
Configure and Troubleshoot Guest and Host
Access on CMS Spaces

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Configure
1) Configuration using different URIs
Verify
2) Configuration using same URIs but non-empty guest and host PINs/passcodes
Verify
3) Configuration using same URIs with mix of empty guest PIN and non-empty host PIN
Verify
4) A host user is a member of the space and authorized via webRTC log in, guest users join the
meeting with callID. Same URI and callID is used by guest and host participants with empty or
non-empty PIN/passcodes for guest users
Verify
Troubleshoot
Related Information

Introduction

This document describes how to set up Guest and Host access on spaces of your Cisco Meeting
Server (CMS) by using API commands.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

Cisco Meeting Server (CMS) with spaces set up and able to make calls into it●

API client (like Poster, Postman) or ●

CMS API guide●

Components Used

The information in this document is based on CMS version 2.1

The information in this document was created from a device in a specific lab environment. If your

https://www.cisco.com/c/en/us/support/conferencing/meeting-server/products-programming-reference-guides-list.html

network is live, ensure that you understand the potential impact of any command.

Background Information

The document outlines types of scenarios:

Different URIs or call-IDs are used by guest and host participants●

Same URI is used by guest and host participants where differentiation is made based on PIN
or passcode entry (both non-empty)

●

Same URI is used by guest and host participants where differentiation is made based on PIN
or passcode entry (mix of empty/non-empty)

●

A host user is a member of the space and authorized via webRTC log in, guest users join the
meeting with callID. Same URI and callID is used by guest and host participants with empty or
non-empty PIN/passcodes for guest users

●

Configure

There are four possibilities for differentiation between Guest and Host participants in CMS,
described in the next 4 examples, and are mainly based on different callLegProfiles that
determine the in-call behavior for those participants joining in on the space.

First, the method by using a different URI (or call-ID) for guest and host participants is explained,
and afterwards that gets appended by using different passcodes (or timeout) on the same URI, to
make the differentiation between guest and host participants. The third method of a timeout or
empty PIN entry for Guest users was introduced as a new feature on CMS 2.1 as shown on
section 2.4 of the release notes. The fourth method explains how to set up Guest and Host access
on spaces with assigned owner/members and make the member of the space (owner) to be the
host of the space.

1) Configuration using different URIs

This is the basic configuration that has been available before CMS 2.1 release and is the same as
for a different call-ID. The next steps need to be performed to get the Guest/Hoost access
differentiation on the same space:

Create a guest callLegProfile (needsActivation = true)1.
Create a host callLegProfile (needsActivation = false)2.
Assign the guest callLegProfile to an existing or new space (being the default access
method)

3.

Create a new accessMethod on that same space with a different URI (and call-ID) and
assign the host callLegProfile to it

4.

Step 1. Create a guest callLegProfile (needsActivation = true).

A callLegProfile determines the in-call behavior and by default you are assign the guest in-call
behavior to the space so that you can later on have a different access method on that same
space, as well for host to be able to join in.

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Release_Notes/Version-2-1/Cisco-Meeting-Server-Release-Notes-2-1-12.pdf

Note: You can also assign this on tenant level (/api/v1/tenants/<tenant-ID>) or system level
(/api/v1/system/profiles) for example to apply this for all spaces (or per tenant), however
here it is shown on the space itself. Take into account that the most specific allocation of the
callLegProfile is taken into account for the in-call behavior.

The needsActivation parameter is the most important one here for the guest/host behavior since
if set to true, the participant is unable to receive or contribute audio and video until one or more
full/activator (host) participants join. Other parameters on the callLegProfile can be found on
section 8.4.3 of the API guide, under which the showed ones can be relevant in this setup as well
(depending on your requirements):

presentationContributionAllowed●

rxAudioMute●

rxVideoMute●

deactivationMode (deactive | disconnect | remainActivated) and deactivationModeTime [action
to be performed when last activator leaves the call]

●

To create the guest callLegProfile, make a POST request on /api/v1/callLegProfiles with the
preferred parameters and needsActivation parameter set to true so that you can perform a GET
request on that callLegProfile-ID afterwards with this outcome for example:

<?xml version="1.0"?><callLegProfile id="d4bfe12d-68cd-41c0-a671-
48395ee170ab"><needsActivation>true</needsActivation><defaultLayout>speakerOnly</defaultLayout><

presentationContributionAllowed>false</presentationContributionAllowed><rxAudioMute>true</rxAudi

oMute><rxVideoMute>false</rxVideoMute><deactivationMode>deactivate</deactivationMode></callLegPr

ofile>

Note down the callLegProfile-ID as marked in bold as this has to be applied on the space in step
3 for the (default) guest access.

Step 2. Create a host callLegProfile (needsActivation = false).

Similarly create the host callLegProfile for the host in-call behavior. The same parameters as
mentioned previously apply, although the parameters can be selected according to your own
preference and requirements. The main element here, is to set the needsActivation parameter to
false to give it the host role.

You create it by a POST request on /api/v1/callLegProfiles with the preferred parameters and
needsActivation parameter set to false so that you can perform a GET request on that
callLegProfile-ID afterwards with the this outcome for example:

<?xml version="1.0"?><callLegProfile id="7306d2c1-bc15-4dbf-ab4a-
1cbdaabd1912"><needsActivation>false</needsActivation><defaultLayout>speakerOnly</defaultLayout>

<presentationContributionAllowed>true</presentationContributionAllowed><rxAudioMute>false</rxAud

ioMute><rxVideoMute>false</rxVideoMute></callLegProfile>

Note down the callLegProfile-ID as marked in bold as this has to be applied on the space
accessMethod in step 4 for the host access.

Step 3. Assign the guest callLegProfile to an existing or new space (being the default
accessMethod).

Perform either a PUT command on an existing space (/api/v1/coSpaces/<coSpace-ID>) to adapt
the space or a POST command on /api/v1/coSpaces to create a new one with the guest

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-2/Cisco-Meeting-Server-API-Reference-Guide-2-2.pdf

callLegProfile parameter as created in step 1 as the in-call behavior for that space. You can also
set the URI, passcode and call-ID parameters for that space as well to your desire as per section
6.2 of the API guide.

Perform a GET request on that space (/api/v1/coSpaces/<coSpace-ID>) to verify that the guest
callLegProfile is associated with it, as well as the URI and call-ID value. An example output with
this example created guest callLegProfile in step 1 is this one with a URI value of guest.space
and call-ID of 628821815 (no passcode set):

<?xml version="1.0"?><coSpace id="7cc797c9-c0a8-47cf-b519-
8dc5a01f1ade"><name>Guest.space</name><autoGenerated>true</autoGenerated><uri>guest.space</uri><

callId>628821815</callId><callLegProfile>d4bfe12d-68cd-41c0-a671-

48395ee170ab</callLegProfile><ownerId>bc392aaa-8c6d-4619-ad2f-

cb30c4c53766</ownerId><ownerJid>Guest@cms.steven.lab</ownerJid><secret>iWqZQ.tTMIleeQHKMB.JYg</s

ecret><numAccessMethods>1</numAccessMethods></coSpace>

Note down the space-ID as marked in bold as this has to be used to create the accessMethod on
that particular space in step 4.

Step 4. Create a new accessMethod on that space with a different URI (and call-ID) and assign
the host callLegProfile to it.

You want to create a different way of accessing the space than the guest access which is currently
the default one. This is done by specifying an accessMethod on the space itself by a POST
command on /api/v1/coSpaces/<coSpace-ID>/accessMethods with here the coSpace-ID being
the bold marked value in step 3 (7cc797c9-c0a8-47cf-b519-8dc5a01f1ade) on which the
host callLegProfile of step 2 is applied as well as the different URI and call-ID field.

After a GET reqeust on that space accessMethod (/api/v1/coSpaces/<coSpace-
ID>/accessMethods/<accessMethod-ID>), you must be able to see a similar kind of output
as this one, where you can see a different URI (host.space) and call-ID (888) as opposed to the
default accessMethod of the space as well as the specially associated host callLegProfile as set
up on step 2:

<?xml version="1.0"?><accessMethod id="447c61c5-44e5-465e-a8a1-
5dd4e10048c0"><uri>host.space</uri><callId>888</callId><passcode></passcode><callLegProfile>7306
d2c1-bc15-4dbf-ab4a-

1cbdaabd1912</callLegProfile><secret>r8.QXRrOMFp719gDL5ck6Q</secret></accessMethod>

Verify

Now you can dial into the same meeting:

As a guest●

 - by dialing to guest.space URI (followed by the domain as configured on your call matching
rules)

 - by entering the call-ID value 628821815 via IVR or WebRTC join (no passcode)

As a host●

 - by dialing to host.space URI (followed by the domain as configured on your call matching
rules)

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-2/Cisco-Meeting-Server-API-Reference-Guide-2-2.pdf

 - by entering the call-ID value 888 via IVR or WebRTC join (no passcode)

When there are only guests joined to the space, they are all put in a lobby room waiting for the
host to join in. Once a host joins, all of the guests and hosts are put in conference. If there are no
hosts joined on the space anymore but still some guests, they return back to the lobby screen as
per the configuration of deactivate on deactivationMode parameter on the guest callLegProfile
as shown on Step 1.

2) Configuration using same URIs but non-empty guest and host
PINs/passcodes

This configuration is similar as the one in the previous example, and also available already before
CMS 2.1 release. It requires both the guest and host to enter a non-empty PIN or passcode so
that differentiation can be made upon that, as they dial to the same URI.

The configuration steps are quite similar to the previous configurational example:

Create a guest callLegProfile (needsActivation = true)1.
Create a host callLegProfile (needsActivation = false)2.
Assign the guest callLegProfile to an existing or new space specifying a guest passcode
(PIN) (being the default access method)

3.

Create a new accessMethod on that same space with the same URI (different call-ID) and
assign the host callLegProfile to it including a host passcode (PIN)

4.

Step 1. Create a guest callLegProfile (needsActivation = true).

Same configuration as in previous example 1 and even the same guest callLegProfile
(d4bfe12d-68cd-41c0-a671-48395ee170ab) can be used as demonstrated.

Step 2. Create a host callLegProfile (needsActivation = false)

Same configuration as inprevious example 1 and even the same host callLegProfile (7306d2c1-
bc15-4dbf-ab4a-1cbdaabd1912) can be used as demonstrated.

Step 3. Assign the guest callLegProfile to an existing or new space specifying a guest passcode
(PIN) (being the default accessMethod).

Similarly as before, you can either perform a PUT operation on an existing space
(/api/v1/coSpaces/<cospace-ID>) or a POST operation to create a new space
(/api/v1/coSpaces) with the desired parameters for the URI, passcode and call-ID for example as
well as the guest callLegProfile (from step 1) that you assigned to it as per section 6.2 of the API
guide.

If you perform a GET request on that space, you must be able to see a similar kind of output
as this one where you see a URI of guestpin.space, a call-ID of 189, our previously created guest
callLegProfile and a passcode of 789:

<?xml version="1.0"?><coSpace id="22d9f4ca-8b88-4d11-bba9-e2a2f7428c46"><name>Guest/Host
PIN</name><autoGenerated>false</autoGenerated><uri>guestpin.space</uri><callId>189</callId><call

LegProfile>d4bfe12d-68cd-41c0-a671-

48395ee170ab</callLegProfile><passcode>789</passcode><secret>X7f83UX7PHcIYp0JbT0fUA</secret><num

AccessMethods>1</numAccessMethods></coSpace>

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-2/Cisco-Meeting-Server-API-Reference-Guide-2-2.pdf
https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-2/Cisco-Meeting-Server-API-Reference-Guide-2-2.pdf

Note down the space-ID as marked in bold as this has to be used to create the accessMethod on
that particular space in step 4.

Step 4. Create a new accessMethod on that space with the same URI (different call-ID) and
assign the host callLegProfile to it including a host passcode (PIN).

On this space you also create a different access method for the hosts (as the guest callLegProfile
is assigned on the space itself as the default join option), just like on the first configuration
example. This is done using a POST command on /api/v1/coSpaces/<coSpace-
ID>/accessMethods with the coSpace-ID value for our space being 22d9f4ca-8b88-4d11-
bba9-e2a2f7428c46 as highlighted in the previous step. On this POST command, you can
provide the different parameters like the URI (guestpin.space, the same as the original one), call-
ID (889), host callLegProfile as defined in step 2 and the host passcode or PIN (1234 in this
case).

If you perform a GET request on that accessMethod, you must be able to see a similar kind of
output showing the same URI of guestpin.space, a call-ID of 889, the host callLegProfile
reference and the host PIN of 1234:

<?xml version="1.0"?><accessMethod id="760c0e17-55c0-4232-ba72-
2e9207916330"><uri>guestpin.space</uri><callId>889</callId><passcode>1234</passcode><callLegProf
ile>7306d2c1-bc15-4dbf-ab4a-

1cbdaabd1912</callLegProfile><secret>c0wnqI1qB9JGRdmekHEO1w</secret></accessMethod>

Verify

Now you can dial into the same meeting:

As a guest●

 - by dialing to guestpin.space URI (followed by the domain as configured on your call
matching rules) and entering PIN 789

 - by entering the call-ID value 189 via IVR or WebRTC join with PIN 789

As a host●

 - by dialing to guestpin.space URI (followed by the domain as configured on your call
matching rules) and entering PIN 1234

 - by entering the call-ID value 889 via IVR or WebRTC join with PIN 1234

When there are only guests joined to the space, they are all put in a lobby room waiting for the
host to join in. Once a host joins, all of the guests and hosts are put in conference. If there are no
hosts joined on the space anymore but still some guests, they return back to the lobby screen as
per the configuration of deactivate on deactivationMode parameter on the guest callLegProfile
as shown on Step 1.

3) Configuration using same URIs with mix of empty guest PIN and non-empty
host PIN

This configuration is only available starting from version 2.1 of CMS onwards due to some newly

added API commands of passcodeMode and passcodeTimeout on the callProfile section. This
allows for an empty PIN for guests to join (either entering # or timeout) while the host has a PIN to
access the space and activate it. The callProfile controls the in-call experience for SIP (including
Lync) calls and thus is not applicable for CMA clients (both thick client and WebRTC).

The configuration steps are similar as the ones of example 2, with the addition of the callProfile:

Create a guest callLegProfile (needsActivation = true)1.
Create a host callLegProfile (needsActivation = false)2.
Create a callProfile with the desired passcodeMode and passcodeTimeout configuration3.
Assign the guest callLegProfile and callProfile of step 3 to an existing or new space
specifying a guest passcode (PIN) (being the default access method)

4.

Create a new accessMethod on that same space with the same URI (different call-ID) and
assign the host callLegProfile to it including a host passcode (PIN)

5.

As the configurations are quite identical to the configuration examples 1 and 2, there are
references to those ones. In fact for the test, the same space was used as in example 2, but
added with the callProfile now.

Step 1. Create a guest callLegProfile (needsActivation = true).

Same configuration as inprevious example 1 and even the same guest callLegProfile (d4bfe12d-
68cd-41c0-a671-48395ee170ab) can be used as demonstrated.

Step 2. Create a host callLegProfile (needsActivation = false).

Same configuration as inprevious example 1 and even the same host callLegProfile (7306d2c1-
bc15-4dbf-ab4a-1cbdaabd1912) can be used as demonstrated.

Step 3. Create a callProfile with the desired passcodeMode and passcodeTimeout
configuration.

You can create a callProfile that determines the in-call experience for SIP (including Lync) calls.
There are a few possible configurations possible here, like allowing of recording or streaming or
the maximum participant limit for example but the focus here is on the new API additions from
CMS 2.1 relating to the passcode handling. The other parameters can be found on section 8.2 of
the API guide.

Two parameters determine the passcode behavior here, being:

passcodeMode●

 - required : the IVR waits forever for a user to enter the PIN or # for an empty PIN (for
guests)

 - timeout : the IVR waits for a passcodeTimeout amount of seconds for the participant to
enter the PIN and if no entry has been made within that time, it assumes a blank (#) PIN has been
entered

passcodeTimeout : only needs to be set when passcodeMode is set to timeout and controls
the amount of time before interpreting passcode as a blank one

●

In order to create the callProfile, perform a POST command on /api/v1/callProfiles (or PUT on
/api/v1/callProfiles/<callProfile-ID> if you want to modify an existing one) with the desired

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-3/Cisco-Meeting-Server-API-Reference-Guide-2-3.pdf

parameters for passcodeMode and passcodeTimeout. If you perform a GET command on that
specific callProfile, you must get a similar kind of outcome for example where you have set up the
mode as timeout and a timeout value of 5 seconds:

<?xml version="1.0"?><callProfile id="4b0eff60-e4aa-4303-8646-
a7e800a4eac6"><passcodeMode>timeout</passcodeMode><passcodeTimeout>5</passcodeTimeout></callProf

ile>

Note down the callProfile-ID as marked in bold as this has to be used to assign to the space to
have this in-call behavior in step 4.

Step 4. Assign the guest callLegProfile and callProfile of step 3 to an existing or new space
specifying a guest passcode (PIN) (being the default access method).

Similarly as before, you can either do a PUT operation on an existing space
(/api/v1/coSpaces/<cospace-ID>) or a POST operation to create a new space
(/api/v1/coSpaces) with the desired parameters for the URI and call-ID for example as well as the
guest callLegProfile (from Step 1). The difference from the previous examples is the callProfile
from step 3 and the fact that no passcode is assigned for it.

If you perform a GET request on that space, you must be able to see a similar kind of output
as this example, where you see the URI of guestpin.space, a call-ID of 189, the previously created
guest callLegProfile and the callProfile as set up in step 3:

<?xml version="1.0"?><coSpace id="22d9f4ca-8b88-4d11-bba9-e2a2f7428c46"><name>Guest/Host
PIN</name><autoGenerated>false</autoGenerated><uri>guestpin.space</uri><callId>189</callId><call

LegProfile>d4bfe12d-68cd-41c0-a671-48395ee170ab</callLegProfile><callProfile>4b0eff60-e4aa-4303-

8646-

a7e800a4eac6</callProfile><secret>X7f83UX7PHcIYp0JbT0fUA</secret><numAccessMethods>1</numAccessM

ethods></coSpace>

Note down the space ID as marked in bold as this has to be used to create the accessMethod on
that particular space in step 5.

Step 5. Create a new accessMethod on that same space with the same URI (different call-ID)
and assign the host callLegProfile to it including a host passcode (PIN).

On this space you also create a different access method for the hosts (as the guest callLegProfile
is assigned on the space itself as the default join option), just like on the first configuration
example. This is done using a POST command on /api/v1/coSpaces/<coSpace-
ID>/accessMethods where the coSpace-ID value is replaced with the value for your space
being 22d9f4ca-8b88-4d11-bba9-e2a2f7428c46 as highlighted in the previous step for this
case. On this POST command, you can provide the different parameters like the URI
(guestpin.space, the same as the original one), call-ID (889), host callLegProfile as defined in
Step 2 and the host passcode or PIN (1234 in this case).

If you perform a GET request on that accessMethod, you must be able to see a similar kind of
output showing the same URI of guestpin.space, a call-ID of 889, the host callLegProfile
reference and the host PIN of 1234:

<?xml version="1.0"?><accessMethod id="760c0e17-55c0-4232-ba72-
2e9207916330"><uri>guestpin.space</uri><callId>889</callId><passcode>1234</passcode><callLegProf
ile>7306d2c1-bc15-4dbf-ab4a-

1cbdaabd1912</callLegProfile><secret>c0wnqI1qB9JGRdmekHEO1w</secret></accessMethod>

Verify

Now you can dial into the same meeting:

As a guest●

 - by dialing to guestpin.space URI (followed by the domain as configured on your call
matching rules) and entering # as PIN or let it timeout after 5 seconds

 - by entering the call-ID value 189 via IVR or WebRTC join

As a host●

 - by dialing to guestpin.space URI (followed by the domain as configured on your call
matching rules) and entering PIN 1234

 - by entering the call-ID value 889 via IVR or WebRTC join with PIN 1234

4) A host user is a member of the space and authorized via webRTC log in,
guest users join the meeting with callID. Same URI and callID is used by guest
and host participants with empty or non-empty PIN/passcodes for guest users

The next steps need to be performed to get the Guest/Host access differentiation on the same
space for members and non-members of the space:

Create a guest callLegProfile(needsActivation = true)1.
Create a host callLegProfile(needsActivation = false)2.
Assign the guest callLegProfile to an existing or new space (being the default access
method)

3.

Create a new accessMethod on that same space with the same URI (and call-ID) and
assign the host callLegProfile to it

4.

Assign user’sownerJIDto same space. (if not assigned)5.
Add thatownerIDas the member user to same space and assignhostcallLegProfileto that
member user

6.

Step 1. Create a guest callLegProfile (needsActivation = true).

Same configuration as in previous example 1 and the guest callLegProfile (bfe7d07f-c7cb-4e90-
a46e-4811bbaf6978) is used in this example.

Note down the callLegProfile-ID as marked in bold as this has to be applied on the space in step
3 for the guest access.

Step 2. Create a host callLegProfile (needsActivation = false)

Same configuration as inprevious example 1 and the host callLegProfile (0e76e943-6d90-43df-
9f23-7f1985a74639) is used in this example.

Note down the callLegProfile-ID as marked in bold as this has to be applied on the
space accessMethod in step 4 for the host access and on the coSpace member in step 6.

Step 3. Assign the guest callLegProfile to an existing or new space (being the
default accessMethod).

Perform either a PUT command on an existing space (/api/v1/coSpaces/<coSpace-ID>) to adapt
the space or a POST command on /api/v1/coSpaces to create a new one with the
guest callLegProfile parameter as created in step 1 as the in-call behavior for that space. You
can also set the URI and call-ID parameters for that space as well to your desire as per section
6.2 of the API guide.

Perform a GET request on that space (/api/v1/coSpaces/<coSpace-ID>) to verify that the
guest callLegProfile is associated with it, as well as the URI and call-ID value. An example output
with this example created guest callLegProfile in step 1 is this one with a URI value
ofglobal and call-ID of 1234 (no passcode set), nonMemberAccessset totrue:

<?xml version="1.0" ?>

<coSpace id="96d28acb-86c6-478d-b81a-a37ffb0adafc">

 <name>Global</name>

 <autoGenerated>false</autoGenerated>

 <uri>global</uri>

 <callId>1234</callId>

 <callLegProfile>bfe7d07f-c7cb-4e90-a46e-4811bbaf6978</callLegProfile>

 <nonMemberAccess>true</nonMemberAccess>

 <secret>0w4O2zTTF0WdL4ymF8D0_A</secret>

 <defaultLayout>allEqual</defaultLayout>

</coSpace>

Note down the space-ID as marked in bold as this has to be used to create the accessMethod on
that particular space in step 4.

Step 4. Create a new accessMethod on that space with the same URI (and call-ID) and assign
the host callLegProfile to it.

You want to create a different way of accessing the space than the guest access which is currently
the default one. This is done by specifying an accessMethod on the space itself by
a POSTcommand on /api/v1/coSpaces/<coSpace-ID>/accessMethods with here the coSpace-
ID being the bold marked value in step 3 (96d28acb-86c6-478d-b81a-a37ffb0adafc) on which the
host callLegProfile of step 2 is applied as well as the same URI and call-ID field. You can add
non-empty passcode for the hosts who connect via callID (without being logged in as a user via
webRTC).

After a GET request on that space accessMethod (/api/v1/coSpaces/<coSpace-
ID>/accessMethods/<accessMethod-ID>), you must be able to see a similar kind of output
as this one, where you can see the sameURI (global) and call-ID (1234) as well as the specially
associated host callLegProfile as set up on step 2 andhost passcode(12345):

<?xml version="1.0" ?>

<accessMethod id="c4ecc16e-945f-4e35-ba03-d9b69107b32c">

 <uri>global</uri>

 <callId>1234</callId>

 <passcode>12345</passcode>

 <callLegProfile>0e76e943-6d90-43df-9f23-7f1985a74639</callLegProfile>

 <secret>kffO1zTTE0feL4fsdf43w_B </secret>

</accessMethod>

Step 5. Assign user’s ownerJidto the space. (if not assigned). Add ownerJID to the space by
specifyingownerJid (user1@evacanoalone.net)on the space by aPUTcommand
on/api/v1/coSpaces/<coSpace-ID>

After a GET request on that space, you must be able to see that ownerIdand ownerJidhave been

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-6/Cisco-Meeting-Server-API-Reference-Guide-2-6.pdf
mailto:user1@evacanoalone.net

assigned to the space:

<?xml version="1.0" ?>

<coSpace id="96d28acb-86c6-478d-b81a-a37ffb0adafc">

 <name>Global</name>

 <autoGenerated>false</autoGenerated>

 <uri>global</uri>

 <callId>1234</callId>

 <callLegProfile>bfe7d07f-c7cb-4e90-a46e-4811bbaf6978</callLegProfile>

 <nonMemberAccess>true</nonMemberAccess>

 <ownerId>1d942281-413e-4a2a-b776-91a674c3a5a9</ownerId>

 <ownerJid>user1@evacanoalone.net</ownerJid>

 <secret>0w4O2zTTF0WdL4ymF8D0_A</secret>

 <numAccessMethods>1</numAccessMethods>

 <defaultLayout>allEqual</defaultLayout>

</coSpace>

Note down the ownerID (1d942281-413e-4a2a-b776-91a674c3a5a9).

Step 6.Add that ownerID (1d942281-413e-4a2a-b776-91a674c3a5a9) from the step 5 as the
member user to the space and assignhostcallLegProfileto that member user. This is done by
specifying specifyinguserJIdandhost callLegProfileon the space itself (specifyingcoSpaceID) by
a POSTcommand (/api/v1/coSpaces/<coSpaceID>/coSpaceUsers).Other parameters on
the coSpaceUsers can be found on section 6.4.2 of the API guide, under which the showed ones
can be relevant in this setup as well:

 <canDestroy>true</canDestroy>

 <canAddRemoveMember>true</canAddRemoveMember>

 <canChangeName>true</canChangeName>

 <canChangeUri>false</canChangeUri>

 <canChangeCallId>false</canChangeCallId>

 <canChangePasscode>true</canChangePasscode>

 <canPostMessage>true</canPostMessage>

 <canDeleteAllMessages>false</canDeleteAllMessages>

 <canRemoveSelf>false</canRemoveSelf>

Veryfy that member user has been added to the space by aGETcommand
(/api/v1/coSpaces/<coSpaceID>/coSpaceUsers?)

<?xml version="1.0" ?>

<coSpaceUsers total="1">

<coSpaceUser id="1d942281-413e-4a2a-b776-91a674c3a5a9">

<userId>1d942281-413e-4a2a-b776-91a674c3a5a9</userId>

<userJid>user1@evacanoalone.net</userJid>

<autoGenerated>false</autoGenerated>

</coSpaceUser>

</coSpaceUsers>

https://www.cisco.com/c/dam/en/us/td/docs/conferencing/ciscoMeetingServer/Reference_Guides/Version-2-6/Cisco-Meeting-Server-API-Reference-Guide-2-6.pdf

Note down the userID (if different form ownerID form step 5). Verify thathost callLegProfilehas
been assigned to coSpaceUser by aGETrequest specifyingcoSpaceIDanduserID
(/api/v1/coSpaces/<coSpaceID>/coSpaceUsers/<userID>)

<?xml version="1.0" ?>

<coSpaceUser id="1d942281-413e-4a2a-b776-91a674c3a5a9">

 <userId>1d942281-413e-4a2a-b776-91a674c3a5a9</userId>

 <userJid>user1@evacanoalone.net</userJid>

 <autoGenerated>false</autoGenerated>

 <canDestroy>true</canDestroy>

 <canAddRemoveMember>true</canAddRemoveMember>

 <canChangeName>true</canChangeName>

 <canChangeUri>false</canChangeUri>

 <canChangeCallId>false</canChangeCallId>

 <canChangePasscode>true</canChangePasscode>

 <canPostMessage>true</canPostMessage>

 <canDeleteAllMessages>false</canDeleteAllMessages>

 <canRemoveSelf>false</canRemoveSelf>

 <canChangeNonMemberAccessAllowed>true</canChangeNonMemberAccessAllowed>

 <callLegProfile>0e76e943-6d90-43df-9f23-7f1985a74639</callLegProfile>

</coSpaceUser>

Verify

Now you can dial into the same meeting:

As a guest●

 - by dialing to URI (followed by the domain as configured on your call matching rules)

 - by entering the call-ID value 1234 via IVR or WebRTC join (no passcode)

As a host●

 By logging in as a user (a member of the space with assigned “host” callLegProfile, with
user1@evacanoalone.net in this scenario) via webRTC and join the space (“global” URI).

 - by dialing to “global” URI (followed by the domain as configured on your call matching rules)
and passcode 12345.

 - by entering the call-ID value 1234 via IVR or WebRTC join (with a host passcode 12345)

When there are only guests joined to the space, they are all put in a lobby room waiting for the
host to join in. Once a host joins, all of the guests and hosts are put in the conference. If there are
no hosts joined on the space anymore but still some guests, they return back to the lobby screen
as per the configuration of deactivate on deactivationMode parameter on the
guest callLegProfile as shown on Step 1.

Host (owner/member) can set(edit/remove) a password for guests directly in webRTC app or
completely disable a non-member (guest) access for the space:

Troubleshoot

This section provides information you can use in order to troubleshoot your configuration.

The logging of CMS does show us briefly when you join as a guest or when the first host joins but
it is best to verify using GET requests the callProfile as well as guest and host callLegProfile
definitions and the allocation of them on the respective accessMethods (or the default access
method) or at higher level (global level or tenant level).

You can follow on this structure to get all of the information:

GET on /api/v1/callProfiles (if using this with the passcodeMode)
>verify in detail the desired callProfile-ID using GET on /api/v1/callProfiles/<callProfile-ID>

1.

GET on /api/v1/callLegProfiles
>verify in detail the desired callLegProfile-IDs of guest and host using GET on
/api/v1/callProfiles/<callProfile-ID>

2.

GET on /api/v1/coSpaces
>verify in detail the desired space-ID using GET on /api/v1/coSpaces/<coSpace-ID>
>check if the desired callProfile-ID (step 1) and guest callLegProfile (step 2) are associated
to this space
 [if it is not there, check on the less specific elements like tenant (/api/v1/tenants/<tenant-
ID>) or global (/api/v1/system/profiles) level]

3.

GET on /api/v1/coSpaces/<coSpace-ID>/accessMethods
>verify in detail the desired accessMethod using GET on /api/v1/coSpaces/<coSpace-
ID>/accessMethods/<accessMethod-ID> to check if the host callLegProfile is assigned

4.

In the CMS logging shown int his example, you have first two guest participants coming in (call 38
from 2000@steven.lab and call 39 from 1060@steven.lab) who time out to the
guestpin.space@acano.steven.lab space and then the host joins. You can see from the snippet
that for guests it informs us about what needs to be done with it (to be deactivated) and you can
see this behavior for those calls change when the host (stejanss.movi@steven.lab) joins on the
space (ceasing to be deactivated). Similarly you can see the same logging again when the
guests move to the lobby again as soon as there are no hosts anymore on the space (to be
deactivated).

2017-02-21 17:48:54.809 Info call 38: incoming encrypted SIP call from

"sip:2000@steven.lab" to local URI "sip:guestpin.space@acano.steven.lab" 2017-02-21 17:48:54.822

Info call 38: setting up UDT RTP session for DTLS (combined media and control) 2017-02-21

17:48:54.837 Info call 38: compensating for far end not matching payload types 2017-02-21

17:48:54.847 Info sending prompt response (2) to BFCP message 2017-02-21 17:48:54.847 Info call

38: sending BFCP hello as client following receipt of hello when BFCP not active 2017-02-21

17:48:54.883 Warning call 38: replacing pending BFCP message "PrimitiveHelloAck" with

"PrimitiveHelloAck" 2017-02-21 17:48:54.883 Info call 38: BFCP (client role) now active 2017-02-

21 17:48:59.294 Info call 39: incoming encrypted SIP call from "sip:1060@steven.lab" to local

URI "sip:guestpin.space@acano.steven.lab" 2017-02-21 17:48:59.310 Info call 39: setting up UDT

RTP session for DTLS (combined media and control) 2017-02-21 17:48:59.323 Info call 39:

compensating for far end not matching payload types 2017-02-21 17:48:59.569 Info sending prompt

response (2) to BFCP message 2017-02-21 17:48:59.569 Info call 39: sending BFCP hello as client

following receipt of hello when BFCP not active 2017-02-21 17:48:59.746 Info call 39: BFCP

(client role) now active 2017-02-21 17:49:07.971 Info configuring call e2264fb0-483f-45bc-a4f3-

5a4ce326e72c to be deactivated

2017-02-21 17:49:07.972 Info participant "2000@steven.lab" joined space 22d9f4ca-8b88-

4d11-bba9-e2a2f7428c46 (Guest/Host PIN)

2017-02-21 17:49:12.463 Info configuring call b1b5d433-5ab5-49e1-9ae3-3f4f71703d1b to be

deactivated

2017-02-21 17:49:12.463 Info participant "1060@steven.lab" joined space 22d9f4ca-8b88-

4d11-bba9-e2a2f7428c46 (Guest/Host PIN)

2017-02-21 17:49:12.463 Info conference "Guest/Host PIN": unencrypted call legs now

present

2017-02-21 17:49:16.872 Info call 40: incoming encrypted SIP call from

"sip:stejanss.movi@steven.lab" to local URI "sip:guestpin.space@acano.steven.lab" 2017-02-21

17:49:16.885 Info call 40: setting up UDT RTP session for DTLS (combined media and control)

2017-02-21 17:49:24.260 Info call 40: audio prompt play time out 2017-02-21 17:49:26.670 Info

participant "stejanss.movi@steven.lab" joined space 22d9f4ca-8b88-4d11-bba9-e2a2f7428c46

(Guest/Host PIN)

2017-02-21 17:49:26.670 Info call e2264fb0-483f-45bc-a4f3-5a4ce326e72c ceasing to be

deactivated

2017-02-21 17:49:26.670 Info call b1b5d433-5ab5-49e1-9ae3-3f4f71703d1b ceasing to be

deactivated

2017-02-21 17:49:30.832 Info call 40: ending; remote SIP teardown - connected for 0:14

2017-02-21 17:49:30.833 Info participant "stejanss.movi@steven.lab" left space 22d9f4ca-

8b88-4d11-bba9-e2a2f7428c46 (Guest/Host PIN)

2017-02-21 17:49:30.833 Info configuring call e2264fb0-483f-45bc-a4f3-5a4ce326e72c to be

deactivated

2017-02-21 17:49:30.833 Info configuring call b1b5d433-5ab5-49e1-9ae3-3f4f71703d1b to be

deactivated

Related Information

Technical Support & Documentation - Cisco Systems●

CMS documentation●

https://www.cisco.com/c/en/us/support/index.html
https://www.cisco.com/c/en/us/support/conferencing/meeting-server/products-installation-and-configuration-guides-list.html

	Configure and Troubleshoot Guest and Host Access on CMS Spaces
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Configure
	1) Configuration using different URIs
	Verify

	2) Configuration using same URIs but non-empty guest and host PINs/passcodes
	Verify

	3) Configuration using same URIs with mix of empty guest PIN and non-empty host PIN
	Verify

	4) A host user is a member of the space and authorized via webRTC log in, guest users join the meeting with callID. Same URI and callID is used by guest and host participants with empty or non-empty PIN/passcodes for guest users
	Verify

	Troubleshoot
	Related Information

