
Configure Windows VM to CGM-SRV Module
on CGR1xxx

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Configure
Create a Windows VM Image
Install KVM on Your Linux Machine
Verify KVM Installation
Create a Windows VM
Deploy Windows VM Image to CGM-SRV
Verify
Troubleshoot

Introduction

This document describes the necessary steps in order to create and run a Windows Virtual
Machine (VM) on the Connected Grid Module (CGM) - System Server (SRV) module.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

Linux●

Kernel Based Virtual Machine (KVM) ●

Understand Virtualization concepts●

Components Used

The information in this document is based on these software and hardware versions:

Connected Grid Routers (CGR) 1120●

CGM-SRV-XX module●

Configuration steps for CGM-SRV are executed prior to this guide: ●

Windows 7 installation ISO●

Virtual Network Computing (VNC) viewer●

The information in this document was created from the devices in a specific lab environment. All of

the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Background Information

When you want to run IOx applications or VMs on the CGR1000 platform, you can use the CGM-
SRV compute module. The CGM-SRV module is actually a small server that contains a multi-core
x86 CPU, memory and storage. Both the CGR1120 and CGR1240 can have one of these modules
to add IOx capabilities.

There are, at the time of writing, two types available:

Stock Keep Unit (SKU) Solid State Drives (SSD) RAM CPU
CGM-SRV-64 64GB (50GB usable) 4GB 4 core 800Mhz
CGM-SRV-128 128GB (100GB usable) 4GB 4 core 800Mhz

Each module also has two USB ports for storage and its own external gigabit Ethernet interface.

As with any other IOx-capable device, the module can host different types of IOx applications but
due to the larger capacity of the CGM-SRV module, it can also run a fully configured Windows or
standard Linux distro (for example Ubuntu or CentOS).

Configure

Create a Windows VM Image

In order to deploy a Windows VM on the CGM-SRV module, you first need to create an image in
the QEMU QCOW format which contains the Windows installation. One way to create such an
image is with KVM and virsh on a Linux machine.

The steps mentioned further do not involve the CGR1xxx or CGM-SRV at all, they are just
required steps to create a basic Windows 7 VM QCOW image which you can deploy in the next
step to the CGM-SRV.

For this guide, you can start with a freshly install CentOS7 minimal installation. The steps for other
Linux distributions must be similar but can slightly differ.

Install KVM on Your Linux Machine

Step 1. The first thing to do is to check if the host-machine supports VM-extensions. On the x86
platform, those are either AMD-V or Intel’s VT-X. Most, if not all, modern x86 CPUs support these
extensions. Even when you run a VM, most hypervisors provide the option to pass/emulate these
extensions.

In order to check if the installed CPU’s support those extensions, you need to check if the vmx (for
VT-X) or svm (for AMD-V) flag exists in the cpuinfo-output.

[root@cen7 ~]# egrep -c '(vmx|svm)' /proc/cpuinfo

2

If the output of this command is 0, this means that no CPU found supports the VM-extensions. In
that case, you can check if these extensions are enabled in your BIOS or hypervisor when you use
a VM to run this machine.

Step 2. The next step is to create a bridge to provide a network for the VM which you can run on
KMV.

Firstly, you need to enable IP forwards in the kernel:

[root@cen7 ~]# echo "net.ipv4.ip_forward = 1"|sudo tee /etc/sysctl.d/99-ipforward.conf

net.ipv4.ip_forward = 1

[root@cen7 ~]# sysctl -p /etc/sysctl.d/99-ipforward.conf

net.ipv4.ip_forward = 1

In order to create the bridge, the IP configuration needs to move from the real interface to the
bridge itself, as this is the interface that owns the IP address.

After you complete a standard installation, the network configuration is in /etc/sysconfig/network-
scripts:

[root@cen7 ~]# ls -1 /etc/sysconfig/network-scripts/ifcfg-*

/etc/sysconfig/network-scripts/ifcfg-eno16777736

/etc/sysconfig/network-scripts/ifcfg-lo

Step 3. As you can see, there is currently one interface (besides the loopback interface), called
eno167777736. You need to move the IP-related configuration to a bridge interface which you
can call virbr0:

[root@cen7 ~]# vi /etc/sysconfig/network-scripts/ifcfg-virbr0

[root@cen7 ~]# cat /etc/sysconfig/network-scripts/ifcfg-virbr0

DEVICE=virbr0

TYPE=BRIDGE

ONBOOT=yes

BOOTPROTO=static

IPADDR=172.16.245.162

NETMASK=255.255.255.0

GATEWAY=172.16.245.2

DNS1=8.8.8.8

Step 4. After that, you need to clean up the IP configuration from the real interface and connect it
to the virbr0 bridge:

[root@cen7 ~]# vi /etc/sysconfig/network-scripts/ifcfg-eno16777736

[root@cen7 ~]# cat /etc/sysconfig/network-scripts/ifcfg-eno16777736

UUID=46f0f247-e164-40cc-866b-9133458d9df8

DEVICE=eno16777736

ONBOOT=yes

BRIDGE=virbr0

HWADDR=00:0c:29:ce:96:38

Step 5. Once the network configuration is complete, you can go ahead and install KVM:

[root@cen7 ~]# sudo yum install kvm virt-manager libvirt virt-install qemu-kvm xauth dejavu-lgc-

sans-fonts -y

...

Complete!

Step 6. After the installation is complete, the best is to reboot this machine to apply the newly
installed modules and network configuration:

[root@cen7 ~]# init 6

Verify KVM Installation

Step 7. After the reboot has completed, you should be able to access the machine on the (same)
IP configured on the bridge interface. You must check if the KVM kernel module is loaded:

root@cen7 ~]# lsmod|grep kvm

kvm_intel 200704 0

kvm 589824 1 kvm_intel

irqbypass 16384 1 kvm

Step 8. If this looks fine, you can try to connect with virsh:

[root@cen7 ~]# sudo virsh -c qemu:///system list

 Id Name State

--

Step 9. One last step is to open port 5900 on the firewall on this machine for VNC access to the
Windows installation:

[root@cen7 ~]# firewall-cmd --zone=public --add-port=5900/tcp --permanent

success

[root@cen7 ~]# firewall-cmd --reload

success

Create a Windows VM

Now that you have a system which works with KVM installation, you can fire up a new VM on KVM
and run through the Windows installation dialogs.

Step 1. Copy the Windows 7 installation ISO to your VM (or make it accessible over the network):

[root@cen7 ~]# scp jedepuyd@172.16.X.X:/home/jedepuyd/win7install.iso /var

jedepuyd@172.16.X.X's password:

win7install.iso 100% 4546MB 62.1MB/s

01:13

Step 2. Create a new KVM VM and let it boot from the Windows 7 ISO:

root@cen7 ~]# virt-install --connect qemu:///system -n win7 -r 1024 --vcpus=2 --disk

path=/var/lib/libvirt/images/win7.img,size=9 --graphics vnc,listen=0.0.0.0 --noautoconsole --os-

type windows --os-variant win7 --accelerate --network=bridge:virbr0 --hvm --cdrom

/var/win7install.iso

Starting install...

Allocating win7.img | 9.0 GB

00:00:00

Creating domain... | 0 B

00:00:00

Domain installation still in progress. You can reconnect to

the console to complete the installation process.

Step 3. Once the VM has started, you can connect with the use of VNC viewer to the IP of the host
machine on port 5900 and finish the standard Windows installation as shown in the image:

If Windows reboot at the time of the installation, it could be necessary to restart the VM with virsh if
this isn't done automatically:

[root@cen7 ~]# virsh start win7

Domain win7 started

Step 4. Once the installation has completed, shut down the VM. You now have a QCOW-image of
this installation in the path provided when you create the VM: /var/lib/libvirt/images/win7.img.
This type of image can be deployed on the CGM-SRV to run Windows.

Deploy Windows VM Image to CGM-SRV

Now that you have the correct type of image to run on the CGM-SRV, you can start to deploy it.

Step 1. Setup a profile for ioxlcient that corresponds with your configuration:

[root@cen7 ~]# ./ioxclient profiles create

Enter a name for this profile : CGR1120_20

Your IOx platform's IP address[127.0.0.1] : 10.X.X.X.X

Your IOx platform's port number[8443] :

Authorized user name[root] : admin

Password for admin :

Local repository path on IOx platform[/software/downloads]:

URL Scheme (http/https) [https]:

API Prefix[/iox/api/v2/hosting/]:

Your IOx platform's SSH Port[2222]:

Your RSA key, for signing packages, in PEM format[]:

Your x.509 certificate in PEM format[]:

Activating Profile CGR1120_20

Saving current configuration

In this example, 10.X.X.X corresponds with the outgoing interface on the CGR1000 on which
you configured Network Address Translation (NAT) to forward to port 8443 on the CGM-SRV.

Step 2. Now that ioxclient is configured, let's rename your earlier created image to vm.img in
order to simplify a bit and copy it with the use of Secure Copy (SCP) with ioxclient to CGM-SRV.

Optionally, convert the disk image to the QCOW2 format as that is what the CGM-SRV is
expecting. Newer versions of virt-manager seem to create the disk images by default in the
QCOW3 format.

You can easily convert the image with the use of this command:

[root@cen7 ~]# qemu-img convert -f qcow2 -O qcow2 /var/lib/libvirt/images/win7.img

/var/lib/libvirt/images/win7.img

Once you are sure that the image is in the right format, proceed with the rename and copy:

[root@cen7 ~]# mv /var/lib/libvirt/images/win7.img /root/vm.img

[root@cen7 ~]# ./ioxclient platform scp /root/vm.img

Currently active profile : CGR1120_20

Command Name: plt-scp

Saving current configuration

Downloaded scp keys to pscp.pem

Running command : [scp -P 2222 -r -i pscp.pem /root/vm.img scpuser@10.50.215.246:/]

This transfer could take a while, the transfer rates from around 3-4MB/s to the CGM-SRV via
Cisco IOS®. The file gets copied to /mnt/data/vm/vm.img on the CGM-SRV module.

Step 3. While the transfer is in progress (or complete), you can create the package.yaml file. This
file describes to IOx what exactly you would like to deploy and how to package it.

[root@cen7 ~]# vi package.yaml

[root@cen7 ~]# cat package.yaml

descriptor-schema-version: 2.2

info:

 author-link: http://www.cisco.com/ author-name: Jens Depuydt description: Windows 7 VM for

CSR-SRV name: win7 version: 1.0 app: type: vm cpuarch: x86_64 resources: profile: custom cpu:

600 disk: 10 memory: 3072 network: - interface-name: eth0 - interface-name: eth1 graphics: vnc:

true startup: ostype: windows qemu-guest-agent: false disks: - target-dev: hda file:

file://vm.img

As you can see in this package.yaml, you refer to file://vm.img which corresponds with the real
location of mnt/data/vm/vm.img on the CGM-SRV module.

Step 4. The next step is to package with the use of ioxclient:

http://www.cisco.com/

[root@cen7 ~]# ./ioxclient pkg .

Currently active profile : default

Command Name: package

No rsa key and/or certificate files to sign the package

Checking if package descriptor file is present..

Validating descriptor file /root/package.yaml with package schema definitions

Parsing descriptor file..

Found schema version 2.2

Loading schema file for version 2.2

Validating package descriptor file..

File /root/package.yaml is valid under schema version 2.2

Created Staging directory at : /var/folders/sp/f9qn2fsn0d5fkj7szps6qvvr0000gn/T/638513626

Copying contents to staging directory

Checking for application runtime type

Couldn't detect application runtime type

Creating an inner envelope for application artifacts

Excluding .DS_Store

Generated /var/folders/sp/f9qn2fsn0d5fkj7szps6qvvr0000gn/T/638513626/artifacts.tar.gz

Calculating SHA1 checksum for package contents..

Package MetaData file was not found at

/private/var/folders/sp/f9qn2fsn0d5fkj7szps6qvvr0000gn/T/638513626/.package.metadata

Wrote package metadata file :

/private/var/folders/sp/f9qn2fsn0d5fkj7szps6qvvr0000gn/T/638513626/.package.metadata

Root Directory : /private/var/folders/sp/f9qn2fsn0d5fkj7szps6qvvr0000gn/T/638513626

Output file: /var/folders/sp/f9qn2fsn0d5fkj7szps6qvvr0000gn/T/559089521

Path: .package.metadata

SHA1 : 262f763740c182f95358be84514a76ac11e37012

Path: artifacts.tar.gz

SHA1 : 3d89ccd35fe5318dd83a249a26cb8140d98d15bb

Path: package.yaml

SHA1 : aa42f949b707df07a83a17344e488c44eb585561

Generated package manifest at package.mf

Generating IOx Package..

Package generated at /root/package.tar

Step 5. After you create the package, you can install it on our CGM-SRV. The IOx application/VM
is called win7 in this example:

[root@cen7 ~]# ./ioxclient app install win7 package.tar

Currently active profile : default

Command Name: application-install

Saving current configuration

Installation Successful. App is available at :

https://10.X.X.X:8443/iox/api/v2/hosting/apps/win7 Successfully deployed

Step 6. Before you can active the win7 IOx VM, you need to create a payload JSON-file that sets
the VNC password for this VM:

[root@cen7 ~]# vi vnc.json

[root@cen7 ~]# cat vnc.json

{

 "resources": {

 "graphics": {"vnc-password": "password"}

 }

}

Step 7. With the use of the vnc.json payload, you can activate the win7 IOx VM:

https://10.X.X.X:8443/iox/api/v2/hosting/apps/win7

[root@cen7 ~]# ./ioxclient app activate win7 --payload vnc.json

Currently active profile : default

Command Name: application-activate

Payload file : vnc.json. Will pass it as application/json in request body..

App win7 is Activated

Step 8. Last step with ioxclient is to start the VM:

[root@cen7 ~]# ./ioxclient app start win7

Currently active profile : default

Command Name: application-start

App win7 is Started

At this point, the Windows VM runs on the CGM-SRV and you can start to use it.

In order to get access to the Windows machine console, you can use VNC viewer on the outgoing
interface on the CGR1000 and port 5900 as shown in the image:

From a network perspective, you chose to give eth0 and eth1 to the win7 IOx VM with the use
of the package.yaml file as shown in the image:

As you can see, these interfaces got an IP from the DHCP server which runs on Cisco IOS® and
can be used without further configuration.

Verify

Use this section in order to confirm that your configuration works properly.

In order to check if the VM runs:

[root@cen7 ~]# ./ioxclient app list

Currently active profile : CGR1120_20

Command Name: application-list

Saving current configuration

List of installed App :

 1. win7 ---> RUNNING

You can also check the status from Local Manager as shown in the image:

Troubleshoot

This section provides information you can use in order to troubleshoot your configuration.

In order to troubleshoot issues with deployment, check the output of ioxclient or /var/log/caf.log
on the CGM-SRV host OS.

Ensure that NAT is configured correctly to access all resources (Cisco application-hosting
framework (CAF), Secure Shell (SSH), VNC).

	Configure Windows VM to CGM-SRV Module on CGR1xxx
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Configure
	Create a Windows VM Image
	Install KVM on Your Linux Machine
	Verify KVM Installation
	Create a Windows VM
	Deploy Windows VM Image to CGM-SRV

	Verify
	Troubleshoot

