
 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 1 of 39 

Cisco Application Centric 
Infrastructure K8s Design 

White paper 

Cisco public 

  



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 2 of 39 

Contents 

Introduction 3 

Calico 3 

Kube-router 4 

Cilium 4 

K8s routing architecture 4 

AS Per Cluster design – overview 5 

Physical connectivity 7 

Standard SVI vs. floating SVI 7 

K8s node gateway 12 

Kubernetes node egress routing 12 

Kubernetes node ingress routing 13 

ACI BGP configuration 13 

Kubernetes node maintenance and failure 14 

Scalability 14 

Detailed configurations – example 15 

Example floating SVI IP allocation 15 

Example standard SVI IP allocation 15 

Calico routing and BGP configuration 20 

Kube-Router routing and BGP configuration 28 

Cilium routing and BGP configuration 30 

Cluster connectivity outside of the fabric – transit routing 36 

Cluster connectivity inside the fabric 36 

IPv6 and Dual stack considerations 36 

Visibility 36 

Segmentation 38 

Tested Kubernetes distributions 38 

Conclusion 38 

Version history 39 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 3 of 39 

Introduction 

With the increasing adoption of container technologies and Cisco® Application Centric Infrastructure 

(Cisco ACI®) as a pervasive data-center fabric technology, it is only natural to see customers trying to 

integrate these two solutions. 

At the time of writing, the most popular container orchestrator engine is Kubernetes (often abbreviated K8s). A 

key design choice every Kubernetes administrator must make when deploying a new cluster is selecting a 

network plugin. The network plugin is responsible for providing network connectivity, IP address management, 

and security policies to containerized workloads. 

A series of network plugins is available for Kubernetes, with different transport protocols and/or features being 

offered. To browse the full list of network plugins supported by Kubernetes, follow this link: 

https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-implement-the-kubernetes-

networking-model. 

Note:   While Cisco offers a CNI (container network interface) plugin directly compatible and integrated 

with Cisco ACI, that is not covered in this document. In this white paper we will be discussing the current 

best practices for integrating Cisco ACI with the following CNI Plugins: 

● Project Calico 

● Kube-router 

● Cilium 

Calico 

Calico supports two main network modes: direct container routing (no overlay transport protocol) or network 

overlay using VXLAN or IPinIP (default) encapsulations to exchange traffic between workloads. The direct 

routing approach means the underlying network is aware of the IP addresses used by workloads. Conversely, 

the overlay network approach means the underlying physical network is not aware of the workloads’ IP 

addresses. In that mode, the physical network only needs to provide IP connectivity between K8s nodes while 

container to container communications is handled by the Calico network plugin directly. This, however, comes 

at the cost of additional performance overhead as well as complexity in interconnecting your container-based 

workloads with external non-containerized workloads. 

When the underlying networking fabric is aware of the workloads’ IP addresses, an overlay is not necessary. 

The fabric can directly route traffic between workloads inside and outside of the cluster as well as allowing 

direct access to the services running on the cluster. This is the preferred Calico mode of deployment when 

running on premises.1 This guide details the recommended ACI configuration when deploying Calico in direct 

routing mode. 

You can read more about Calico at https://docs.projectcalico.org/ 

                                                 

1 https://docs.projectcalico.org/networking/vxlan-ipip 

https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-implement-the-kubernetes-networking-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#how-to-implement-the-kubernetes-networking-model
http://docs.projectcalico.org/
https://www.kube-router.io/
https://cilium.io/
https://docs.projectcalico.org/
https://docs.projectcalico.org/networking/vxlan-ipip


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 4 of 39 

Kube-router 

The Kube-router is an open-source turnkey solution for Kubernetes networking that aims to provide operational 

simplicity. It supports two main network modes: direct container routing (there is no overlay transport protocol) 

or network overlay using PinIP (default) encapsulations to exchange traffic between workloads. 

The same concepts discussed for Calico apply to the Kube-router, and this guide details the recommended 

Cisco ACI configuration when deploying Kube-router in BGP mode. 

Cilium 

Cilium is an open-source project to provide networking, security, and observability for cloud-native 

environments such as Kubernetes clusters and other container orchestration platforms. 

At the foundation of Cilium is a new Linux kernel technology called eBPF, which enables the dynamic insertion 

of powerful security, visibility, and networking control logic into the Linux kernel. eBPF is used to provide high-

performance networking, multicluster and multicloud capabilities, advanced load balancing, transparent 

encryption, extensive network security capabilities, transparent observability, and much more.2 

The same concepts discussed for Calico apply to Cilium, and this guide details the recommended Cisco ACI 

configuration when deploying Cilium in BGP mode. 

K8s routing architecture 

In a K8s network, each compute server acts as a router for all the endpoints that are hosted on that compute 

server. We call that function a vRouter. The data path is provided by the Linux kernel, the control plane by a 

BGP protocol server, and management plane by the specific CNI plugin implementation.  

Each endpoint can only communicate through its local vRouter. The first and last hop in any packet flow is an IP 

router hop through a vRouter. Each vRouter announces all the endpoints it is responsible for to all the other 

vRouters and other routers on the infrastructure fabric using BGP, usually with BGP route reflectors to increase 

scale.3 

Calico proposes three BGP design options:  

● The BGP AS Per Rack design 

● The BGP AS Per Compute Server design 

● The Downward Default design 

They are all detailed at https://docs.projectcalico.org/reference/architecture/design/l3-interconnect-fabric  

Kube-router, by default, places the cluster in the same AS (BGP per Cluster) and establishes an iBGP Full 

Node-To-Node Mesh. 

Kube-router options are all detailed at https://github.com/cloudnativelabs/kube-

router/blob/master/docs/bgp.md. 

                                                 

2 https://cilium.io/get-started/  

3 https://docs.projectcalico.org/reference/architecture/design/l3-interconnect-fabric  

https://docs.projectcalico.org/reference/architecture/design/l3-interconnect-fabric
https://github.com/cloudnativelabs/kube-router/blob/master/docs/bgp.md
https://github.com/cloudnativelabs/kube-router/blob/master/docs/bgp.md
https://cilium.io/get-started/
https://docs.projectcalico.org/reference/architecture/design/l3-interconnect-fabric


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 5 of 39 

Cilium leaves the creation of the BGP topology up to the user and all the options are detailed at 

https://docs.cilium.io/en/stable/network/bgp-control-plane/ 

After taking into consideration the characteristics and capabilities of ACI, Calico, Cilium and Kube-router CNI 

Plugins, Cisco’s current recommendation is to implement an alternative design where a single AS is allocated 

through the whole cluster, and iBGP Full Node-To-Node Mesh is disabled for the cluster. 

AS Per Cluster design – overview 

In this design, a dedicated Cisco ACI L3Out is created for the entire Kubernetes cluster. This removes control-

plane and data-plane overhead on the K8s cluster, thus providing improved performance and enhanced 

visibility to the workloads. 

Each Kubernetes node has the same AS number and peers via eBGP with a pair of ACI Top-of-Rack (ToR) 

switches configured in a vPC pair. Having a vPC pair of leaf switches provides redundancy within the rack.  

This eBGP design does not require running any route reflector nor full mesh peering (iBGP) in the K8s 

infrastructure; this results in a more scalable, simpler, and easier to maintain architecture. 

In order to remove the need of running iBGP in the cluster the ACI BGP configuration requires the following 

features: 

● AS override: The AS override function replaces the AS number from the originating router with the AS 

number of the sending BGP router in the AS Path of outbound routes.  

● Disable Peer AS Check—Disables the peer autonomous number check. 

With these two configuration options enabled, ACI advertises the POD Subnets between the Kubernetes nodes 

(even if learned from the same AS) ensuring all the PODs in the Cluster can communicate with each other. 

An added benefits of configuring all the Kubernetes nodes with the same AS is that it allows us to use BGP 

Dynamic Neighbors by using the Cluster Subnet as BGP neighbors, greatly reducing the ACI config complexity.  

Note:   You need to ensure Kubernetes nodes are configured to peer only with the Border Leaves Switches 

in the same RACK.  

Once this design is implemented, the following connectivity is expected: 

● Pods running on the Kubernetes cluster can be directly accessed from inside ACI or outside through 

transit routing. 

● Pod-to-pod and node-to-node connectivity happens over the same L3Out and external end point group 

(EPG). 

● Exposed Services can be directly accessed from inside or outside ACI. Those services are load- 

balanced by ACI through ECMP 64-way provided by BGP. 

https://docs.cilium.io/en/stable/network/bgp-control-plane/


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 6 of 39 

Figure 1 shows an example of such a design with two racks and a six-node K8s cluster: 

● Each rack has a pair of ToR leaf switches and three Kubernetes nodes. 

● ACI uses AS 65002 for its leaf switches.  

● The six Kubernetes nodes are allocated AS 65003: 

 

  Figure 1. 

AS Per Cluster design 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 7 of 39 

Physical connectivity 

The physical connectivity is provided by a virtual Port-Channel (vPC) configured on the ACI leaf switches 

toward the Kubernetes nodes. One L3Out is configured on the ACI fabric to run eBGP with the vRouter in each 

Kubernetes node through the vPC port-channel. 

The vPC design supports both virtualized and bare-metal servers. 

Standard SVI vs. floating SVI  

When it comes to connecting the K8s nodes to the ACI fabric, an important decision to make is choosing to use 

standard SVIs or floating SVIs. If you are not familiar with floating SVI, you should take a moment to read 

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/Cisco-ACI-Floating-L3Out.html 

The following table should help you decide between the two options. The table is based on Cisco ACI Release 

5.2.7 scale and features. 

Table 1. Floating SVI vs Standard SVI 

 Floating SVI Standard SVI 

Max cluster rack span4 3 racks: 6 anchor nodes: with optimal traffic flows 6: 12 Border Leaves with optimal 
traffic flows 

Node subnets required One subnet for the whole cluster One /29 Subnet Per Node 

Static paths binding None; the binding is done at the physical domain level. One per vPC 

VM mobility Yes, with suboptimal traffic flows if the VMs move to a 
different rack 

No 

Per fabric scale 200 floating SVI IPs (An IPv4/6 dual stack cluster uses 
two floating SVIs.) 

Unlimited 

L3Out per fabric 100 2400 

ACI version 5.0 or newer Any (This design was tested on 4.2 
and 5.x code.) 

Note:   Floating SVI L3Out and regular, or “standard,” SVI L3Out can coexist in the same ACI fabric and 

leaves. 

                                                 

4 This assumes two ToR leaves per rack. 

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/Cisco-ACI-Floating-L3Out.html


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 8 of 39 

Recommendation: Floating SVI is the better design choice, providing a simpler and more flexible configuration. 

As long as it can fulfil the scale requirements of your K8s environments, floating SVI is the preferred design 

choice.  

The rest of the document will cover both the floating SVI and the regular or standard SVI approach. Since most 

of the configuration between the two options is identical, this document will first focus on the specific 

implementation details of a floating SVI, continue with the details of a standard SVI design, and end with the 

common configurations.  

A detailed configuration example will be also provided for both options. 

Floating SVI design 

The floating SVI feature enables you to configure an L3Out without specifying logical interfaces. The feature 

saves you from having to configure multiple L3Out logical interfaces to maintain routing when Virtual Machines 

(VMs) move from one host to another. Floating SVI is supported for VMware vSphere Distributed Switch (VDS) 

as of ACI Release 4.2(1) and on physical domains as of ACI Release 5.0(1). It is recommended to use the 

physical domains approach for the following reasons:  

● Can support any hypervisor 

● Can support mixed mode clusters (VMs and bare metal) 

Using floating SVI also relaxes the requirement of not having any Layer-2 communications between the routing 

nodes; this allows the design to use: 

● A single subnet for the whole cluster 

● A single encapsulation (VLAN) for the whole cluster 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 9 of 39 

 

  Figure 2. 

Floating SVI design 

A requirement for this design is to peer the K8s node with directly attached anchor nodes: routes generated by 

nodes directly connected to the anchor nodes are preferred over routes from nodes not directly connected to 

the Anchor Nodes. 

As show in Figure 3. Leaf101 will only install one ECMP path for 1.1.1.1/32 via 192.168.2.1 as the locally 

attached route is preferred. 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 10 of 39 

 

  Figure 3. 

Floating SVI and Non-Directly attached nodes 

Standard SVI design 

If floating SVI cannot be used due to scale limitations or ACI version, a valid alternative is to use standard SVI. 

The high-level architecture is still the same, where the K8s nodes peer with the local (same rack) border leaves; 

however, a “standard” L3out is meant to attach routing devices only. It is not meant to attach servers directly on 

the SVI of an L3Out because the Layer 2 domain created by an L3Out with SVIs is not equivalent to a regular 

bridge domain. 

For this reason, it is preferred not to have any Layer-2 switching between the K8s nodes connected to an 

external bridge domain. 

To ensure that our cluster follows this design “best practice,” we will need to allocate: 

● A /29 subnet for every server  

● A dedicated encapsulation (VLAN) on a per-node basis 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 11 of 39 

 

  Figure 4. 

Standard SVI design 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 12 of 39 

K8s node gateway 

Each Kubernetes node uses ACI as default gateway (GW). The GW IP address is the secondary IP of the floating 

SVI or standard SVI interfaces. 

If the Kubernetes nodes are Virtual Machines (VMs), follow these additional steps: 

● Configure the virtual switch’s port-group load-balancing policy (or its equivalent) to “route based on IP 

address” 

● Avoid running more than one Kubernetes node per hypervisor. It is technically possible to run multiple 

Kubernetes nodes on the same hypervisor, but this is not recommended because a hypervisor failure 

would result in a double (or more) Kubernetes node failure. 

● For standard SVI design only: Ensure that each VM is hard-pinned to a hypervisor and ensure that no 

live migration of the VMs from one hypervisor to another can take place.  

If the Kubernetes nodes are bare metal, follow these additional steps: 

● Configure the physical NICs in an LACP bonding (often called 802.3ad mode). 

This design choice allows creating nodes with a single interface, simplifying the routing management on the 

nodes; however, it is possible to create additional interfaces as needed.  

Kubernetes node egress routing 

Because ACI leaf switches are the default gateway for the Kubernetes nodes, in theory the nodes only require a 

default route that uses the ACI L3Out as the next hop both for node-to-node traffic and for node to outside 

world communications.  

However, for ease of troubleshooting and visibility, the ACI fabric is configured to advertise back to the 

individual nodes the /26 pod subnets.5 

Benefits of using the L3Out secondary IP as default gateway include: 

● Zero impact during leaf reload or interface failures: the secondary IP and its MAC address are shared 

between the ACI leaves. In the event of one leaf failure, traffic seamlessly converges to the remaining 

leaf.  

● No need for a dedicated management interface. The node remains reachable even before eBGP is 

configured.  

                                                 

5 Calico allocates to each node a /26 subnet from the pod subnet.  



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 13 of 39 

Kubernetes node ingress routing 

Each Kubernetes node is configured to advertise the following subnets to ACI: 

● Node subnet 

● Its allocated subnet(s) inside the pod supernet (a /26 by default6) 

● Host route (/32) for any pod on the node outside of the pod subnets allocated to the node 

● The whole service subnet advertised from each node 

● Host route for each exposed service (a /32 route in the service subnet) for each service endpoint 

configured with the externalTrafficPolicy: Local 

ACI BGP configuration 

AS override 

The AS override function replaces the AS number from the originating router with the AS number of the sending 

BGP router in the AS Path of outbound routes.  

Disable Peer AS Check 

Disables the peer autonomous number check. 

BGP Graceful Restart  

Both ACI and Calico are configured by default to use BGP Graceful Restart. When a BGP speaker restarts its 

BGP process or when the BGP process crashes, neighbors will not discard the received paths from the speaker, 

ensuring that connectivity is not impacted as long as the data plane is still correctly programmed.  

This feature ensures that, if the BGP process on the Kubernetes node restarts (CNI Calico BGP process 

upgrade/crash), no traffic is impacted. In the event of an ACI switch reload, the feature is not going to provide 

any benefit, because Kubernetes nodes are not receiving any routes from ACI.  

BGP timers 

The ACI BGP timers should be set to 1s/3s to ensure faster convergence 

Note:   There is currently an issue with Calico that results in the BGP session being reset randomly with 

1s/3s timers. Relaxing the timers to 10s/30s will avoid this issue. This behavior only applies to Calico, 

Kube-Router is not affected.  

Max BGP ECMP path 

By default, ACI only installs 16 eBGP/iBGP ECMP paths. This would limit spreading the load to up to 16 K8s 

nodes. The recommendation is to increase both values to 64. Increasing also the iBGP max path value to 64 

ensures that the internal MP-BGP process is also installing additional paths. 

                                                 

6 The pod supernet is, by default, split into multiple /26 subnets and allocated to each node as needed.  

In case of IP exhaustion, a node can potentially borrow IPs from a different node pod subnet. In that case, a host route will be advertised 

from the node for the borrowed IP.  

More details on the Calico IPAM can be found here: https://www.projectcalico.org/calico-ipam-explained-and-enhanced 

https://github.com/projectcalico/calico/issues/7086
https://www.projectcalico.org/calico-ipam-explained-and-enhanced


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 14 of 39 

BGP hardening 

To protect the ACI against potential Kubernetes BGP misconfigurations, the following settings are 

recommended: 

● Enable BGP password authentication. 

● Set the maximum AS limit to one: 

a. Per the eBGP architecture, the AS path should always be one.  

● Configure BGP import route control to accept only the expected subnets from the Kubernetes cluster: 

a. Pod subnet 

b. Node subnet 

c. Service subnet 

● (Optional) Set a limit on the number of received prefixes from the nodes. 

Kubernetes node maintenance and failure 

Before performing any maintenance or reloading a node, you should follow the standard Kubernetes best 

practice of draining the node. Draining a node ensures that all the pods present on that node are terminated 

first, then restarted on other nodes. For more info see: https://kubernetes.io/docs/tasks/administer-

cluster/safely-drain-node/ 

While draining a node, the BGP process running on that node stops advertising the service addresses toward 

ACI, ensuring there is no impact on the traffic. Once the node has been drained, it is possible to perform 

maintenance on the node with no impact on traffic flows.  

Scalability 

As of ACI Release 5.2, the scalability of this design is bounded by the following parameters: 

Nodes per cluster 

A single L3Out can be composed of up to 12 border leaves or 6 anchor. Assuming an architecture with two leaf 

switches per node, this limits the scale to a maximum of six or three racks per Kubernetes cluster. Considering 

current rack server densities, this should not represent a significant limit for most deployments. Should a higher 

rack/server scale be desired, it is possible to spread a single cluster over multiple L3Outs. This requires an 

additional configuration that is not currently covered in this design guide. If you are interested in pursuing such 

a large-scale design, please reach out to Cisco Customer Experience (CX) and services for further network 

design assistance. 

https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 15 of 39 

Longest prefix match scale 

The routes that are learned by the border/anchor leaves through peering with external routers are sent to the 

spine switches. The spine switches act as route reflectors and distribute the external routes to all the leaf 

switches that have interfaces that belong to the same tenant. These routes are called Longest Prefix Match 

(LPM) and are placed in the leaf switch's forwarding table with the VTEP IP address of the remote leaf switch 

where the external router is connected. 

In this design, every Kubernetes node advertises to the local border leaf its pod host routes (aggregated to /26 

blocks when possible) and service subnets, plus host routes for each service with externalTrafficPolicy: Local. 

Currently, on ACI ToR switches of the -EX, -FX, and -FX2 hardware family, it is possible to change the amount 

of supported LPM entries using “scale profiles” as described in: 

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Cisco_APIC_Forwarding_Scal

e_Profile_Policy.html 

In summary, depending on the selected profile, the design can support from 20,000 to 128,000 LPMs.  

Detailed configurations – example 

This section shows the required ACI and Calico steps to configure integration with floating SVI or standard SVI 

as shown in figures 2 and 4.  

Note:   It is assumed the reader is familiar with essential ACI concepts and the basic fabric configuration 

(interfaces, VLAN pools, external routed domain, AAEP) and that a tenant with the required VRF already 

exists. 

Example floating SVI IP allocation 

With floating SVI, the IP allocation scheme is extremely simple and consists in allocating a subnet big enough to 

contain as many host addresses as the number of required K8s nodes plus one host address for every anchor 

node, one floating address, and one secondary address.  

Example standard SVI IP allocation 

A possible IP allocation schema is shown below: 

1. Allocate a supernet big enough to contain as many /29 subnets as nodes. For example, for a 32-

nodes cluster, you could use a /24 subnet, a 64-nodes would use a /23 subnet, and so on.  

2. For every /29 subnet 

● Allocate the first usable IP to the node 

● Allocate the last three usable IPs for the ACI border leaves: 

I. Last IP minus 2 for the first leaf 

II. Last IP minus 1 for the second leaf 

III. Last IP for the secondary IP 

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Cisco_APIC_Forwarding_Scale_Profile_Policy.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Cisco_APIC_Forwarding_Scale_Profile_Policy.html


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 16 of 39 

ACI BGP configuration (ACI Release 5.2) 

Note that because each K8s node acts as a BGP router, the nodes attach to the ACI fabric through an external 

routed domain instead of a regular physical domain. When configuring the interface policy groups and 

Attachable Access Entity Profiles (AAEP) for your nodes, bind them to that single external routed domain and 

physical domain. You will attach that routed domain to your L3Out in the next steps.  

3. Create a new L3Out. 

● Go to Tenant <Name> -> Networking, right click on “External Routed Network,” and create a new 

L3Out. 

Configure the basic L3Out parameters: 

◦ Name: <Your L3Out Name> 

◦ VRF: <Your VRF Name> 

◦ External Routed Domain: <Your External Routed Domain> 

◦ Enable BGP. 

Click Next. 

Note:   If you use floating SVI, follow the steps in point 4, OR, if you use standard SVI, follow the steps in 

point 5. 

4. Configure floating SVI: 

● Select “Floating SVI” as interface type. 

● Domain Type: Physical 

● Domain: <Your Domain> 

● Floating Address: An IP in the node subnet 

● VLAN: Select a valid VLAN ID 

● MTU: Select the desired MTU; 9000 is the recommended value. 

● Node: Add here all your anchor nodes: 

● Node ID: Select your node 

● Router ID: A valid IP address 

● IPv4/6: Your node primary address  



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 17 of 39 

5. Configure SVI: 

● Select “SVI” as interface type 

● Select the Layer 2 interface type: You should be using vPC. 

● Select the physical path.  

● VLAN: Select a valid VLAN ID. 

● MTU: Select the desired MTU; 9000 is the recommended value. 

● Configure side A and side B: 

● Node ID should be selected automatically, based on your path. 

● Router ID: A valid IP address 

● IPv4/6: Your node primary address  

● If you need more than two border leaves, you will have to add them manually after the creation of the 

L3OUT: 

● Go to the L3OUT -> Logical Node Profiles -> <Node Profile Name> -> Click on “+” to add nodes. 

Give the node a router ID. 

● Go to the L3OUT -> Logical Node Profiles -> Logical Interface Profiles -> <Logical Interface Profiles 

Name> -> SVI -> Click on “+” to add new paths.  

Click Next twice, skipping the Protocols section. 

Create a new external EPG. 

● Name: “default” 

● Subnets: 

Add all your subnets: 

I. Node subnets (use the supernet in the SVI case)  

II. Pod subnets  

III. Cluster subnet  

IV. External service subnet 

● (Optional) If you need to perform any route leaking, you should add the required subnet scope 

options, such as Export Route Control Subnet. This is required if these subnets are to be advertised 

outside of ACI. 

6. Floating SVI and SVI: Add a secondary address. 

● For each anchor node or SVI path, add a IPv4 secondary address.  

● Floating SVI: This is one address for the whole cluster, as per Figure 2. 

● SVI: Each pair of border leaves have a dedicated secondary IP, as per Figure 4. 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 18 of 39 

7. Enable Import Route Control Enforcement: 

● Select your L3OUT -> Policy -> Route Control Enforcement -> Enabled Import 

8. Set the BGP timers to 1s Keep Alive Interval and 3s Hold Interval, to align with the default 

configuration of the CNI and provide fast node-failure detection. We are also configuring the 

maximum AS limit to 1 and Graceful Restart, as discussed previously. 

9. Note: Calico BIRD Component is unable to handle the 1s/3s timer: 

https://github.com/projectcalico/calico/issues/7086 relaxing the timers to 2s/6s seems to provide a 

stable environment  

● Expand “Logical Node Profiles,” right click on the Logical Node Profile, and select “Create BGP 

Protocol Profile.” 

● Click on the “BGP Timers” drop-down menu and select “Create BGP Timers Policy.” 

● Name: <Name> 

● Keep Alive Interval: 1s 

● Hold Interval: 3s 

● Maximum AS Limit: 1 

● Graceful Restart Control: Enabled 

● Press: Submit. 

● Select the <Name> BGP timer policy. 

● Press: Submit.  

(Optional) Repeat Step 8 for all the remaining “Logical Node Profiles.” 

◦ Note: The 1s/3s BGP timer policy already exists now; there is no need to re-create it.  

10. In order to protect the ACI fabric from potential BGP prefix misconfigurations on the Kubernetes 

cluster, Import Route Control has been enabled in step 7. In this step, we are going to configure the 

required route map to allow only the node, pod cluster service subnet and external service subnet to 

be accepted by ACI. 

● Expand your L3Out, right click on “Route map for import and export route control,” and select “Create 

Route Map for…”  

● Name: From the drop-down menu, select “default-import” node.  

● Note: Do not create a new one; select the pre-existing one, called “default-import.” 

● Type: “Match Prefix and Routing Policy” 

● Click on “+” to create a new context.  

● Order: 0 

● Name: <Name>  

● Action: Permit 

● Click on “+” to create a new “Associated Matched Rules.” 

● From the drop-down menu, select “Create Match Rule for a Route Map.” 

https://github.com/projectcalico/calico/issues/7086


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 19 of 39 

● Name: <Name> 

● Click “+” on Match Prefix: 

● IP: POD Subnet  

● Aggregate: True 

● Click Update.  

● Repeat the above step for all the subnets that you want to accept.  

● Click Submit.  

● Ensure the selected Match Rule is the one we just created. 

● Click OK.  

● Click Submit. 

It is possible to use the same steps (10) to configure what routes ACI will export by selecting the 

“default-export” option. It is recommended to configure the same subnets as in step 10. 

11. Create max ECMP Policies: 

● Go to Policies -> Protocol -> BGP -> BGP Address Family Context -> Create a new one and set: 

● eBGP Max ECP to 64 

● iBGP Max ECP to 64 

● Leave the rest to the default. 

12. Apply the ECMP Policies: 

● Go to Networking -> VRFs -> Your VRF -> Click “+” on BGP Context Per Address Family: 

● Type: IPv4 unicast address family 

● Context: Your Context 

13. (Optional) Create maximum number of prefixes to limit how many prefixes we can accept from a 

single K8s node. 

● Go to Policies -> Protocol -> BGP -> BGP Peer Prefix -> Create a new one and set: 

● Action: Reject 

● Max Number of Prefixes: Choose a value aligned with your cluster requirements.  



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 20 of 39 

14. Configure the eBGP Peers: Each of your K8s nodes should peer with the two ToR leaves as shown 

in Figure 2, "Floating SVI design.” 

● Select your L3OUT -> Logical Node Profiles -> <Node Profile> -> Logical Interface Profile 

● Floating SVI: Double click on the anchor node -> Select “+” under the BGP Peer Connectivity Profile. 

● SVI: Right click on the SVI Path -> Select Create BGP Peer Connectivity Profile 

● Configure the BGP Peer: 

● Peer Address: Calico Cluster Subnet 

● Remote Autonomous System Number: Cluster AS 

● BGP Controls: 

I. AS Override 

II. Disable Peer AS Check 

● Password/Confirm Password: BGP password 

● BGP Peer Prefix Policy: BGP peer prefix policy name 

Repeat this step for all your Anchor nodes 

Calico routing and BGP configuration 

This section assumes that the basic Kubernetes node configurations have already been applied: 

● The Kubernetes node network configuration is complete (that is, default route is configured to be the ACI 

L3Out secondary IP, and connectivity between the Kubernetes nodes is possible). 

● Kubernetes is installed.  

● Calico is installed with BGP enabled and no Overlay/NAT for the IPPool 

https://projectcalico.docs.tigera.io/getting-started/kubernetes/self-managed-

onprem/onpremises#install-calico 

Note: Tigera Recommends installing Calico using the operator 

● No configuration has been applied. 

Note:   In the next examples, it is assumed that Calico and “calicoctl” have been installed. If you are using 

K8s as a datastore, you should add the following line to your shell environment configuration: 

https://projectcalico.docs.tigera.io/getting-started/kubernetes/self-managed-onprem/onpremises#install-calico
https://projectcalico.docs.tigera.io/getting-started/kubernetes/self-managed-onprem/onpremises#install-calico


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 21 of 39 

To install Calico with BGP enabled and no Overlay/NAT for the IPPool you can modify the calicoNetwork 

section in the custom-resources.yaml as following: 

  calicoNetwork: 

    # Note: The ipPools section cannot be modified post-install. 

    ipPools: 

    - blockSize: 26 

      cidr: 192.168.3.0/24 

      encapsulation: None 

      natOutgoing: Disabled 

      nodeSelector: all() 

    bgp: Enabled 

Create your cluster BGPConfiguration: in this file we disable BGP full mesh between the K8s nodes and 

set the serviceClusterIPs and serviceExternalIPs subnets so that they can be advertised by 

eBGP. These subnets are the service and external service subnets in Kubernetes.  

apiVersion: projectcalico.org/v3 

kind: BGPConfiguration 

metadata: 

  name: default 

spec: 

  asNumber: 65003 

  logSeverityScreen: Info 

  nodeToNodeMeshEnabled: false 

  serviceClusterIPs: 

  - cidr: 192.168.8.0/22 

  serviceExternalIPs: 

  - cidr: 192.168.3.0/24 

calico-master-1#./calicoctl apply -f BGPConfiguration.yaml 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 22 of 39 

Create a secret to store the BGP password. We also need to add a Role and RoleBinding to ensure 

the calico-node ServiceAccount can access the Secret.  

apiVersion: v1 

kind: Secret 

metadata: 

  name: bgp-secrets 

  namespace: kube-system 

type: Opaque 

stringData: 

  rr-password: 123Cisco123 

--- 

apiVersion: rbac.authorization.k8s.io/v1 

kind: Role 

metadata: 

  name: secret-access 

  namespace: kube-system 

rules: 

- apiGroups: [""] 

  resources: ["secrets"] 

  resourceNames: ["bgp-secrets"] 

  verbs: ["watch", "list", "get"] 

--- 

apiVersion: rbac.authorization.k8s.io/v1 

kind: RoleBinding 

metadata: 

  name: secret-access 

  namespace: kube-system 

roleRef: 

  apiGroup: rbac.authorization.k8s.io 

  kind: Role 

  name: secret-access 

subjects: 

- kind: ServiceAccount 

  name: calico-node 

  namespace: kube-system 

calico-master-1#kubectl apply -f BGPPassSecret.yaml 

Calico BGP Peering: In order to simplify the peering configuration, it is recommended to label the K8s 

node with the rack_id. We can then use the rack_id label to select the K8s nodes when we configure the 

BGP peering in Calico. For example: 

calico-master-1 kubectl label node master-1 rack_id=1 

calico-master-1 kubectl label node master-2 rack_id=2 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 23 of 39 

Now when we create the BGP peering configuration, we can do the following: 

● Set the peerIP to the Leaf IP address for the BGP peering.  

● Set the asNumber to the ACI BGP AS number.  

● Set the nodeSelector equal to the rack where the ACI leaf is located. 

● Set the password to the secret created previously.  

With this configuration we will automatically select all the nodes in rack_id ==X and configure them to peer with 

the selected ACI leaf.  

For example:  

--- 

apiVersion: projectcalico.org/v3 

kind: BGPPeer 

metadata: 

  name: "201" 

spec: 

  peerIP: "192.168.2.201" 

  asNumber: 65002 

  nodeSelector: rack_id == "1" 

  password: 

    secretKeyRef: 

      name: bgp-secrets 

      key: rr-password 

--- 

apiVersion: projectcalico.org/v3 

kind: BGPPeer 

metadata: 

  name: "202" 

spec: 

  peerIP: "192.168.2.202" 

  asNumber: 65002 

  nodeSelector: rack_id == "1" 

  password: 

    secretKeyRef: 

      name: bgp-secrets 

      key: rr-password 

--- 

apiVersion: projectcalico.org/v3 

kind: BGPPeer 

metadata: 

  name: "203" 

spec: 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 24 of 39 

  peerIP: "192.168.2.203" 

  asNumber: 65002 

  nodeSelector: rack_id == "2" 

  password: 

    secretKeyRef: 

      name: bgp-secrets 

      key: rr-password 

--- 

apiVersion: projectcalico.org/v3 

kind: BGPPeer 

metadata: 

  name: "204" 

spec: 

  peerIP: "192.168.2.204" 

  asNumber: 65002 

  nodeSelector: rack_id == "2" 

  password: 

    secretKeyRef: 

      name: bgp-secrets 

      key: rr-password 

 

calico-master-1#./calicoctl apply -f BGPPeer.yaml 

Verify that the configuration is applied. 

cisco@calico-master-1:~$ calicoctl get bgppeer 

NAME    PEERIP                NODE             ASN 

201     192.168.2.201         rack_id == "1"   65002 

202     192.168.2.202         rack_id == "1"   65002 

203     192.168.2.203         rack_id == "2"   65002 

204     192.168.2.204         rack_id == "2"   65002 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 25 of 39 

Verify that BGP peering is established: 

● From the Kubernetes node: 

cisco@calico-node-1:~$ sudo calicoctl node status 

Calico process is running. 

 

IPv4 BGP status 

+---------------+---------------+-------+------------+-------------+ 

| PEER ADDRESS  |   PEER TYPE   | STATE |   SINCE    |    INFO     | 

+---------------+---------------+-------+------------+-------------+ 

| 192.168.2.201 | node specific | up    | 2021-10-05 | Established | 

| 192.168.2.202 | node specific | up    | 02:09:14   | Established | 

+---------------+---------------+-------+------------+-------------+ 

 

● From ACI: 

fab2-apic1# fabric 203 show ip bgp summary vrf common:calico 

---------------------------------------------------------------- 

 Node 203 (Leaf203) 

---------------------------------------------------------------- 

BGP summary information for VRF common:calico, address family IPv4 Unicast 

BGP router identifier 1.1.4.203, local AS number 65002 

BGP table version is 291, IPv4 Unicast config peers 4, capable peers 4 

16 network entries and 29 paths using 3088 bytes of memory 

BGP attribute entries [19/2736], BGP AS path entries [0/0] 

BGP community entries [0/0], BGP clusterlist entries [6/24] 

 

Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd 

192.168.1.1     4 65003    3694    3685      291    0    0 00:01:30 2 

192.168.1.9     4 65003    3618    3612      291    0    0 00:00:10 2 

192.168.1.17    4 65003    3626    3620      291    0    0 00:00:13 3 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 26 of 39 

By default, Kubernetes service IPs and node ports are accessible through any node and will be load-balanced 

by kube-proxy across all the pods backing the service. To advertise a service directly from just the nodes 

hosting it (without kube-proxy load balancing), configure the service as “NodePort” and set the 

“externalTrafficPolicy” to “Local.” This will result in the /32 service IP being advertised to the fabric only by the 

nodes where the service is active.  

apiVersion: v1 

kind: Service 

metadata: 

  name: frontend 

  labels: 

    app: guestbook 

    tier: frontend 

spec: 

  # if your cluster supports it, uncomment the following to automatically create 

  # an external load-balanced IP for the frontend service. 

  # type: LoadBalancer 

  ports: 

  - port: 80 

  selector: 

    app: guestbook 

    tier: frontend 

  type: NodePort 

  externalTrafficPolicy: Local  

Verify that ACI is receiving the correct routes: 

◦ Every Calico node advertises a /26 subnet to ACI from the pod subnet.7  

◦ Every exposed service should be advertised as a /32 host route. For example: 

Connect to one of the ACI border leaves and check that we are receiving these subnets  

# POD Subnets: A neat trick here is to use the supernet /16 in this example with the 

longer-prefixes option. In this output the 192.168.2.x IPs are my K8s nodes.  

 

Leaf203# show ip route vrf common:calico  10.1.0.0/16 longer-prefixes 

IP Route Table for VRF "common:calico" 

'*' denotes best ucast next-hop 

'**' denotes best mcast next-hop 

'[x/y]' denotes [preference/metric] 

'%<string>' in via output denotes VRF <string> 

                                                 

7
 This is the default behavior. Additional /26 subnets will be allocated to nodes automatically if they exhaust their existing /26 

allocations. In addition, the node may advertise /32 pod specific routes if it is hosting a pod that falls outside of its /26 subnets. 

Refer to https://www.projectcalico.org/calico-ipam-explained-and-enhanced for more details on Calico IPAM configuration and 

controlling IP allocation for specific pods, namespaces, or nodes. 

https://www.projectcalico.org/calico-ipam-explained-and-enhanced%20/


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 27 of 39 

10.1.38.64/26, ubest/mbest: 1/0 

    *via 192.168.2.7%common:calico, [20/0], 12:16:10, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.7/32%common:calico 

10.1.39.0/26, ubest/mbest: 1/0 

    *via 192.168.2.1%common:calico, [20/0], 2d03h, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.1/32%common:calico 

10.1.133.192/26, ubest/mbest: 1/0 

    *via 192.168.2.5%common:calico, [20/0], 2d03h, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.5/32%common:calico 

10.1.183.0/26, ubest/mbest: 1/0 

    *via 192.168.2.9%common:calico, [20/0], 03:04:10, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.9/32%common:calico 

 

# Service Subnets: assuming you have a service configured with the 

externalTrafficPolicy: Local option it should be advertised: 

 

In this example the 192.168.10.150 is advertised by 3 ndoes. 

 

cisco@calico-master-1:~$ kubectl -n guestbook get svc frontend 

NAME       TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)        AGE 

frontend   NodePort   192.168.10.150   <none>        80:30291/TCP   31s 

 

This CLUSTER-IP is frontending 3 PODs: 

kubectl  -n guestbook get pod -o wide -l tier=frontend 

NAME                       READY   STATUS    RESTARTS   AGE   IP            NODE        

frontend-d7f77b577-cvqp4   1/1     Running   0          90s   10.1.183.4    worker-6    

frontend-d7f77b577-fhsv8   1/1     Running   0          90s   10.1.226.67   worker-1    

frontend-d7f77b577-lv6vc   1/1     Running   0          90s   10.1.97.196   worker-3  

 

These nodes are not all peering with the same leaves: 

 

Leaf203# show ip route vrf common:calico  192.168.10.150 

192.168.10.150/32, ubest/mbest: 1/0 

    *via 192.168.2.9%common:calico, [20/0], 00:16:04, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.9/32%common:calico 

 

Leaf201# show ip route vrf common:calico  192.168.10.150 

192.168.10.150/32, ubest/mbest: 2/0 

    *via 192.168.2.4%common:calico, [20/0], 00:01:14, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.4/32%common:calico 

    *via 192.168.2.6%common:calico, [20/0], 00:01:14, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.2.6/32%common:calico 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 28 of 39 

Kube-Router routing and BGP configuration 

Due to: https://github.com/cloudnativelabs/kube-router/issues/1323 only Kube-Router v1.5.1 or above are 

supported for this design.   

This section assumes that the basic Kubernetes node configurations have already been applied: 

● The Kubernetes node network configuration is complete (that is, default route is configured to be the ACI 

L3Out secondary IP, and connectivity between the Kubernetes nodes is possible). 

● Kubernetes is installed.  

● Kube-Router has not yet been deployed 

When deploying Kube-Router the Daemonset args should be set following: 

● Set the cluster global BGP Autonomous System 

● Enable the advertisement of the external-ip, loadbalancer-ip and pod-cidr 

● Disable: iBGP, IP-in-IP Overlay and Pod Egress NAT 

● Override the next hop to the Node IP 

These settings are going to be applied to all the kube-routers pods 

Below is an example of the expected configuration parameter to add to the default kube-router config: 

- --cluster-asn=<AS> 

- --advertise-external-ip 

- --advertise-loadbalancer-ip 

- --advertise-pod-cidr=true 

- --enable-ibgp=false 

- --enable-overlay=false 

- --enable-pod-egress=false 

- --override-nexthop=true 

The next steps consist in annotating the K8s nodes with the following annotations: 

● kube-router.io/peer.ips: comma separated list of the IP of the ACI Leaves to peer with. 

● kube-router.io/peer.asns: comma separated list of the AS numbers of the Leaves (one per leaf) 

● kube-router.io/peer.passwords: comma separated list of the BGP Password the Leaves (one per leaf) 

For example, to peer with leaf 101 and 102, in AS 65002 with BGP Password of “123Cisco123” the following 

annotation can be used: 

kube-router.io/peer.ips=192.168.43.101,192.168.43.102 

kube-router.io/peer.asns=65002,65002 

kube-router.io/peer.passwords=MTIzQ2lzY28xMjM=,MTIzQ2lzY28xMjM= 

To apply the annotation, you can use the following command: 

kubectl annotate nodes master-1 kube-router.io/peer.ips=192.168.43.101,192.168.43.102 

Note:   Kube-Router reads/updates the annotation value only at startup time. If you deploy kube-router 

and then annotate the nodes, you will have to restart all the kube-router pods with the following command: 

kubectl -n kube-system delete pod -l k8s-app=kube-router  

https://github.com/cloudnativelabs/kube-router/issues/1323
https://github.com/cloudnativelabs/kube-router/blob/master/daemonset/generic-kuberouter-all-features.yaml


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 29 of 39 

Once the annotations are applied to all the nodes you can connect to any of the kube-router pods to see a 

snapshot of the current config and state: 

master-1:~$ kubectl -n kube-system exec -it kube-router-7gxfr -- bash 

Welcome to kube-router on "gitaction-nkt-master-3"! 

 

Here's a quick look at what's happening on this Node 

--- BGP Server Configuration --- 

AS:        65003 

Router-ID: 192.168.43.3 

Listening Port: 179, Addresses: 192.168.43.3, ::1 

 

--- BGP Neighbors --- 

Peer              AS     Up/Down State       |#Received  Accepted 

192.168.43.101 65002 1d 03:37:26 Establ      |        8         8 

192.168.43.102 65002 1d 03:37:24 Establ      |        8         8 

 

--- BGP Route Info --- 

   Network              Next Hop        AS_PATH         Age          Attrs 

*> 192.168.44.0/28      192.168.43.1    65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.0/28      192.168.43.1    65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.44.16/28     192.168.43.2    65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.16/28     192.168.43.2    65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.44.32/28     192.168.43.3                    00:01:03     [{Origin: i}] 

*> 192.168.44.48/28     192.168.43.5    65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.48/28     192.168.43.5    65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.44.64/28     192.168.43.4    65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.64/28     192.168.43.4    65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.44.80/28     192.168.43.8    65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.80/28     192.168.43.8    65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.44.96/28     192.168.43.101  65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.96/28     192.168.43.102  65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.44.112/28    192.168.43.6    65002 65002     1d 03:37:24  [{Origin: i}] 

*  192.168.44.112/28    192.168.43.6    65002 65002     1d 03:37:21  [{Origin: i}] 

*> 192.168.44.128/28    192.168.43.9    65002 65002     1d 03:37:26  [{Origin: i}] 

*  192.168.44.128/28    192.168.43.9    65002 65002     1d 03:37:24  [{Origin: i}] 

*> 192.168.46.4/32      192.168.43.3                     00:01:03    [{Origin: i}] 

For the ACI checks, you can refer to the relevant section in the Calico example. The same commands can be 

re-used. 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 30 of 39 

Cilium routing and BGP configuration 

This section assumes that the basic Kubernetes node configurations have already been applied: 

● The Kubernetes node network configuration is complete (that is, the default route is configured to be the 

ACI L3Out secondary IP, and connectivity between the Kubernetes nodes is possible). 

● Kubernetes is installed.  

● Cilium has not yet been deployed. 

 

Current limitations: 

● Lack of support for BGP MD5 Password Authentication. See 

https://github.com/cilium/cilium/issues/23052. 

● Lack of support for externalTrafficPolicy: Local. An exposed service will be advertised through 

BGP by all the K8s nodes regardless of whether or not a POD exposed by the service is running on them. 

This results in suboptimal traffic flows. See https://github.com/cilium/cilium/issues/23035. At the time 

of writing, this feature has been implemented in Cilium Version 1.14.0-snapshot.4 (and above) and is 

working as expected.  

Both of these issues, at the time of writing, are being worked on. 

Cilium can be installed in different ways; in the example below, Helm is used. 

helm repo add cilium https://helm.cilium.io/ 

helm repo update 

(Optional) Install the Cilium CLI:8 

CILIUM_CLI_VERSION=$(curl -s https://raw.githubusercontent.com/cilium/cilium-

cli/master/stable.txt) 

CLI_ARCH=amd64 

if [ "$(uname -m)" = "aarch64" ]; then CLI_ARCH=arm64; fi 

curl -L --fail --remote-name-all https://github.com/cilium/cilium-

cli/releases/download/${CILIUM_CLI_VERSION}/cilium-linux-

${CLI_ARCH}.tar.gz{,.sha256sum} 

sha256sum --check cilium-linux-${CLI_ARCH}.tar.gz.sha256sum 

sudo tar xzvfC cilium-linux-${CLI_ARCH}.tar.gz /usr/local/bin 

rm cilium-linux-${CLI_ARCH}.tar.gz{,.sha256sum} 

Once the Helm repo is ready, it is possible to use a values.yaml file to set the required install parameters. 

Note:   The configuration below is an example of how to integrate Cilium with ACI using eBGP and will 

need to be adapted to your production needs.  

                                                 

8 https://docs.cilium.io/en/stable/gettingstarted/k8s-install-default/#install-the-cilium-cli 

https://github.com/cilium/cilium/issues/23052
https://github.com/cilium/cilium/issues/23035
https://docs.cilium.io/en/stable/gettingstarted/k8s-install-default/#install-the-cilium-cli


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 31 of 39 

bgpControlPlane: 

  enabled: true 

# -- Configure BGP 

bgp: 

  # -- Enable BGP support inside Cilium; embeds a new ConfigMap for BGP inside 

  # cilium-agent and cilium-operator 

  enabled: true 

  announce: 

    # -- Enable allocation and announcement of service LoadBalancer IPs 

    loadbalancerIP: true 

    # -- Enable announcement of node pod CIDR 

    podCIDR: true 

ipam: 

  mode: "cluster-pool" 

  operator: 

    clusterPoolIPv4PodCIDRList: ["192.168.19.0/24"] 

    clusterPoolIPv4MaskSize: 27 

ipv4: 

  enabled: true 

ipv6: 

  enabled: false 

loadBalancer: 

  algorithm: maglev 

operator: 

  replicas: 1 

# Disable the encapsulation, enable routing for the node subnets  

# and turn off NAT for everything 

tunnel: disabled 

enable-endpoint-routes: true 

enableIPv6Masquerade: false 

enableIPv4Masquerade: false 

#Disable Kube Proxy 

kubeProxyReplacement: "strict" 

k8sServiceHost: 192.168.18.252 

k8sServicePort: 8443 

hubble: 

  # -- Enable Hubble (true by default). 

  enabled: true 

  relay: 

    # -- Enable Hubble Relay (requires hubble.enabled=true) 

    enabled: true 

  ui: 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 32 of 39 

    # -- Whether to enable the Hubble UI. 

    enabled: true 

    service: 

      # --- The type of service used for Hubble UI access, either ClusterIP or 

NodePort. 

      type: LoadBalancer 

    # Disable TLS, this is ok only for labs. 

  tls: 

    enabled: false 

 

Create a  CiliumLoadBalancerIPPool to define the IP pool for the LoadBalancer Services: 

apiVersion: "cilium.io/v2alpha1" 

kind: CiliumLoadBalancerIPPool 

metadata: 

  name: "lb-pool" 

spec: 

  cidrs: 

  - cidr: 192.168.21.0/24 

Create a CiliumBGPPeeringPolicy (you will need one policy per rack). This policy defines: 

◦ Which nodes are located in which rack through the nodeSelector 

◦ The ASNs of the nodes  

◦ Which services should be advertised through BGP (In the config below, all the services are exported 

by matching on a nonexistent key.) 

◦ Which ACI leaves you are peering to, and their ASNs. 

 

apiVersion: cilium.io/v2alpha1 

kind: CiliumBGPPeeringPolicy 

metadata: 

  name: rack-1 

  namespace: kube-system 

spec: 

 nodeSelector: 

   matchLabels: 

     rack_id: "1" 

 virtualRouters: 

 - localASN: 65003 

   exportPodCIDR: true 

   serviceSelector: 

     matchExpressions: 

     - key: CiliumAdvertiseAllServices 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 33 of 39 

       operator: DoesNotExist 

   neighbors: 

    - peerAddress: "192.168.18.203/32" 

      peerASN: 65002 

    - peerAddress: "192.168.18.204/32" 

      peerASN: 65002 

 

Annotate the node with the RackID: 

kubectl label node pi-k8s-1 rack_id=1 

kubectl label node pi-k8s-2 rack_id=2 

kubectl label node pi-k8s-3 rack_id=3 

 

Once the configuration is applied, it is possible to check the status of the BGP peering with the Cilium CLI utility: 

cilium bgp peers 

Node       Local AS   Peer AS   Peer Address     Session State   Uptime   Family         Received   Advertised 

pi-k8s-1   65003      65002     192.168.18.203   established     27m17s   ipv4/unicast   2          6 

                                                                          ipv6/unicast   0          0 

           65003      65002     192.168.18.204   established     27m14s   ipv4/unicast   2          6 

                                                                          ipv6/unicast   0          0 

pi-k8s-2   65003      65002     192.168.18.203   established     27m44s   ipv4/unicast   2          6 

                                                                          ipv6/unicast   0          0 

           65003      65002     192.168.18.204   established     27m46s   ipv4/unicast   2          6 

                                                                          ipv6/unicast   0          0 

pi-k8s-3   65003      65002     192.168.18.203   established     27m4s    ipv4/unicast   2          6 

                                                                          ipv6/unicast   0          0 

           65003      65002     192.168.18.204   established     27m6s    ipv4/unicast   2          6 

                                                                          ipv6/unicast   0          0 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 34 of 39 

● From ACI: 

fab2-apic1# fabric 203 show ip bgp summary vrf  rpi-k8s:vrf 

---------------------------------------------------------------- 

Node 203 (Leaf203) 

---------------------------------------------------------------- 

BGP summary information for VRF rpi-k8s:vrf, address family IPv4 Unicast 

BGP router identifier 1.1.1.203, local AS number 65002 

BGP table version is 274, IPv4 Unicast config peers 4, capable peers 3 

10 network entries and 30 paths using 2828 bytes of memory 

BGP attribute entries [6/1248], BGP AS path entries [0/0] 

BGP community entries [0/0], BGP clusterlist entries [6/24] 

 

Neighbor        V    AS MsgRcvd MsgSent   TblVer  InQ OutQ Up/Down  State/PfxRcd 

192.168.18.1    4 65003    1952    1951      274    0    0 00:32:29 6 

192.168.18.2    4 65003    2626    2617      274    0    0 00:32:57 6 

192.168.18.3    4 65003    2637    2631      274    0    0 00:32:17 6  

 

To expose a service with Cilium through BGP, it is sufficient simply to create the service as type 

“LoadBalancer.” Remember that, due to https://github.com/cilium/cilium/issues/23035, the service IP 

will be advertised by all nodes. 

 

apiVersion: v1 

kind: Service 

metadata: 

  name: frontend 

  labels: 

    app: guestbook 

    tier: frontend 

spec: 

  # if your cluster supports it, uncomment the following to automatically create 

  # an external load-balanced IP for the frontend service. 

  # type: LoadBalancer 

  ports: 

  - port: 80 

  selector: 

    app: guestbook 

    tier: frontend 

  type: LoadBalancer 

https://github.com/cilium/cilium/issues/23035


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 35 of 39 

Verify that ACI is receiving the correct routes: 

◦ Every Cilium node advertises a /27 subnet to ACI from the pod subnet. 

◦ Every exposed service is advertised as a /32 host route. For example: 

Connect to one of the ACI border leaves and check that we are receiving these subnets  

# POD Subnets: A neat trick here is to use the supernet /16 in this example with the 

longer-prefixes option. In this output the 192.168.2.x IPs are my K8s nodes.  

 

Leaf203# show ip route vrf  rpi-k8s:vrf 192.168.19.0/24 longer-prefixes 

 

192.168.19.0/27, ubest/mbest: 1/0 

    *via 192.168.18.2%rpi-k8s:vrf, [20/0], 00:58:02, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.18.2/32%rpi-k8s:vrf 

192.168.19.32/27, ubest/mbest: 1/0 

    *via 192.168.18.1%rpi-k8s:vrf, [20/0], 00:57:34, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.18.1/32%rpi-k8s:vrf 

192.168.19.64/27, ubest/mbest: 1/0 

    *via 192.168.18.3%rpi-k8s:vrf, [20/0], 00:57:21, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.18.3/32%rpi-k8s:vrf 

# Service Subnets: assuming you have a service configured it should be advertised: 

 

In this example the 192.168.21.186 is advertised by 3 nodes. 

 

pi@pi-k8s-1:~$ kubectl  -n gb get svc frontend 

NAME       TYPE           CLUSTER-IP      EXTERNAL-IP      PORT(S)        AGE 

frontend   LoadBalancer   192.168.20.51   192.168.21.186   80:31569/TCP   69m 

 

Leaf203# show ip route vrf  rpi-k8s:vrf 192.168.21.186 

IP Route Table for VRF "rpi-k8s:vrf" 

'*' denotes best ucast next-hop 

'**' denotes best mcast next-hop 

'[x/y]' denotes [preference/metric] 

'%<string>' in via output denotes VRF <string> 

 

192.168.21.186/32, ubest/mbest: 3/0 

    *via 192.168.18.3%rpi-k8s:vrf, [20/0], 00:58:31, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.18.3/32%rpi-k8s:vrf 

    *via 192.168.18.1%rpi-k8s:vrf, [20/0], 00:58:44, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.18.1/32%rpi-k8s:vrf 

    *via 192.168.18.2%rpi-k8s:vrf, [20/0], 00:59:12, bgp-65002, external, tag 65003 

         recursive next hop: 192.168.18.2/32%rpi-k8s:vrf 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 36 of 39 

Cluster connectivity outside of the fabric – transit routing 

For nodes of the Kubernetes cluster to communicate with devices located outside the fabric, transit routing 

needs to be configured between the Calico L3Out and one (or more) L3Outs connecting to an external routed 

domain.  

This configuration requires adding the required consumed/provided contracts between the external EPGs. 

Please refer to https://www.cisco.com/c/en/us/td/docs/dcn/whitepapers/cisco-application-centric-

infrastructure-design-guide.html#Transitrouting for best practices on how to configure transit routing in Cisco 

ACI.  

Cluster connectivity inside the fabric 

Once the eBGP configuration is completed, pods and service IPs will be advertised to the ACI fabric. To provide 

connectivity between the cluster’s L3Out external EPG and a different EPG, all that is required is a contract 

between those EPGs.  

IPv6 and Dual stack considerations 

Cisco ACI supports both IPv4, IPv6 or Dual Stack designs. 

Calico support IPv4/IPv6 Only and Dual Stack 

Kube-Router support IPv4, IPv6 and Dual Stack is under development, see 

https://github.com/cloudnativelabs/kube-router/issues/307 

Visibility 

Following this design guide, a network administrator would be capable to easily verify the status of the K8s 

cluster. 

Under the L3Out logical interface profile, it is possible to visualize the BGP neighbors configured as shown in 

the following figure: 

  

  Figure 5. 

BGP Neighbors Configuration 

https://www.cisco.com/c/en/us/td/docs/dcn/whitepapers/cisco-application-centric-infrastructure-design-guide.html#Transitrouting
https://www.cisco.com/c/en/us/td/docs/dcn/whitepapers/cisco-application-centric-infrastructure-design-guide.html#Transitrouting
https://github.com/cloudnativelabs/kube-router/issues/307


 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 37 of 39 

Each neighbor’s state can be also verified as shown in the following figure: 

 

  Figure 6. 

BGP Neighbor State 

Finally, the routes learned from the K8s nodes are rendered at the L3Out VRF level, as shown in the figure 

below: 

 

  Figure 7. 

VRF Routing Table 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 38 of 39 

Segmentation 

In order to apply micro segmentation based on specific pod endpoints or services exposed by the K8s cluster, 

it is possible to create other external EPGs and match the specific workload intended for micro segmentation. 

Contracts including service graphs and PBR are supported for this use case. A typical use case would be to 

redirect traffic for specific critical services to a firewall that would log and perform network traffic analysis. 

Tested Kubernetes distributions 

Theoretically, any K8s distribution can support this architecture as long as the CNI plugin support peering 

through BGP. 

At the time of writing, the following combinations have been tested: 

● Upstream Kubernetes  

◦ Calico 

◦ Cilium 

◦ Kube-router 

● OpenShift 4.x 

◦ Calico 

● Tanzu 

◦ Calico 

Conclusion 

By combining Cisco ACI and Calico, customers can design Kubernetes clusters that can deliver both high 

performance (no overlays overhead) as well as providing exceptional resilience while keeping the design simple 

to manage and troubleshoot. 



 

© 2023 Cisco and/or its affiliates. All rights reserved. Page 39 of 39 

Version history 

Version Date Change 

1.0 July 10, 2019 Initial Release 

2.0 January 14, 2022 Floating SVI 

2.1 December 16, 2022 Kube-Router Support 

2.2 July 26, 2023 Cilium Support, Tested Kubernetes Distros 

 

 

 

 

Printed in USA C11-743182-04 07/23 


