ılıılıı cısco

Cisco Multimedia Line Equalizer/Reverse Conditioner 1.25 GHz

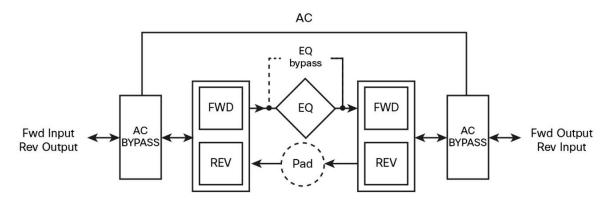
The Cisco[®] 1.25 GHz Multimedia Line Equalizer/Reverse Conditioner (LEQ/RC), shown in Figure 1, improves network performance on both the forward and reverse paths in a coaxial transmission system.

In the forward path, the fixed forward equalizer offsets undesirable down-tilt associated with cumulative cable and passive losses, allowing tap port RF levels to be maintained within desired design limits, even at taps located near the ends of lines.

In the reverse path, plug-in attenuation allows RF levels to be conditioned for optimal performance of critical reverse path services. By selectively adding reverse attenuation at Cisco Multimedia LEQ/RC locations, the range of RF levels transmitted from closed-loop customer premises equipment in a given service area can be narrowed considerably.

With greater percentages of network devices transmitting in the upper end of their RF transmit ranges, improvements in carrier-to-ingress and carrier-to-noise performance can be realized.

Figure 1. Cisco Multimedia Line Equalizer/Reverse Conditioner



Features

- Fixed 9 dB or 11 dB forward equalizers
- Plug-in attenuator location for reverse-path optimization
- Connection beam noninterruptible AC and RF bypass (Figure 2) that optimizes network availability during maintenance periods
- Equalizer in and out bypass, which allows reverse conditioning deployment network locations where forward equalization is not desired

- 15A current passing capability, which allows placement in all portions of the network
- 6 kV surge protection
- Circuit contained in faceplate, compatible with existing Cisco line equalizer products
- Rugged, polymer-coated housing that provides reliable performance in the most challenging environments; additional labels provided in packaging mark the tap containing a DC/EQ module

Figure 2. Block Diagram

Product Specifications

Tables 1 through 7 provide product specifications.

Insertion Loss 42/54 MHz							
Frequency	Bypass Mode	Bypass Mode		Equalization Mode			
			9 dB		11 dB		
	Typical	Maximum	Typical	Maximum	Typical	Maximum	
5 MHz	-0.5	-1.0	-0.5	-1.0	-0.5	-1.0	
10 MHz	-0.4	-1.2	-0.4	-1.2	-0.4	-1.2	
42 MHz	-0.7	-1.3	-0.7	-1.5	-0.7	-1.5	
54 MHz	-1.2	-1.5	-9.9	-10.1	-11.6	-11.7	
100 MHz	-0.6	-1.5	-9.4	-9.5	-10.9	-11.0	
550 MHz	-1.0	-1.6	-6.0	-6.1	-6.7	-6.8	
750 MHz	-1.1	-1.8	-4.9	-5.0	-5.4	-5.5	
870 MHz	-1.4	-2.0	-4.3	-4.4	-4.7	-4.8	
1000 MHz	-1.9	-2.2	-3.6	-3.7	-3.9	-4.0	
1218 MHz	-2.2	-2.4	-2.7	-2.8	-2.8	-2.9	
1250 MHz	-2.3	-2.5	-2.6	-2.7	-2.6	-2.7	

Table 1.Insertion Loss

Insertion Loss 65	Insertion Loss 65/86 MHz						
Frequency	Bypass Mode	Bypass Mode		Equalization Mode			
			9 dB		11 dB		
	Typical	Maximum	Typical	Maximum	Typical	Maximum	
5 MHz	-0.5	-1.0	-0.5	-1.0	-0.5	-1.0	
10 MHz	-0.4	-1.0	-0.4	-1.0	-0.4	-1.0	
40 MHz	-0.7	-1.0	-0.7	-1.0	-0.7	-1.0	
65 MHz	-1.0	-1.5	-1.0	1.5	-1.0	-1.5	
86MHz	-1.1	-1.3	-9.5	-9.6	-11.1	-11.2	
550 MHz	-1.0	-1.4	-6.0	-6.1	-6.7	-6.8	
750 MHz	-1.1	-1.8	-4.9	-5.0	-5.4	-5.5	
870 MHz	-1.4	-2.0	-4.3	-4.4	-4.7	-4.8	
1000 MHz	-1.9	-2.2	-3.7	-3.8	-3.9	-4.0	
1218 MHz	-2.2	-2.4	-2.7	-2.8	-2.8	-2.9	

Insertion Loss 8	Insertion Loss 85/102 MHz						
Frequency	Bypass Mode	Bypass Mode		Mode			
			9 dB	9 dB			
	Typical	Maximum	Typical	Maximum	Typical	Maximum	
5 MHz	-0.5	-1.0	-0.5	-1.0	-0.5	-1.0	
10 MHz	-0.4	-1.0	-0.4	-1.0	-0.4	-1.0	
40 MHz	-0.7	-1.0	-0.7	-1.0	-0.7	-1.0	
85 MHz	-1.0	-1.5	-1.3	-1.5	-1.3	-1.5	
102 MHz	-1.1	-1.5	-9.3	-9.4	-10.8	-10.9	
550 MHz	-1.0	-1.4	-6.0	-6.1	-6.7	-6.8	
750 MHz	-1.1	-1.8	-4.9	-5.0	-5.4	-5.5	
870 MHz	-1.4	-2.0	-4.3	-4.4	-4.7	-4.8	
1000 MHz	-1.9	-2.2	-3.7	-3.8	-3.9	-4.0	
1218 MHz	-2.2	-2.4	-2.7	-2.8	-2.8	-2.9	
1250 MHz	-2.3	-2.5	-2.6	-2.7	-2.6	-2.7	

Insertion Loss 204/258 MHz							
Frequency	Frequency Bypass Mode		Equalization	Mode			
				9 dB		11 dB	
	Typical	Maximum	Typical	Maximum	Typical	Maximum	
5 MHz	-0.5	-1.0	-0.5	-1.0	-0.5	-1.0	
10 MHz	-0.4	-1.0	-0.4	-1.0	-0.4	-1.0	
40 MHz	-0.7	-1.0	-0.7	-1.0	-0.7	-1.0	
204 MHz	-1.0	-1.6	-1.0	-1.6	-1.0	-1.6	
258 MHz	-1.1	-2.0	-7.9	-8.3	-9.1	-9.8	
550 MHz	-1.0	-1.4	-6.0	-6.1	-6.7	-6.8	

Insertion Loss 204/258 MHz							
Frequency	Bypass Mode	Bypass Mode		Mode			
			9 dB	9 dB		11 dB	
	Typical	Maximum	Typical	Maximum	Typical	Maximum	
750 MHz	-1.1	-1.8	-4.9	-5.0	-5.4	-5.5	
870 MHz	-1.4	-2.0	-4.3	-4.4	-4.7	-4.8	
1000 MHz	-1.9	-2.2	-3.7	-3.8	-3.9	-4.0	
1218 MHz	-2.2	-2.4	-2.7	-2.8	-2.8	-2.9	
1250 MHz	-2.3	-2.5	-2.6	-2.7	-2.6	-2.7	

Table 2. Return Loss

Return Loss							
Frequency	Frequency Bypass Mode		Equalization Mode				
			9 dB		11 dB		
	Typical	Minimum	Typical	Minimum	Typical	Minimum	
5 to 10 MHz	–16 dB	- 15.5	16 dB	- 15.5	–16 dB	- 15.5	
11 to 1000 MHz	–17 dB	- 16	17 dB	- 16	–17 dB	- 16	
1001 to 1250 MHz	–17 dB	- 16	17 dB	- 16	–17 dB	- 16	

Table 3. Flatness

Flatness						
Frequency	Bypass Mode		Equalization Mode			
			9 dB		11 dB	
	Typical	Maximum	Typical	Maximum	Typical	Maximum
5 to 204 MHz	0.65 dB	0.65 dB	0.65 dB	0.65 dB	0.65 dB	0.65 dB
205 to 1250 MHz	0.75 dB	0.75 dB	0.75 dB	0.75 dB	0.75 dB	0.75 dB

Table 4. Group Delay

Group Delay 42/54 MHz							
Frequency	Typical	Maximum					
Forward	Forward						
91.25–94.83 MHz	3 ns	20 ns					
97.25–100.83 MHz	3 ns	10 ns					
Reverse							
5.0–6.5 MHz	39 ns	40 ns					
6.5–8.0 MHz	20 ns	30 ns					
8.0–9.5 MHz	10 ns	15 ns					
37.5–39.0 MHz	2 ns	15 ns					
39.0–40.5 MHz	6 ns	20 ns					
40.5–42.0 MHz	7 ns	30 ns					

Group Delay 65/86 MHz					
Frequency	Typical	Maximum			
Forward					
91.25–94.83 MHz	3 ns	20 ns			
97.25–100.83 MHz	3 ns	10 ns			
Reverse					
5.0–6.5 MHz	40 ns	40 ns			
6.5–8.0 MHz	10 ns	30 ns			
8.0–9.5 MHz	11 ns	15 ns			
60.5–62.0 MHz	27ns	15 ns			
62.0–63.5 MHz	11 ns	20 ns			
63.5 - 65 MHz	14 ns	30 ns			

Group Delay 85/102 MHz					
Frequency	Typical	Maximum			
Forward					
109.25 to 112.83 MHz	15 ns	20 ns			
115.25 to 118.83 MHz	7 ns	10 ns			
Reverse					
5.0 to 6.5 MHz	40 ns	40 ns			
6.5 to 8.0 MHz	20 ns	30 ns			
8.0 to 9.5 MHz	9 ns	15 ns			
80.5 to 82.0 MHz	9 ns	15 ns			
82.0 to 83.5 MHz	8 ns	20 ns			
83.5 or 85 MHz	17 ns	30 ns			

Group Delay 204/258 MHz					
Frequency	uency Typical				
Forward					
259.2625–262.85 MHz	4 ns	20 ns			
265.2625–268.85 MHz	2 ns	10 ns			
271.2625–274.85 MHz	2 ns	10 ns			
Reverse					
201.0 to 202.5 MHz	1 ns	10 ns			
202.5 to 204.0 MHz	2 ns	10 ns			

Table 5.Power Passing

Power Passing					
Frequency	Bypass Mode	Equalization Mode			
		9 dB	11 dB		
5 to 1250 MHz	15A	15A	15A		

Table 6. Hum Modulation

Hum Modulation				
Frequency	Bypass Mode	Equalization Mode		
		9 dB	11 dB	
5 to 1250 MHz	- 65 dBc @15A	- 65 dBc @15A	- 65 dBc @15A	

Table 7. Safety and Compliance

Safety and Compliance		
Items	Specs	
EMC	EN50083-2, EN55022 Class A, EN55024 Class A, and FCC Part 76/Part 15	
Safety standards	EN/IEC 60065, UL 497, 1459, and 1950	

Note:

- 1. Chrominance and luminance at 3.58 MHz above the video carrier.
- 2. Propagation delay in 2 MHz bandwidth.
- Unless otherwise noted, all the specifications in Table 1 through Table 7 reflect typical station performance at stated reference levels in the recommended operating configurations. Specifications are based on measurements made in accordance with SCTE/ANSI standards (where applicable), using standard frequency assignments.

Ordering Information

To place an order, visit the <u>Cisco Ordering Home Page</u> and refer to Table 8 and Table 9, which list the part numbers for the Cisco Multimedia LEQ/RC.

Table 8. Ordering Information

Description	Part Number
Cisco Multimedia LEQ/RC, 42/54 MHz split, 9 dB Forward EQ	SG-LEQ-RC-4254-09
Cisco Multimedia LEQ/RC, 42/54 MHz split, 11 dB Forward EQ	SG-LEQ-RC-4254-11
Cisco Multimedia LEQ/RC, 65/86 MHz split, 9 dB Forward EQ	SG-LEQ-RC-6586-09
Cisco Multimedia LEQ/RC, 65/86 MHz split, 11 dB Forward EQ	SG-LEQ-RC-6586-11
Cisco Multimedia LEQ/RC, 85/105 MHz split, 9 dB Forward EQ	SG-LEQ-RC-8502-09
Cisco Multimedia LEQ/RC, 85/105 MHz split, 11 dB Forward EQ	SG-LEQ-RC-8502-11
Cisco Multimedia LEQ/RC, 204/258 MHz split, 9 dB Forward EQ	SG-LEQ-RC-0458-09
Cisco Multimedia LEQ/RC, 204/258 MHz split, 11 dB Forward EQ	SG-LEQ-RC-0458-11
Cisco Multimedia LEQ/RC Faceplate, 42/54 MHz split, 9 dB Forward EQ	SG-LEQ-RC-425409FP
Cisco Multimedia LEQ/RC Faceplate, 42/54 MHz split, 11 dB Forward EQ	SG-LEQ-RC-425411FP
Cisco Multimedia LEQ/RC Faceplate, 65/86 MHz split, 9 dB Forward EQ	SG-LEQ-RC-658609FP
Cisco Multimedia LEQ/RC Faceplate, 65/86 MHz split, 11 dB Forward EQ	SG-LEQ-RC-658611FP
Cisco Multimedia LEQ/RC Faceplate, 85/102 MHz split, 9 dB Forward EQ	SG-LEQ-RC-850209FP
Cisco Multimedia LEQ/RC Faceplate, 85/102 MHz split, 11 dB Forward EQ	SG-LEQ-RC-850211FP
Cisco Multimedia LEQ/RC Faceplate, 204/258 MHz split, 9 dB Forward EQ	SG-LEQ-RC-045809FP
Cisco Multimedia LEQ/RC Faceplate, 204/258 MHz split, 11 dB Forward EQ	SG-LEQ-RC-045811FP

Value	Part Number	Value	Part Number	Value	Part Number
0 dB	574475	6 dB	574481	12 dB	574487
1 dB	574476	7 dB	574482	13 dB	574488
2 dB	574477	8 dB	574483	14 dB	574489
3 dB	574478	9 dB	574484	15 dB	574490
4 dB	574479	10 dB	574485	75 ohm	574496
5 dB	574480	11 dB	574486		

Table 9.	Plug-In Attenuators
----------	----------------------------

Cisco Capital

Financing to Help You Achieve Your Objectives

Cisco Capital can help you acquire the technology you need to achieve your objectives and stay competitive. We can help you reduce CapEx. Accelerate your growth. Optimize your investment dollars and ROI. Cisco Capital financing gives you flexibility in acquiring hardware, software, services, and complementary third-party equipment. And there's just one predictable payment. Cisco Capital is available in more than 100 countries. Learn more.

For More Information

Cisco Multimedia Line Equalizer/Reverse Conditioner products include some of the industry's most complete range of high-performance components. For additional information, go to http://www.cisco.com/en/US/products/ps9101/index.html.

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore Europe Headquarters Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Printed in USA