Firepower Data Path Troubleshooting Phase
7. Intrusion Policy

Contents

Introduction

Prerequisites

Troubleshooting the Intrusion Policy Phase

Using the "trace" Tool to Detect Intrusion Policy Drops (FTD Only)
Check for Suppressions in the Intrusion Policies

Create a Targeted Intrusion Policy

False Positive Troubleshooting

True Positive Example

Data to Provide to TAC

Next Steps

Introduction

This article is part of a series of articles which explain how to systematically troubleshoot the data
path on Firepower systems to determine whether components of Firepower may be affecting
traffic. Please refer to the Overview article for information about the architecture of Firepower
platforms and links to the other Data Path Troubleshooting articles.

This article covers the seventh phase of the Firepower data path troubleshooting, the Intrusion
Policy feature.

Prerequisites

- This article is applicable to all Firepower platforms running an Intrusion Policy The trace
feature is only available in version 6.2 and above for the Firepower Threat Defense (FTD)
platform only

- Knowledge of open source Snort is helpful, though not required For information on open
source Snort, please visit https://www.snort.org/

Troubleshooting the Intrusion Policy Phase

Using the "trace" Tool to Detect Intrusion Policy Drops (FTD
Only)

The system support trace tool can be run from the FTD Command Line Interface (CLI). This is

similar to the firewall-engine-debug tool mentioned in the Access Control Policy phase article,
except it digs deeper into the inner workings of Snort. This can be useful to see if any Intrusion
Policy rules are triggering on the interesting traffic.

https://www.cisco.com/c/en/us/support/docs/security/firepower-ngfw/214572-firepower-data-path-troubleshooting-ove.html
https://www.snort.org/
https://www.cisco.com/c/en/us/support/docs/security/firepower-ngfw/214577-firepower-data-path-troubleshooting-phas.html

In the example below, traffic from the host with IP address 192.168.62.6 is being blocked by an
Intrusion Policy rule (in this case, 1:23111)

com/<?php") returned 0

Notice that the action applied by snort was drop. When a drop is detected by snort, that particular
session is then blacklisted so that any additional packets are dropped as well.

The reason why snort is able to perform the drop action is that the "Drop when Inline" option is
enabled within the Intrusion Policy. This can be verified in the initial landing page within the
Intrusion Policy. In the Firepower Management Center (FMC), navigate to Policies > Access
Control > Intrusion and click the edit icon next to the policy in question.

Policy Information

Name My Intrusion Policy
Description
Drop when Inline 7
Inline ¥ SourceIP X Destination * Source Port/ % Destination Port / ¥ Message *
Result 1P ICMP Type ICMP Code
.11 192.168.62.69 iSI,[] 173.37.145.84 38494 / tcp 80 (http) / tcp POLICY-OTHER PHP uri taq injection attempt (1:23111:10)

.;J 192.168.62.69 éﬂ 173.37.145.84 3B488 /[tcp 80 (http) / tcp POLICY-OTHER PHP uri taq injection attempt (1:23111:10)

Drop when Inline disabled = “Would have dropped” Inline Result

Drop when Inline enabled = “Dropped” Inline Result

If "Drop When Inline" is disabled, snort no longer drops offending packets, but it still alerts with an
Inline Result of "Would Have Dropped" in the Intrusion Events.

With "Drop When Inline" disabled, the trace output shows a would drop action for the traffic
session in question.

Check for Suppressions in the Intrusion Policies

It is possible for snort to drop traffic without sending Intrusion Events to the FMC (silently drop).
This is accomplished by configuring Suppressions. In order to verify whether any suppression
has been configured in an Intrusion Policy, the expert shell can be checked on the backend, as
illustrated below.

nort_suppression.conf
|mrL|5|om’BBacdfa2-e31a-1196 b866-dd9e65c01d56/snort_suppression.conf:suppress gen_id 1, sig_id 23111

S
Name

> grep Name intrusion/snort.conf.68acdfa2-e31a-11e6-b866-dd9e65c01d56

Notice that the Intrusion Policy called "My Intrusion Policy" contains a suppression for the 1:23111
rule. Therefore, traffic can be dropped due to this rule, without any events. This is another reason
why the trace utility can be helpful, as it still shows the drops occurring.

In order to delete the suppression, the rule in question can be filtered within the Intrusion Policy
Rules view. This brings up an option to delete the suppression, as shown below.

Filter by rule SID

Edit Policy: My Intrusion Policy

Policy Information

Rules Filter: [s10:"231117

Firepower Rec Eitla Coniant. 0 selected rules of 1
Message —
Advanced Settings -t v T (CRJ O Ow
S0 Rule State Event Filtering Dynamic State Alerting Comments
@ Policy Layers o —
® Reference 1 2:n POLICY-OTHER PHP uri tag injection attempt
& Action
@ protocol
@ Direction
Source IP
Destination IP
Hide detalls |
Source port —
Hestination port (1:23111) POLICY-OTHER PHP uri tag injection attempt
& Rule Overhead
Metadata Summary This event is generated when an attempt is made to exploit a known vulnerability in web gateway.
Rule State X Drop and Generate Events
Base Policy
Firepower Recommendation
Rule Overhead m

@ Thresholds (0)

© Suppressions (1) DEIEte

Suppression
Rule | Delete I—

Create a Targeted Intrusion Policy

If traffic is being dropped by a particular Intrusion Policy rule, you may not want the traffic in
guestion to be dropped but you may also not want to disable the rule. The solution is to create a
new Intrusion Policy with the offending rule(s) disabled and then have it evaluate the traffic from
the targeted hosts.

Here is an illustration on how to create the new Intrusion Policy (under Policies > Access Control
> Intrusion).

Create Intrusion Policy ? %

Policy Information

Name * ‘Tan;eled disabled rules
Description ‘

Drop when Inline

Bass Polkcy L ¥ tneaicn Potioy : esmsessss Use your custom policy as base policy

* Required

— :
| create Policy|| create and Edit Policy | cancel |

Filter: |5m:"23m'

Create and edit S 2 @ 0 O

pOIicy and set — B Rule State Event Filtering .Dynamic State Alerting Comments
rule state(s) Generste Bvents

Drop and Generate Events CY-OTHER PHP uri tag injection attempt

Disable

After creating the new Intrusion Policy, it can then be used within a new Access Control Policy
rule, which targets the hosts in question, whose traffic was previously being dropped by the
original Intrusion Policy.

Editing Rule - Targeted IPS inspection

Name Targeted IPS inspection Enabled Move

Action | o Allow v N A4 E

Ta rget VLAN Tags Users Applications Ports URLs SGT/ISE Attributes m Logging Comments
source hosts irusion Polcy variable Set
tL::'Zeted — Targeted disabled rules v |7 | Defaurtset

policy File policy

g file

& Targeted IPS inspection = 62_ne r s r r r o Al M8 e 0

5 inspect it all n ny ny n y " y n o Allow amEe S B

False Positive Troubleshooting

A common case scenario is false positive analysis for Intrusion Events. There are several things
which can be checked before opening a false positive case.

1. From the Table View of Intrusion Events page, click the checkbox for the event in question

2. Click on Download Packets to get the packets captured by Snort when the Intrusion Event was
triggered.

3. Right-click on the rule name in the Message column and then Rule Documentation, to see the
rule syntax and other relevant information.

~ Time * Priority % Impact x Inine ¥ SourceIP * Destination * SourcePort/ X DestinationPort/ X Message X
Result 1 ICMP Type ICMP Code
3 2017-06-05 13:23:57 high 2 ¥ igH 192.168.62.69 gl 10.83.180.17 49080/ tcp 80 (hittp) / tcp Q-Qp ~==s ~mw smsssss—siariable injection :31978:
Open in New Window
. — ‘
1 |ofL Displaying row 1 of 1 rows o T 2
View Copy Delete Review ' Download Packets I T T T T
Wiew All Copy All Delete All Review All Download gl Packets Edit rule
Generate Events
Drop and Generate Events
. . Disable Rule
1) Check this box on event(s) of interest Threshold
Suppression
H ” 1
2) Click "Download Packets” exuce

Below is the rule syntax for the rule which triggered the event in the example above. The parts of
the rule which can be verified against a packet capture (PCAP) file downloaded from the FMC for
this rule are in bold.

alert tcp SEXTERNAL_NET any -> $SHOME_NET $HTTP_PORTS \

(msg:"OS-OTHER Bash CGI environment variable injection attempt”; \
flow:to_server,established; \

content:"() {"; fast_pattern:only; http_header; \

metadata:policybalanced-ipsdrop, policy max-detect-ipsdrop, policy security-ipsdrop, ruleset

community, service http; \

reference:cve,2014-6271; reference:cve,2014-6277; reference:cve,2014-6278;
reference:cve,2014-7169; \

classtype:attempted-admin; \

sid:31978; rev:5;)

These initial steps can then be followed to perform the analysis process, to see if the traffic should
have matched the rule which triggered.

1. Check the Access Control rule that the traffic matched. This information is found as part of the
columns on the Intrusion Events tab.

2. Find the Variable Set used in said Access Control rule. The Variable Set can then be reviewed
under Objects > Object Management > Variable Sets

3. Make sure the IP addresses in the PCAP file match variables (in this case, a host included in
$EXTERNAL_NET variable connecting to a host included in the SHOME_NET variable
configuration)

4. For flow, a full session/connection may need to be captured. Snort won't capture the complete
flow due to performance reasons. However, in most cases, it is safe to assume that if a rule with
flow:established triggered, the session was established at the time the rule triggered, so a full
PCARP file isn't necessary to verify this option in a snort rule. But it may be useful to better
understand the reason why it was triggered.

5. For service http, look at the PCAP file in Wireshark to see if it looks like HTTP traffic. If you
have network discovery enabled for the host and it has seen the application "HTTP" before, it can
cause service to match on a session.

With this information in mind, the packet(s) which are downloaded from the FMC can be further
reviewed in Wireshark. The PCAP file can be evaluated to determine whether the event which is
triggered is a false positive.

content:"() {"; fast_pattern:only; http_header;

HTTP/1.8 200 0K
| Accept-Ranges: bytes
Cache-Control: max-age=3600
Content-Type: text/javascript
Date: Mon, 16 Jan 2017 ©1:15:1@ GMT
Expires: Mon, 16 Jan 2017 ©2:15:10 GMT
Last-Modified: Mon, 16 Jan 2017 ©0:42:30 GMT
P3P: CP="NOI DSP COR LAW CURa DEVa TAIa PSAa PSDa OUR BUS UNI COM NAV"
Server: ECS (kix/B7D4)

X=Cache: MIT Open pcap in wireshark

Content-Length: 29127

Age: 97 Right click > Follow >
content match is present X—Cache: HIT from mcache TCP Stream

but it is not in the X-Cache-Lookup: HIT from mcache:8088@
http_header (bug) via: 1.8 mcache (squid/3.1.10)
—~Lonnection: keep-alive

(function() {

if (window["ACE3_AdRequest"]) {
return;

}

WY LY.T W R L IR o

In the illustration above, the content for which the rule detects was present in the PCAP file - "() {"

However, the rule specifies that the content should be detected in the HTTP header of the packet -
http_header

In this case, the content was found in the HTTP body. Therefore this is a false positive. However,
it is not a false positive in the sense that the rule is written incorrectly. The rule is correct and it can
not be improved in this case. This example is likely encountering a Snort bug which is causing

snort to have buffer confusion. This means that Snort has identified the http_headers incorrectly.
In this case, you can check for any existing bugs for snort/IPS engine in the version that your
device is running, and if there are none, a case with Cisco Technical Assistance Center (TAC) can

be opened. Full session captures are required to investigate such an issue as the Cisco team
needs to review how Snort got into that state, which can't be done with a single packet.

True Positive Example

The illustration below shows packet analysis for the same Intrusion Event. This time, the event is a
true positive because the content does appear in the HTTP header.

content:"() {"; fast_pattern:only; http_header;

GET / HTTP/1.1

Host: 10.83.180.17

User-Agent: curl/7.47.0
: Accept: #*/=

content match is present . test: () {

in the http_header

Data to Provide to TAC

Data Instructions
Troubleshoot
file from the
Firepower
device
inspecting
the traffic
Packet
captures
which were
downloaded
from the
FMC

Any relevant
CLI output
gathered, See this Article for instructions
such as

trace output

http://www.cisco.com/c/en/us/support/docs/security/sourcefire-defense-center/117663-techi

See this Article for instructions

Next Steps

If it has been determined that the Intrusion Policy component is not the cause of the issue, the
next step would be to troubleshoot the Network Analysis Policy feature.

Click here to proceed to the last article.

http://www.cisco.com/c/en/us/support/docs/security/sourcefire-defense-center/117663-technote-SourceFire-00.html
https://www.cisco.com/c/en/us/support/docs/security/firepower-ngfw/214610-firepower-data-path-troubleshooting-phas.html

	Firepower Data Path Troubleshooting Phase 7: Intrusion Policy
	Contents
	Introduction
	Prerequisites
	Troubleshooting the Intrusion Policy Phase
	Using the "trace" Tool to Detect Intrusion Policy Drops (FTD Only)
	Check for Suppressions in the Intrusion Policies
	Create a Targeted Intrusion Policy
	False Positive Troubleshooting
	True Positive Example

	Data to Provide to TAC
	Next Steps

