Troubleshoot and Review of NDO Resources

Contents

Introduction

NDO QuickStart

Kubernetes with NDO Crash-Course

NDO Overview with Kubernetes Commands

CLI Access Login

NDO Namespaces Review

NDO Deployment Review

NDO Replica Set (RS) Review

NDO Pod Review

Use-case Pod is not Healthy

CLI Troubleshoot for Unhealthy Pods

How to Run Network Debug Commands from Inside a Container
Inspect the Pod Kubernetes (K8s) ID

How tolnspect the PID from the Container Runtime

How to Use nsenter to Run Network Debug Commands Inside a Container

Introduction

This document describes how to review and troubleshoot NDO with the kubectl and container
runtime CLI.

NDO QuickStart

The Cisco Nexus Dashboard Orchestrator (NDO) is a fabric administrative tool, which allows users
to manage different kinds of fabrics that include Cisco® Application Centric Infrastructure (Cisco
ACI®) sites, Cisco Cloud ACI sites, and Cisco Nexus Dashboard Fabric Controller (NDFC) sites,
with each managed by its own controller (APIC cluster, NDFC cluster, or Cloud APIC instances in
a public cloud).

NDO provides consistent network and policy orchestration, scalability, and disaster recovery
across multiple data centers through a single pane of glass.

In the earlier days, the MSC (Multi-Site Controller) was deployed as a three-node cluster with
VMWare Open Virtual Appliances (OVAS) that allowed customers to initialize a Docker Swarm
cluster and the MSC services. This Swarm cluster manages the MSC microservices as Docker
containers and services.

This picture shows a simplified view on how the Docker Swarm manages the microservices as
replicas of the same container to achieve high availability.

taissk container
|

; < Nginx.1 nginx:latest
service /
} d available node
3 nginx
replicas —» nginx.2 nginx:latest

avallable node
SWarm manager

nginx.3 nginx:latest

availlable node

The Docker Swarm was responsible to maintain the expected number of replicas for each one of
the microservices in the MSC Architecture. From the Docker Swarm point of view, the Multi-Site
Controller was the only container deployment to orchestrate.

Nexus Dashboard (ND) is a central management console for multiple data center sites and a
common platform that hosts Cisco data center operation services, which include Nexus Insight
and MSC version 3.3 onwards, and changed the name to Nexus Dashboard Orchestrator (NDO).

While most of the microservices that comprise the MSC architecture remain the same, NDO is
deployed in a Kubernetes (K8s) cluster rather than in a Docker Swarm one. This allows ND to
orchestrate multiple applications or deployments instead of just one.

Kubernetes with NDO Crash-Course

Kubernetes is an open-source system for automate deployment, scalability, and management of
containerized applications. As Docker, Kubernetes works with the container technology, but is not
tied with Docker. This means Kubernetes supports other container platforms (Rkt, PodMan).

A key difference between Swarm and Kubernetes is that the latter does not work with containers
directly, it works with a concept of co-located groups of containers, called Pods, instead.

The containers in a Pod must run in the same node. A group of Pods is called a Deployment. A
Kubernetes deployment can describe a whole application.

Kubernetes also allows the users to ensure a certain amount of resources are available for any
given application. This is done with the use of Replication Controllers, to ensure the number of
Pods are consistent with the Application Manifests.

A Manifest is a YAML-formatted file that describes a resource to be deployed by the Cluster. The
resource can be any of those described before or others available for users.

The Application can be accessed externally with one or more services. Kubernetes includes a
Load Balancer option to accomplish this.

Kubernetes also offers a way to isolate different resources with the concept of Namespaces. The
ND uses Namespaces to uniquely identify different Applications and Cluster Services. When CLI
commands are run, always specify the Namespace.

Although a deep knowledge of Kubernetes is not required to troubleshoot ND or NDO, a basic
understanding of the Kubernetes architecture is required to properly identify the resources with
issues or that need attention.

The basics of Kubernetes resource architecture is shown in this diagram:

r A

S ReplicaSet

' Nameaspace |

It is important to remember how each kind of resource interacts with the others, and it plays a
major role in the review and troubleshoot process.

NDO Overview with Kubernetes Commands

CLI Access Login

For the CLI access by SSH to NDO, the admin-user password is needed. However, instead we use
the rescue-user password. Like in:

ssh rescue-user@ND-mgmt-IP
rescue-user@XX.XX.XX.XX’'s password:
[rescue-user@MxNDsh01l ~]1$ pwd
/home/rescue-user
[rescue-user@MxNDsh01l ~1$

This is the default mode and user for CLI access and most of the information is available to see.

NDO Namespaces Review

This K8s concept allows for isolation of different resources across the cluster. The next command
can be used to review the different Namespaces deployed:

[rescue-user@MxNDsh01l ~]$ kubectl get namespace

NAME STATUS AGE

authy Active 1774
authy-oidc Active 1774
cisco-appcenter Active 1774
cisco-intersightdc Active 1774
cisco-mso Active 1764
cisco-nir Active 22d

clicks Active 1774
confd Active 1774
default Active 1774
elasticsearch Active 22d

eventmgr Active 1774
firmwared Active 1774
installer Active 1774
kafka Active 1774
kube-node-lease Active 1774
kube-public Active 1774
kube-system Active 1774
kubese Active 1774
maw Active 1774
mond Active 1774
mongodb Active 1774
nodemgr Active 1774
ns Active 1774
rescue-user Active 1774
securitymgr Active 1774
sm Active 1774
statscollect Active 1774
ts Active 1774
zk Active 1774

The entries in bold belong to Applications in the NDO, while the entities that begin with the prefix
kube belong to the Kubernetes cluster. Each Namespace has its own independent deployments
and Pods

The kubectl CLI allows to specify a namespace with the --namespace option, if a command is run
without it, the CLI assumes the Namespace is default (Namespace for k8s):

[rescue-user@MxNDsh01l ~]$ kubectl get pod --namespace cisco-mso
NAME READY STATUS RESTARTS AGE
auditservice-648cd4c6£8-b29hh 2/2 Running 0 44h

[rescue-user@MxNDsh01l ~]$ kubectl get pod
No resources found in default namespace.

The kubectl CLI allows different kinds of formats for the output, such as yaml, JSON, or a custom-
made table. This is achieved with the -o [format] option. For example:

[rescue-user@MxNDsh01l ~]$ kubectl get namespace -o JSON

"apiVersion": "v1",

"items": [

"apiVersion": "vl",
"kind": "Namespace",
"metadata": {
"annotations": {
"kubectl.kubernetes.io/last-applied-configuration":
"{\"apiVersion\":\"v1\",\"kind\":\"Namespace\", \"metadata\": {\"annotations\":{}, \"labels\":{\"se

rviceType\":\"infra\"}, \"name\":\"authy\"}}\n"

b,

"creationTimestamp": "2022-03-28T21:52:072",
"labels": {
"serviceType": "infra"

I

"name": "authy",

"resourceVersion": "826",

"selfLink": "/api/vl/namespaces/authy",

"uid": "373e9d43-42b3-40b2-a981-973bdddccd8d"

1,

"kind": "List",

"metadata": {
"resourceVersion": "",

"selfLink": ""

}
From the previous text, the output is a dictionary where one of its keys is called items and the
value is a list of dictionaries where each dictionary accounts for a Namespace entry and its
attributes are key-value pair value in the dictionary or nested dictionaries.

This is relevant because K8s provides users with the option to select jsonpath as the output, this
allows for complex operations for a JSON data array. For example, from the previous output, if we
access the value of name for Namespaces, we need to access the value of items list, then the
metadata dictionary, and get the value of the key name. This can be done with this command:

[rescue-user@MxNDsh01l ~]$ kubectl get namespace -o=jsonpath='{.items[*].metadata.name}"

authy authy-oidc cisco-appcenter cisco-intersightdc cisco-mso cisco-nir clicks confd default
elasticsearch eventmgr firmwared installer kafka kube-node-lease kube-public kube-system kubese
maw mond mongodb nodemgr ns rescue-user securitymgr sm statscollect ts zk

[rescue-user@MxNDsh01l ~]$

The hierarchy described is used to fetch the specific information required. Basically, all items
are accessed in the items list with items[*], then the key metadata and name with metadata.name, the
query can include other values to display.

The same applies for the option of custom columns, which use a similar way to fetch the
information from the data array. For example, if we create a table with the information about the
name and the uib values, we can apply the command:

[rescue-user@MxNDsh01l ~]$ kubectl get namespace -o custom-
columns=NAME: .metadata.name,UID: .metadata.uid

NAME UID

authy 373e9d43-42b3-40b2-a981-973bdddccd8d
authy-oidc bab54£83d-edcc-4dc3-9435-a877df02b51e
cisco-appcenter 46c4534e-96bc-4139-8a5d-1d9%a3bbaefdc

cisco-intersightdc bd91588b-2cf8-443d-935e-7bd0£93d7256

cisco-mso d21d4d24-9cde-4169-91£3-8c303171a5fc
cisco-nir lcd4dbale-£f21b-4efl-abcf-026dbed18928
clicks e7£45f6c-965b-4bd0-bf35-cbbb38548362
confd 302aebac-602b-4a89-acld-1503464544£7
default 2a3cTefa-bbad-4216-bble-9e5b9f231de2
elasticsearch fa0f18£6-95d9-4cdf-89db-2175a685a761

The output requires a name for each column to display and then assign the value for the output. In
this example, there are two columns: NAME and uiD. These values belong to .metada.name
and .metadata.uid respectively. More information and examples are available at:

JSONPath Support

Custom columns

NDO Deployment Review

A Deployment is a K8s object that provides a joined space to manage ReplicaSet and Pods.
Deployments deal with the roll out of all Pods that belong to an Application and the expected
number of copies of each one.

The kubectl CLI includes a command to check the deployments for any given Namespace:

https://kubernetes.io/docs/reference/kubectl/jsonpath/
https://kubernetes.io/docs/reference/kubectl/#custom-columns

[rescue-user@MxNDsh01l ~]$ kubectl get deployment -n cisco-mso

NAME READY UP-TO-DATE AVAILABLE AGE

auditservice 1/1 1 1 3d22h
backupservice 1/1 1 1 3d22h
cloudsecservice 1/1 1 1 3d22h
consistencyservice 1/1 1 1 3d22h
dcnmworker 1/1 1 1 3d22h
eeworker 1/1 1 1 3d22h
endpointservice 1/1 1 1 3d22h
executionservice 1/1 1 1 3d22h
fluentd 1/1 1 1 3d22h
importservice 1/1 1 1 3d22h
jobschedulerservice 1/1 1 1 3d22h
notifyservice 1/1 1 1 3d22h
pctagvnidservice 1/1 1 1 3d22h
platformservice 1/1 1 1 3d22h
platformservice2 1/1 1 1 3d22h
policyservice 1/1 1 1 3d22h
schemaservice 1/1 1 1 3d22h
sdaservice 1/1 1 1 3d22h
sdwanservice 1/1 1 1 3d22h
siteservice 1/1 1 1 3d22h
siteupgrade 1/1 1 1 3d22h
syncengine 1/1 1 1 3d22h
templateeng 1/1 1 1 3d22h
ui 1/1 1 1 3d22h
userservice 1/1 1 1 3d22h

We can use the same custom table with the use of deployment instead of namespace and the -n option
to see the same information as before. This is because the output is structured in a similar way.

[rescue-user@MxNDsh01l ~]$ kubectl get deployment -n cisco-mso -o custom-
columns=NAME: .metadata.name,UID: .metadata.uid

NAME UID

auditservice 6e38f646-7f62-45bc-add6-6e0f64fbl4ad4

backupservice 8da3edfc-7411-4599-8746-09fecae75afee
cloudsecservice 80c91355-177e-4262-9763-0a881eb79382
consistencyservice ae3e2d81-6£f33-4f93-8ece-7959a3333168
dcnmworker £560b8252-9153-46bf-af7b-18aal8a0bb97
eeworker c53b644e-3d8e-4e74-a4£5-945882ed098¢£
endpointservice 5a7aab5al-911d-4£31-9d38-e4451937d3b0
executionservice 3565e911-9£49-4c0c-b8b4d-7c5a85bb0299
fluentd c97ea063-£6d2-45d6-99e3-1255a12e7026
importservice 735d1440-11ac-41c2-afeb-9337c9e8e359

jobschedulerservice e7b80ec5-cc28-40a6-a234-c43b399%edbel

notifyservice 75ddb357-00fb-4cd8-80a8-14931493cfb4
pctagvnidservice ebf7f9cf-964e-46e5-a90a-6£3elb762979
platformservice 579eaael0-792f-49a0-accc-d01lcab8b2891
platformservice?2 4af222c9-7267-423d-8f2d-al02e8a7a3c04
policyservice dle2fff0-251a-447f-bd0b-9e5752e9ff3e
schemaservice a3fca8a3-842b-4c02-a7de-612£87102£f5c
sdaservice d895ae97-2324-400b-b£f05-b3c5291£5d14
sdwanservice a39b5c56-8650-4adb-be28-5e2d67caelal
siteservice dff5aae3-d78b-4467-9ee8-a6272ee9cab2
siteupgrade 70a206cc-4305-4dfe-b572-£55e0ef606ch
syncengine e0f590bf-4265-4c33-b414-7710fe2f776b
templateeng 9719434c-2b46-41dd-b567-bdf14£048720
ui 4f0b3e32-3e82-469b-9469-27e259c64970
userservice 73760e68-4be6-4201-959e-07e92c£9£fbb3

Keep in mind the number of copies displayed is for the deployment, not the number of Pods for
each microservice.

We can use the keyword describe instead of get to display more detailed information about a
resource, in this case the schemaservice deployment:

[rescue-user@MxNDsh01l ~]1$ kubectl describe deployment -n cisco-mso schemaservice
Name : schemaservice

Namespace: cisco-mso

CreationTimestamp: Tue, 20 Sep 2022 02:04:58 +0000

Labels: k8s-app=schemaservice

scaling.case.cncf.io=scale-service

Annotations: deployment . kubernetes.io/revision: 1

kubectl.kubernetes.io/last-applied-configuration:

{"apiVersion":"apps/vl", "kind": "Deployment", "metadata": {"annotations":{},"c
reationTimestamp" :null, "labels":{"k8s-app": "schemaservice", "sca...

Selector: k8s-app=schemaservice

Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType: Recreate

MinReadySeconds: 0

Pod Template:

Labels: cpu.resource.case.cncf.io/schemaservice=cpu-lg-service

k8s-app=schemaservice

memory.resource.case.cncf.io/schemaservice=mem-xlg-service

Service Account: cisco-mso-sa

Init Containers:

init-msc:

Image: cisco-mso/tools:3.7.13
Port: <none>

Host Port: <none>

Command :

/check_mongo.sh

Environment: <none>

Mounts:

/secrets from infracerts (rw)

Containers:
schemaservice:
Image: cisco-mso/schemaservice:3.7.13
Ports: 8080/TCP, 8080/UDP

Host Ports: O0/TCP, 0/UDP

Command :

/launchscala.sh

schemaservice

Liveness: http-get http://:8080/api/vl/schemas/health delay=300s timeout=20s period=30s
#success=1 #failure=3

Environment:
JAVA_OPTS: -XX:+IdleTuningGcOnIdle
Mounts:
/jwtsecrets from jwtsecrets (rw)
/logs from logs (rw)
/secrets from infracerts (rw)
msc-schemaservice-ssl:
Image: cisco-mso/sslcontainer:3.7.13
Ports: 443 /UDP, 443/TCP
Host Ports: 0/UDP, 0/TCP
Command :
/wrapper.sh
Environment:
SERVICE_PORT: 8080
Mounts:
/logs from logs (rw)
/secrets from infracerts (rw)
schemaservice-leader-election:
Image: cisco-mso/tools:3.7.13
Port: <none>
Host Port: <none>
Command :
/start_election.sh
Environment:
SERVICENAME: schemaservice
Mounts:
/logs from logs (rw)
Volumes:

logs:

Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same
namespace)
ClaimName: mso-logging
ReadOnly: false
infracerts:
Type: Secret (a volume populated by a Secret)
SecretName: cisco-mso-secret-infra
Optional: false
jwtsecrets:
Type: Secret (a volume populated by a Secret)
SecretName: cisco-mso-secret-jwt
Optional: false
Conditions:
Type Status Reason
Available True MinimumReplicasAvailable
Progressing True NewReplicaSetAvailable
Events: <none>

[rescue-user@MxNDsh01l ~]$

The describe command also allows inclusion of the --show-events=true option to show any relevant

event for the deployment.

Spoiler

NDO Replica Set (RS) Review

Spoiler
###4# THIS IS ONLY AVAILABLE FOR ROOT USER #####

A Replica Set (RS) is a K8s object with the objective to maintain a stable number of replica Pods.
This object also detects when an unhealthy number of replicas are seen with a periodic probe to
the Pods.

The RS are also organized in namespaces.

[root@MxNDshO1l ~]# kubectl get rs -n cisco-mso

NAME DESIRED CURRENT READY AGE

auditservice-648cd4c6£f8 1 1 1 3d22h

backupservice-64b755b44c 1 1 1 3d22h

cloudsecservice-7df465576 1 1 1 3d22h
consistencyservice-c98955599 1 1 1 3d22h
denmworker-5d4d5cbb64 1 1 1 3d22h
eeworker-56£9£fb9ddb 1 1 1 3d22h
endpointservice-7d£9d5599¢c 1 1 1 3d22h
executionservice-58££89595f 1 1 1 3d22h
fluentd-86785£89bd 1 1 1 3d22h
importservice-88bcc8547 1 1 1 3d22h
jobschedulerservice-5d4£fdfd696 1 1 1 3d22h
notifyservice-75c988cfd4 1 1 1 3d22h
pctagvnidservice-644b755596 1 1 1 3d22h
platformservice-65cddb946f 1 1 1 3d22h
platformservice2-6796576659 1 1 1 3d22h
policyservice-545b9c7d9c 1 1 1 3d22h
schemaservice-7597ff4c5 1 1 1 3d22h
sdaservice-5£477dd8c7 1 1 1 3d22h
sdwanservice-6£87cd999d 1 1 1 3d22h
siteservice-86bb756585 1 1 1 3d22h
siteupgrade-7d578f9b6d 1 1 1 3d22h
syncengine-5b8bdd6b4d5 1 1 1 3d22h
templateeng-5cbf9fdc48 1 1 1 3d22h
ui-84588b7c96 1 1 1 3d22h
userservice-87846£f7c6 1 1 1 3d22h

The describe option includes the information about the URL, the port the probe uses, and the
periodicity of tests and failure threshold.

[root@MxNDshO1l ~]# kubectl describe rs -n cisco-mso schemaservice-7597ff4c5
Name : schemaservice-7597ff4c5

Namespace: cisco-mso

Selector: k8s-app=schemaservice,pod-template-hash=7597ff4c5

Labels: cpu.resource.case.cncf.io/schemaservice=cpu-lg-service

k8s-app=schemaservice

memory.resource.case.cncf.io/schemaservice=mem-xlg-service

pod-template-hash=7597ff4c5

Annotations: deployment .kubernetes.io/desired-replicas: 1

deployment .kubernetes.io/max-replicas: 1

deployment . kubernetes.io/revision: 1

Controlled By: Deployment/schemaservice

Replicas: 1 current / 1 desired

Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed

Pod Template:

Labels: cpu.resource.case.cncf.io/schemaservice=cpu-lg-service

k8s-app=schemaservice

memory.resource.case.cncf.io/schemaservice=mem-xlg-service

pod-template-hash=7597ff4c5

Service Account: cisco-mso-sa

Init Containers:

init-msc:
Image: cisco-mso/tools:3.7.13
Port: <none>

Host Port: <none>

Command :

/check_mongo.sh

Environment: <none>

Mounts:

/secrets from infracerts (rw)

Containers:
schemaservice:
Image: cisco-mso/schemaservice:3.7.13
Ports: 8080/TCP, 8080/UDP

Host Ports: O0/TCP, 0/UDP

Command :

/launchscala.sh

schemaservice

Liveness: http-get http://:8080/api/vl1l/schemas/health delay=300s timeout=20s period=30s
#success=1 #failure=3

Environment:
JAVA_OPTS: -XX:+IdleTuningGcOnIdle
Mounts:
/jwtsecrets from jwtsecrets (rw)
/logs from logs (rw)
/secrets from infracerts (rw)
msc-schemaservice-ssl:
Image: cisco-mso/sslcontainer:3.7.13
Ports: 443 /UDP, 443/TCP
Host Ports: 0/UDP, 0/TCP
Command :

/wrapper.sh
NDO Replica Set (RS) Review #### THIS IS ONLY AVAILABLE FOR ROOT USER ##### A
Replica Set (RS) is a K8s object with the objective to maintain a stable number of replica Pods.
This object also detects when an unhealthy number of replicas are seen with a periodic probe to
the Pods. The RS are also organized in namespaces. [root@MxNDsh01 ~]# kubectl getrs -n

cisco-msoNAME DESIRED CURRENT READY AGEauditservice-
648cd4c6f8 1 1 1 3d22hbackupservice-64b755b44c 1 1 1
3d22hcloudsecservice-7df465576 1 1 1 3d22hconsistencyservice-c98955599
1 1 1 3d22hdcnmworker-5d4d5cbb64 1 1 1 3d22heeworker-
56f9fb9ddb 1 1 1 3d22hendpointservice-7df9d5599c 1 1 1
3d22hexecutionservice-58ff89595f 1 1 1 3d22hfluentd-86785f89bd

1 1 1 3d22himportservice-88bcc8547 1 1 1

3d22hjobschedulerservice-5d4fdfd696 1 1 1 3d22hnotifyservice-75¢988cfd4

1 1 1 3d22hpctagvnidservice-644b755596 1 1 1
3d22hplatformservice-65cddb946f 1 1 1 3d22hplatformservice2-6796576659
1 1 1 3d22hpolicyservice-545b9c7d9c 1 1 1

3d22hschemaservice-7597ff4c5 1 1 1 3d22hsdaservice-5f477dd8c7

1 1 1 3d22hsdwanservice-6f87cd999d 1 1 1 3d22hsiteservice-
86bb756585 1 1 1 3d22hsiteupgrade-7d578fobed 1 1 1
3d22hsyncengine-5b8bdd6b45 1 1 1 3d22htemplateeng-5cbfofdc48

1 1 1 3d22hui-84588b7c96 1 1 1 3d22huserservice-
87846f7c6 1 1 1 3d22h The describe option includes the information about

the URL, the port the probe uses, and the periodicity of tests and failure threshold.
[root@MxNDshO1 ~]# kubectl describe rs -n cisco-mso schemaservice-7597ff4Ac5Name:
schemaservice-7597ffAcbNamespace: cisco-msoSelector: k8s-app=schemaservice,pod-
template-hash=7597ff4c5Labels: cpu.resource.case.cncf.io/schemaservice=cpu-Ig-
service k8s-app=schemaservice
memory.resource.case.cncf.io/schemaservice=mem-xlg-service pod-template-
hash=7597ff4c5Annotations: deployment.kubernetes.io/desired-replicas: 1
deployment.kubernetes.io/max-replicas: 1 deployment.kubernetes.io/revision:
1Controlled By: Deployment/schemaserviceReplicas: 1 current/ 1 desiredPods Status: 1
Running / 0 Waiting / O Succeeded / O FailedPod Template: Labels:

cpu.resource.case.cncf.io/schemaservice=cpu-lg-service k8s-

app=schemaservice memory.resource.case.cncf.io/schemaservice=mem-xIg-
service pod-template-hash=7597ff4c5 Service Account: cisco-mso-sa Init
Containers: init-msc: Image: cisco-mso/tools:3.7.1] Port: <none> Host Port:
<none> Command: /check_mongo.sh Environment: <none> Mounts: /secrets from
infracerts (rw) Containers: schemaservice: Image: cisco-mso/schemaservice:3.7.1j
Ports: 8080/TCP, 8080/UDP Host Ports: O/TCP, O/UDP Command: /launchscala.sh
schemaservice Liveness: http-get http://:8080/api/vl/schemas/health delay=300s timeout=20s
period=30s #success=1 #failure=3 Environment: JAVA_OPTS: -XX:+IdleTuningGcOnldle
Mounts: /jwtsecrets from jwtsecrets (rw) /logs from logs (rw) /secrets from infracerts (rw)
msc-schemaservice-ssl: Image: cisco-mso/ssicontainer:3.7.1] Ports: 443/UDP,
443/TCP Host Ports: 0/UDP, O/TCP Command: /wrapper.sh

NDO Pod Review

A Pod is a group of closely related containers that run in the same Linux Namespace (different
from K8s Namespace) and in the same K8s node. This is the most atomic object K8s handles, as
it does not interact with containers. The application can consist of a single container or be more
complex with many containers. With the next command, we can check the Pods of any given
namespace:

[rescue-user@MxNDsh01l ~]$ kubectl get pod --namespace cisco-mso

NAME READY STATUS RESTARTS AGE
auditservice-648cd4c6£8-b29hh 2/2 Running 0 2d1lh
backupservice-64b755bd4c-vepf9 2/2 Running 0 2d1lh
cloudsecservice-7df465576-pwbh4 3/3 Running 0 2d1lh
consistencyservice-c98955599-glsx5 3/3 Running 0 2d1lh
dcnmworker-5d4d5cbb64-gxbt8 2/2 Running 0 2d1lh
eeworker-56£f9fb9ddb-tjggb 2/2 Running 0 2d1lh
endpointservice-7d£9d5599¢c-rf9bw 2/2 Running 0 2d1lh
executionservice-58f£f89595f-xf8vz 2/2 Running 0 2d1lh
fluentd-86785£89bd-g5wdp 1/1 Running 0 2d1lh
importservice-88bcc8547-gd4kr5 2/2 Running 0 2d1lh
jobschedulerservice-5d4£fdfd696-tbvqgj 2/2 Running 0 2d1lh
mongodb-0 2/2 Running 0 2d1lh
notifyservice-75c988cfd4-pkkfw 2/2 Running 0 2d1lh
pctagvnidservice-644b755596-s4zjh 2/2 Running 0 2d1lh
platformservice-65cddb946f-7mkzm 3/3 Running 0 2d1lh
platformservice2-6796576659-x2t8f 4/4 Running 0 2d1lh

policyservice-545b9c7d9c-m5pbf 2/2 Running 0 2d1lh

schemaservice-7597ffdc5-wdx5d 3/3 Running 0 2d1lh

sdaservice-5£477dd8c7-15jn7 2/2 Running 0 2d1lh
sdwanservice-6£87cd999d-6£fjb8 3/3 Running 0 2d1lh
siteservice-86bb756585-5n5vb 3/3 Running 0 2d1lh
siteupgrade-7d578£f9b6d-7kgkf 2/2 Running 0 2d1lh
syncengine-5b8bdd6b45-2sr9w 2/2 Running 0 2d1lh
templateeng-5cbf9fdc48-fqwd7 2/2 Running 0 2d1lh
ui-84588b7c96-7rfvft 1/1 Running 0 2d1lh
userservice-87846f7c6-1zctd 2/2 Running 0 2d1lh

[rescue-user@MxNDsh01l ~]1$
The number seen in the second column refers to the number of containers for each Pod.

The describe option is also available, which includes detailed information about the containers on
each Pod.

[rescue-user@MxNDsh01l ~]$ kubectl describe pod -n cisco-mso schemaservice-7597ff4c5-widx5d

Name : schemaservice-7597ff4c5-wdx5d
Namespace: cisco-mso

Priority: 0

Node: mxndsh01/172.31.0.0

Start Time: Tue, 20 Sep 2022 02:04:59 +0000
Labels: cpu.resource.case.cncf.io/schemaservice=cpu-lg-service
k8s-app=schemaservice
memory.resource.case.cncf.io/schemaservice=mem-xlg-service
pod-template-hash=7597£ff4c5
Annotations: k8s.vl.cni.cncf.io/networks-status:
[{
"name": "default",
"interface": "ethO",
"ips": [
"172.17.248.16"
1,

"mac": "3e:a2:bd:ba:1c:38",

"dns": {}

}]

kubernetes.io/psp: infra-privilege

Status: Running

IP: 172.17.248.16
IPs:

IP: 172.17.248.16

Controlled By: ReplicaSet/schemaservice-7597ff4c5

Init Containers:

init-msc:

Container ID: cri-o://0c700£f4e56a6c414510edcb62b779¢c7118£fab9¢c1406£fdac49e742136db4efbbs8

Image: cisco-mso/tools:3.7.17

Image ID: 172.31.0.0:30012/cisco-
mso/tools@sha256:3ee91e069b9%bdal027d53425e0£1261a5b992dbe2e85290dfcab67b6£366410425

Port: <none>
Host Port: <none>
Command :

/check_mongo.sh

State: Terminated
Reason: Completed
Exit Code: 0
Started: Tue, 20 Sep 2022 02:05:39 +0000
Finished: Tue, 20 Sep 2022 02:06:24 +0000
Ready: True

Restart Count: O

Environment: <none>

Mounts:

/secrets from infracerts (rw)

/var/run/secrets/kubernetes.io/serviceaccount from cisco-mso-sa-token-tn451 (ro)

Containers:

schemaservice:

Container ID: cri-o0://d2287£8659dec6848c0100b7d24aeebd506£3f77af660238calc9c7e8946f4ac

Image: cisco-mso/schemaservice:3.7.13

Image ID: 172.31.0.0:30012/cisco-
mso/schemaservice@sha256:6d9fae07731cd2dcafl7¢c04742d2d4a7£f9¢c82f1£fc743£fd836£fe59801a21d985¢

Ports: 8080/TCP, 8080/UDP
Host Ports: 0/TCpP, 0/UDP
Command :

/launchscala.sh

schemaservice
State: Running

Started: Tue, 20 Sep 2022 02:06:27 +0000
Ready: True

Restart Count: 0
Limits:

cpu: 8

memory: 30Gi
Requests:

cpu: 500m

memory: 2Gi
The information displayed includes the container image for each container and shows the
Container Runtime used. In this case, CRI-O (cri-o), previous versions of ND used to work with
Docker, this influences how to attach to a container.

Spoiler

For example, when cri-o is used, and we want to connect by an interactive session to a container
(via the exec -it option) to the container from the previous output; but instead of the docker command,
we use the criclt command:

schemaservice:
Container ID: cri-o://d42287£8659dec6848c0100b7d24aeebd506£3£77af660238calc9c7e8946£f4ac

Image: cisco-mso/schemaservice:3.7.13

We use this command:

[root@MxNDshOl ~]# crictl exec -it
d2287£8659dec6848c0100b7d24aeebd506£3£f77af660238calc9c7e8946f4ac bash

root@schemaservice-7597ff4c5-widx5d: /#

root@schemaservice-7597ff4c5-widx5d: /# whoami

root

For later ND releases, the Container ID to be used is different. First, we need to use the
command crictl ps to list all the containers that run on each node. We can filter the result as
required.

[root@singleNode ~]# crictl ps| grep backup

a9bb161d67295 10.31.125.241:30012/cisco-
mso/sslcontainer@sha256:26581eebd0bd6f£4378a5fe4a98973dbdadl17¢c1905689£71£229765621f0cee75 2 days
ago that run msc-backupservice-ssl 0 84b3c691cfc2b

4b26£67fcl0cf 10.31.125.241:30012/cisco-
mso/backupservice@sha256:c21f4cdde696a5f2dfa7bb910b7278fc3£fb4d46b02f42c3554£872ca8c87c061 2 days
ago Running backupservice 0 84b3c691cfc2b

[root@singleNode ~]#

With the value from the first column, we can then access the Container run-time with the same
command as before:

[root@singleNode ~]# crictl exec -it 4b26£f67fcl0cf bash
root@backupservice-8c699779f-j9jtr:/# pwd
/

For example, when cri-o is used, and we want to connect by an interactive session to a container
(via the exec -it option) to the container from the previous output; but instead of the docker
command, we use the criclt command: schemaservice: Container ID: cri-
0://d228718659dec6848c0100b7d24aeebd506f3f77af660238ca0c9c7e8946f4ac Image:
cisco-mso/schemaservice:3.7.1j We use this command: [root@MxNDsh01 ~J# crictl exec -it
d228718659dec6848c0100b7d24aeebd506f3f77af660238ca0c9c7e8946f4ac
bashroot@schemaservice-7597ff4c5-wax5d:/#root@schemaservice-7597ff4c5-wax5d:/#
whoamiroot For later ND releases, the Container ID to be used is different. First, we need to use
the command crictl ps to list all the containers that run on each node. We can filter the result as
required. [root@singleNode ~J# crictl ps| grep backupa9bb161d67295 10.31.125.241:30012/cisco-
mso/sslcontainer@sha256:26581eebd0bd6f4378a5fe4a98973dbda417c1905689f71f229765621f0
cee75 2 days ago that run msc-backupservice-ssl 0 84b3c691cfc2b4b26f67fc10cf
10.31.125.241:30012/cisco-
mso/backupservice@sha256:c21f4cdde696a5f2dfa7bb910b7278fc3fb4d46b02f42c35541872ca8c
87c061 2 days ago Running backupservice 0 84b3c691cfc2b[root@singleNode ~]# With the value
from the first column, we can then access the Container run-time with the same command as
before: [root@singleNode ~]# crictl exec -it 4b26f67fc10cf bashroot@backupservice-8c699779f-
j9jtr:/# pwd/

Use-case Pod is not Healthy

We can use this information to troubleshoot why Pods from a deployment are not healthy. For this
example, the Nexus Dashboard version is 2.2-1d and the affected Application is Nexus Dashboard
Orchestrator (NDO).

The NDO GUI displays an incomplete set of Pods from the Service view. In this case 24 out of 26
Pods.

Overview

Service Catalog

Sites

Services Installed Services

System Resources

Operations

Infrastructure

Nexus Dashboard Orchestrator sss
Cisco

Administrative Manage intersite connectivity, provisioning of...

3 24726 5H4/b4

Another view available under the system Resources -> Pods View where the Pods show a status
different from Ready.

CLI Troubleshoot for Unhealthy Pods

With the known fact the Namespace is cisco-mso (although when troubleshot, it is the same for
other apps/namespaces) the Pod view displays if there is any unhealthy ones:

[rescue-user@MxNDsh01l ~]$ kubectl get deployment -n cisco-mso
NAME READY UP-TO-DATE AVAILABLE AGE
auditservice 1/1 1 1 6d18h
backupservice 1/1 1 1 6d18h
cloudsecservice 1/1 1 1 6d18h
consistencyservice 0/1 1 0 6418h <---
fluentd 0/1 1 0 6d418h <---

syncengine 1/1 1 1 6d18h

templateeng 1/1 1 1 6d18h

ui 1/1 1 1 6418h

userservice 1/1 1 1 6d18h

For this example, we focus in the consistencyservice Pods. From the JSON output, we can get the
specific information from the status fields, with the use of jsonpath:

[rescue-user@MxNDsh01l ~]$ kubectl get deployment -n cisco-mso consistencyservice -o json
{

<--- OUTPUT OMITTED ---->

"status": {

"conditions": [

{

"message": "Deployment does not have minimum availability.",
"reason": "MinimumReplicasUnavailable",

},

{

"message": "ReplicaSet \"consistencyservice-c98955599\" has timed out progressing.",
"reason": "ProgressDeadlineExceeded",

}

1,

}

}

[rescue-user@MxNDsh01 ~]1$

We see the status dictionary and inside a list called conditions with dictionaries as items with the
keys message and value, the {"\n"} part is to create a new line at the end:

[rescue-user@MxNDsh01l ~]1$ kubectl get deployment -n cisco-mso consistencyservice -
o=jsonpath='{.status.conditions[*] .message}{"\n"}"'

Deployment does not have minimum availability. ReplicaSet "consistencyservice-c98955599" has
timed out progressing.

[rescue-user@MxNDsh01l ~]$

This command shows how to check from the get Pod for the Namespace:

[rescue-user@MxNDsh01l ~]$ kubectl get pods -n cisco-mso
NAME READY STATUS RESTARTS AGE
consistencyservice-c98955599-qlsx5 0/3 Pending 0 6d19h
executionservice-58ff89595f-xf8vz 2/2 Running 0 6d19h
fluentd-86785£89bd-g5wdp 0/1 Pending 0 6d19h
importservice-88bcc8547-gd4kr5 2/2 Running 0 6d19h
jobschedulerservice-5d4fdfd6e96-tbvgj 2/2 Running 0 6d19h
mongodb-0 2/2 Running 0 6d19h

With the get pods command, we can get the Pod ID with issues that must match with the one from
the previous output. In this example consistencyservice-c98955599-qlsx5.

The JSON output format also provides how to check specific information, from the given output.

[rescue-user@MxNDsh01l ~]$ kubectl get pods -n cisco-mso consistencyservice-c98955599-glsx5 -o

json

{

<--- OUTPUT OMITTED ---->
"spec": {

<--- OUTPUT OMITTED ---->

"containers": [

{

<--- OUTPUT OMITTED ---->
"resources": {

"limits": {

"cpu": "8",

"memory": "8Gi"

Y,

"requests": {

"cpu": "500m",

"memory": "1Gi"

}

Y,

<--- OUTPUT OMITTED ---->
"status": {

"conditions": [

{

"lastProbeTime": null,

"lastTransitionTime": "2022-09-20T02:05:01z",

"message": "0/1 nodes are available: 1 Insufficient cpu.",
"reason": "Unschedulable",

"status": "False",

"type": "PodScheduled"

}

1,

"phase": "Pending",

"gosClass": "Burstable"

}

}

[rescue-user@MxNDsh01l ~1$

The JSON output must include information about the status in the attribute with same name. The

message includes information about reason.

[rescue-user@MxNDsh01l ~]$ kubectl get pods -n cisco-mso consistencyservice-c98955599-glsx5 -
o=jsonpath='{.status}{"\n"}"'

map[conditions: [map[lastProbeTime:<nil> lastTransitionTime:2022-09-20T02:05:01Z message:0/1
nodes are available: 1 Insufficient cpu. reason:Unschedulable status:False type:PodScheduled]]
phase:Pending gosClass:Burstable]

[rescue-user@MxNDsh01 ~]1$

We can access Information about the Status and the requirements for the Pods:

[rescue-user@MxNDsh01l ~]$ kubectl get pods -n cisco-mso consistencyservice-c98955599-qlsx5 -
o=jsonpath='{.spec.containers[*] .resources.requests}{"\n"}'
map [cpu:500m memory:1Gi]

Here it is important to mention how the value is calculated. In this example, the cpu 500m refers to
500 milicores, and the 1G in memory is for GB.

The pescribe option for the node shows the resource available for each K8s worker in the cluster
(host or VM):

[rescue-user@MxNDsh0l ~]$ kubectl describe nodes | egrep -A 6 "Allocat"

Allocatable:

cpu: 13

ephemeral-storage: 4060864Ki
hugepages-1Gi: 0

hugepages-2Mi: 0

memory: 57315716Ki

pods: 110

Allocated resources:

(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits

cpu 13 (100%) 174950m (1345%)
memory 28518Mi (50%) 354404Mi (633%)
ephemeral-storage 0 (0%) 0 (0%)
>[rescue-user@MxNDsh01l ~]1$

The Allocatable section shows the total Resources in CPU , Memory, and Storage available for
each node. The Allocated section shows the Resources already in use. The value 13 for CPU
refers to 13 Cores or 13,000 (13K) millicores.

For this example, the node is oversubscribed, which explains why the Pod cannot initiate. After
we clear out the ND with the deletion of ND APPs or addition of VM Resources.

The Cluster constantly tries to deploy any pending policies, so if the resources are free, the Pods
can be deployed.

[rescue-user@MxNDsh01l ~]$ kubectl get deployment -n cisco-mso
NAME READY UP-TO-DATE AVAILABLE AGE
auditservice 1/1 1 1 8d
backupservice 1/1 1 1 8d
cloudsecservice 1/1 1 1 8d
consistencyservice 1/1 1 1 84
dcnmworker 1/1 1 1 8d

eeworker 1/1 1 1 8d
endpointservice 1/1 1 1 8d
executionservice 1/1 1 1 8d
fluentd 1/1 1 1 8d
importservice 1/1 1 1 8d
jobschedulerservice 1/1 1 1 8d
notifyservice 1/1 1 1 8d
pctagvnidservice 1/1 1 1 8d
platformservice 1/1 1 1 8d
platformservice2 1/1 1 1 8d
policyservice 1/1 1 1 84
schemaservice 1/1 1 1 8d
sdaservice 1/1 1 1 8d
sdwanservice 1/1 1 1 8d
siteservice 1/1 1 1 8d
siteupgrade 1/1 1 1 8d
syncengine 1/1 1 1 8d
templateeng 1/1 1 1 8d

ui 1/1 1 1 8d

userservice 1/1 1 1 8d

With the command used for resource check, we confirm the Cluster has available Resource for
CPU:

[rescue-user@MxNDsh0l ~]$ kubectl describe nodes | egrep -A 6 "Allocat"
Allocatable:

cpu: 13

ephemeral-storage: 4060864Ki
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 57315716Ki

pods: 110

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits

cpu 12500m (96%) 182950m (1407%)
memory 29386Mi (52%) 365668Mi (653%)
ephemeral-storage 0 (0%) 0 (0%)
[rescue-user@MxNDsh01l ~1$

The deployment details include a message with information about the current conditions for Pods:

[rescue-user@MxNDsh01l ~]1$ kubectl get deployment -n cisco-mso consistencyservice -
o=jsonpath='{.status.conditions[*]}{"\n"}"

map[lastTransitionTime:2022-09-27T19:07:13Z lastUpdateTime:2022-09-27T19:07:13%
message:Deployment has minimum availability. reason:MinimumReplicasAvailable status:True
type:Available] map[lastTransitionTime:2022-09-27T19:07:13Z lastUpdateTime:2022-09-27T19:07:132%
message:ReplicaSet "consistencyservice-c98955599" has successfully progressed.
reason:NewReplicaSetAvailable status:True type:Progressing]

[rescue-user@MxNDsh01 ~]1$

Spoiler
How to Run Network Debug Commands from Inside a
Container

Because the containers only include the minimal libraries and dependencies specific for the Pod,
most of network debug tools (ping, ip route, and ip addr) are not available inside the container
itself.

These commands are very useful when there is a need to troubleshoot network issues for a
service (between ND nodes) or connection toward the Apics because several microservices need
to communicate with the controllers with the Data interface (bond0 or bondObr).

The nsenter utility (root user only) allows us to run network commands from the ND node as it is
inside the container. For this, find the process ID (PID) from the container we want to debug. This
is accomplished with the Pod K8s ID against the local information from the Container Runtime, like
Docker for legacy versions, and cri-o for newer ones as default.

Inspect the Pod Kubernetes (K8s) ID

From the list of Pods inside the cisco-mso Namespace, we can select the container to
troubleshoot:

[root@MxNDsh0l ~]# kubectl get pod -n cisco-mso

NAME READY STATUS RESTARTS AGE
consistencyservice-569bdf5969-xkwpg 3/3 Running 0 9h
eeworker-65dc5dd849-485tg 2/2 Running 0 163m
endpointservice-5db6£57884-hkf5g 2/2 Running 0 9h
executionservice-6c4894d4f7-p8fzk 2/2 Running 0 9h
siteservice-64dfcdf658-1vbrd 3/3 Running 0 9h

siteupgrade-68bcf987cc-ttn7h 2/2 Running 0 9h

The Pods must run in the same K8s node. For production environments, we can add the -o wide
option at the end to find out the node each Pod runs. With the Pod K8s ID (bolded in the previous
output example) we can check the Process (PID) assigned by the Container Runtime.

How to Inspect the PID from the Container Runtime

The new default Container Runtime is CRI-O for Kubernetes. So the document comes after that
rule for the commands. The Process ID (PID) assigned by CRI-O can be unique in the K8s Node,
which can be discovered with the crictl utility.

The ps option reveals the ID given by CRI-O to each container that builds the Pod, two for the
sitesevice example:

[root@MxNDsh01l ~]# crictl ps |grep siteservice

£fb560763b06£2 172.31.0.0:30012/cisco-
mso/sslcontainer@sha256:2d788fa493¢c885ba8c9e5944596b864d090d9051b0eab82123ee4d19596279¢c9 10
hours ago Running msc-siteservice2-ssl 0 074727b4e9f51

ad2d42aaelad9 1d0195292f7fcc62£38529e135a1315¢358067004a086cfed7e059986ce615b0 10 hours ago
Running siteservice-leader-election 0 074727b4e9f51

29b0b6d41dle3 172.31.0.0:30012/cisco-
mso/siteservice@sha256:80a2335bcd5366952b4d60a275b20c70de0bb65a47bf8ae6d988f07ble0bf494 10 hours
ago Running siteservice 0 074727b4e9f51

[root@MxNDsh01l ~]1#

With this information, we can then use the inspect CRIO-ID Option to see the actual PID given to each
container. This information is needed for the nsenter command:

[root@MxNDsh0l ~]# crictl inspect fb560763b06f2| grep -i pid
"pid": 239563,

"pids": {

"type": "pid"

How to Use nsenter to Run Network Debug Commands Inside a Container

With the PID from the output above, we can use as the target in the next command syntax:

nsenter --target <PID> --net <NETWORK COMMAND>

The --net option allows us to run commands in the network Namespaces, so the number of
commands available is limited.

For example:

[root@MxNDsh0l ~]# nsenter --target 239563 --net ifconfig

eth0: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1450

inet 172.17.248.146 netmask 255.255.0.0 broadcast 0.0.0.0

inet6 fe80::984f:32ff:fe72:7bfb prefixlen 64 scopeid 0x20<link>
ether 9a:4f:32:72:7b:fb txqueuelen 0 (Ethernet)

RX packets 916346 bytes 271080553 (258.5 MiB)

RX errors 0 dropped 183 overruns 0 frame 0

TX packets 828016 bytes 307255950 (293.0 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK, RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 1000 (Local Loopback)

RX packets 42289 bytes 14186082 (13.5 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 42289 bytes 14186082 (13.5 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The ping is also available, and it tests connectivity from the container to the outside, rather than
only the K8s node.

[root@MxNDsh0O1l ~]# nsenter --target 239563 --net wget --no-check-certificate
https://1xx.2xx.3xX.4xXX

--2023-01-24 23:46:04-- https://1xx.2xx.3xx.4xx/

Connecting to 1xx.2xx.3xx.4xx:443... connected.

WARNING: cannot verify 1xx.2xx.3xx.4xx's certificate, issued by '/C=US/ST=CA/0=Cisco
System/CN=APIC':

Unable to locally verify the issuer's authority.

WARNING: certificate common name ‘APIC’ doesn't match requested host name ‘1xx.2xx.3xx.4xx’.

HTTP request sent, awaiting response... 200 OK

Length: 3251 (3.2K) [text/html]

Saving to: ‘index.html’

100% [===================================—==============—==—=======—=================================
==>] 3,251 --.-K/s in Os

2023-01-24 23:46:04 (548 MB/s) - ‘index.html’ saved [3251/3251]

How to Run Network Debug Commands from Inside a Container Because the containers only
include the minimal libraries and dependencies specific for the Pod, most of network debug tools
(ping, ip route, and ip addr) are not available inside the container itself. These commands are
very useful when there is a need to troubleshoot network issues for a service (between ND nodes)
or connection toward the Apics because several microservices need to communicate with the
controllers with the Data interface (bondO or bondObr). The nsenter utility (root user only) allows
us to run network commands from the ND node as it is inside the container. For this, find the
process ID (PID) from the container we want to debug. This is accomplished with the Pod K8s ID
against the local information from the Container Runtime, like Docker for legacy versions, and cri-o
for newer ones as default. Inspect the Pod Kubernetes (K8s) ID From the list of Pods inside the
cisco-mso Namespace, we can select the container to troubleshoot: [root@MxNDsh01 ~]# kubectl
get pod -n cisco-msoNAME READY STATUS RESTARTS AGEconsistencyservice-569bdf5969-
xkwpg 3/3 Running 0 9heeworker-65dc5dd849-485tq 2/2 Running 0 163mendpointservice-
5db6f57884-hkf5g 2/2 Running 0 9hexecutionservice-6c4894d4f7-p8fzk 2/2 Running O
9hsiteservice-64dfcdf658-Ivbr4 3/3 Running 0 9hsiteupgrade-68bcf987cc-ttn7h 2/2 Running 0 9h
The Pods must run in the same K8s node. For production environments, we can add the -o wide
option at the end to find out the node each Pod runs. With the Pod K8s ID (bolded in the previous
output example) we can check the Process (PID) assigned by the Container Runtime. How
to Inspect the PID from the Container Runtime The new default Container Runtime is CRI-O for
Kubernetes. So the document comes after that rule for the commands. The Process ID (PID)
assigned by CRI-O can be unique in the K8s Node, which can be discovered with the crictl utility.
The ps option reveals the ID given by CRI-O to each container that builds the Pod, two for the
sitesevice example: [root@MxNDshO1 ~]# crictl ps |grep siteservicefb560763b06f2
172.31.0.0:30012/cisco-
mso/sslcontainer@sha256:2d788fa493c885ba8c9e5944596b864d090d9051b0eah82123ee4d195
96279c¢9 10 hours ago Running msc-siteservice2-ssl 0 074727b4e9f51ad2d42aaelad9
1d01952927fcc62f38529e135a1315¢358067004a086¢fed7e059986¢ce615b0 10 hours ago
Running siteservice-leader-election 0 074727b4e9f5129b0b6d41d1e3 172.31.0.0:30012/cisco-
mso/siteservice@sha256:80a2335bcd5366952b4d60a275b20c70deObb65a47bf8ae6d988f07ble
0bf494 10 hours ago Running siteservice 0 074727b4e9f51[root@MxNDsh01 ~]# With this

information, we can then use the inspect CRIO-ID option to see the actual PID given to each
container. This information is needed for the nsenter command: [root@MxNDsh01 ~J# crictl
inspect fb560763b06f2| grep -i pid"pid": 239563,"pids": {"type": "pid" How to Use nsenter to Run
Network Debug Commands Inside a Container With the PID from the output above, we can use
as the target in the next command syntax: nsenter --target <PID> --net <NETWORK COMMAND>
The --net option allows us to run commands in the network Namespaces, so the number of
commands available is limited. For example: [root@MxNDsh01 ~]# nsenter --target 239563 --net
ifconfigethO: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450inet
172.17.248.146 netmask 255.255.0.0 broadcast 0.0.0.0inet6 fe80::984f:32ff:fe72:7bfb prefixlen 64
scopeid 0x20<link>ether 9a:4f:32:72:7b:fb txqueuelen 0 (Ethernet)RX packets 916346 bytes
271080553 (258.5 MiB)RX errors 0 dropped 183 overruns 0 frame 0TX packets 828016 bytes
307255950 (293.0 MiB)TX errors 0 dropped 0 overruns 0O carrier O collisions Olo:
flags=73<UP,LOOPBACK,RUNNING> mtu 65536inet 127.0.0.1 netmask 255.0.0.0inet6 ::1
prefixlen 128 scopeid 0x10<host>loop txqueuelen 1000 (Local Loopback)RX packets 42289 bytes
14186082 (13.5 MiB)RX errors 0 dropped 0 overruns 0 frame 0TX packets 42289 bytes 14186082
(13.5 MiB)TX errors 0 dropped 0 overruns 0O carrier O collisions 0 The ping is also available, and it
tests connectivity from the container to the outside, rather than only the K8s node.
[root@MxNDsh01 ~]# nsenter --target 239563 --net wget --no-check-certificate
https://1xx.2xX.3xX.4xx--2023-01-24 23:46:04-- https://1xx.2xx.3xx.4xx/Connecting to
1xx.2xXx.3xx.4xx:443... connected. WARNING: cannot verify 1xx.2xx.3xx.4xx's certificate, issued by
‘/IC=US/ST=CA/O=Cisco System/CN=APIC’:Unable to locally verify the issuer's

authority. WARNING: certificate common name ‘APIC’ doesn't match requested host name
“Ixx.2xx.3xx.4xx’.HTTP request sent, awaiting response... 200 OKLength: 3251 (3.2K)
[text/html]Saving to:
‘index.html'100%[===

[3251/3251]

	Troubleshoot and Review of NDO Resources
	Contents
	Introduction
	NDO QuickStart
	Kubernetes with NDO Crash-Course
	NDO Overview with Kubernetes Commands
	CLI Access Login
	NDO Namespaces Review
	NDO Deployment Review
	NDO Replica Set (RS) Review
	NDO Pod Review

	Use-case Pod is not Healthy
	CLI Troubleshoot for Unhealthy Pods

	How to Run Network Debug Commands from Inside a Container
	Inspect the Pod Kubernetes (K8s) ID
	How to Inspect the PID from the Container Runtime
	How to Use nsenter to Run Network Debug Commands Inside a Container

