
Cisco
Macro
Scripting
Tutorial
Doc:
D1539401

The purpose of this tutorial is to show how to write your first macro scripts for CE video
systems, and explain the examples in the editor in more detail.

No JavaScript knowledge is required, but you should have some experience with the XAPI and
Cisco video systems. To write advanced macros or production quality macros, you may want
to do a more in-depth JavaScript course, or seek advice from others.

For maximum learning effect, we recommend that you play with the macro editor while
reading, and type in the examples manually and alter them to get into the rhythm.

XAPI
Recap

A short recap of the features of the XAPI:

Status are properties in the video system that may change over time. You can get values on
request, or get notified when they change. Examples: the current system volume, whether the
system is in a call or whether someone is presenting.

Commands are the most common way to interact with the video system, such as making a
call, starting a presentation or changing the mic volume. The commands usually lead to
temporary changes, not kept after reboot. Typically a command causes a status value to
change. Commands can accept parameters (eg who to call and the call rate).

Configurations are more permanent settings on the video system such as system name,
default volume, proximity mode, wallpaper image etc. These settings remain when you reboot
the system.

Event
listeners let you listen to events, status values or configurations. Each time they
change, you are notified with the new values.

Getting
started

Before we start doing XAPI stuff, you should know how to debug. Write the following macro:



console.log('Hello	Macro');

Save and run it. Notice that 	Hello	Macro	 is written in your console log. This is useful during
development to understand what is happening, what part of your code is being executed etc.
Also, the logs are saved, so support teams can look later if something unexpected happened
during usage.

Remember to end each JavaScript statement with a semicolon.

The
xapi
library
object

The 'xapi' library lets the macros talk to the video system. To import it, simply type:

const	xapi	=	require('xapi');

You are now able to able to use the 	xapi	 object in your code to invoke command, get status
values, listen for events and edit configurations. You should only import it once per macro.

All the following examples require you to do this import first.

Invoke
a
command

To make a call with XAPI from TShell, you would typically do:

xCommand	Dial	Number:	macro@polo.com

To do this from a macro:

xapi.command('Dial',	{	Number:	'macro@polo.com'	});

Save and run. The macro should make a call as soon as it starts. Things to notice:

The dot after 	xapi	 means you are calling a function from the 	xapi	 object, in this case
	command	

	Dial	 is the first parameter to the function, and it is the xCommand that you want to



invoke
The second parameter is the parameter to the command, in this case the number to call
The argument is an object, therefore it is surrounded by 	{}	
	Number	 is a property name for the argument object, and does not need apostrophes
The command name and the property value are strings, and must have 	''	 around them

Error
handling

It is good practise to always catch errors when using the 	xapi	 library. We skip this in most of
the examples for readability.

function	handleError(error)	{
		console.log('Error',	error);
}

xapi.command('Audio	Incorrect	Command').catch(handleError);

Usually in JavaScript, you need to read the code from the bottom and up. We define our
functions and variables before we use them.

Multiple
arguments

The XAPI command for swapping content on dual monitors with the XAPI is:

xCommand	Video	Matrix	Swap	OutputA:	1	OutputB:	2

To do this with a macro:

xapi.command('Video	Matrix	Swap',	{
		OutputA:	'1',
		OutputB:	'2',
});

Notice that you separate the object properties with comma, and you can put them on separate
lines for readability.

Events



In the previous examples, the commands were executed as soon as the macros started, which
is usually when the video system has finished booting. That would probably not be very useful.
It is more common that macros are listening to certain events, and perform actions when
those events occur. An example is calling a number when an In-room Control button is
pressed on a custom quick-dial panel.

To listen for an In-room Control button in XAPI we would do:

xFeedback	Register	Event/UserInterface/Extensions/Widget/Action

When you clicked a button, you would typically get an event like this:

*e	UserInterface	Extensions	Widget	Action	WidgetId:	'quickdial'
*e	UserInterface	Extensions	Widget	Action	Type:	'clicked'
*e	UserInterface	Extensions	Widget	Action	Value:	''

To make a macro that dials a number when a specific widget is clicked:

function	quickDial(event)	{
		if	(event.WidgetId	===	'quickdial'	&&	event.Type	===	'clicked')	{
				xapi.command('Dial',	{	Number:	'macro-polo@cisco.com'	});
		}
}

xapi.event.on('UserInterface	Extensions	Widget	Action',	quickDial);

First we define the function for setting up the call (called 	quickDial	 in this example)
Then we connect the In-Room Control event and this function, using 	xapi.event.on	
The event handler will continue to listen as long as the macro is running
The second parameter 	quickDial	 is the name of the function we want to call whenever
an In-Room Control event occurs
We check the action type and the widget id, so we don't start the call when other type of
In-Room Control events occur
Note the 	===	, this means that the values must be exactly equal. JavaScript is weird.

Note that we send 	quickDial	 to tell the event listener the name of the function. This is known
as a callback in JavaScript. If you typed 	quickDial()	 instead, this would not work as
intended.



Stopping
the
feedback
listener:

To stop your event listener:

const	stop	=	xapi.event.on('UserInterface	Extensions	Widget	Action',	quickDial);

//	...	Insert	other	code	here

stop();	//	stops	listening	to	the	event

	//	 here means that the rest of the line are comments, the macros will not care about them
but they are used to explain what your code does.

Status
feedback

Events occur at singular points in time, such as the press of a button. You can also get notified
on xStatus changes in a similar way to the events. To be notified when the system volume
changes in the XAPI:

xFeedback	Register	Status/Audio/Volume/Level

A 	const	 keyword defines a constant. Once the macro starts, it cannot change. It is
recommended to define them in the top of your macro, so they are quick to find and change.
Whenever you type a value more than once, you should consider replacing it with a 	const	.

To limit the value to 80% with a macro:

const	MAX_VOLUME	=	80;

function	onVolumeChange(volume)	{
		if	(volume	>	MAX_VOLUME)	{
				xapi.command('Audio	Volume',	{	Level:	MAX_VOLUME	});
		}
}

xapi.status.on('Audio	Volume	Level',	onVolumeChange);

If you need change a variable value during the lifetime of the macro, use 	let	 instead of
	const	.



	const	 is a hard-coded value, while 	let	 can change dynamically.

Status
request

Sometimes you may need to ask for a status value directly, instead of listening to it constantly,
with the 	xapi.status.get	 function.

To check if we are already in a call when the quick dial button above was pressed:

function	callIfNotInCall(callCount)	{
		if	(callCount	<	1)	{
				xapi.command('Dial',	{	Number:	'macro@polo.com'	});
				console.log('Call	Macro	Polo');
		}
}

function	onInroomEvent(event)	{
		console.log('In-room	event	occured',	event);
		if	(event.WidgetId	===	'quickdial'	&&	event.Type	===	'clicked')	{
				xapi.status.get('SystemUnit	State	NumberOfActiveCalls')
				.then(callIfNotInCall);
		}
}

xapi.event.on('UserInterface	Extensions	Widget	Action',	onInroomEvent);

The 	then	 function is a bit special. When we ask the video system for the number of calls, this
request takes a little bit of time. Instead of blocking our processor, we return an object (called
promise) that will call another function 	callIfNotInCall	 with the answer (number of calls) as
soon as we get the response.

If you look at the log output, notice that the In-room event log comes before the call log, even
though they appear in the opposite order in the code. This is because the program execution
continues, and the result of the query is returned a few milliseconds later.

If this feels funky, just try to understand the syntax for it, since it is a common JavaScript
pattern for doing responsive programming.

For more info, see:
Promise for dummies.

Alternatives
way
to
write
the
code
(syntax)

https://scotch.io/tutorials/javascript-promises-for-dummies


In the examples so far, we have given names to all our functions. You may also see functions
without names in the examples in the editor, with an arrow
function (	=>	) instead.

Eg:

function	printVolume(volume)	{
		console.log('Volume	is',	volume);
}

xapi.status.on('Audio	Volume',	printVolume);

could instead be written as:

xapi.status.on('Audio	Volume',	(volume)	=>	console.log('Volume	is',	volume));

If you find this confusing, just stick to the more descriptive syntax. But it is nice to know the
syntax if you see it in other code.

Advanced:
Chaining
your
promises

Sometimes you need to do several other things before you decide to do an action, eg check
whether you are in a call or there are people in the room (people count) before putting the
system to sleep.

One way to do this is to 'chain' your promises like this:

function	checkPeopleCount(people)	{
		if	(people	<	1)	xapi.command('Standby	Activate');
}

function	checkInCall(calls)	{
		if	(calls	<	1)	xapi.status.get('RoomAnalytics	PeopleCount	Current')
		.then(checkPeopleCount)
		.catch(console.error);
};

xapi.status.get('SystemUnit	State	NumberOfActiveCalls')
.then(checkInCall)
.catch(console.error);

You can also do this in a more compact, parallel way:



const	p1	=	xapi.status.get('RoomAnalytics	PeopleCount	Current',	checkPeopleCount)
.catch(console.log);
const	p2	=	xapi.status.get('SystemUnit	State	NumberOfActiveCalls')
.catch(console.log);

Promise.all([p1,	p2]).then(results	=>	{
		const	peopleCount	=	results[0];
		const	callCount	=	results[1];
		if	(peopleCount	<	1	&&	callCount	<	1)	xapi.command('Standby	Activate');
});

	Promise.all	 continues when both of the results are available, and sends both results to
	then	 in an array. This is also slightly faster, since we don't wait for the first result before doing
the second request. Again, this syntax may take some time getting used to. Go play with it :)

Configurations

Use 	xapi.config.set	 and 	xapi.config.get	 to set and get configurations. For example, to
see if auto-answer is on:

xapi.config.get('Conference	AutoAnswer	Mode',	v	=>	console.log('Mode',	v));

For configurations, you don't need to provide the parameter as an object, since there can be
only one. To adjust the level of microphone 2:

xapi.config.set('Audio	Input	Microphone	2	Level',	33);

Config
notifications are similar to status and event notifications. To print out when proximity
mode is toggled:

xapi.config.on('Proximity	Mode',	v	=>	console.log('Proximity	changed	to	',	v));

Working
with
objects

Most of the previous examples use singular values, such as volume level, number of calls etc.
You can also get objects back from 	xapi	, and access the object's properties with a dot 	.	:



xapi.status.get('Conference')
.then(conf	=>	console.log(conf.DoNotDisturb,	conf.Presentation.Mode));

If you want to see all properties of the object, just use 	console.log	 on it:

xapi.status.get('Video	Input	Connector',	c	=>	console.log(c));
//	=>	{	id:	"2",	Connected:	"False",	SignalState:	"Unknown",	Type:	"DVI"	}

Working
with
lists

The XAPI can also contain lists of elements. This is how you could find the input source of type
'PC' and start presenting it:

function	present(connector)	{
		xapi.command('Presentation	Start',	{	ConnectorId:	connector	});
}

xapi.config.get('Video	Input	Connector')
.then(list	=>	{
		for	(let	i	=	0;	i	<	list.length;	i++)	{
				const	con	=	list[i];
				console.log(`Connector	${con.id}:	${con.Type}`);
				if	(con.Type	===	'PC')	present(con.id);
		}
});

There are several things to note here:

1. This time, the result of our config query is a list, not a singular value
2. We can loop through the array with the 	for	 syntax you see above
3. The special ticks in 	̀ Connector	${i}`	 above lets us insert variables into the string
4. A Javascript array starts with index 0, but the XAPI list starts with 1, so we use the 	.id	

property of the list (instead of 	i	) to get the correct connector

Timers
As you can see from the examples, reacting to events and updates is the preferred way to
program macros. The alternative is to poll the system regularly, eg by asking it every ten



seconds whether it is in call or not. This is highly discouraged, as it is less responsive, more
resource hungry and generally an error-prone solution.

Even so, there may still be good reasons to use timers, and we support the normal JavaScript
methods for this, which is 	setTimeout	 to start a single timer and 	setInterval	 for recurring
timers, and corresponding 	clearTimeout	 and 	clearInterval	 to stop them.

For example, to un-mute the system every hour:

function	unmute()	{
		xapi.command('Audio	Microphones	Unmute');
}

const	everyHour	=	60	*	60	*	1000;	//	In	milliseconds
const	timerId	=	setInterval(unmute,	everyHour);

//	If	you	want	to	stop	the	timer:
clearInterval(timerId);

Note again that we don't use parenthesis when referring to the callback 	unmute	 in
	setInterval	.

Scheduling
There is no standard way in JavaScript, nor in the macro framework, to schedule actions at
specific times of day. But you can copy this function into your macro and use it:

function	schedule(time,	action)	{
		let	[alarmH,	alarmM]	=	time.split(':');
		let	now	=	new	Date();
		now	=	now.getHours()	*	3600	+	now.getMinutes()	*	60	+	now.getSeconds();
		let	difference	=	parseInt(alarmH)	*	3600	+	parseInt(alarmM)	*	60	-	now;
		if	(difference	<=	0)	difference	+=	24	*	3600;
		return	setTimeout(action,	difference	*	1000);
}

Then, for example, to dial into standup every weekday at 09.00:

const	StandupTime	=	'09:00';
const	StandupUri	=	'macro@polo.com';
const	Sunday	=	0,	Saturday	=	6;



function	dialStandup()	{
		const	weekDay	=	new	Date().getDay();
		if	(weekDay	!==	Sunday	&&	weekDay	!==	Saturday)	{
				xapi.command('Dial',	{	Number:	StandupUri	});
		}

		schedule(StandupTime,	dialStandup);	//	schedule	it	for	the	next	day
}

schedule(StandupTime,	StandupUri);

Notice that we schedule tomorrow's standup when calling in today, and then this repeats.

Performance
and
life
cycle
The macro system has a built-in safety mechanism to prevent macros from causing
performance problems. The macro runtime process is regularly measured. If the macros or
the system in general is under heavy load, the runtime may be temporarily stopped, allowing
the video system to continue to function optimally. Like 3rd party apps on a mobile phone, the
OS might choose to stop aggressive or buggy macros without warning. After a short time, the
runtime will automatically restart all enabled macros again.

Because of this, we recommend:

Try to avoid having state in your macro, and detect it from the system instead. For
example, instead of using a variable to remember if your system is in call or not, just ask
the system for this when the macro starts.

Don't do too much at the same time. Eg just when a system goes into call, a lot of
resources are used. So if you have a lot of XAPI requests that you need to make and you
see that the macro is getting killed, spread them out a little bit with 	setTimeout	.

Test the macro on the actual video system that you intend to run them on, and in similar
or worse conditions. Test it in multi-site call with presentation etc to verify that everything
runs smoothly.

User
interface
elements
Macros often need user interface elements, either to give users choices, or to give them
information. Here are some of the most common components we provide, and examples on



how to use them. For complete reference, as always, see the full CE API guides.

Alert

An alert pops up with chosen text in the middle of both the video screen and the touch screen.
The user can close it from the Touch, or it dismisses automatically after a timeout.

xapi.command('UserInterface	Message	Alert	Display',	{
		Title:	'Volume	limiter',
		Text:	'A	custom	script	is	preventing	you	from	setting	the	volume	any	higher',
		Duration:	10,
});

Notification

Notifications are very similar to alerts but less prominent, they only show on the main window
screen, and in the top right corner of the screen.

xapi.command('UserInterface	Message	TextLine	Display',	{
		Text:	'Time	left:	1	minute',
		Duration:	1,
});

Note that if another macro (or the video system) shows an alert or notification later, it will
remove yours, so don't rely on it to show text permanently.

Prompt

The prompt pops up and lets the user select from a list of pre-defined choices. When the user
makes a choice, this generates an event that you can react to. The 	FeedbackId	 lets you
identify which prompt generated the answer (you could have more than one dialog in your
macro). 	event.OptionId	 gives you the actual choice that the user selected.

Show a call quality survey after a call ends:

function	showSurvey()	{
		xapi.command('UserInterface	Message	Prompt	Display',	{
				Title:	'Call	quality	survey',



				Text:	'How	was	the	quality	of	this	call?',
				FeedbackId:	'call-quality',
				'Option.1':'Amazing',
				'Option.2':'OK',
				'Option.3':	'Terrible'
		});
}

xapi.event.on('UserInterface§	Message	Prompt	Response',	(event)	=>	{
		if	(event.FeedbackId	!==	'call-quality')	return;
		console.log('Quality:',	event.OptionId);
});

xapi.event.on('CallDisconnect',	(event)	=>	{
				if(event.Duration	>	10)	showSurvey();
});

showSurvey();

Currently, macros cannot store or send this information anywhere, but this may change in later
releases.

Text
input

Similar to the prompt, but lets the user type text instead of predefined choices.

This lets the user type in a name for the video endpoint:

xapi.event.on('UserInterface	Message	TextInput	Response',	(event)	=>	{
		if	(event.FeedbackId	===	'system-name')	{
				xapi.config.set('SystemUnit	Name',	event.Text);
		}
});

xapi.command('UserInterface	Message	TextInput	Display',	{
		FeedbackId:	'system-name',
		Title:	'Choose	system	name',
		Text:	'When	you	call	someone,	they	will	see	this	name',
});

In-Room
Control

In-room Control provide a fully customisable user interface with widgets such as toggles,
sliders, buttons, radio buttons, etc. It talks to the macros via the XAPI, just like the rest of the
video system components.



All In-Room Control widgets have a unique widget
id. When an action occurs, such as a
button being pressed or a switch toggled, it generates an XAPI event that the macro can listen
and react to.

Eg to adjust the volume with a slider instead of pressing the physical volume buttons:

function	onUiAction(event)	{
		if	(event.WidgetId	!==	'volume_slider')	return;
		const	newVolume	=	parseInt(event.Value	*	100	/	255);
		xapi.command('Audio	Volume	Set',	{	Level:	newVolume	});
}

function	syncUi(level)	{
		xapi.command('UserInterface	Extensions	Widget	SetValue',	{
				WidgetId:	'volume_slider',
				Value:	level	*	255	/	100,
		});		
}

//	Listen	to	UI	events:
xapi.event.on('UserInterface	Extensions	Widget	Action',	onUiAction);

//	Sync	the	UI:
xapi.status.on('Audio	Volume',	syncUi);

//	Correct	initial	value:
xapi.status.get('Audio	Volume',	syncUi);

Please see more in the macro editor's example section.

Note: In-room Control is intended to be a fully bi-directional API. This means that if you have
made a macro / in-room panel for changing the ultrasound pairing, and someone changes the
setting from somewhere else (another Touch 10, the web admin page, command line etc) you
should make sure your ui is in sync. This means always confirming a status change (	Widget
SetValue	), even if the originating GUI is showing the right state.

For a full reference guide to In-room Control, visit the In-room Control editor.

Tips
Use events / feedback, not polling, to make your macros react.

Macros can completely change the normal behaviour of the system. If your macro may
surprise or confuse normal users, let them know with for example a notification on the



video system screen.

We recommend that you don't create macros that depend on other macros. You can of
course create several macros that listen to the same xapi values, eg the call state, as long
as their actions are independent of each other. You have no guarantee for the order in
which macros are executed.

Currently, the macros cannot get or send data externally, eg to control lights in the room.
For this you need an external control system. Even so, it can be useful to combine macros
and external systems, such as a Crestron for low-level light control, and macros to adjust
the light depending on presentation status, call status etc.

If your macro gets uncomfortably big or complex, consider making it an external
integration instead. The same code can be adjusted to run on a standalone Node server
running JavaScript, for example.

What
if
I
screw
up?
The macro process will stop macros automatically if they run wild. You can then disable the
macro while the macro framework is restarting. To completely disable macros, the kill switch is
	xConfig	Macros	Mode:	Off	.

What
if
I
screw
up
badly?
If you make a macro that causes a boot when it starts up, it's a bit more tricky, since rebooting
will cause the same problem as soon as the macro starts again.

To turn off macros while booting but before the macro process start, you can try this from the
command line:

while	sleep	1
do
		echo	"xConfig	Macros	AutoStart:	Off"	|	ssh	root@your-ip	"/bin/tsh"
done

Now, you can disable your bad macro or fix it, and restart the macro runtime. Remember to
set autostart on again when the problem is solved.



Go
on!
Make your own macros! Have fun! And please feel free to share them with us if you think they
can be useful for more people.


