Configure and Verify SD-WAN On-demand Tunnels

Contents

Introduction

Prerequisites

Components Used

Background

Advantages

Configure

Configurations

Verify

Troubleshoot

Related Information

Introduction

This document describes configuration and verification steps to create SD-WAN On-demand Tunnels.

Prerequisites

Components Used

This document is based on these software, and hardware versions:

- vManage version 20.9.3
- Cisco Edge Routers version 17.9.3

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background

Cisco SD-WAN supports dynamic On-demand tunnels between any two Cisco SD-WAN spoke devices. These tunnels are triggered to be set up only when there is traffic between the two devices, optimizing bandwidth usage and device performance.

Advantages

On-demand tunnels come with these advantages:

- Improved performance, especially for less-powerful platforms operating in a full-mesh network.
- Improved latency in hub-and-spoke deployments when On-demand tunnels are used between spokes.
- Reduced bandwidth use in the network because tunnels in Inactive state do not require Bidirectional Forwarding Detection (BFD) probes, so there is less BFD traffic produced in the network.
- Direct tunnels between spokes, while also optimizing CPU and memory usage.

Configure

Configurations

Here are the steps to configure On-demand Tunnels:

Step 1: Enable traffic engineering only on the Hub site routers under the VPN 0 feature template. It is recommended to have a separate VPN 0 feature template for hub sites and spoke sites.

Navigate to **Configuration > Templates > Feature Template.** Search for the correct **VPN 0** feature template assigned to Hub Routers, click on three dots and select **Edit**.

- 1. Under **Service** section
- 2. Click New Service
- 3.Choose **TE** from the service type.

Click Add and then Update.

Enable TE

Step 2: To increase the OMP path limit to the recommended value 16 on a Cisco Edge Router.

Navigate to **Configuration>Template> Feature Template**, search for the **OMP** feature template, click on the three dots, and select **Edit**.

Under Basic Configuration, locate Number of Paths Advertised per Prefix, and ECMP Limit, and change the values to 16.

OMP - ECMP Limit

Note: To change the send-path-limit on vSmarts OMP to a value higher than 4, with the recommended value being 16, please refer to the Routing Configuration guides on the Cisco SD-WAN <u>Configuration Guides</u> for detailed instructions.

Step 3: Create or clone a System feature template to enable **On-demand Tunnel** and modify **On-demand Tunnel Idle-Timeout** timer if desired (default value it is 10 minutes), and apply this system template specifically for the On-demand spoke sites.

Navigate to **Configuration > Templates > Feature Templates** search for the **System** feature template, click on three dots, and select **Edit.**

On **Advanced** section enable **On-demand Tunnel.** Optionally, adjust the **On-demand Tunnel Idle-Timeout** if you wish to bring the tunnel down faster than the default 10 minutes when there is no traffic passing between the sites.

On-demand Tunnel Enable

Step 4: You need to create a custom topology policy using a route sequence on the match tab set site list (matching On-demand spoke sites), and under action tab set the TLOC list (matching the Hub tlocs) to backup.

Create the On-demand spoke list and HUB backup TLOC list.

Navigate to **Configuration > Policies > Custom Options** from the drop down menu select **Centralized Policy > Lists**, create the groups of interest:

- Click on **Site** create a new site list including all site-id for all On-demand sites.
- On **TLOC** create a TLOC list including all HUB tloc that are going to be used as backup.

Once you have created the groups of interest list, navigate to **Custom Options** from the drop down menu select **Centralized Policy > Topology > Topology > Add Topology > Custom Control** (**Route & TLOC**).

- Provide a name and description for the topology.
- Change Default Action to Accept by clicking the pencil icon, then click Save Match And Action.
- Click **Sequence Type** and select **Route**. Click **Sequence Rule** to add new sequence.
- On Match tab click Site and select the correct site list.

• On the **Action** tab, click **Accept**, then, for the **TLOC Action** select **Backup**, and for **TLOC** select correct TLOC list. Click **Save Match and Actions** once you are done.

Action Policy set

Attach the control topology policy to the main policy by navigate to **Configuration > Policies > Centralized Policy**.

Find your active policy, click on the three dots, and select Edit.

Click on

- 1. Topology
- 2. Topology
- 3. Add Topology
- 4. Import Existing
- 5. Custom Control (Route and TLOC)
- 6. Find your policy from the drop-menu, then click Import.

Import Existing Policy

Click on Policy Application > Topology > New Site/ Region List

In the outbound Site List select correct site list name.

Apply the Poicy Outband

Click **Add**, and **Save Policy Changes**. Since this is an active policy, changes are going to be pushed to vSmarts.

Note: For information about configuring a Cisco vSmart Controller centralized control policy refer to <u>Cisco SD-WAN Configuration Guides</u>.

Verify

To verify run the command **show sdwan system on-demand remote-system.** From the output, you can locate **On-demand: yes**. If the status shows **inactive** it means the tunnel between sites is down.

<#root>

Spoke#sh SITE-ID	ow sdwan system SYSTEM-IP	on-demand rem ON-DEMAND	ote-system STATUS	IDLE-TIMEOUT-EXPIRY(sec)
100	192.168.0.70	no	_	-
100	192.168.0.71	no	-	-
1000	192.168.0.72	yes	inactive	-

1000	192.168.0.73	yes	inactive	-
200	192.168.0.80	no	_	_

After generating some traffic between on-demand sites, you can check the same output. In this case the status shows **Active**, it is showing the number of seconds left before the tunnel goes down.

<#root>

Spoke#sh	ow sdwan system SYSTEM-IP	on-demand rem ON-DEMAND	ote-system STATUS	<pre>IDLE-TIMEOUT-EXPIRY(sec)</pre>
211L-1D				
100	192.168.0.70	no	-	-
100	192.168.0.71	no	-	-
1000	192.168.0.72	yes	active	105
1000	192.168.0.73	yes	active	105
200	192.168.0.80	no	-	-

From this example, you can notice that the BFD with sites 192.168.0.72 and 192.168.0.73 are missing while tunnel is down.

Spoke#show sdwan bfd sessions

		SC	OURCE TLOC RE	MOTE TLOC	
SYSTEM IP	SITE ID	STATE	COLOR	COLOR	SOURCE IP
192.168.0.70	100	up	public-internet	public-internet	<removed></removed>
192.168.0.71	100	up	public-internet	public-internet	<removed></removed>
192.168.0.80	200	up	public-internet	public-internet	<removed></removed>
192.168.0.70	100	up	mpls	mpls	<removed></removed>
192.168.0.71	100	up	mpls	mpls	<removed></removed>
192.168.0.80	200	up	mpls	mpls	<removed></removed>

When the tunnel between sites is up, you notice that BFD with sites 192.168.0.72 and 192.168.0.73 are up.

<#root>

Spoke#show sdwan bfd sessions

			SOURCE TLOC F	REMOTE TLOC		
SYSTEM IP	SITE ID	STATE	COLOR	COLOR	SOURCE IP	
192.168.0.70	100	up	public-interne	 t public-internet	<removed></removed>	<re< td=""></re<>
192.168.0.71	100	up	public-interne ^c	t public-internet	<removed></removed>	<re< td=""></re<>
192.168.0.80	200	up	public-interne ¹	t public-internet	<removed></removed>	<rei< td=""></rei<>
192.168.0.73	1000	up	public-internet	t public-internet	<removed></removed>	<re< td=""></re<>

192.168.0.72	1000	up	public-internet	public-internet	<removed></removed>	<ren< th=""></ren<>
0:0	0:00:03	2				
192.168.0.70	100	up	mpls	mpls	<removed></removed>	<rei< th=""></rei<>
192.168.0.71	100	up	mpls	mpls	<removed></removed>	<rei< th=""></rei<>
192.168.0.80	200	up	mpls	mpls	<removed></removed>	<rei< th=""></rei<>
192.168.0.73	1000	up	mpls	mpls	<removed></removed>	<ren< th=""></ren<>
192.168.0.72	1000	up	mpls	mpls	<removed></removed>	<ren< td=""></ren<>

You can obtain the same results from vMange GUI by navigating to **Monitor > Device** or **Monitor > Network** (from code 20.6 and early), find your device and navigate **WAN > Tunnel**, focusing on the **Down** number.

Monitoring On-demand Tunnels

On the same menu, scroll down and click on **Real Time.** On **Device Options** search **On Demand Remote**.

This example shows the output when On Demand Tunnels are down.

On-demand Tunnels Down

This example shows the output when On-demand Tunnels are up.

On-demand Tunnels Up

Troubleshoot

Refer to <u>Troubleshoot SD-WAN Dynamic On-Demand Tunnels</u> for more detailed steps.

Related Information

• Cisco Technical Support & Downloads