface configuration:

```
interface GigabitEthernet3/0
  nameif outside
  security-level 0
  ip address 10.10.10.2 255.255.255.0
interface GigabitEthernet3/1
  nameif inside
  security-level 100
  ip address 192.168.1.1 255.255.255.0
```

Enter this access list command in order to define the traffic to be encrypted:

```
access-list 100 extended permit ip 192.168.1.0 255.255.255.0 172.16.10.0 255.255.255.0
```

Enter this IPSec proposal command with NGE:

```
crypto ipsec ikev2 ipsec-proposal prop1
protocol esp encryption aes-gcm
protocol esp integrity null
```

Cryptography map commands:

```
crypto map mymap 10 match address 100
```

```
crypto map mymap 10 set peer 10.10.10.1 crypto map mymap 10 set ikev2 ipsec-proposal prop1 crypto map mymap 10 set trustpoint ec_ca crypto map mymap interface outside
```

This command configures the IKEv2 policy with NGE:

```
crypto ikev2 policy 10
encryption aes
integrity sha256
group 19
prf sha256
lifetime seconds 86400
crypto ikev2 enable outside
```

Tunnel group configured for peer commands:

```
tunnel-group 10.10.10.1 type ipsec-121
tunnel-group 10.10.10.1 ipsec-attributes
peer-id-validate cert
ikev2 remote-authentication certificate
ikev2 local-authentication certificate ec_ca
```

Connection Verification

Verify that the ECDSA keys have been successfully generated.

```
Router1#show crypto key mypubkey ec router1.cisco.com
% Key pair was generated at: 21:28:26 UTC Feb 19 2013
Key name: router1.cisco.com
Key type: EC KEYS
Storage Device: private-config
Usage: Signature Key
Key is not exportable.
Key Data:
<...omitted...>
ASA-1(config) #show crypto key mypubkey ecdsa
Key pair was generated at: 21:11:24 UTC Feb 19 2013
Key name: asal.cisco.com
Usage: General Purpose Key
EC Size (bits): 256
Key Data:
<...omitted...>
```

Verify that the certificate has successfully been imported and that ECDSA is used.

```
Routerl#show crypto pki certificates verbose
Certificate
Status: Available
Version: 3
Certificate Serial Number (hex): 0137
Certificate Usage: General Purpose
Issuer:
<...omitted...>
Subject Key Info:
Public Key Algorithm: rsaEncryption
EC Public Key: (256 bit)
Signature Algorithm: SHA256 with ECDSA

ASA-1(config)#show crypto ca certificates
CA Certificate
```

Status: Available
Certificate Serial Number: 00a293f1fe4bd49189
Certificate Usage: General Purpose
Public Key Type: ECDSA (256 bits)
Signature Algorithm: SHA256 with ECDSA Encryption
<...omitted...>

Verify that the IKEv2 SA is successfully created and uses the configured NGE algorithms.

```
Router1#show crypto ikev2 sa detailed
IPv4 Crypto IKEv2 SA
Tunnel-id Local
                              Remote
                                                   fvrf/ivrf
                                                                        Status
         10.10.10.1/500
                              10.10.10.2/500
                                                   none/none
     Encr: AES-CBC, keysize: 128, Hash: SHA384, DH Grp:19, Auth sign: ECDSA,
      Auth verify: ECDSA
     Life/Active Time: 86400/94 sec
ASA-1#show crypto ikev2 sa detail
TKEv2 SAs:
Session-id:2, Status:UP-ACTIVE, IKE count:1, CHILD count:1
Tunnel-id
                        Local
                                            Remote
                                                     Status
                                                                      Role
              10.10.10.2/500 10.10.10.1/500
268364957
                                                       READY INITIATOR
     Encr: AES-CBC, keysize: 128, Hash: SHA384, DH Grp:19, Auth sign: ECDSA,
       Auth verify: ECDSA
     <...omitted...>
Child sa: local selector 192.168.1.0/0 - 192.168.1.255/65535
         remote selector 172.16.10.0/0 - 172.16.10.255/65535
         ESP spi in/out: 0xe847d8/0x12bce4d
         AH spi in/out: 0x0/0x0
         CPI in/out: 0x0/0x0
         Encr: AES-GCM, keysize: 128, esp_hmac: N/A
         ah_hmac: None, comp: IPCOMP_NONE, mode tunnel
```

Verify that the IPSec SA is successfully created and uses the configured NGE algorithms.

Note: FlexVPN can terminate IPSec connections from non–IOS clients that support both the IKEv2 and IPSec protocols.

```
Router1#show crypto ipsec sa
interface: Virtual-Access1
   Crypto map tag: Virtual-Access1-head-0, local addr 10.10.10.1
  protected vrf: (none)
   local ident (addr/mask/prot/port): (172.16.10.0/255.255.255.0/0/0)
  remote ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
   current_peer 10.10.10.2 port 500
    PERMIT, flags={origin_is_acl,}
<...omitted...>
     inbound esp sas:
      spi: 0x12BCE4D(19648077)
       transform: esp-gcm ,
        in use settings ={Tunnel, }
ASA-1#show crypto ipsec sa detail
interface: outside
    Crypto map tag: mymap, seq num: 10, local addr: 10.10.10.2
```

For further information on Cisco s implementation of Suite–B, refer to the Next Generation Encryption White Paper.

Refer to the Next Generation Encryption Solution page to learn more about Cisco's implementation of Next Generation Encryption.

Related Information

- Next Generation Encryption White Paper
- Next Generation Encryption Solution Page
- Secure Shell (SSH)
- IPSec Negotiation/IKE Protocols
- ASA IKEv2 Debugs for Site-to-Site VPN with PSKs TechNote
- ASA IPSec and IKE debugs (IKEv1 Main Mode) Troubleshooting TechNote
- IOS IPSec and IKE debugs IKEv1 Main Mode Troubleshooting TechNote
- ASA IPSec and IKE debugs IKEv1 Aggressive Mode TechNote
- Technical Support & Documentation Cisco Systems

Contacts & Feedback | Help | Site Map

© 2014 – 2015 Cisco Systems, Inc. All rights reserved. Terms & Conditions | Privacy Statement | Cookie Policy | Trademarks of Cisco Systems, Inc.

Updated: Mar 26, 2013 Document ID: 116008