
ASR9K Model Driven Telemetry Whitepaper

Contents

Introduction
Audience
A Brief Introduction to Telemetry
Why Telemetry
The Need to move away from SNMP
Advantages of Streaming Telemetry
Model Driven Telemetry Technical Specifications
Telemetry Functions
Telemetry Components
YANG
Encoding
Transport
Cadence-based Telemetry vs Event-based telemetry
Telemetry Design Guidelines
How to Select Encoding Schema
Transport Network Design Consideration
Evaluating Telemetry Configuration Options
Telemetry Configuration Examples
IOS-XR
Dial Out Configuration Break-Up
Define Sensor Groups
Define Destination Groups
Define the Subscription
Complete Configuration Example
Advantages for Dial-Out
Dial In Configuration Break-Up
Enable gRPC
Define Sensor Groups
Define the Subscription
Complete Configuration Template and Example
Advantages for Dial-In
Event Driven Telemetry
Event Driven Telemetry Configuration
Complete Configuration Template and Example for DIAL-OUT
Complete Configuration Template and Example for DIAL-IN
Validating Telemetry with SHOW Commands
Telemetry Collection stack
Deployment Considerations for Telemetry in a Network
Scaling
Stream only the required data

Consider the Amount of Streaming Data
References

Introduction

Audience

This white paper is intended to help customers obtain a quick understanding on Model Driven
Telemetry (MDT) feature in general and how it has been implemented in Aggregation Services
Router 9000 (ASR9K) including some design guidelines and configuration details. It also includes
some deployment consideration, which will be helpful while deploying this feature using ASR9K.
Overall, this white paper can be a quick reference guide for anyone working on this feature.

Although, Telemetry is introduced as a generic feature, focus is on ASR9K implementation; i.e.,
not all of the features supported by other cisco platforms are supported by ASR9K platform and
some feature implementation may be specific to ASR9K.

A Brief Introduction to Telemetry

To start with, in simple terms, Telemetry is the collection process of useful operational data. As
per Wikipedia, Telemetry is an automated communications process by which measurements and
other data are collected at remote or inaccessible points and transmitted to receiving equipment
for monitoring. Telemetry word itself is derived from Greek roots: tele = remote, and metron =
measure.

For the network management, Network operators have a long history of relying on Simple Network
Management Protocol (SNMP). While SNMP is widely adopted for network monitoring, it was
never used for configuration even though capability of configuration with snmp was always there.
Operators have written automation scripts to handle day to day configuration tasks, but scripts are
challenging for such tasks and difficult to manage.

Hence operators moved towards data model driven management. Network configuration is based
on YANG data models pushed by protocols like netconf for example. Now just pushing the
configuration doesn’t imply that configured service is running, there has to be a mechanism which
can monitor services operational data at the same time as the configuration. This is where oper
data models; which Telemetry uses to push information out of device; helps. Therefore, the
configuration is YANG data model driven so must be the verification of service as well; as the case
with Telemetry, in order to have the same object semantic. Hence the term is called Model Driven
Telemetry or streaming Telemetry.

Model Driven Telemetry (MDT) was introduced in cXR (32 bit IOS XR) since release 6.1.1 and
allows for collection and measurements of critical data in near real-time providing a quick answer
to most of the modern network’s operational issues.

High-level Telemetry Architecture

MDT leverages structured data models supported by the networking device and provides critical
data defined in those data models. Telemetry helps customers to manage their multi-vendor
network using one common network management system, process and applications since the
data collected from the network are standards based and are uniform across vendor
implementation.

Rather than waiting for data retrieval (pull) from a centralized management station (typically SNMP
NMS); with MDT, network devices pro-actively send out (push) performance data pertaining to the
network vital functions, such as packet forwarding information, error statistics, system status, CPU
and memory resources, etc.

Why Telemetry

Collecting data for analytical and troubleshooting purposes has always been an important aspect
in monitoring the health of a network. There are several mechanisms available such as SNMP,
CLI and Syslog to collect data from a network. While these methods served the network for a very
long time but doesn't fit for modern network where demand for automation, services at scale are
fundamental. Network health information, traffic statistics and critical infrastructure information are
sent to a remote station in NMS, where they are used to enhance operational performance and to
reduce troubleshooting time. A pull model like snmp where a client poll all the network nodes, is
not efficient. Processing load on the network nodes increases when there are more no. of clients
to poll. On the contrary, A push model have a capability to continuously stream data out of the
network and notify the client. Telemetry enables the push model, which provides near-real-time
access to monitoring data.

Streaming telemetry provides a mechanism to select data of interest from routers and to transmit it
in a standard format to a remote management stations for monitoring. This mechanism enables
fine tuning of the network based on real-time data, which is crucial for its seamless operation. The
finer granularity and higher frequency of data available through telemetry enables better
performance monitoring hence results in better troubleshooting.

It helps in a more service-efficient bandwidth utilization in the network, link utilization, risk
assessment and scalability. With Streaming telemetry, more near real time data is available at the
disposal of network operators which helps to improve decision-making.

The Need to move away from SNMP

SNMP has been around for three decades and the way it operates has not changed to match the
monitoring needs of the modern networks. The real problem is the speed of execution of SNMP.

The three primary challenges posed by SNMP are actually part of its fundamental operational
behavior and thus SNMP offers little/no room for improvement and Telemetry addresses all three
inherently.

Speed of Execution and Need for Real Time Monitoring●

SNMP uses PULL Model - GetBulk / GetNext operations which work in a linear fashion by
traversing the tables from one column to another till. In addition, multiple requests are required in
case of large tables that cannot fit into one packet. This is the biggest bottleneck that causes
SNMP to slow down and data being sent is often outdated by a certain time factor in minutes. This
delay is simply not acceptable to modern network monitoring requirements.

MDT (Model Driven Telemetry) uses PUSH model and is inherently free from above listed
limitation as it knows what data is to be sent to whom and at what interval. It only needs one
lookup to gather data and uses pre-built Internal templates for ultra-fast speed of internal
operations thus enabling delivery of much more data in considerably lesser time.

Additional Overheads and Lack of Optimization Options●

The data being pulled by SNMP is actually stored as internal data structures and needs to be
converted internally by the node. This is additional work behind the scenes where network node
maps internal data structures into SNMP format. There are internal optimizations performed,
however they are still not enough.

On the other hand, Telemetry directly pulls out the internal data structures and performs minimal
processing before it sends this data out, thus providing the most updated data with the least
possible time and effort.

Linear Nature of Workload●

Every additional polling station will lead to additional workload on the node, even if we are polling
the same exact data at same exact time. Parallel access of the same MIB from multiple polling
stations can lead to slower response and higher CPU utilization. This is evident especially in the
case of large tables, where multiple stations access different part of the same MIB table.

Telemetry on the other hand needs to pull data once and replicate the packets if same data is
required by multiple destinations. Push model beats SNMP Pull for Speed & Scale.

With MDT, the approach to data collection radically changes and its fundamental principles are
listed in the table below and compared with SNMP technology key-points.

Simple Network Management Protocol (SNMP) Model Driven Telemetry (MDT)
Non Real-Time Information Real-Time Information
Poorly scalable Highly scalable
Pull-Model Push-Model

Non Automated Automation Ready/Data-Model Driven

Advantages of Streaming Telemetry

Streamed real-time telemetry data is useful in:

Capacity Planning/Traffic optimization: When bandwidth utilization and packet drops in a
network are monitored frequently, it is easier to add or remove links, re-direct traffic, modify
policing, and so on. With technologies like fast reroute, the network can switch to a new path and
re-route faster than the SNMP poll interval mechanism. Streaming telemetry data helps in
providing quick response time for faster traffic.

Better Visibility: Helps to quickly detect and avert failure situations that result after a problematic
condition in the network.

Model Driven Telemetry Technical Specifications

The following section deals with technical functions and main components of IOS XR Model
Driven Telemetry aka MDT.

Telemetry Functions

Telemetry framework is organized into three separate and interlinked functional blocks.

The first block is about data representation, which is how the information referring analysis or
measurements is organized on board.

Second block is about encoding. Every sample interval, Telemetry translates the above
measurement data into a format that can be serialized across the wire. Of course, the controller on
the other end must be able to decode the data in order to have an identical copy of the original
data sent by the device.

The last block is about transport. This is the protocol stack that is used to transfer data between
devices.

The following table summarizes the main structure for Model Driven Telemetry building blocks:

Function Components
Data Representation YANG Data Models
Encoding GPB / GPB Self-Describing
Transport TCP/gRPC

Table 3 Telemetry Building Blocks

Telemetry Components

Before understanding how Telemetry and underlying configuration pieces works, it’s important to
understand the different components of Telemetry in order to evaluate an optimal setup. Telemetry
relies on the IOS XR programmability stack where a new infrastructure framework provides the
essential capabilities for network automation.

YANG recently became a standard for data modeling, and this is used by Cisco programmability
stack to form structured dataset that can be encoded and carried as quick as possible over the
network. YANG’s flexibility gives the big advantage to be used also as a configuration tool for
automation processes. These data models are coupled with specific encoding formats and
transport protocols to make MDT a complete solution for Network Analytics.

For Model Driven Telemetry setup, the YANG data model become crucial component in order to
enable the necessary data streaming for collection and analytics.

IOS XR Programmability Stack

YANG

Yang is defined as “data modeling language used to model configuration data, state data and
notifications for network management protocols.” Because of its decoupled nature from a typical
programming language architecture, YANG can be implemented to interact with a big variety of
tools.

YANG modeling data structure is built around the concept of modules & submodules which
defines a hierarchy of data in a tree like fashion, that can be used for several operations including
configuration actions and notification handling.

There are multiple sources of YANG Models available for use out of which below three are
considered primary :

Native Models / Cisco Specific●

OpenConfig●

IETF●

Cisco-specific models: These are also called native model and are published by various device
vendors, including Cisco. e.g. Cisco-IOS-XR-ptp-oper.yang

OpenConfig models: OpenConfig is an informal working group of network operators. OpenConfig
defines common YANG models that all vendors should support to configure mission critical
features. e.g. openconfig-interfaces.yang

IETF models: IETF also defines few common YANG Modules that describe basic config for
interfaces, QOS, and define other common datatypes (like Ipv4, IPv6,etc.). e.g. ietf-syslog-
types.yang

Cisco does support available Openconfg models. Vendors are converging to standardized way of
modeling data to support a multi-vendor environment.

There are three types of Yang models:

Operational1.
Configuration2.
Action3.

Telemetry only cares about Operational Yang models which can be identified as *-oper-*.yang.

YANG is defined into RFC 7950: https://tools.ietf.org/html/rfc7950.

Encoding

Encoding (or “serialisation”) translates data (objects, state) into a format that can be transmitted
across the network. When the receiver decodes (“de-serialises”) the data, it has an semantically
identical copy of the original data.

During the early development stages of telemetry, XML was initially considered as a first choice
encoding format because of its tag based structure. The problem however with XML was its non-
compact encoding structure. GPB (Google Protocol Buffers) was finally adopted by Cisco because
it improves efficiency and speed in encoding operations.

There are two flavours of GPB as encoding options for Telemetry streaming:

Compact GPB1.
Self-describing GPB2.

The main difference between the two GPB telemetry formats is how they represent and encode
the keys within a telemetry stream of data.

https://tools.ietf.org/html/rfc7950

JSON is another human friendly encoding schema available which is very easy to understand and
almost any application will be able to decode.

From the deployment perspective there are few pros & cons of a encoding schema. Comparison
about various encoding schema is given in the section Telemetry Design Guidelines.

Transport

Telemetry offers three possible choices for transport protocols:

TCP●

gRPC●

UDP●

Telemetry defines also two different initiation modes in order to start a session between the node
and the collector:

Dial-out●

Dial-in●

The difference between the two modes consists only in how the transport session is established.

During dial-out sessions, the device initiates the connection by sending a syn packet towards the
pre- configured server port. After the connection is established, data streams are immediately
pushed away from the device.

For dial-in sessions, the router listens passively to a tcp port waiting for a server connection.

However, once the session is established, the router is not polled by the server itself because the
device is still responsible for data pushing operations. In MDT, indeed the concept of data polling
doesn’t even exist.

TCP is, by default, the predefined method of transport for Telemetry because it is reliable and very
easy to configure as an option.

gRPC is an modern open source framework designed to run in any environment. It is built on top
of HTTP/2 and provides an enhanced and rich set of features.

Cadence-based Telemetry vs Event-based telemetry

The data from the subscribed data set is streamed out to the destination either at a configured
periodic interval or only when an event occurs. This behavior is based on whether MDT is
configured for cadence-based telemetry or event-based telemetry.

The configuration for event-based telemetry is similar to cadence-based telemetry, with only the
sample interval as the differentiator. Configuring the sample interval value to zero sets the
subscription for event-based telemetry, while configuring the interval to any non-zero value sets
the subscription for cadence-based telemetry.

Its recommended to use Event Driven Telemetry for change-related events.

Telemetry Design Guidelines

As explained, there are many components in the telemetry stack, here are couple of guidelines to
consider while implementing telemetry on XR devices.

How to Select Encoding Schema

As stated, encoding or serialization translates data (objects, state) into a format that can be
transmitted across the network. When the receiver decodes or de-serializes the data, it has a
semantically identical copy of the original data.

Various encoding options vary in wire efficiency and ease of use.

Encoding Brief Description Efficiency on Wire Other Consideration

GPB (Compact)

Everything Binary
(Except Values that are
strings)
2X Faster, Operationally
more complex (but not
relative to SNMP)

High Proto file per model

GPB - KV (Key-Value Pair)

String Keys and Binary
Values
(except values that are
strings)
3X Larger,
Native models: still need
heuristics for key names

Medium to Low
Single .proto file for
decocding

JSON
Everything Strings : Keys
and Values

Low
Friendly. Human readable,
Application friendly and
easy to parse

GPB-KV gives a good & balance mid point for encoding schema.

With respect to message length for chosen encoding schema, below is the comparison on the
wire.

Encoding Comparison - Message Length in bytes

Transport Network Design Consideration

Different encoding option pose different bandwidth requirement. While considering Telemetry,
network operator needs to take care of the sufficient bandwidth provisioning according to the
chosen encoding schema. Just to have a fair idea, below bandwidth consumption per encoding
schema comparison.

Network Bandwidth Comparison

Cisco recommend to use KV-GPB. It acts as a good mid-point between efficiency and
convenience.

Evaluating Telemetry Configuration Options

While configuring Model-Driven Telemetry, Operator should have an understanding of all the
different components that are involved in Telemetry. Based on the options that are available for
transport, encoding and the direction of streaming as detailed above, one can further pick the

combination that better suits an environment.

The four key components are

Transport1.
Encoding2.
Session Direction3.
YANG Data Models4.

Transport: As stated, node can deliver telemetry data either across using TCP, UDP or gRPC
over HTTP/2.

While TCP is the preferred choice for simplicity, gRPC offers optional TLS capability that may be a
considered as an additional benefit from security standpoint.

Encoding: Router can deliver telemetry data in two different flavors of Google Protocol Buffers:
Compact and Self-Describing GPB.

Compact GPB is the most efficient encoding but requires a unique .proto for each YANG model
that is streamed. Self-describing GPB is less efficient but it uses a single .proto file to decode all
YANG models because the keys are passed as strings in the .proto.

Session Direction: There are two options for session initiating in telemetry deployment. The
router can “dial-out” to the collector or the collector can “dial-in” to the router.

YANG is the industry accepted standard for data modeling and Cisco programmability stack also
uses it to form structured dataset that can be encoded and carried as quick as possible over the
network.

These data models coupled with specific encoding formats and transport protocols as discussed
above make Model Driven Telemetry (MDT) a complete solution for Analytics.

Telemetry Configuration Examples

IOS-XR

Dial Out Configuration Break-Up

In Dial-Out mode, the router is responsible to initiate a TCP session to the collector and sends
data which is specified by the sensor-group in the subscription.

Tel
emetry Dial-OutFrom configuration standpoint, Telemetry Configuration is a three-step process.
Firstly, we identify the information that we want to stream and capture it under Sensor Group
configuration. Secondly, we identify the destination to which the information has to be streamed
and capture it under Destination Group configuration. Thirdly, we use the information identified in
previous two steps to configure the actual subscription.

Define Sensor Groups1.
Define Destination Groups2.
Define Subscription3.

Define Sensor Groups

The Sensor group configuration identifies the information that is to be streamed. Following
configuration template provides the configuration required to configure sensor groups.

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group <Sensor-Group-Name>

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path <Sensor-Path>

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# commit

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# end

RP/0/RP0/CPU0:XR#

Following example shows actual example from the router CLI where a real example of Sensor

Group configuration:

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group SensorGroup101

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path Cisco-IOS-XR-infra-statsd-

oper:infra-statistics/interfaces/interface/latest/generic-counters

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# commit

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# end

RP/0/RP0/CPU0:XR#

We can have multiple Sensor Paths as a part of same SensorGroup definition:

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group SensorGroup101

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path sensor-path Cisco-IOS-XR-infra-

statsd-oper:infra-statistics/interfaces/interface/data-rate

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path Cisco-IOS-XR-infra-statsd-

oper:infra-statistics/interfaces/interface/latest/generic-counters

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# commit

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# end

RP/0/RP0/CPU0:XR#

Define Destination Groups

The Destination group configuration identifies the destination to which the information is to be
streamed.

It has three key parameters

Session Direction1.
Encoding to be used2.
Transport Protocol to be used3.

Below is an example:

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)# telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)# destination-group DestGroup101

RP/0/RP0/CPU0:XR(config-model-driven-dest)# address family ipv4 10.1.1.1 port 5432

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)# encoding self-describing-gpb

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)# protocol tcp

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)# commit

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# end

RP/0/RP0/CPU0:XR#

Define the Subscription

The Subscription binds the Sensor-Group and Destination-Group information together as the final
piece of the configuration. The sample interval is defined as part of the Subscription.

Below is an example:

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#subscription Subscription101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id SensorGroup101 sample-interval 30000

RP/0/RP0/CPU0:XR(config-model-driven-subs)#destination-id DestGroup101

RP/0/RP0/CPU0:XR(config-model-driven-subs)# commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)# end

RP/0/RP0/CPU0:XR#

Complete Configuration Example

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#conf

RP/0/RP0/CPU0:XR(config)#

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group SensorGroup101

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path Cisco-IOS-XR-infra-statsd-

oper:infra-statistics/interfaces/interface/latest/generic-counters

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)#destination-group DestGroup101

RP/0/RP0/CPU0:XR(config-model-driven-dest)#address family ipv4 10.1.1.2 port 5432

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#encoding self-describing-gpb

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#protocol tcp

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#subscription Subscription101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id SensorGroup101 sample-interval 30000

RP/0/RP0/CPU0:XR(config-model-driven-subs)#destination-id DestGroup101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)#end

RP/0/RP0/CPU0:XR#

Advantages for Dial-Out

Broader flexibility for transport options.●

No need to open ports for inbound management traffic.●

Anycast & Load-balancing.●

Dial In Configuration Break-Up

In Dial-In mode, an MDT collector / receiver / orchestrator dials in to the router and subscribes
dynamically to one or more sensor paths or subscriptions. The router acts as the server and the
client as the receiver.

Only a single session is formed and the router streams telemetry data through the same session.
This dynamic subscription terminates when the receiver cancels the subscription or when the
session terminates.

Tel
emetry Dial-In

Since the collector “dials-in” to the router, there’s no need to specify each MDT destination in the
configuration. Just enable the gRPC service on the router, connect your client, and dynamically
enable the telemetry subscription you want.

From configuration standpoint, Telemetry Configuration is a three-step process similar to the one
as described above. Firstly, we need to enable gRPC. Secondly, we identify the destination to
which the information has to be streamed and capture it under Sesnor Group configuration.
Thirdly, we use the information identified in previous two steps to configure the actual subscription.

Enable gRPC1.
Define Sensor Groups2.
Define Subscription3.

Click to Expand
Dial-In mode is only supported with gRPC
Dial-In mode is only supported with gRPC

Enable gRPC

Firstly, we need to enable gRPC server on the router to accept incoming connections from the
collector.

Click to Expand

The <port-number> range is from 57344 to 57999. If a port number is unavailable, an error is●

displayed.
The <port-number> range is from 57344 to 57999. If a port number is unavailable, an error is
displayed.

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)# grpc

RP/0/RP0/CPU0:XR(config-grpc)#port 57890

RP/0/RP0/CPU0:XR(config-grpc)#commit

RP/0/RP0/CPU0:XR(config-grpc)#end

RP/0/RP0/CPU0:XR#

Define Sensor Groups

The Sensor group configuration identifies the information that is to be streamed. Following
configuration template provides the configuration required to configure sensor groups.

Following example shows actual example from the router CLI where a real example of Sensor
Group configuration

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group SensorGroup101

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path openconfig-

interfaces:interfaces/interface

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# commit

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# end

RP/0/RP0/CPU0:XR#

Define the Subscription

The Subscription binds the Sensor-Group and gRPC together as the final piece of the
configuration. The sample interval is defined as part of the Subscription.

Following configuration template provides the configuration required to configure the subscription.

The following example shows actual example from the router CLI where we are creating a
Subscription and binding the Sensor-Group and Destination-Group together and also defining the
sample-rate.

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#subscription Subscription101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id SensorGroup101 sample-interval 30000

RP/0/RP0/CPU0:XR(config-model-driven-subs)# commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)# end

RP/0/RP0/CPU0:XR#

Complete Configuration Template and Example

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)# grpc

RP/0/RP0/CPU0:XR(config-grpc)#port 57890

RP/0/RP0/CPU0:XR(config-grpc)telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#subscription Subscription101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id SensorGroup101 sample-interval 30000

RP/0/RP0/CPU0:XR(config-model-driven-subs)# commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)# end

RP/0/RP0/CPU0:XR#

Advantages for Dial-In

A single channel for Configuration and Streaming●

Listening port on the router/device●

Transient Connection●

Currently only gRPC/gNMI available●

Event Driven Telemetry

In Event driven Telemetry, the data from the subscribed data set is streamed out only when an
event occurs.

Event Driven Telemetry Configuration

The configuration for event-based telemetry is similar to cadence-based telemetry with the only
difference in configuration of Event Driven Telemetry is that of the sample interval. Configuring the
sample interval value to zero sets the subscription for event-based telemetry.

Complete Configuration Template and Example for DIAL-OUT

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#conf

RP/0/RP0/CPU0:XR(config)#

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group <Sensor-Group-Name>

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path <Sensor-Path>

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)#destination-group <Destination-Group-Name>

RP/0/RP0/CPU0:XR(config-model-driven-dest)#address family ipv4 <Destination-IP> port

<Destination-Port>

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#encoding <Encoding-Type>

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#protocol <Transport-Protocol>

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#subscription <Subscription-Name>

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id <Sensor-Group-Name> sample-interval

<0>

RP/0/RP0/CPU0:XR(config-model-driven-subs)#destination-id <Destination-Group-Name>

RP/0/RP0/CPU0:XR(config-model-driven-subs)#commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)#end

RP/0/RP0/CPU0:XR#

Following example shows actual example from the router CLI.

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#conf

RP/0/RP0/CPU0:XR(config)#

RP/0/RP0/CPU0:XR(config)#telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#sensor-group SensorGroup101

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)# sensor-path Cisco-IOS-XR-infra-statsd-

oper:infra-statistics/interfaces/interface/latest/generic-counters

RP/0/RP0/CPU0:XR(config-model-driven-snsr-grp)#destination-group DestGroup101

RP/0/RP0/CPU0:XR(config-model-driven-dest)#address family ipv4 10.1.1.2 port 5432

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#encoding self-describing-gpb

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#protocol tcp

RP/0/RP0/CPU0:XR(config-model-driven-dest-addr)#subscription Subscription101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id SensorGroup101 sample-interval 0

RP/0/RP0/CPU0:XR(config-model-driven-subs)#destination-id DestGroup101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)#end

RP/0/RP0/CPU0:XR#

Complete Configuration Template and Example for DIAL-IN

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)# grpc

RP/0/RP0/CPU0:XR(config-grpc)#port <port-number>

RP/0/RP0/CPU0:XR(config-grpc)telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#subscription <Subscription-Name>

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id <Sensor-Group-Name> sample-interval

<0>

RP/0/RP0/CPU0:XR(config-model-driven-subs)#commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)#end

RP/0/RP0/CPU0:XR#

Following example shows actual example from the router CLI.

RP/0/RP0/CPU0:XR#

RP/0/RP0/CPU0:XR#config

RP/0/RP0/CPU0:XR(config)# grpc

RP/0/RP0/CPU0:XR(config-grpc)#port 57890

RP/0/RP0/CPU0:XR(config-grpc)telemetry model-driven

RP/0/RP0/CPU0:XR(config-model-driven)#subscription Subscription101

RP/0/RP0/CPU0:XR(config-model-driven-subs)#sensor-group-id SensorGroup101 sample-interval 0

RP/0/RP0/CPU0:XR(config-model-driven-subs)# commit

RP/0/RP0/CPU0:XR(config-model-driven-subs)# end

RP/0/RP0/CPU0:XR#

Validating Telemetry with SHOW Commands

From router standpoint, we can verify the parameters configured for each Sensor Group,
Destination Group and Subscription

// ALL CONFIGURED SUBSCRIPTIONS

RP/0/RP0/CPU0:XR#show telemetry model-driven subscription

Subscription: Subscription101 State: ACTIVE

 Sensor groups:

 Id Interval(ms) State

 SensorGroup101 30000 Resolved

 Destination Groups:

 Id Encoding Transport State Port IP

 DestGroup101 self-describing-gpb tcp Active 5432 172.16.128.3

// DETAILS ON A PARTICULAR SUBSCRIPTION

RP/0/RP0/CPU0:XR#show telemetry model-driven subscription Subscription101

Subscription: Subscription101

 State: ACTIVE

 Sensor groups:

 Id: SensorGroup101

 Sample Interval: 30000 ms

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest/generic-counters

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: DestGroup101

 Destination IP: 172.16.128.3

 Destination Port: 5432

 Encoding: self-describing-gpb

 Transport: tcp

 State: Active

 Total bytes sent: 4893

 Total packets sent: 1

 Last Sent time: 2019-11-01 10:04:11.2378949664 +0000

 Collection Groups:

 Id: 1

 Sample Interval: 30000 ms

 Encoding: self-describing-gpb

 Num of collection: 5

 Collection time: Min: 6 ms Max: 29 ms

 Total time: Min: 6 ms Avg: 12 ms Max: 29 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 Last Collection Start:2019-11-01 10:06:11.2499000664 +0000

 Last Collection End: 2019-11-01 10:06:11.2499006664 +0000

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest/generic-counters

RP/0/RP0/CPU0:XR#

// ALL CONFIGURED DESTINATIONS

RP/0/RP0/CPU0:XR#show telemetry model-driven destination

 Group Id IP Port Encoding Transport State

 DestGroup101 172.16.128.3 5432 self-describing-gpb tcp Active

RP/0/RP0/CPU0:XR#

// PARTICULAR DESTINATION

RP/0/RP0/CPU0:XR#show telemetry model-driven destination DestGroup101

 Destination Group: DestGroup101

 Destination IP: 172.16.128.3

 Destination Port: 5432

 State: Active

 Encoding: self-describing-gpb

 Transport: tcp

 Total bytes sent: 83181

 Total packets sent: 17

 Last Sent time: 2019-11-01 10:12:11.2859133664 +0000

 Collection Groups:

 Id: 1

 Sample Interval: 30000 ms

 Encoding: self-describing-gpb

 Num of collection: 17

 Collection time: Min: 5 ms Max: 29 ms

 Total time: Min: 6 ms Max: 29 ms Avg: 10 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 Last Collection Start:2019-11-01 10:12:11.2859128664 +0000

 Last Collection End: 2019-11-01 10:12:11.2859134664 +0000

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest/generic-counters

RP/0/RP0/CPU0:XR#

// ALL CONFIGURED SENSOR GROUPS

RP/0/RP0/CPU0:XR#show telemetry model-driven sensor-group

 Sensor Group Id:SensorGroup101

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest/generic-counters

 Sensor Path State: Resolved

// PARTICULAR SENSOR GROUPS

RP/0/RP0/CPU0:XR#show telemetry model-driven sensor-group SensorGroup101

 Sensor Group Id:SensorGroup101

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-

statistics/interfaces/interface/latest/generic-counters

 Sensor Path State: Resolved

RP/0/RP0/CPU0:XR#

Telemetry Collection stack

Beside the router configuration, A Telemetry based solution required several components like
collector, database and Monitoring/Analytics software. These components can either be
configured separately or can be part of a single comprehensive product.

A decoder should be installed to take inbound packets and pass them on for further storage.●

A Time series database (aka TSDB) is required in order to store streamed information.●

A graphical tool is also needed to visualize data taken from the internal database.●

It’s beyond the scope to describe the collection stack in detail. Cisco Crossworks Health Insights

allows zero-touch telemetry where devices are automatically provisioned with telemetry
configuration and tables/schema are created in a Time Series Database (TSDB). It streamlines the
operational and network management overhead of collecting and cleansing data, thereby allowing
operators to focus on their business goals. The utilisation of a common collector to collect network
device data over SNMP, CLI, and model-driven telemetry allows to avoid data duplication and also
reduces load on devices and the network.

Deployment Considerations for Telemetry in a Network

Following are various consideration to be made while analyzing deployment of Telemetry in a
Network.

Scaling

Telemetry can stream considerable amount of data and careful consideration of the scalability
aspects is recommended.

Stream only the required data

Each Yang model will have multiple leaf nodes. It’s advised to be specific about the information
that is required and the information that is not required. It is recommended to explore the Yang
Models and identify the data path required by the telemetry use-cases.

Consider the Amount of Streaming Data

The total amount of telemetry data being streamed will need consideration about following points:

Bandwidth allocation within the network1.
QoS2.
Performance of additional application/software like Collector softwareTime Series
databaseAnalytics / Visualization software

3.

Encoding efficiency (discussed in Section "Telemetry Design Guidelines") directly impacts
the amount of data being streamed. Compact GPB is recommended wherever feasible.

4.

Collection interval directly impact multiple aspects including but not limited to following.
Bandwidth utilization in the networkStorage requirement on the DatabasePerformance of the
device streaming the data

5.

It is recommended to evaluate the frequency of the collection based on the application
requirements.

Overall, it is recommended to consider filtering unwanted data at source or destination as
considered feasible. We do have the option to filter undesired data. Filtering can be performed on
two levels: -

At the Source – The devices streaming the data.1.
At the Destination – The Collector gathering and Normalizing data. (Filtering at collector is
beyond the scope of this document)

2.

Following example show data being filtered only for Hundered Gig interfaces within the sensor
paths by applying wildcards.

sensor-path Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface[interface-

name='HundredGigE*']/latest/generic-counters

References

https://blogs.cisco.com/sp/the-limits-of-snmp

https://blogs.cisco.com/sp/why-you-should-care-about-model-driven-telemetry

https://www.cisco.com/c/en/us/td/docs/iosxr/asr9000/telemetry/b-telemetry-cg-asr9000-61x.html

https://blogs.cisco.com/sp/the-limits-of-snmp
https://blogs.cisco.com/sp/why-you-should-care-about-model-driven-telemetry
https://www.cisco.com/c/en/us/td/docs/iosxr/asr9000/telemetry/b-telemetry-cg-asr9000-61x.html

	ASR9K Model Driven Telemetry Whitepaper
	Contents
	Introduction
	Audience

	A Brief Introduction to Telemetry
	Why Telemetry
	The Need to move away from SNMP
	Advantages of Streaming Telemetry
	Model Driven Telemetry Technical Specifications
	Telemetry Functions
	Telemetry Components
	YANG
	Encoding
	Transport

	Cadence-based Telemetry vs Event-based telemetry
	Telemetry Design Guidelines
	How to Select Encoding Schema
	Transport Network Design Consideration
	Evaluating Telemetry Configuration Options

	Telemetry Configuration Examples
	IOS-XR
	Dial Out Configuration Break-Up
	Define Sensor Groups
	Define Destination Groups
	Define the Subscription
	Complete Configuration Example
	Advantages for Dial-Out

	Dial In Configuration Break-Up
	Enable gRPC
	Define Sensor Groups
	Define the Subscription
	Complete Configuration Template and Example
	Advantages for Dial-In

	Event Driven Telemetry
	Event Driven Telemetry Configuration
	Complete Configuration Template and Example for DIAL-OUT
	Complete Configuration Template and Example for DIAL-IN

	Validating Telemetry with SHOW Commands
	Telemetry Collection stack
	Deployment Considerations for Telemetry in a Network
	Scaling
	Stream only the required data
	Consider the Amount of Streaming Data

	References

