Troubleshoot and Test EEM Scripts

Contents

Introduction
Prereguisites
Requirements
Components Used
Backaround Information
EEM Validation with Show Commands
Confirm Timers are Active
Confirm Trigger Events are Firing
Review Event History
EEM Validation with Manual Trigger

Operational Considerations

Problem: CL1 Commands Fail to Execute

Problem: EEM Actions take L onger than the Maximum Runtime
Problem: EEM Triggers too Often

Related Information

| ntr oduction

This document describes Embedded Event Manager (EEM) script validation and introduces common
operational considerations and failure scenarios.

Prerequisites
Requirements

This document assumes that the reader is already familiar with the Cisco IOS®/I0S XE® Embedded Event
Manager (EEM) feature. If you are not already familiar with this feature, please read the EEM Feature
Overview first.

EEM on the Catalyst 9K family of switches requiresthe DNA addon for the Network Essentials license
level. Network Advantage fully supports EEM.

Components Used

The information in this document relatesto EEM version 4.0 as implemented on the Catalyst family of
switches.

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network islive, ensure
that you understand the potential impact of any command.

Background I nformation

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-16-12/eem-xe-16-12-book/eem-overview.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-16-12/eem-xe-16-12-book/eem-overview.html

EEM isauseful feature when effectively deployed, but it isimportant to ensure that the EEM does precisely
what the author intends. Poorly vetted scripts potentially lead to catastrophic problemsin production. At
best, the script performs in an undesired manner. This document provides useful information on how to test
and verify EEM with CL1 show commands, and a so explains some common failure scenarios and the
debugs used to identify and correct the problem.

EEM Validation with Show Commands

Confirm Timersare Active

When an EEM script is deployed that istriggered by atimer, if the script does not fire as expected, confirm
that the timer is active and counts down.

Consider these EEM scripts named test and test3, respectively:

<#froot>
event manager
appl et test

authorization bypass
event timer watchdog time 60
action 0010 syslog msg "Test script running"

event manager
appl et test3

authorization bypass
event timer watchdog name test3 time 300
action 0010 syslog msg "test3 script running"

» Thefirst script (test) uses a 60 second (unnamed) watchdog timer to fire the script.
» The second script (test3) uses a 300 second watchdog timer named test3 to fire the script.

Configured timers and the current value of these timers can be viewed with the command show event
manager statistics server.

Example

<#root>

Switch#

show event nmanager statistics server

EEM Queue Information
Triggered Dropped Queue Queue Average

Client Events Events Size Max Run Time
Call Home 5 0 0 64 0.021
EEM Applets 181 0 0 64 0.003
EEM IOS .sh Scripts 0 0 0 128 0.000
EEM Tc1 Scripts 0 0 0 64 0.000

iosp_global_eem_proc 30 0 0 16 0.004
onep event service init 0 0 0 128 0.000

EEM Policy Counters
Name Value

EEM Pol icy Tiners

Name Type

Ti me Remmi ni ng <-- EEM Countdown ti mer

_EEM nt er nal nane0

watchdog 53.328
<--- Unnaned tiners receive an internal nane - this tinmer is for the "test' policy
_EEMinternalnamel watchdog 37.120
test3
watchdog 183.232
<--- Naned tiners use their configured nane - this is the named tined configured for policy '"test3

Confirm Trigger Eventsare Firing

Asdiscussed in the Confirm Timers are Active section of this document, |OS XE increments the Triggered
Events column for the EEM Applets client row in the output of show event manager statistics server every
time an EEM applet isfired. To verify your EEM script works as expected, perform your trigger event
several times and examine the output of show event manager statistics server to confirm this value
increments. If it does not, your script has not triggered.

When the command is run several times in sequence, the timer values to count down. When the timer
reaches zero and the script runs, the triggered event count for EEM Applets also count up.

<#root>

Switch#

show event manager statistics server

EEM Queue Information

Triggered

Dropped Queue Queue Average
Client

Events

Run Time

Events Size Max
Call Home
EEM Appl et s
0 0 64

<- - -

EEM I0S .sh Scripts
EEM Tcl Scripts
iosp_global_eem_proc

onep event service init 0

EEM Policy Counters
Name Value

183

0.003

o O OO

128
64
16
128

[=NeNeNe)

0.000
0.000
0.004
0.000

"Triggered Events" colum is increnented by 2 due to 2 tiners firing

EEM Policy Timers
Name

Ti me Renmi ni ng

Type

_EEM nt er nal nane0

watchdog
_EEMinternalnamel

test3

56.215
watchdog

watchdog

100.

126.117

006

% Note: If this does not occur, investigate your script to verify the configured timers.

Review Event History

For scriptsthat are not triggered by timers, the command show event manager history eventsis useful to

confirm that applets are triggered as expected.

Consider this EEM script:

<#root>

event manager

appl et test_nmanual
authorization bypass

event none

action 0010

sysl og nmsg "

am a manual ly triggered script!"

<--

<- -

message that

manua

is printed when script

trigger type for testing

runs

This script runs when CLI event manager run test_ manual is executed and prints a syslog message. Besides
the output in syslog, the execution of this script can be verified by areview of the output of show event
manager history events as shown:

<#root>

Switch#

show event manager history events

No. Job Id Proc Status Time of Event

Event Type

Name
1 5 Actv success Fri Nov 6 15:45:07 2020

ti mer count down

cal |l back: Call Hone process <-- tiner bases event that fired

2 18 Actv success Mon Nov 9 14:12:33 2020 oir callback: Call Home process
3 19 Actv success Mon Nov 9 14:12:40 2020 oir callback: Call Home process
4 20 Actv success Fri Nov13 14:35:49 2020

none

appl et: test_nanual <-- manually triggered event

EEM Validation with Manual Trigger

There are scenarios where it is desirable to manually trigger an EEM script, either to test the execution flow,
or to perform a one-off action. This can be accomplished with an EEM script with atrigger of event none as
demonstrated in this output:

<#root>
event manager
appl et test_manua

authorization bypass
event none
action 0010 syslog msg "I am a manually triggered script!"

Manually fire the script with the command event manager run test_manual from the enable prompt:

<#root>

Switch#

event nmanager run test_nmnual <-- Manually runs the script

Switch#

show | og <-- Check for the log fromaction 10.

*0ct 26 21:24:40.762:

%A EM 6-LOG test_manual: | ama manually triggered script! <-- %A EM|ogs are from EEM events.

Operational Considerations

Ensure EEM scrips are validated prior to use in production. In general, there are afew primary ways a script
failsto work as expected, three of which are discussed here.

This section shows how to check for these 3 common problems with EEM scripts:

1. CLI command failures: the command fails to parse and therefore fails to execute.

2. The script runs too long: EEM scripts have a default run time limit of 20 seconds. If thistimeis
exceeded, the script stops before all commands run.

3. The script runs too often: Sometimes the trigger event used by the script can happen too frequently,
which causes the script to rapidly fire. It isdesirableto control how often and at what rate the script
fires.

Problem: CLI Commands Fail to Execute

This example script contains several problems. It isasimple applet that appends the output of several show
commandsto atext file in local flash media:

<#froot>
event manager
appl et Data_Col | ection

auth bypass
event timer

wat chdog tine 60

The s

action 1.0 cli command "enable"

action 1.1 c1i command "show clock | append flash:DataCollection.txt"

action 1.2 cli command "show interfaces breif | append flash:DataCollection.txt"

action 1.3 cli command "show ip route | append flash:Datacollection.txt"

action 1.4 cli command "show processes cpu sorted | exclude 0.0 | append flash:DataCollection.txt"
action 1.5 c1i command "show platform hardware fed switch active qos stats internal cpu policer | appen
action 2.0 syslog msg '"Data Capture Complete"

The applet successfully ran, but did not generate the expected results:

<#root>
Switch#

show logging | in Capture

<-- Qur script-generated syslog contains the string "Capture"

*Mar 11 20:40:01.941: %HA_EM-6-LOG: Data_Collection: Data Capture Complete

<-- Action 2.0 successfully ran.

Switch#

dir flash: | in .txt

<-- W only expected one .txt file, however two appear in flash:

32792 -rw- 36 Mar 11 2021 20:40:01 +00:00 DataCollection.txt
32798 -rw- 807 Mar 11 2021 20:40:01 +00:00 Datacollection.txt

Switch#

nore fl ash: Dat aCol | ection. t xt

<-- the output of our expected .txt file is enpty except for the output of

*20:40:01.343 UTC Thu Mar 11 2021

Use debug embedded event manager action cli to assist with applet verification.

<#root>

Switch#

debug enbedded event manager action cli

"show cl ock

*Mar 11 20:40:01.175: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1ib) : CTL : cli_open called.

<-- The applet is called.

*Mar 11 20:40:01.275: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1lib) : OUT : Switch>

*Mar 11 20:40:01.275: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1lib) : IN : Switch>enable

*Mar 11 20:40:01.285: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1lib) : OUT : Switch#

*Mar 11 20:40:01.285: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1lib) : IN : Switch#show clock | appen
*Mar 11 20:40:01.396: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1ib) : OUT : Switch#

*Mar 11 20:40:01.396: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1lib) : IN : Switch#show interfaces br
*Mar 11 20:40:01.507: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1ib) : OUT :

show i nterfaces breif

| append flash:DataCollection.txt

<-- Here is our first problem "bri

*Mar 11 20:40:01.507: %HA_EM-6-LOG:

N

*Mar 11 20:40:01.507: %HA_EM-6-LOG:

% lInvalid input detected at '~

*Mar 11 20:40:01.507: %HA_EM-6-LOG:
*Mar 11 20:40:01.507: %HA_EM-6-LOG:
*Mar 11 20:40:01.507: %HA_EM-6-LOG:

show i p route

*Mar 11 20:40:01.618: %A EM 6- LOG

*Mar 11 20:40:01.618: %HA_EM-6-L0G:

show processes cpu sorted

<-- This problemis less intuitive.

*Mar 11 20:40:01.729: %HA_EM-6-L0G:
*Mar 11 20:40:01.729: %HA_EM-6-L0G:

the "exclude" argunent reads everyt

*Mar 11 20:40:01.729:

A problemlike this will Iikely not

*Mar 11 20:40:01.729:

Thi s underscores the inportance of

*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.

729:
729:
729:

*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.
*Mar 11 20:40:01.

730:
730:
730:
730:
730:
730:
730:
730:
730:
730:
730:

mar ker .

append fl ash: Dat acol | ection.txt

exclude 0.0

%HA_EM-6-L0G:

%HA_EM-6-L0G:

%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:

%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:
%HA_EM-6-L0G:

ef"

Data_Collection

Data_Collection

<-- CL

Data_Collection
Data_Collection
Data_Collection

<- -

Data_Col | ecti on

Data_Collection

Data_Collection
Data_Collection

hi ng beyond the pipe as the val ue that

Data_Collection

be evi dent

Data_Collection

pre-production testing to ensure the script

Data_Collection
Data_Collection
Data_Collection

Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection
Data_Collection

is msspelled

: DEBUG(cTi_11ib)

: DEBUG(cTi_11ib)

parser failure

: DEBUG(cTi_11ib)
: DEBUG(cTi_11ib)
: DEBUG(cTi_11ib)

This created the second

DEBUG(cl i _I i b)

: DEBUG(cTi_1ib)

append fl ash: Dat aCol | ecti on. t xt

: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)

: DEBUG(cTi_1ib)

i n debuggi ng

: DEBUG(cTi_1ib)

: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)

: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)
: DEBUG(cTi_1ib)

so the command does not

: OUT :

: OUT :

 OUT
 OUT
: IN :

(08))

: IN :

 OUT
 OUT

.txt file.

run.

Switch#
Switch#

The file nane is

;. Switch#

Switch#

CPU utilization for five
PID Runtime(ms) Invoked

is to be excluded

: OUT :

: OUT :

: OUT
: OUT
: OUT

: OUT :
: OUT :
: OUT :
: OUT :
: OUT :
: OUT :
: OUT :
: OUT :
: OUT :
: OUT :
: OUT :

117 57246 448028 127 0.0

2 4488 16816 266 0.07% O

perforns as expected

173 829 44093 18 0.07% O
205 22271 1313739 16 0.0
467 238 2238 106 0.07% O

81 12793 151345 84 0.07%
232 22894 2621198 8 0.07
7010 0.00% 0.00% 0.00
6 010 0.00% 0.00% 0.00
8 17 2804 6 0.00% 0.00%

9 33511 11402 2939 0.00%
12 0 2 0 0.00% 0.00% 0.0
10 106 1402 75 0.00% 0.0
14 439 42047 10 0.00% O.
11 0 1 0 0.00% 0.00% 0.0
16 0 1 0 0.00% 0.00% 0.0

*Mar 11 20:40:01.730: %HA_EM-6-L0OG: Data_Collection : DEBUG(cli_1ib) : : OUT : 50 1 0 0.00% 0.00% 0.00

*Mar 11 20:40:01.730: %HA_EM-6-L0OG: Data_Collection : DEBUG(cli_1ib) : : OUT : 18 0 3 0 0.00% 0.00% 0.0
*Mar 11 20:40:01.730: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1ib) : : CTL : 20+ lines read from cli,
*Mar 11 20:40:01.730: %HA_EM-6-L0G: Data_Collection : DEBUG(c1li_1ib) : : IN : Switch#

show pl atform hardware fed switch active qos stats internal cpu policer

| append flash:DataCollection.txt

*Mar 11 20:40:01.941: %HA_EM-6-L0G: Data_Collection : DEBUG(c1li_1ib) : : OUT : show platform hardware f

<-- Here, the syntax of the command was not properly parsed out before inplenmentation. W are m ssing ar

*Mar 11 20:40:01.941: %HA_EM-6-L0G: Data_Collection : DEBUG(cli_1ib) : : OUT :

N <-- mssing word queue

*Mar 11 20:40:01.941: %HA_EM-6-L0G: Data_Collection : DEBUG(cTi_1lib) : : OUT :

% Invalid input detected at '~" marker. <-- CLI parser failure

*Mar 11 20:40:01.941: %HA_EM-6-L0G: Data_Collection : DEBUG(cTi_1lib) : : OUT :

*Mar 11 20:40:01.941: %HA_EM-6-L0G: Data_Collection : DEBUG(c1i_1ib) : : OUT : Switch#

*Mar 11 20:40:01.941: %HA_EM-6-LOG: Data_Collection: Data Capture Complete

<-- The syslog fromAction 2.0 wites.

*Mar 11 20:40:01.941: %HA_EM-6-L0OG: Data_Collection : DEBUG(cli_1ib) : : CTL : cli_close called.

<-- The applet closes out as expected after executing all configured actions.

Conclusion: Properly vet al EEM actions, and use debugs to proof against misconfigurations and
typographical errors.

Problem: EEM Actionstake Longer than the Maximum Runtime

In this scenario, asimple EEM is used to collect control-plane packet captures at 120-second intervals. It
appends new capture datato an output file located in local storage media.

<#root>

event manager

appl et Capture

event timer

wat chdog tine 120 <-- 120 second countdown tiner

action 1.0 cli command "enable"
action 1.1 cli command "no monitor capture CPUCapture"
action 2.0 c1i command "monitor capture CPUCapture control-plane in match any buffer circular"

action 2.1 cli command "monitor capture CPUCapture start"

action 3.0 wait 45

action 4.0 cli command "monitor capture CPUCapture stop"

action 4.1 cli command "show clock | append flash:CPUCapture.txt"

action 4.2 cli command "show mon cap CPUCapture buff dump | append flash:CPUCapture.txt"
action 5.0 syslog nsg "CPUCapture Conplete - Next capture in 2 m nutes"”

Y ou can easily determine that the EEM does not compl ete as expected. Check local logs for the syslog from
action 5.0. This syslog prints upon each successful iteration of the applet. The log has not printed within the
buffer and the file CPUCapture.txt was not written to flash:

<#root>
Switch#

show | oggi ng | include "CPUCapture Conplete"

Switch#

dir flash: | include CPUCapture.txt

Enable debugs to investigate. The most commonly-used debug is debug event manager action cli. This
utility prints a dialogue of the actionsin sequence.

Debug output: The debug output shows the applet called successfully. Theinitia actions run without issue,
but the capture fails to conclude.

<#root>

Switch#

debug event nmnager action cl
*Jan 28 22:55:54.742: %HA_EM-6-L0G: Capture : DEBUG(c1i_Tib) : : CTL : cli_open called.
<-- This is the initial nessage seen when the applet is called.

*Jan 28 22:55:54.843: %HA_EM-6-LOG: Capture : DEBUG(c1li_lib) : : OUT : CoreSwitch>

The appl et name can be seen within the line

*Jan 28 22:55:54.843: %HA_EM-6-L0G: Capture : DEBUG(c1i_Tib) : : IN : CoreSwitch>enable

*Jan 28 22:55:54.854: %HA_EM-6-L0G: Capture : DEBUG(c1li_Tib) : : OUT : CoreSwitch#

*Jan 28 22:55:54.854: %HA_EM-6-L0G: Capture : DEBUG(c1li_Tib) : : IN : CoreSwitch#no monitor capture CPU
*Jan 28 22:55:54.964: %HA_EM-6-L0G: Capture : DEBUG(c1i_Tib) : : OUT : Capture does not exist

*Jan 28 22:55:54.964: %HA_EM-6-L0G: Capture : DEBUG(c1li_Tib) : : OUT :

*Jan 28 22:55:54.964: %HA_EM-6-L0G: Capture : DEBUG(c1i_Tib) : : OUT : CoreSwitch#

*Jan 28 22:55:54.965: %HA_EM-6-LOG: Capture : DEBUG(cTi_1ib) : : IN : CoreSwitch#monitor capture CPUCap
Jan 28 22:55:55.075: %HA_EM-6-L0G: Capture : DEBUG(cTi_Tib) : : OUT : CoreSwitch#

*Jan 28 22:55:55.075: %HA_EM-6-LOG: Capture : DEBUG(cTi_1ib) : : IN : CoreSwitch#monitor capture CPUCap

*Jan 28 22:55:55.185: %HA_EM-6-LOG: Capture : DEBUG(c1li_1ib) : : OUT : Started capture point : CPUCaptu

<-- The applet successfully creates and starts the capture.

*Jan 28 22:55:55.185: %HA_EM-6-L0G: Capture : DEBUG(c1li_Tib) : : OUT : CoreSwitch#
*Jan 28 22:56:15.187: %HA_EM-6-L0G: Capture : DEBUG(c1li_Tib) : : CTL : cli_close called.

<-- After 20 seconds, cli_close is called and the applet begins to exit.

*Jan 28 22:56:15.187: fh_server: fh_io_ipc_msg: received msg FH_MSG_CALLBACK_DONE from client 27 pclien
*Jan 28 22:56:15.187: fh_io_ipc_msg: EEM callback policy Capture has ended with abnormal exit status of

FF

*Jan 28 22:56:15.187:

EEM pol i cy Capture has exceeded it's elapsed time limt of 20.0 seconds <-- We are inforned that the po
*Jan 28 22:56:15.187: fh_io_ipc_msg: received FH_MSG_API_CLOSE client=27
*Jan 28 22:56:15.187: tty is now going through its death sequence

*Note "
debug event nanager al

is used to enable all debugs related to event manager.

Solution: By default, EEM policies run no longer than 20 seconds. If the actions within the EEM take longer
than 20 seconds to run, the EEM fails to complete. Ensure the runtime of your EEM is enough to alow for
your applet actions to run. Configure maxrun to specify a more appropriate maximum runtime value.

Example

<#root>

event manager

appl et Capture

event timer watchdog time 120

maxrun 60

<-- Maxrun 60 specifies the capture will run for a maxi mum of 60 seconds

action 1.0 cl1i command "enable"

action 1.1 cli command "no monitor capture CPUCapture"

action 2.0 cli command "monitor capture CPUCapture control-plane in match any buffer circular"
action 2.1 cli command "monitor capture CPUCapture start"

action 3.0 wait 45

<-- The altered maxrun allows the capture to run for the necessary tine.

action 4.0 cli command "monitor capture CPUCapture stop"
action 4.1 cli command "show clock | append flash:CPUCapture.txt"
action 4.2 cli command "show mon cap CPUCapture buff dump | append flash:CPUCapture.txt"

action 5.0 syslog msg "CPUCapture Complete - Next capture in 2 minutes"

Problem: EEM Triggerstoo Often

Sometimes, several instances of a given trigger occur in a short amount of time. This could lead to excessive
iterations of the applet and have serious consequences in the worst case.

This applet triggers on a particular syslog pattern, then gathers show command output and appends this
output to afile. Specifically, the applet fires when line protocol drops for an identified interface:

<#root>

event manager

appl et Moni torLi nkFl ap

event syslog pattern "Interface GigabitEthernetl/0/23, changed state to down"
action 1.0 c1i command "enable"

action 1.1 c1i command "show ip route | append flash:MonitorLinkFTlap.txt "

action 2.0 c1i command "show interface gigl/0/23 | append flash:MonitorLinkFlap.txt"

action 3.0 c1i command "show process cpu sorted | append flash:MonitorLinkFTap.txt"

action 4.0 c1i command "show platform hardware fed active fwd-asic drops exceptions | append flash:Moni
action 5.0 syslog msg "Link has flapped - Data gathered”

The applet fires each time the syslog is observed. An event such as an interface flap can occur rapidly ina
short amount of time.

<#root>

Switch#

sh log | in Data gathered

*Jan 29 04:19:06.678: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered

<-- The applet generates this syslog each tinme it fires.

*Jan 29 04:19:27.367: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered
*Jan 29 04:19:36.779: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered
*Jan 29 04:19:57.472: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered
*Jan 29 04:20:06.570: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered
*Jan 29 04:20:27.671: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered
*Jan 29 04:20:36.774: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered
*Jan 29 04:20:57.264: %HA_EM-6-LOG: MonitorLinkFlap: Link has flapped - Data gathered

The applet ran numerous times over the course of afew minutes, which resulted in an undesirable output file
with extraneous data. The file a'so continuesto increase in size and continuesto fill up local media. This
simple example EEM does not pose much operational threat if ran repeatedly, but this scenario potentially
leads to a crash with more complex scripts.

In this scenario, it would be beneficial to limit how often the applet is triggered.

Solution: Apply arate limit to control how rapidly an applet runs. Theratelimit keyword is appended to the
trigger statement and is associated with avalue in seconds.

Example

<#root>

event manager

appl et Moni torLi nkFl ap

event syslog pattern "Interface GigabitEthernetl/0/23, changed state to down"

ratelimt 60

<-- Ratelimt <seconds> specifies a mninmum anount of tine that nust pass before the applet will again t

action 1.0 cli command "enable"

action 1.1 c1i command "show clock | append flash:MonitorLinkFlap.txt "

action 2.0 cli command "show interface gigl/0/23 | append flash:MonitorLinkFlap.txt"

action 3.0 cli command "show process cpu sorted | append flash:MonitorLinkFTlap.txt"

action 4.0 cli command "show platform hardware fed active fwd-asic drops exceptions | append flash:Moni
action 5.0 syslog msg "Link has flapped - Data gathered"

Related | nfor mation

Cisco |0S Embedded Event Manager 4.0

Best Practices and Useful Scripts for EEM

https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-embedded-event-manager-eem/datasheet_c78-692254.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/216091-best-practices-and-useful-scripts-for-ee.html

