
Tunneling Async Protocols in BSTUN
Configuration Example

Document ID: 41983

Contents

Introduction
 Prerequisites
 Requirements
 Components Used
 Conventions
 Background Information
 Configure
 Network Diagram
 Configurations
 Verify
 Troubleshoot
 Related Information

Introduction

Dedicated and native async protocols are not directly supported with any Cisco implementation. However,
Block Serial Tunnel (BSTUN) async−generic tunneling can provide limited ability to tunnel this data.

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

The information in this document is based on the software and hardware versions:

Use Feature Navigator II (registered customers only) , and use the Search by Feature option.•
Use Software Advisor (registered customers only) to search for the minimum supported software
release needed for your hardware.

•

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, make sure
that you understand the potential impact of any command.

Conventions

Refer to Cisco Technical Tips Conventions for more information on document conventions.

Background Information

Async protocols such as Diebold's TC500 to communicate to money ATMs or tunneling HyperTerminal from
a PC to another PC have no direct support or implementation in the Cisco IOS ®. As the name implies, this is
a generic implementation that has some capability to carry this type of data. This is known as BSTUN
async−generic, and requires the IBM or the Enterprise IOS feature set.

BSTUN async−generic was originally designed to carry unidirectional, small packets from security devices to
a reporting device. BSTUN async−generic, however, can carry interactive traffic. In essence, this
implementation attaches to native, async devices and receives the data into the serial interface and then into a
memory buffer. Periodically, the buffered data is then encapsulated into a TCP packet and sent to the BSTUN
peer where it is decapsulated and sent to the async device attached at the remote site.

BSTUN async−generic is a simplistic operation. The router has no capability to be configured to have
knowledge of the start of frame (SOF), the end of frame (EOF), or the addressing schema of the async
protocol. If the address portion of the frame is in every frame, is one byte long, and is the same place in the
frame, then the asp address−offset command can be issued to specify to the router where to find the address
in the frame, as exampled later in this document. In many situations, however, there will not be a address
portion contained into the protocol. Having no knowledge of the async protocol construction means that the
router is unable to discern individual packets from others if they are not separated by a time period.
Approximately 40 ms is required between frames at 9600 bits/sec to provide the router adequate amount of
time to properly discern one packet from another. The router simply sees a data stream into it's serial interface
and then wraps this data into TCP. There is no possibility the router is able make routing decisions based upon
any individual aspect of the incoming frame. Thus, BSTUN async−generic must be physically designed so
only one device attaches to the router serial interface. There is no local−acknowledgement feature. BSTUN
supports local−ack for IBM3270 BISYNC protocol only.

Configure

In this section, you are presented with the information to configure the features described in this document.

Network Diagram

This document uses the network setup shown in this diagram.

Both PCs use Microsoft's HyperTerminal or in place of one of the PCs could be a connection into the console
port of a Cisco router. These sample configurations represent configurations implemented from routers not
previously configured in a lab scenario, and show the relevant portions of the configuration needed. These are
configured assuming a 9600 bit/sec, 8N1 connection.

Configurations

This document uses the configurations shown in this section.

Main router (Cisco 1700 Router)•
Remote Router (Cisco 3640 Router)•
Main router (Cisco 3600 Router)•
Remote #1 (Cisco 1700 Router)•

Remote #2 (Cisco 1700 Router)•

Main router (Cisco 1700 Router)

main#show running−config
Building configuration...
.
.
.
ip subnet−zero
bstun peer−name 10.1.1.1
bstun protocol−group 1 async−generic
interface loopback0
 ip address 10.1.1.1 255.0.0.0
interface serial0
 physical−layer async
 encapsulation bstun
 asp role secondary
 bstun group 1
 bstun route all tcp 30.1.1.1
interface serial1
 ip address 20.1.1.1 255.0.0.0
ip route 0.0.0.0 0.0.0.0 20.1.1.2
line 1
 speed 9600
 databits 8
 parity none
 stopbits 1
.
.
.
!
end

Remote Router (Cisco 3640 Router)

REMOTE#show running−config
Building configuration...
bstun peer−name 30.1.1.1.
bstun protocol−group 1 async−generic
interface loopback 0
 ip address 30.1.1.1
interface ethernet1/0
 shutdown
interface serial 2/0
 physical−layer async
 encapsulation bstun
 asp role primary
 bstun group 1
 bstun route all tcp 10.1.1.1

interface serial 2/1
 ip address 20.1.1.2 255.0.0.0
ip route 0.0.0.0 0.0.0.0 20.1.1.1
line 65
 speed 9600
 parity none
 databits 8
 stopbits 1
.
.
!
end

Note: When you issue the physical−layer async command on the serial interface, a TTY line is assigned to
the serial interface. This TTY line definition is where the databits, stopbits, parity, and speed are configured.
This is the formula to determine which line corresponds with which serial interface.

line#=(slot# x 32) + interface# + 1

The show line in the Remote router configuration output indicates in the far right column the corresponding
line number. Serial2/0 is represented by line 65 and the physical definitions for this link are configured under
line 65

REMOTE#sh line
 Tty Typ Tx/Rx A Modem Roty AccO AccI Uses Noise Overruns Int
* 0 CTY − − − − − 0 0 0/0 −
 65 TTY 9600/9600 − − − − − 0 0 0/0 Se2/0
 129 AUX 9600/9600 − − − − − 0 0 0/0 −
 130 VTY − − − − − 0 0 0/0 −
 131 VTY − − − − − 0 0 0/0 −
 132 VTY − − − − − 0 0 0/0 −
 133 VTY − − − − − 0 0 0/0 −
 134 VTY − − − − − 0 0 0/0 −

Line(s) not in async mode −or− with no hardware support:
1−64, 66−128

In this scenario, a Tandem communicates with remote ATM devices. In this sample configuration, the async
protocol runs a 4800 7E2 protocol and the Main router connected to the TANDEM is a 3600 series router to
remote 1700 series routers. See this network diagram.

Main router (Cisco 3600 Router)

main#show running−config
Building configuration...
bstun peer−name 10.1.1.1.
bstun protocol−group 1 async−generic
bstun protocol−group 2 async−generic
interface loopback 0
 ip address 10.1.1.1
interface serial1/0
 encapsulation frame−relay
interface serial 1/0.1 point−to−point
 ip address 20.1.1.1 255.255.255.0
 frame−relay interface−dlci 100
interface serial 1/0.2 point−to−point
 ip address 20.2.1.1 255.255.255.0
 frame−relay interface−dlci 200
interface serial 2/0
 physical−layer async
 encapsulation bstun
 asp role secondary
 bstun group 1

 bstun route all tcp 30.1.1.1

interface serial 2/1
 physical−layer async
 encapsulation bstun
 asp role secondary
 bstun group 2
 bstun route all tcp 30.2.1.1

ip route 30.2.1.0 255.255.0.0 20.2.1.2
ip route 0.0.0.0 0.0.0.0 20.1.1.2
line 65
 speed 4800
 parity even
 databits 7
 stopbits 1
.
line 66
 speed 4800
 parity even
 databits 7
 stopbits 1
.
!
end

Remote #1 (Cisco 1700 Router)

REMOTE1#show running−config
Building configuration...
bstun peer−name 30.1.1.1
bstun protocol−group 1 async−generic
interface loopback0
 ip address 30.1.1.1 255.255.0.0
interface serial0
 physical−layer async
 encapsulation bstun
 asp role primary
 bstun group 1
 bstun route all tcp 10.1.1.1
interface serial1
 encapsulation frame−relay
interface serial1.1 point−to−point
 ip address 20.1.1.2 255.255.255.0
 frame−relay interface−dlci 100
ip route 0.0.0.0 0.0.0.0 20.1.1.1
line 1
 speed 4800
 databits 7
 parity even
 stopbits 2
.
.
.
!
end

Remote #2 (Cisco 1700 Router)

REMOTE2#show running−config
Building configuration...
bstun peer−name 30.2.1.1
bstun protocol−group 2 async−generic
interface loopback0
 ip address 30.2.1.1 255.255.0.0

interface serial0
 physical−layer async
 encapsulation bstun
 asp role primary
 bstun group 2
 bstun route all tcp 10.1.1.1
interface serial1
 encapsulation frame−relay
interface serial1.1 point−to−point
 ip address 20.2.1.2 255.255.255.0
 frame−relay interface−dlci 100
ip route 0.0.0.0 0.0.0.0 20.2.1.1
line 1
 speed 4800
 databits 7
 parity even
 stopbits 2
.
.
.
!
end

Verify

There is currently no verification procedure available for this configuration.

Troubleshoot

BSTUN receives a packet into the serial interface, encapsulates it, and sends this TCP packet to the remote
router when the bstun route all tcp command is issued. The TCP packet is received at the remote router and
is decapsulated. The data is sent out on the serial interface. If this connection does not work, the incoming
data must first be verified with the debug asp packet. You see the data received by the router on the serial
interface. Since the router has no protocol construction and varies according to the async protocol, sample
debug is not provided. The data stream seen by the router must match what is sent by the device. If it does not
match, more than likely, the speed, databits, parity, or stopbits are not configured to match the device. This
can be the case as well if no data is received.

If data is received on the serial interface, issue the show bstun command in order to show if the connection is
open or closed. Open state with only packets trasmitted indicates the TCP is sent to the remote BSTUN peer.
At this point, a ping test from the IP address of the local BSTUN peer−name to the remote BSTUN
peer−name IP address verifies if IP is configured and working properly. If ping testing is successful, then at
the remote, issue the debug asp packet command in order to determine if the packet is received and sent onto
the serial interface to the async device.

Complete these steps in order to troubleshoot.

Verify data is received into the host router with the debug asp packet command.1.
Ensure IP connectivity with ping test sourcing pings from the bstun peer−name IP address to the
remote IP address of the remote BSTUN peer−name.

2.

At the remote, verify that packets are sent to the remote device with the debug asp packet command.3.
If the async protocol does have an address contained in the packets sent to the router, it can be
beneficial to issue the asp offset−address command under the interface with the appropriate byte
number corresponding to where the address is contained in the packet. The default value for this is 0.
For example, if the packet is 01C1ABCDEF, where C1 is the address, the serial interface can be
configured with the asp offset−address 01 command. In some cases, this allows the router to identify
a packet and increases the probability that the router handles the data as a framed packet and not just

4.

as a data stream.

Related Information

STUN (Serial Tunnel) & BSTUN (Block Serial Tunnel) Technical Support•
Technical Support − Cisco Systems•

Contacts & Feedback | Help | Site Map
© 2014 − 2015 Cisco Systems, Inc. All rights reserved. Terms & Conditions | Privacy Statement | Cookie Policy | Trademarks of
Cisco Systems, Inc.

Updated: Sep 09, 2005 Document ID: 41983

