

© 2024 Cisco and/or its affiliates. All rights reserved.

Cisco Routed PON REST API
Developer Guide

© 2024 Cisco and/or its affiliates. All rights reserved.

2

© 2024 Cisco and/or its affiliates. All rights reserved.

3

Table of Contents
Table of Contents 3	
References 6	
Document Purpose 6	
Introduction 7	

Packaging and Installation 7	
API Overview 7	

Architecture 9	
Cisco Routed PON Manager Web Application 9	
Web Server 10	
Django REST Framework 10	
MongoDB 10	

Endpoint Design 10	
Message Formats 11	
Private APIs 11	

API Programming Model 11	
API Versioning 12	
Document Versioning 13	

Schema Versioning 13	
Security 13	
Documentation 14	
Examples 15	

API Reference 17	
Request Sequence 17	
Request Format 17	
Response Format 18	
HTTP Methods 22	
HTTP Status Codes 23	
URL Parameters 24	
PON Controllers 24	

States 24	
Configurations 26	
Authentication State 27	

© 2024 Cisco and/or its affiliates. All rights reserved.

4

Engine State 28	
Alarm Configurations 29	
Statistics 30	
Logs 31	

Switches 32	
Configurations 32	

OLTs 33	
States 33	
Configurations 34	
Alarm Configurations 35	
Statistics 36	
Logs 37	
Debug 38	
Actions 38	

ONUs 40	
States 40	
Configurations 41	
Alarm Configurations 42	
Statistics 43	
Logs 44	
CPEs 45	
MIB Reset States 46	
MIB Current States 47	
Actions 48	

Files 49	
OLT Firmware 49	

OLT Firmware PUT Request Data 49	
OLT Firmware POST Request Data 49	

ONU Firmware 50	
ONU Firmware PUT Request Data 50	
ONU Firmware POST Request Data 50	

Pictures 51	
Picture PUT Request Data 51	
Picture POST Request Data 51	

© 2024 Cisco and/or its affiliates. All rights reserved.

5

SLAs 52	
Downstream QoS Maps 53	
ONU Service Configurations 54	
CPEs 55	
Databases 56	

Database Create and Update Request Data 57	
Users 58	

User Login Request Data 58	
PON Manager 59	

Use Cases 60	
Examples 60	

Curl 60	
Postman 60	
Python 62	

Programming Model 62	
Use Case: ONU Registration Status 63	

ONU Registration Status using CNTL-STATE 63	
ONU Registration Status using OLT-STATE 64	

Use Case: Provision service for an ONU 65	
Use Case: Disable service for an ONU 68	
Use Case: Firmware upgrade for an ONU 71	
Use Case: Reset an ONU 71	

Debug and Troubleshooting 73	
Logs 73	

PON Manager logs 73	
Apache Logs 73	

error.log 73	
other_vhosts_access.log 73	

Errors 73	
MongoDB Connection 74	
Validation 74	
Bad Request 74	

© 2024 Cisco and/or its affiliates. All rights reserved.

6

References
ID Document Description

Django Django Documentation
<https://docs.djangoproject.com/en/>.

Cisco Routed PON
Installation Guide

Cisco Routed PON Installation Guide

Cisco Routed PON
Manager User Guide

Cisco Routed PON Manager User Guide

Cisco Routed PON
REST API

Cisco Routed PON REST API Developer Guide

Postman Postman the API platform for building and using APIs, url:
https://postman.com

Document Purpose
This document serves as the Developer Guide for the Cisco Routed PON RESTful
Application Programming Interface (REST API) component. It describes the architecture
and design of the API, structure of the REST endpoints, request and response formats,
and reference and usage information for the REST API. This document is intended for
developers building applications that leverage the REST API to manage the PON
network and devices with the Tibit solution.

Although the open source MongoDB is shown as part of the Cisco Routed PON
architecture, MongoDB is not provided as part of the Cisco Routed PON REST API
package. MongoDB is a dependency of the REST API. Installation, maintenance, and
operation of MongoDB is considered out of scope.

See References for a list of additional Cisco documentation regarding the Cisco Routed
PON Manager.

https://docs.djangoproject.com/en/
https://postman.com/

© 2024 Cisco and/or its affiliates. All rights reserved.

7

Introduction
The Cisco Routed PON is the management solution for Cisco PON networks. The Cisco
Routed PON management software stack is composed of the [PON Manager] Web
Application graphical user interface and REST APIsoftware to ease the deployment of
devices and subscriber services in the PON network. See [PON Manager] for a more
complete description of the entire Cisco Routed PON solution.

The Cisco Routed PON REST API is a component of the PON Manager that provides
an application programming interface over HTTPS for managing PON devices for the
Cisco Routed PON solution. Customers can build device provisioning, service
configuration, performance monitoring, log collection, and other applications on top of
the API for managing the PON network. In addition to customer applications, the PON
Manager Web App utilizes the API’s PON and user management interfaces for its
operation. The API implements a JSON interface that aligns directly with the PON
Controller management data model and interfaces with the MongoDB datastore for
accessing configuration, state, statistics, logging, and file collections.

The Cisco Routed PON REST API implements endpoints for managing the following:

● Device configuration and status for PON Controllers, OLTs, ONUs, and
Switches.

● Service configuration, including ONU Service Configuration (SRV-CFG) files,
VLANs, Service Level Agreements (SLAs), 802.1X Authentication, DHCP Relay,
and PPPoE.

● Performance management statistics.
● Device alarms and logging.
● File management, including OLT firmware, ONU firmware, and device pictures.

Packaging and Installation
The Cisco Routed PON REST API is packaged and installed along with the Cisco
Routed PON Manager software. See [PON Manager] for requirements, dependencies
and instructions for installing and configuring the PON Manager Web Application and
REST API.

API Overview
The Cisco Routed PON REST API is designed around best practices for a RESTful
interface over a secure HTTPS transport, and provides API endpoints for provisioning
and monitoring Cisco Routed PON OLT devices, as well as the subtended Cisco
Routed PON ONU devices and third-party ONUs compliant with the XGS-PON and
10G-EPON standards. The API is aligned with the Cisco Routed PON Controller data
model in MongoDB, where most API endpoints and data map directly to collections and
documents in MongoDB. This is illustrated in Figure 1 below.

© 2024 Cisco and/or its affiliates. All rights reserved.

8

Figure 1 - Cisco Routed PON REST API MongoDB Collections and Documents

In order to build applications using the REST API effectively, developers need to
understand the feature set and data model used to manage the PON network with the
Tibit solution. Feature descriptions and the PON management data model outside the
scope of this document. See [PON Controller] for a description of the MongoDB
collections and document structures defined for managing the PON network.

© 2024 Cisco and/or its affiliates. All rights reserved.

9

Architecture
The Cisco Routed PON Manager software is composed of a graphical user front-end
web application (Web App) and a RESTful interface (REST API) that provides access to
the MongoDB datastore. These software components integrate with the Apache2 web
server and Django REST framework as shown in Figure 2.

Figure 2 - Cisco Routed PON PON Manager Architecture

Cisco Routed PON Manager Web Application

The core of the Cisco Routed PON Manager Web App is built on the Angular framework
and Bootstrap web front-end toolkit, along with libraries that support specific elements of
the user interface. The Cytoscape library provides network visualization utilities for
graphical tools such as the Polyglot OMCI Editor. Device statistics charts and graphs
are built using the D3 Graphs package and ngx-charts library. The Font Awesome
library provides icons and fonts for the user interface. See [PON Manager] for
information on using the Web Application.

© 2024 Cisco and/or its affiliates. All rights reserved.

10

Web Server

The Cisco Routed PON Manager Web Server is built on the ubiquitous Apache HTTP
server, which serves the Web Application graphical user interface, as well as the REST
API for the PON Manager. The mod_wsgi module provides an interface between the
Apache server and Django REST framework through the Web Server Gateway
Interface (WSGI) specification for Python. PON Manager supports use of HTTPS for the
REST API only. Non-secure HTTP is not supported.

Django REST Framework

The Cisco Routed PON REST API is built on the open source Django REST framework
and toolkit for Python. By default, Django does not support integration with non-
relational databases. The djongo library is used in parallel with a custom module to
communicate with MongoDB. As HTTP requests are received, they are handled by
Django accordingly, but are mapped to the custom module for database operations
instead of Django’s default ORM (object relational model). API endpoints are
implemented using the PyMongo library for interfacing with MongoDB.

The PON Manager utilizes the user, group, permissions, and session management
features of the Django REST framework to provide secure access and authorization for
the web interface. See the Security section for more information on the security features
for PON Manager.

MongoDB

The Mongo database provides the datastore for the Cisco Routed PON, and is used to
store PON device provisioning and monitoring information collected by the PON
Controller. MongoDB is an open source, secure database (www.mongodb.com) which
employs a NoSQL architecture. See section MongoDB Installation for information on
installation and configuration for use in Cisco Routed PON management solutions.

In addition to the PON device configuration and monitoring information, MongoDB is
also used to store users, permissions, and session information used by the Django
REST framework. The PON Controller defines the data model used to manage the PON
network.

Endpoint Design
The Cisco Routed PON REST API URL format follows best practices for a “nouns, not
verbs” REST API design, with endpoints designed around resources. An endpoint refers
to a URL available for use within the REST API and the HTTP method associated with
the request. A resource is defined by the data collection and ID, where specific
resources are identified by ID in the URL after the collection mapping.

The API is designed to map to the [PON Controller] database model as closely as
possible. Most URL endpoints map directly to a MongoDB collection. In the Cisco

https://docs.google.com/document/d/1PI0rif_5otKfDk0TduSU9ClPOOeUCIxC1VMmp1A1ttk/edit#heading=h.fhplyv6siq67
http://www.mongodb.com/
https://docs.google.com/document/d/1PI0rif_5otKfDk0TduSU9ClPOOeUCIxC1VMmp1A1ttk/edit#heading=h.bwqgh4muzd7n

© 2024 Cisco and/or its affiliates. All rights reserved.

11

Routed PON API, resources are PON Controllers, OLTs, ONUs Switches, SLAs, and
files. Resource IDs are typically MAC Addresses, XGS-PON Serial Numbers, and file
names. Examples of URLs identifying a specific OLT configuration and ONU state are
shown in the figure below.

Message Formats

Cisco Routed PON REST API request and response messages support JSON
formatted payloads only. POST and PUT requests use a common request body format
with a “data” field containing the MongoDB document or other payload data required for
the API. In addition to the HTTP response status code, API responses contain “status”,
“data”, and “details” fields providing detailed response information.

Request Format Success Response Format Error Response Format

{
 “data”: {
 <MongoDB doc>
 }
}

{
 “status”: “success”
 “data”: {...}
}

{
 “status”: “fail”
 “details”: {...}
}

Private APIs

The REST API implements a number of ‘private’ endpoints that are intended to be used
by the PON Manager Web App only. These ‘private’ APIs are not published in customer
documentation and should not be used in customer applications. Private endpoints are
not considered stable APIs and are subject to change from release to release.

API Programming Model
The REST API does not support PATCH or partial updating of documents. To update a
document, you must upload the entire document to not lose data. The normal sequence
of events is to retrieve a document, modify the document, and PUT/POST the
document.

© 2024 Cisco and/or its affiliates. All rights reserved.

12

API Versioning
The Cisco Routed PON REST API maintains its own versioning scheme independent of
the greater Cisco Routed PON release versions. The API version is identified at the
beginning of the URL after the host information for every request. The format of the
version string is “v1” where the “1” is replaced by the desired version number.

The API will only be versioned in the following cases:

● Any endpoint request message formats change
● Any endpoint response message formats change
● Required query parameters are added or removed

Each endpoint has the ability to be versioned independently of others. If a change is
made to one endpoint, after v1 is released, it will now be accessible at v1 and v2. The
v1 functionality will be unchanged from its prior implementation. If accessed with v1 in
the URL the original, unchanged action will be performed. If accessed with v2, the new
version will be used. All endpoints will be accessible via “v1” or “v2”, however the
behavior and responses will be identical for all endpoints that were not stated as
versioned.

Note that MongoDB documents contained in the payload of the API requests are
versioned separately from the API version. See Document Versioning for more
information.

© 2024 Cisco and/or its affiliates. All rights reserved.

13

Document Versioning
Each document in the database has a version that corresponds to the PON Controller
version, which defines the format or schema version for a specific document. This
version determines the format of the document and the set of fields in the document.
Device configs use [CNTL][CFG Version] to determine their schema version. Note that
documents are individually versioned Document version is written when a PON
Controller creates new documents. Documents can be upgraded to the latest schema
version using PON Manager’s database upgrade feature.

MongoDB documents are versioned separately from the API. For example, in the PUT
request shown below, the API versioning covers changes to the parts of the message
highlighted in blue. This is independent of the format of the contents of the ‘data’ field in
the API message, which is highlighted in red below. The format of the contents of the
‘data’ field is determined by the MongoDB document version as defined by the
CNTL.CFG Version field.

PUT: /v2/onus/configs/<ONU ID>/
{
 "data": {
 "_id": "BFWS00123193",
 "CNTL": {
 "CFG Version": "R4.0.0"
 },
 . . .
 }
}

Schema Versioning
Schema for documents in the database can be found in the
/opt/tibit/ponmgr/api/schema_files directory. The API schema files are versioned based
on the release. The Schema version to use is based on the PON Controller
configuration version of the given document.

The API applies the schema for validating input in API requests. For GET requests, the
schema is used to validate query parameters, including the query filter and projection
paths. The API returns a 400 error for an invalid query path. For PUT/POST requests,
the schema is used to validate the format, data types, and ranges in documents
provided with the requests. The API returns a warning if a required field is missing. The
API returns a 400 error if a value is of the wrong type or doesn’t fit the expected criteria
defined by the schema.

Security
The Cisco Routed PON REST API uses the same secure HTTPS transport, user
management, session-based authentication, and role-based access controls utilized by

© 2024 Cisco and/or its affiliates. All rights reserved.

14

the PON Manager Web Application. See [PON Manager] for more information on the
security features supported by PON Manager and how to configure and manage
security for the REST API.

Users, roles, and permissions can be created and configured specifically to allow
access through the REST interface. For example, one or more API-specific users could
be configured that restrict access through the REST interface for managing ONUs and
subscriber services, without providing access to more system administration functions
such as user, file, and database management.

Documentation
In addition to this document, API documentation is provided with the PON Manager
package. An OpenAPI schema is provided in both YAML and JSON formats, which
describes request and response formats, as well as response status codes and query
parameters for a given endpoint. Parsable JSON schema files are also provided for the
PON management data structures defined by the PON Controller database. These

© 2024 Cisco and/or its affiliates. All rights reserved.

15

JSON schemas define the format for the request and response bodies transmitted in
API HTTP messages.

File/Directory Description

/opt/tibit/ponmgr/ Root directory of the PON Manager application.

doc/R2.3.0/ Directory containing the JSON schema definition files for
various document types defined for the Cisco Routed
PON Controller database.

doc/R3.0.0/ Directory containing the JSON schema definition files for
various document types defined for the Cisco Routed
PON Controller database.

doc/openapi.json OpenAPI schema file describing the PON Manager REST
API in a JSON file format.

doc/openapi.yaml OpenAPI schema file describing the PON Manager REST
API in a YAML file format.

Examples
API usage examples for are provided with the PON Manager package. The examples
include python scripts, instructions on how to access the API through cURL commands
(libcurl), and a Postman environment and collection. The python scripts show how to
provision subscriber services and gather monitoring information for OLTs and ONUs on
the PON network. A markdown file provides examples of cURL commands for use
cases similar to the Python examples, such as provisioning a service on an ONU.
Finally, Postman files can be imported into the Postman tool to be used in its graphical
interface to visualize requests and responses. All examples may be found within the
“examples” directory in the PON Manager installation directory, each in their own
designated sub-directory.

File/Directory Description

/opt/tibit/ponmgr/ Root directory of the PON Manager application.

examples/python/ Directory containing Python example code for configuring
and provisioning OLT and ONU devices and subscriber
services.

examples/curl/ Directory containing a markdown file with cURL examples
for accessing the REST API.

© 2024 Cisco and/or its affiliates. All rights reserved.

16

examples/postman/ Directory containing a Postman application environment
and collection files. Import these files into Postman to
access the REST API through the tool
(https://www.postman.com/).

https://www.postman.com/

© 2024 Cisco and/or its affiliates. All rights reserved.

17

API Reference
This section provides a reference for the API, including a listing and descriptions of API
endpoints, message formats, applicable HTTP methods and response codes, and query
parameters supported by the API.

Request Sequence
Applications utilizing the API follow the same general sequence described in this
section. Before sending requests to retrieve or modify data, applications are required to
login and establish a secure authenticated session. After login, all API requests must
include the authentication Session ID and CSRF cookies as well as the CSRF Token.
When the application is done with the session, the application must logout and
terminate the session.

API sessions generally have the following sequence:

1. Log in to authenticate the user with the web server
POST /v1/users/authenticate/

2. (Optional) Select the database to use for the session. If skipping this step, the

user’s default database (typically ‘Default’) is used for the session.
PUT /v1/databases/selection/

3. Execute one or more request(s) to fetch data and/or configure the database. For
example,

GET /v1/onus/configs/BFWS00123193
 ...
PUT /v1/onus/configs/BFWS00123193

4. Log out of the web server.

GET /v1/users/logout/

Request Format
The REST API requires specific HTTP headers and request body format for all API
requests it receives. After a successful login and establishing a secure authenticated
session, all API requests must contain the following HTTP headers:

Cookie: <Session ID Cookie>
Cookie: <CSRF Token Cookie>
X-CSRFToken: <CSRF Token>
Referer: <API Host Address>

Additionally, all PUT and POST requests must also contain the content type header:
Content-Type: application/json

© 2024 Cisco and/or its affiliates. All rights reserved.

18

The Cookie and X-CSRFToken headers are used by the API to identify the user’s
session to verify they are logged in and have permissions to access the requested
endpoint. The Referer header lets the API know what client is making the request (e.g.
PON Manager web UI). Finally, the Content-Type header is required when the request
contains a body. This tells the API that the content is JSON data and some other
format. The cookies are returned after a successful login attempt. The CSRF Token
cookie is the same value used for the X-CSRFToken header.

The REST API also expects specific formats of any bodies included in a request. PUT
and POST requests follow a consistent request body format with an outer “data” tag
containing the MongoDB document or other JSON payload as defined by the endpoint.
The request body format is a follows:

{
"data": {

<MongoDB document>
}

}

API request bodies are specific to each endpoint. Refer to the documentation below for
details on the specific request body format for a specific endpoint.

An example of a request to select the active database would be as follows:

PUT @ /databases/selection/
Body: {

"data": "DatabaseId"
}

Response Format
API responses have a consistent response body format. The body may contain the
requested data, a status indicator, warning, or error messages depending on the result.
All Cisco Routed PON REST API responses use the following formats.

Success

The API returns a ‘success’ response payload for requests that PON Manager is able to
process and complete successfully. The response payload contains a ‘status’ field that
reports if the request was accepted and processed or encountered an error. GET
responses also include the “data” field containing the requested data. An example of a
successful response when retrieving a resource is shown below:

GET @ /onus/states/<ONU ID>/
{

"status": "success",
"data": {

<ONU-STATE MongoDB document>

© 2024 Cisco and/or its affiliates. All rights reserved.

19

}
}

A successful PUT or POST request may have the following body with an HTTP status
code of 200 or 201:

{
"status": "success"

}

Data Validation Warning

PUT or POST requests may return a “status” field containing “validation warning”. This
means that the provided data in the request body does not match the defined schema.
However, it is not a breaking difference and will not affect the Cisco Routed PON
functionality, so the request is processed as a ‘success’. The API updates the database
and returns an HTTP status code 200. Validation warning responses include an
additional ‘details’ field, which describes the warning in detail including the offending
attribute name, the value, the schema path to the attribute, and a description of why
validation failed. In the example shown below, CNTL.CFG Version is a required field
that is missing from the document provided in the PUT request:

PUT @ /olts/<OLT ID>/
{
 "status": "validation warning",
 "details": {
 "level": "warning",
 "message": "JSON validation failed: 'CFG Version' is a

 required property",
 "collection": "OLT-CFG",
 "id": "<OLT ID>",
 "path": "['CNTL']",
 "bad value": {},
 "bad value type": "object",
 "validator": "required",
 "schema": {
 "type": "object",
 "properties": {
 "CFG Version": {
 "type": "string",
 "description": "Capability of configuration

 file format."
 }
 },
 "required": [
 "CFG Version"
]

© 2024 Cisco and/or its affiliates. All rights reserved.

20

 }
 }
}

Data Validation Error

A validation error is similar to the validation warning described above. PUT or POST
requests may return a “status” field containing “fail” with a JSON validation failure
message. This error indicates that data validation failed due to the data provided in the
request body not matching the schema defined for this document. Moreover, the
request was NOT successful and no update was made to the database. The API returns
this response with a 400 HTTP status code, indicating that the data provided is invalid
and not usable. In the example below, the request was setting an integer value of ‘0’ for
the ‘auth_db’ fields that requires a string value:

PUT @ /databases/Default/
{
 "status": "fail",
 "details": {
 "level": "error",
 "message": "JSON validation failed: 0 is not of type 'string'",
 "collection": "DATABASES",
 "id": null,
 "path": "['auth_db']",
 "bad value": 0,
 "bad value type": "integer",
 "validator": "type",
 "schema": {
 "type": "string",
 "pattern": "^([^\/\\. ';$*<>:|?]+)$",
 "maxlength": 63
 }
 }
}

Server Error

In general, server errors returned with 400 or 500 level status codes include a “status”
field with a value of “fail” in the response body. The Data Validation Error described
above is a subset of the possible server error responses from the API. There are many
ways an error response may occur, such as malformed request body, missing or invalid
query parameters, missing permissions, or an internal server error. An example below
shows the 400 status code response body for a missing query parameter that is
required:

GET @ /olts/stats/<OLT ID>/

© 2024 Cisco and/or its affiliates. All rights reserved.

21

{
 "status": "fail",
 "details": {
 "message": "Parameter 'start-time' is required"
 }
}

© 2024 Cisco and/or its affiliates. All rights reserved.

22

HTTP Methods
There are four basic HTTP operations available for use in the Cisco Routed PON REST
API. Not all HTTP methods are available on all endpoints. Each method maps to a
CRUD operation. The equivalent MongoDB operations are also listed below. See the
MongoDB documentation for more details on these operations.

HTTP Method CRUD MongoDB Description

GET Read find, findOne Used to retrieve data such as device
configuration, state, statistics, and logs.

POST Create insertOne Create a new resource on the server or
database.

PUT Update replaceOne Replace an existing or create a new
resource configuration. This operation
completely replaces the existing document
with the new document from the request
body.

PATCH
(future)

Update updateOne Updates a portion of an existing document
resource. Note: This is not yet supported
in the current release.

DELETE Delete deleteOne Deletes the configuration or state for the
specified resource.

© 2024 Cisco and/or its affiliates. All rights reserved.

23

HTTP Status Codes
Listed below are the most common HTTP response codes that are returned by the
Cisco Routed PON REST API and their meaning. Other status codes may also occur,
but do not appear often.

Status Description

200 - OK The request was completed successfully with no issues

201 - Created The request was completed successfully and a new resource was
created

204 - No Content The request was completed successfully, but no data is returned

400 - Bad
Request

Indicates an error in the request format or request data. Often
caused by a request data validation error.

401 -
Unauthorized

Indicates the user could not be authenticated. Will be returned
after a failed login attempt.

403 - Forbidden Indicates the request could not be completed because the user is
either not authenticated or does not have the required
permissions.

404 - Not Found Indicates that the requested resource was not found. May be
returned if the URL does not exist or a file or database entry does
not exist.

409 - Conflict Indicates that the requested resource could not be created
because its ID is already in use. May occur when uploading files
or creating databases.

500 - Server Error A generic server error response that contains information about
the failure in the response body.

© 2024 Cisco and/or its affiliates. All rights reserved.

24

URL Parameters
There are various URL query parameters available within the Cisco Routed PON REST
API. Listed below are all possible query parameters. However, every endpoint supports
its own subset of these options, if any. Query parameters available for each endpoint
can be found in the description of the endpoint. Note: some tools, such as cURL,
require any space characters in the query parameters to be escaped as “%20”.

Name Description Example

start-time Only consider documents newer than the UTC
timestamp

2021-01-01 00:00:00

end-time Only consider documents older than the UTC
timestamp

2021-01-01 00:00:00

query Performs the custom query on the MongoDB
database. Takes a comma separated list of
“<key>=<value>” strings.

CNTL.Version=R2.3.0

projection Limits the database attributes returned in the
response. Use 1 to include, 0 to exclude. Takes
a comma separated list of “<key>=0|1” strings.

CNTL.Version=1

sort Sorts the response data on the given attribute in
ascending or descending order

_id=1

limit Limits the number of items to be included in the
response data. Note: All endpoints that use the
limit parameter use a default value of 1,000

50

skip Number of items to be excluded from the
beginning of the results data list

10

next A document _id that will exclude all items from
the results list that have this ID or come before it

70:b3:d5:52:34:1e

distinct A database attribute to retrieve all unique values
for from the endpoint’s collection

CNTL.Version

PON Controllers

States
The /controllers/states/ resource and endpoints are used to monitor PON Controller
devices. A controller resource is identified by the device MAC Address and maps to a

© 2024 Cisco and/or its affiliates. All rights reserved.

25

CNTL-STATE document in MongoDB. See [PON Controller] for more details on the
content of the CNTL-STATE document. See the CNTL-STATE.json schema file for a
description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /controllers/states/
Get a list of CNTL-STATE documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /controllers/states/<CNTL ID>/
Get a CNTL-STATE document identified by <CNTL ID> MAC address.

DELETE DELETE /controllers/states/<CNTL ID>/
Delete a CNTL-STATE document identified by <CNTL ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

26

Configurations
The /controllers/configs/ resource and endpoints are used to configure PON Controller
devices. A controller resource is identified by the device MAC Address and maps to a
CNTL-CFG document in MongoDB. See [PON Controller] for more details on the
content of the CNTL-CFG document. See the CNTL-CFG.json schema file for a
description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /controllers/configs/
Get a list of CNTL-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /controllers/configs/
Create a CNTL-CFG document.

GET GET /controllers/configs/<CNTL ID>/
Get a CNTL-CFG document identified by <CNTL ID> MAC address.

PUT PUT /controllers/configs/<CNTL ID>/
Create or replace a CNTL-CFG document identified by <CNTL ID> MAC address.

DELETE DELETE /controllers/configs/<CNTL ID>/
Delete a CNTL-CFG document identified by <CNTL ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

27

Authentication State
The /controllers/auth/states/ resource and endpoints are used to monitor the Cisco
Routed PON Authenticator, which is packaged with the PON Controller. An
authenticator state resource is identified by the device MAC Address and maps to a
CNTL-AUTH-STATE document in MongoDB. See [PON Controller] for more details on
the content of the CNTL-AUTH-STATE document. See the CNTL-AUTH-STATE.json
schema file for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /controllers/auth/states/
Get a list of CNTL-AUTH-STATE documents.

GET GET /controllers/auth/states/<CNTL ID>/
Get a CNTL-AUTH-STATE document identified by <CNTL ID>.

DELETE DELETE /controllers/auth/states/<CNTL ID>/
Delete a CNTL-AUTH-STATE document identified by <CNTL ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

28

Engine State
The /controllers/engine/states/ resource and endpoints are used to monitor the Cisco
Routed PON UMT Relay process, which is packaged with the PON Controller. An
engine state resource is identified by the device MAC Address and maps to a CNTL-
ENGINE-STATE document in MongoDB. See [PON Controller] for more details on the
content of the CNTL-ENGINE-STATE document. See the CNTL-ENGINE-STATE.json
schema file for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /controllers/engine/states/
Get a list of CNTL-ENGINE-STATE documents.

GET GET /controllers/engine/states/<CNTL ID>/
Get a CNTL-ENGINE-STATE document identified by <CNTL ID>.

DELETE DELETE /controllers/engine/states/<CNTL ID>/
Delete a CNTL-ENGINE-STATE document identified by <CNTL ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

29

Alarm Configurations
The /controllers/alarm-configs/ resource and endpoints are used to configure PON
Controller alarm profiles. An alarm configuration resource is identified by the
configuration ID and maps to a CNTL-ALARM-CFG document in MongoDB. See [PON
Controller] for more details on the content of the CNTL-ALARM-CFG document. See the
CNTL-ALARM-CFG.json schema file for a description of the parameters, data types,
and ranges.

HTTP
Method

Endpoint

GET GET /controllers/alarm-configs/
Get a list of CNTL-ALARM-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /controllers/alarm-configs/
Create a CNTL-ALARM-CFG document.

GET GET /controllers/alarm-configs/<CFG ID>/
Get a CNTL-ALARM-CFG document identified by <CFG ID>.

PUT PUT /controllers/alarm-configs/<CFG ID>/
Create or replace a CNTL-ALARM-CFG document identified by <CFG ID>.

DELETE DELETE /controllers/alarm-configs/<CFG ID>/
Delete a CNTL-ALARM-CFG document identified by <CFG ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

30

Statistics
The /controllers/stats/ resource and endpoints are used to monitor statistics for PON
Controllers. A PON Controller resource is identified by the device MAC Address and
maps to the STATS-CNTL-<CNTL ID> collection in versions R3.0.0 and earlier and
STATS-CNTL in versions R3.1.0 and later in MongoDB. See [PON Controller] for more
details on the content of the STATS-CNTL collection.

HTTP
Method

Endpoint

GET GET /controllers/stats/<CNTL ID>/
Get a list of STATS-CNTL documents.
URL Parameters: start-time (required), end-time (optional)

DELETE DELETE /controllers/stats/<CNTL ID>/
Delete the STATS-CNTL collection.

© 2024 Cisco and/or its affiliates. All rights reserved.

31

Logs
The /controllers/logs/ resource and endpoints are used to monitor logs for PON
Controllers. A PON Controller resource is identified by the device MAC Address and
maps to the SYSLOG-CNTL-<CNTL ID> collection in versions R3.0.0 and earlier and
SYSLOG-CNTL in versions R3.1.0 and later in MongoDB. See [PON Controller] for
more details on the content of the SYSLOG-CNTL collection.

HTTP
Method

Endpoint

GET GET /controllers/logs/<CNTL ID>/
Get a list of SYSLOG-CNTL documents.
URL Parameters: start-time (required), end-time (optional)

DELETE DELETE /controllers/logs/<CNTL ID>/
Delete the SYSLOG-CNTL collection.

© 2024 Cisco and/or its affiliates. All rights reserved.

32

Switches

Configurations
The /switches/configs/ resource and endpoints endpoints are used to configure Switch
devices. A switch resource is identified by the device MAC Address and maps to a SWI-
CFG document in MongoDB. See [PON Controller] for more details on the content of
the SWI-CFG document. See the SWI-CFG.json schema file for a description of the
parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /switches/configs/
Get a list of SWI-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /switches/configs/
Create a SWI-CFG document.

GET GET /switches/configs/<SWI ID>/
Get a SWI-CFG document identified by <SWI ID> MAC address.

PUT PUT /switches/configs/<SWI ID>/
Create or replace a SWI-CFG document identified by <SWI ID> MAC address.

DELETE DELETE /switches/configs/<SWI ID>/
Delete a SWI-CFG document identified by <SWI ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

33

OLTs

States
The /olts/states/ resource and endpoints are used to monitor OLT devices. An OLT
resource is identified by the device MAC Address and maps to an OLT-STATE
document in MongoDB. See [PON Controller] for more details on the content of the
OLT-STATE document. See the OLT-STATE.json schema file for a description of the
parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /olts/states/
Get a list of OLT-STATE documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /olts/states/<OLT ID>/
Get an OLT-STATE document identified by <OLT ID> MAC address.

DELETE DELETE /olts/states/<OLT ID>/
Delete an OLT-STATE document identified by <OLT ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

34

Configurations
The /olts/configs/ resource and endpoints are used to monitor OLT devices. An OLT
resource is identified by the device MAC Address and maps to an OLT-CFG document
in MongoDB. See [PON Controller] for more details on the content of the OLT-CFG
document. See the OLT-CFG.json schema file for a description of the parameters, data
types, and ranges.

HTTP
Method

Endpoint

GET GET /olts/configs/
Get a list of OLT-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /olts/configs/
Create an OLT-CFG document.

GET GET /olts/configs/<OLT ID>/
Get an OLT-CFG document identified by <OLT ID> MAC address.

PUT PUT /olts/configs/<OLT ID>/
Create or replace an OLT-CFG document identified by <OLT ID> MAC address.

DELETE DELETE /olts/configs/<OLT ID>/
Delete an OLT-CFG document identified by <OLT ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

35

Alarm Configurations
The /olts/alarm-configs/ resource and endpoints are used to configure OLT alarm
profiles. An alarm configuration resource is identified by the configuration ID and maps
to a OLT-ALARM-CFG document in MongoDB. See [PON Controller] for more details
on the content of the OLT-ALARM-CFG document. See the OLT-ALARM-CFG.json
schema file for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /olts/alarm-configs/
Get a list of OLT-ALARM-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /olts/alarm-configs/
Create an OLT-ALARM-CFG document.

GET GET /olts/alarm-configs/<CFG ID>/
Get an OLT-ALARM-CFG document identified by <CFG ID>.

PUT PUT /olts/alarm-configs/<CFG ID>/
Create or replace an OLT-ALARM-CFG document identified by <CFG ID>.

DELETE DELETE /olts/alarm-configs/<CFG ID>/
Delete an OLT-ALARM-CFG document identified by <CFG ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

36

Statistics
The /olts/stats/ resource and endpoints are used to monitor statistics for OLTs. An OLT
resource is identified by the device MAC Address and maps to the STATS-OLT-<OLT
ID> collection in versions R3.0.0 and earlier and STATS-OLT in versions R3.1.0 and
later in MongoDB. See [PON Controller] for more details on the content of the STATS-
OLT collection.

HTTP
Method

Endpoint

GET GET /olts/stats/<OLT ID>/
Get a list of STATS-OLT documents.
URL Parameters: start-time (required), end-time (optional)

DELETE DELETE /olts/stats/<OLT ID>/
Delete the STATS-OLT collection.

© 2024 Cisco and/or its affiliates. All rights reserved.

37

Logs
The /olts/logs/ resource and endpoints are used to monitor logs for OLTs. An OLT
resource is identified by the device MAC Address and maps to the SYSLOG-OLT-<OLT
ID> collection in versions R3.0.0 and earlier and SYSLOG-OLT in versions R3.1.0 and
later in MongoDB. See [PON Controller] for more details on the content of the SYSLOG-
OLT collection.

HTTP
Method

Endpoint

GET GET /olts/logs/<OLT ID>/
Get a list of SYSLOG-OLT documents.
URL Parameters: start-time (required), end-time (optional)

DELETE DELETE /olts/logs/<OLT ID>/
Delete the SYSLOG-OLT collection.

© 2024 Cisco and/or its affiliates. All rights reserved.

38

Debug
The /olts/debug/ resource and endpoints are used to monitor debug information for
OLTs. An OLT resource is identified by the device MAC Address and maps to the
DEBUG-OLT collection in versions R3.2.0 and later in MongoDB. See [PON Controller]
for more details on the content of the DEBUG-OLT collection.

HTTP
Method

Endpoint

GET GET /olts/debug/<OLT ID>/
Get a list of DEBUG-OLT documents.
URL Parameters: start-time (optional), end-time (optional), limit (optional), skip
(optional)

DELETE DELETE /olts/debug/<OLT ID>/
Delete the documents for the given OLT from the DEBUG-OLT collection.

Actions
The /olts/<OLT ID>/ endpoints provide a way to execute common actions on an OLT
device. An OLT resource is identified by the device MAC Address and maps to the OLT-
CFG collection in MongoDB. See [PON Controller] for more details on the content of the
OLT-CFG collection.

All OLT action GET requests return a document of the following data:
{ "Pending": False|True }

© 2024 Cisco and/or its affiliates. All rights reserved.

39

HTTP
Method

Endpoint

GET GET /olts/<OLT ID>/disable-onu/<ONU ID>/
Gets the pending status of the Disable ONU action identified by <OLT ID> and
<ONU ID>.

PUT PUT /olts/<OLT ID>/disable-onu/<ONU ID>/
Send the Disable ONU signal for the ONU identified by <ONU ID> managed by the
OLT <OLT ID>.

Request Data: { "disable": True|False }

GET GET /olts/<OLT ID>/broadcast-enable-onus/
Gets the pending status of the Broadcast Enable ONUs action for the OLT identified
by <OLT ID>

PUT PUT /olts/<OLT ID>/broadcast-enable-onus/
Send the Broadcast Enable ONU signal for the OLT identified by <OLT ID>.

GET GET /olts/<OLT ID>/allow-registration/
Gets the pending status of the Allow ONU Registration action for the OLT identified
by <OLT ID>.

PUT PUT /olts/<OLT ID>/allow-registration/
Send the Allow ONU Registration signal for the OLT identified by <OLT ID>.

Request Data: { "onu-id": <ONU MAC Address/SSN>|"ALL" }

GET GET /olts/<OLT ID>/reset/
Gets the pending status of the Reset action for the OLT identified by <OLT ID>.

PUT PUT /olts/<OLT ID>/reset/
Send the Reset signal for the OLT identified by <OLT ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

40

ONUs

States
The /onus/states/ resource and endpoints are used to monitor ONU devices. An ONU
resource is identified by the device Serial Number (when using XGS-PON) or MAC
Address (when using 10G EPON) and maps to an ONU-STATE document in MongoDB.
See [PON Controller] for more details on the content of the ONU-STATE document.
See the ONU-STATE.json schema file for a description of the parameters, data types,
and ranges.

HTTP
Method

Endpoint

GET GET /onus/states/
Get a list of ONU-STATE documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /onus/states/<ONU ID>/
Get an ONU-STATE document identified by <ONU ID> MAC address.

DELETE DELETE /onus/states/<ONU ID>/
Delete an ONU-STATE document identified by <ONU ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

41

Configurations
The /onus/configs/ resource and endpoints are used to monitor ONU devices. An ONU
resource is identified by the device Serial Number (when using XGS-PON) or MAC
Address (when using 10G EPON) and maps to an ONU-CFG document in MongoDB.
See [PON Controller] for more details on the content of the ONU-CFG document. See
the ONU-CFG.json schema file for a description of the parameters, data types, and
ranges.

HTTP
Method

Endpoint

GET GET /onus/configs/
Get a list of ONU-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /onus/configs/
Create an ONU-CFG document.

GET GET /onus/configs/<ONU ID>/
Get an ONU-CFG document identified by <ONU ID> MAC address/Serial Number.

PUT PUT /onus/configs/<ONU ID>/
Create or replace an ONU-CFG document identified by <ONU ID> MAC
address/Serial Number.

DELETE DELETE /onus/configs/<ONU ID>/
Delete an ONU-CFG document identified by <ONU ID> MAC address/Serial
Number.

© 2024 Cisco and/or its affiliates. All rights reserved.

42

Alarm Configurations
The /onus/alarm-configs/ resource and endpoints are used to configure ONU alarm
profiles. An alarm configuration resource is identified by the configuration ID and maps
to a ONU-ALARM-CFG document in MongoDB. See [PON Controller] for more details
on the content of the ONU-ALARM-CFG document. See the ONU-ALARM-CFG.json
schema file for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /onus/alarm-configs/
Get a list of ONU-ALARM-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /onus/alarm-configs/
Create an ONU-ALARM-CFG document.

GET GET /onus/alarm-configs/<CFG ID>/
Get an ONU-ALARM-CFG document identified by <CFG ID>.

PUT PUT /onus/alarm-configs/<CFG ID>/
Create or replace an ONU-ALARM-CFG document identified by <CFG ID>.

DELETE DELETE /onus/alarm-configs/<CFG ID>/
Delete an ONU-ALARM-CFG document identified by <CFG ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

43

Statistics
The /onus/stats/ resource and endpoints are used to monitor statistics for ONUs. An
ONU resource is identified by the device Serial Number (when using XGS-PON) or
MAC Address (when using 10G EPON) and maps to the STATS-ONU-<ONU ID>
collection in versions R3.0.0 and earlier and STATS-ONU in versions R3.1.0 and later in
MongoDB. See [PON Controller] for more details on the content of the STATS-ONU
collection.

HTTP
Method

Endpoint

GET GET /onus/stats/<ONU ID>/
Get a list of STATS-ONU documents.
URL Parameters: start-time (required), end-time (optional)

DELETE DELETE /onus/stats/<ONU ID>/
Delete the STATS-ONU collection.

© 2024 Cisco and/or its affiliates. All rights reserved.

44

Logs
The /onus/logs/ resource and endpoints are used to monitor logs for ONUs. An ONU
resource is identified by the device Serial Number (when using XGS-PON) or MAC
Address (when using 10G EPON) and maps to the SYSLOG-ONU-<ONU ID> collection
in versions R3.0.0 and earlier and SYSLOG-ONU in versions R3.1.0 and later in
MongoDB. See [PON Controller] for more details on the content of the SYSLOG-ONU
collection.

HTTP
Method

Endpoint

GET GET /onus/logs/<ONU ID>/
Get a list of SYSLOG-ONU documents.
URL Parameters: start-time (required), end-time (optional)

DELETE DELETE /onus/logs/<ONU ID>/
Delete the SYSLOG-ONU collection.

© 2024 Cisco and/or its affiliates. All rights reserved.

45

CPEs
The /onus/cpe-states/ resource and endpoints are used to monitor CPEs for ONUs. An
ONU resource is identified by the device Serial Number (when using XGS-PON) or
MAC Address (when using 10G EPON) and maps to the ONU-CPE-STATE collection in
MongoDB. See [PON Controller] for more details on the content of the ONU-CPE-
STATE collection. See the ONU-CPE-STATE.json schema file for a description of the
parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /onus/cpe-states/
Get a list of ONU-CPE-STATE documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /onus/cpe-states/<ONU ID>/
Get an ONU-CPE-STATE document identified by <ONU ID> MAC address/Serial
Number.

DELETE DELETE /onus/cpe-states/<ONU ID>/
Delete the ONU-CPE-STATE document identified by <ONU ID> MAC
address/Serial Number.

© 2024 Cisco and/or its affiliates. All rights reserved.

46

MIB Reset States
The /onus/mib-rst/ resource and endpoints are used to monitor MIB Reset States for
ONUs. An ONU resource is identified by the device Serial Number (when using XGS-
PON) or MAC Address (when using 10G EPON) and maps to the ONU-MIB-RST-
STATE collection in MongoDB. See [PON Controller] for more details on the content of
the ONU-MIB-RST-STATE collection. See the ONU-MIB-RST-STATE.json schema file
for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /onus/mib-rst/
Get a list of ONU-MIB-RST-STATE documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /onus/mib-rst/<ONU ID>/
Get an ONU-MIB-RST-STATE document identified by <ONU ID> MAC
address/Serial Number.

DELETE DELETE /onus/mib-rst/<ONU ID>/
Delete the ONU-MIB-RST-STATE document identified by <ONU ID> MAC
address/Serial Number.

© 2024 Cisco and/or its affiliates. All rights reserved.

47

MIB Current States
The /onus/mib-cur/ resource and endpoints are used to monitor MIB Current States for
ONUs. An ONU resource is identified by the device Serial Number (when using XGS-
PON) or MAC Address (when using 10G EPON) and maps to the ONU-MIB-CUR-
STATE collection in MongoDB. See [PON Controller] for more details on the content of
the ONU-MIB-CUR-STATE collection. See the ONU-MIB-CUR-STATE.json schema file
for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /onus/mib-cur/
Get a list of ONU-MIB-CUR-STATEdocuments.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /onus/mib-cur/<ONU ID>/
Get an ONU-MIB-CUR-STATEdocument identified by <ONU ID> MAC
address/Serial Number.

DELETE DELETE /onus/mib-cur/<ONU ID>/
Delete the ONU-MIB-CUR-STATE document identified by <ONU ID> MAC
address/Serial Number.

© 2024 Cisco and/or its affiliates. All rights reserved.

48

Actions
The /onus/<ONU ID>/ endpoints provide a way to execute common actions on an ONU
device. An ONU resource is identified by the device Serial Number (when using XGS-
PON) or MAC Address (when using 10G EPON) and maps to the ONU-CFG collection
in MongoDB. See [PON Controller] for more details on the content of the ONU-CFG
collection.

All ONU action GET requests return a document of the following data:
{ "Pending": False|True }

HTTP
Method

Endpoint

GET GET /onus/<ONU ID>/reset/
Gets the pending status of the Reset action for the ONU identified by <ONU ID>.

PUT PUT /onus/<ONU ID>/reset/
Send the Reset signal for the ONU identified by <ONU ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

49

Files

OLT Firmware
The /files/olt-firmware/ resource and endpoints are used to manage OLT Firmware. An
OLT Firmware resource is identified by the filename and maps to the OLT-FIRMWARE
bucket in MongoDB. See [PON Controller] for more details on the content of the OLT-
FIRMWARE bucket.

HTTP
Method

Endpoint

GET GET /files/olt-firmware/
Get a list of OLT Firmware.

GET GET /files/olt-firmware/<FILENAME>/
Get an OLT Firmware’s metadata identified by <FILENAME>.

PUT PUT /files/olt-firmware/<FILENAME>/
Replace an OLT Firmware’s metadata identified by <FILENAME>. See [OLT
Firmware PUT Request Data] for the request body example.

POST POST /files/olt-firmware/<FILENAME>/
Upload an OLT Firmware identified by <FILENAME>. See [OLT Firmware POST
Request Data] for the request body example.

DELETE DELETE /files/olt-firmware/<FILENAME>/
Delete an OLT Firmware identified by <FILENAME>.

OLT Firmware PUT Request Data
{ "metadata": { "Compatible Manufacturer": "TIBITCOM",

 "Compatible Model": ["180713"],
 "Version": "R3.2.0" } }

OLT Firmware POST Request Data
{ "file": <base64 file data>, "metadata": {

"Compatible Manufacturer": "TIBITCOM",
"Compatible Model": ["180713"],
"Version": "R3.2.0" } }

© 2024 Cisco and/or its affiliates. All rights reserved.

50

ONU Firmware
The /files/onu-firmware/ resource and endpoints are used to manage ONU Firmware.
An ONU Firmware resource is identified by the filename and maps to the ONU-
FIRMWARE bucket in MongoDB. See [PON Controller] for more details on the content
of the ONU-FIRMWARE bucket.

HTTP
Method

Endpoint

GET GET /files/onu-firmware/
Get a list of ONU Firmware.

GET GET /files/onu-firmware/<FILENAME>/
Get an ONU Firmware’s metadata identified by <FILENAME>.

PUT PUT /files/onu-firmware/<FILENAME>/
Replace an ONU Firmware’s metadata identified by <FILENAME>. See [ONU
Firmware PUT Request Data] for the request body example.

POST POST /files/onu-firmware/<FILENAME>/
Upload an ONU Firmware identified by <FILENAME>. See [ONU Firmware POST
Request Data] for the request body example.

DELETE DELETE /files/onu-firmware/<FILENAME>/
Delete an ONU Firmware identified by <FILENAME>.

ONU Firmware PUT Request Data
{ "metadata": { "Compatible Manufacturer": "CISCO",

 "Compatible Model": ["Cisco PON ONU"],
 "Version": "R3.2.0" } }

ONU Firmware POST Request Data
{ "file": <base64 file data>, "metadata": {

"Compatible Manufacturer": "CISCO",
"Compatible Model": [" Cisco PON ONU"],
"Version": "R3.2.0" } }

© 2024 Cisco and/or its affiliates. All rights reserved.

51

Pictures
The /files/pictures/ resource and endpoints are used to manage device pictures. A
picture resource is identified by the filename and maps to the PICTURES bucket in
MongoDB. See [PON Controller] for more details on the content of the PICTURES
bucket.

HTTP
Method

Endpoint

GET GET /files/pictures/
Get a list of device pictures.

GET GET /files/pictures/<FILENAME>/
Get a device picture identified by <FILENAME>.

PUT PUT /files/pictures/<FILENAME>/
Replace a device picture’s metadata identified by <FILENAME>. See [Picture PUT
Request Data] for request body example.

POST POST /files/pictures/<FILENAME>/
Upload a device picture identified by <FILENAME>. See [Picture POST Request
Data] for request body example.

DELETE DELETE /files/pictures/<FILENAME>/
Delete a device picture identified by <FILENAME>.

Picture PUT Request Data
{ "metadata": { "Device Type": "ONU" } }

Picture POST Request Data
{ "file": <base64 file data>,
 "metadata": { "Device Type": "ONU" } }

© 2024 Cisco and/or its affiliates. All rights reserved.

52

SLAs
The /slas/ resource and endpoints are used to manage Service Level Agreements. An
SLA resource is identified by the configuration ID and maps to a SLA-CFG document in
MongoDB. See [PON Controller] for more details on the content of the SLA-CFG
document. See the SLA-CFG.json schema file for a description of the parameters, data
types, and ranges.

HTTP
Method

Endpoint

GET GET /slas/
Get a list of SLA-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /slas/
Create an SLA-CFG document.

GET GET /slas/<CFG ID>/
Get an SLA-CFG document identified by <CFG ID>.

PUT PUT /slas/<CFG ID>/
Create or replace an SLA-CFG document identified by <CFG ID>.

DELETE DELETE /slas/<CFG ID>/
Delete an SLA-CFG document identified by <CFG ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

53

Downstream QoS Maps
The /downstream-maps/ resource and endpoints are used to manage downstream QoS
mapping configuration profiles. A Downstream QoS Map resource is identified by the
configuration ID and maps to a DS-MAP-CFG document in MongoDB. See [PON
Controller] for more details on the content of the DS-MAP-CFG document. See the DS-
MAP-CFG.json schema file for a description of the parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /downstream-maps/
Get a list of DS-MAP-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /downstream-maps/
Create a DS-MAP-CFG document.

GET GET /downstream-maps/<CFG ID>/
Get a DS-MAP-CFG document identified by <CFG ID>.

PUT PUT /downstream-maps/<CFG ID>/
Create or replace a DS-MAP-CFG document identified by <CFG ID>.

DELETE DELETE /downstream-maps/<CFG ID>/
Delete an DS-MAP-CFG document identified by <CFG ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

54

ONU Service Configurations
The /service-configs/ resource and endpoints are used to manage Service
Configurations. A SRV-CFG resource is identified by the configuration ID and maps to a
SRV-CFG document in MongoDB. See [PON Controller] for more details on the content
of the SRV-CFG document. See the SRV-CFG.json schema file for a description of the
parameters, data types, and ranges.

HTTP
Method

Endpoint

GET GET /service-configs/
Get a list of SRV-CFG documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

POST POST /service-configs/
Create a SRV-CFG document.

GET GET /service-configs/<CFG ID>/
Get a SRV-CFG document identified by <CFG ID>.

PUT PUT /service-configs/<CFG ID>/
Create or replace a SRV-CFG document identified by <CFG ID>.

DELETE DELETE /service-configs/<CFG ID>/
Delete a SRV-CFG document identified by <CFG ID>.

© 2024 Cisco and/or its affiliates. All rights reserved.

55

CPEs
The /cpes/ resource and endpoints are used to monitor CPEs. A CPE resource is
identified by the CPE MAC Address and maps to the CPE-STATE collection in
MongoDB. See [PON Controller] for more details on the content of the CPE-STATE
collection. See the CPE-STATE.json schema file for a description of the parameters,
data types, and ranges.

HTTP
Method

Endpoint

GET GET /cpes/states/
Get a list of CPE-STATE documents.
URL Parameters: query (optional), projection (optional), sort (optional), limit
(optional), skip (optional), next (optional), distinct (optional)

GET GET /cpes/states/<CPE ID>/
Get an CPE-STATE document identified by <CPE ID> MAC address.

DELETE DELETE /cpes/states/<CPE ID>/
Delete the CPE-STATE document identified by <CPE ID> MAC address.

© 2024 Cisco and/or its affiliates. All rights reserved.

56

Databases
The /databases/ resource and endpoints are used to manage database connections. A
database resource is identified by the Database ID.

HTTP
Method

Endpoint

GET GET /databases/
Get a set of all databases with their connection information.

GET GET /databases/<DATABASE ID>/
Get the database connection information identified by <DATABASE ID>.

PUT PUT /databases/<DATABASE ID>/
Update the database connection information identified by <DATABASE ID>. See
[Database Create and Update Request Data] for the request body example.

POST POST /databases/<DATABASE ID>/
Create the database connection identified by <DATABASE ID>. See [Database
Create and Update Request Data].

DELETE DELETE /databases/<DATABASE ID>/
Delete the database connection identified by <DATABASE ID>.

GET GET /databases/selection/
Get the database connection currently selected to be used for this user.

PUT PUT /databases/selection/
Update the database connection currently selected to be used for this user.

GET GET /databases/session/
Get the database connection currently selected to be used for this session only.

PUT PUT /databases/session/
Update the database connection currently selected to be used for this session only.

GET GET /databases/status/
v1: Get the connection status of all database connections.
v2: Get the connection status and details of all database connections.

© 2024 Cisco and/or its affiliates. All rights reserved.

57

GET GET /databases/status/<DATABASE ID>/
v1: Get the connection status of the database connection identified by
<DATABASE ID>.
v2: Get the connection status and details of the database connection identified by
<DATABASE ID>.

Database Create and Update Request Data
{
 "auth_db": "tibit_users",

"auth_enable": false,
"ca_cert_path": "",
"db_uri": "",
"dns_srv": false,
"host": "127.0.0.1",
"name": "tibit_pon_controller",
"password": "pdmPass",
"port": "27017",
"replica_set_enable": false,
"replica_set_hosts": [

"localhost",
 "127.0.0.1"

],
"replica_set_name": "rs0",
"tls_enable": false,
"username": "pdmPonManager"

}

© 2024 Cisco and/or its affiliates. All rights reserved.

58

Users
The /users/ resource and endpoints are used to authenticate users. See [PON
Manager] for more details on user accounts and authentication.

HTTP
Method

Endpoint

GET GET /users/logout/
Log out the user and invalidate their session.

POST POST /users/authenticate/
Login the user identified by the POST data. See [User Login Request Data] for the
request body example.

User Login Request Data
{

"email": "api.user@gmail.com",
"password": "apiUserPassword"

}

© 2024 Cisco and/or its affiliates. All rights reserved.

59

PON Manager
The /ponmgr/ resource and endpoints are used to access PON Manager installation
information.

HTTP
Method

Endpoint

GET GET /ponmgr/version/
Get a set of attributes describing the installed version of PON Manager.

© 2024 Cisco and/or its affiliates. All rights reserved.

60

Use Cases
Common use cases and examples using the Cisco Routed PON REST API are outlined
in this section.

Examples
The PON Manager installation package contains several examples using the Cisco
Routed PON REST API using Curl, Postman, and Python. The examples are located
under the /opt/tibit/ponmgr/examples directory.

Curl
The Curl examples are located under the /opt/tibit/ponmgr/examples/curl directory. To
install cURL on Linux run the following commands.

sudo apt update && sudo apt upgrade
sudo apt install curl

The following is an example of a GET request which retrieves an OLT configuration
document from the database. The GET request must include the cookies provided from
the login response. In the example below, the response is saved to the file OLT-
CFG.json.

curl -X GET https://10.1.20.102/api/v1/olts/configs/70:b3:d5:52:35:ac/ \
-b cookies.txt -k \
> OLT-CFG.json

The following is an example of a PUT request which writes/updates an OLT
configuration document to MongoDB. The PUT request must include the payload,
content type header, CSRF token, cookies, and referrer URL. In the example below, the
request paylod is contained in the file OLT-CFG.json.

curl -X PUT https://10.1.20.102/api/v1/olts/configs/70:b3:d5:52:35:ac/ \
-d @OLT-CFG.json \
-H "Content-Type: application/json" \
-H "X-CSRFToken:$(grep csrftoken cookies.txt|sed 's/^.*csrftoken\s*//')"\
-b cookies.txt -k \
-e https://10.1.20.102/api

More examples can be found in api/examples/curl/curlExamples.md.

Postman
The Postman examples are located under the /opt/tibit/ponmgr/examples/postman
directory. See Postman for information on installing and using Postman.

Getting started with the Postman examples.

© 2024 Cisco and/or its affiliates. All rights reserved.

61

1. Import the postman_mcms_restapi_R2.3.0 folder into postman.
Note: Newer versions of Postman may require an account

2. Go to the Environments tab and click on PON Manager. Host, User, and
Password need to be set. Other variables can be set if desired.

3. Go to the Collections tab and click on the ‘Login’ POST in the tree. The ‘host’,
‘user’, and ‘password’ variables will use the values from the Environment. Click
Send and this will authenticate you and set your session variables.

4. Navigate to a GET request and query parameters can be added to directly the url
or in the Params tab.

© 2024 Cisco and/or its affiliates. All rights reserved.

62

Python
The Python examples are located under the /opt/tibit/ponmgr/examples/python
directory. The Python examples require Python version 3 and the ‘requests’ Python
Package form pypi.org.
Use the pip3 command to install the ‘requests’, enter the following into the command
line.

pip3 install requests

The following example configures service for a subscriber, where the OLT pushes/pops
S-Tag 200 and the ONU pushes/pops C-Tag 25.

python3 config_addctag_service.py --url https://10.2.10.29/api \

--user <email> --password <password> \
--olt e8:b4:70:70:0c:9c --olt_tag 200 \
--onu ALPHe30cadcf --onu_tag 25

The following example queries the registration status for all ONUs configured under the
specified OLT.

python3 get_onu_registration_status.py --url https://10.2.10.29/ \
--user <email> --password <password> \
--olt e8:b4:70:70:0c:9c

The following example resets an ONU.

python3 reset_onu.py --url http://10.2.10.29/api \
--user <email> --password <password> \
--onu ALPHe30cadcf

More examples can be found in api/examples/python/

Programming Model
This section describes the common programming model for the Cisco Routed PON
REST API and this general sequence is required for each or use cases presented in
sections that follow. See API Reference for more details on the header requirements,
request/response message format, and programming model.

After a successful login and establishing a secure authenticated session, all API
requests must contain the following HTTP headers (see Request Format for more
details):

• Session ID Cookie
• CSRF Token Cookie

Additionally, all PUT and POST requests must also contain the following HTTP headers:
• Content-Type: application/json
• X-CSRF Token

© 2024 Cisco and/or its affiliates. All rights reserved.

63

• Referrer

API sessions generally have the following sequence:

1. Log in to authenticate the user with the web server
POST /v1/users/authenticate/

2. (Optional) Select the database to use for the session. If skipping this step, the

user’s default database (typically ‘Default’) is used for the session.
PUT /v1/databases/selection/

3. Execute one or more request(s) to fetch data and/or configure the database. For
example,

GET /v1/onus/configs/BFWS00123193
 ...
PUT /v1/onus/configs/BFWS00123193

4. Log out of the web server.

GET /v1/users/logout/

Use Case: ONU Registration Status
Two methods can be used to determine the registration status of an ONU: 1) querying
PON Controller state or 2) querying the OLT state.

ONU Registration Status using CNTL-STATE
To determine the status of an ONU through the PON Controller state use the steps
outlined below.

1. Query ONU-STATE of the ONU by GPON Serial Number or EPON MAC
Address.

GET <URL>/v1/onus/states/<ONU ID>/

Look up the PON Controller MAC Address and OLT MAC Address that this ONU
is attached to.

• ONU-STATE.CNTL.MAC Address (blue highlight in the document below)
• ONU-STATE.OLT.MAC Address (red highlight in the document below)

ONU-STATE = {
 "_id" : "BFWS00123193",
 "CNTL" : {
 "MAC Address" : "68:05:ca:2a:fe:c2",
 "Version" : "R4.0.0-rc99"
 },
 "OLT" : {
 "MAC Address" : "e8:b4:70:70:0c:9c",
 "Reg Disallowed" : false

© 2024 Cisco and/or its affiliates. All rights reserved.

64

 },
 ...
 "Time" : "2023-07-19 20:40:08.730244"
}

2. Query CNTL-STATE of the PON Controller by MAC Address

GET <URL>/v1/controllers/states/<CNTL ID>/

Note: The timestamp in the CNTL-STATE file can be checked to determine the
current status of the PON Controller. If the “Time” is no older than 2 minutes from
the current time, then the controller is assumed to be online. If the controller is
online, it is possible that the ONU is also online.

3. Look up the ONU Registration status from CNTL-STATE.

The ONU Status is reported under the following path in the CNTL-STATE
document.

System Status[<OLT ID>].ONUs[<ONU ID>]

CNTL-STATE = {
 "_id" : "68:05:ca:2a:fe:c2",
 ...
 "System Status" : {
 "e8:b4:70:70:0c:9c" : {
 "OLT State" : "Primary",
 "ONUs" : {
 "ISKT71e81e78" : "Registered",
 "BFWS00123193" : "Registered",
 "ALPHe30cadcf" : "Registered",
 "CIEN00099729" : "Registered",
 "TBITc84c0083" : "Registered"
 }
 },
 },
 "Time" : "2023-07-19 20:49:22.596464"
}

ONU Registration Status using OLT-STATE
To determine the status of an ONU through the OLT state use the steps outlined below.

1. Query ONU-STATE of the ONU by GPON Serial Number or EPON MAC
Address.

GET <URL>/v1/onus/states/<ONU ID>/

Look up the OLT MAC Address that this ONU is attached to.
• ONU-STATE.OLT.MAC Address (red highlight in the document below)

© 2024 Cisco and/or its affiliates. All rights reserved.

65

ONU-STATE = {
 "_id" : "BFWS00123193",
 "CNTL" : {...},
 "OLT" : {
 "MAC Address" : "e8:b4:70:70:0c:9c",
 "Reg Disallowed" : false
 },
 ...
 "Time" : "2023-07-19 20:40:08.730244"
}

2. Query OLT-STATE of the OLT by MAC Address

GET <URL>/v1/olts/states/<OLT ID>/

Look up the Unspecified ONUs and Registered ONUs from the ONU States field
in the OLT-STATE document.

• OLT-STATE.ONU States.Registered (green highlight in the doc below)
or

• OLT-STATE.ONU States.Unspecified

OLT-STATE = {
 "_id" : "e8:b4:70:70:0c:9c",
 ...
 "ONU States" : {
 “Disabled” : [],
 “Deregistered” : [],
 “Disallowed Admin” : [],
 “Disallowed Error” : [],
 “Disallowed Reg ID” : [],
 “Dying Gasp” : [],
 “Registered” : [

 0 : "BFWS00123193"
],

 “Unspecified” : [],
 “Unprovisioned” : []
 },
 ...
}

 If the ONU is in either the “Registered” or “Unspecified” state, then it is online.

Use Case: Provision service for an ONU
This use case provides an overview of what is typically required to provision service for
a subscriber on an ONU. This use case configures the OLT to push/pop an outer S-Tag
identifying PON port and configures the ONU to push/pop and inner C-Tag identifying
the ONU. This configuration shown in the diagram below, where frames on the NNI are
double tagged with S-Tag + C-Tag, frames on the PON have single tagged with C-Tag
only, and frames on the UNI are untagged or priority tagged.

© 2024 Cisco and/or its affiliates. All rights reserved.

66

Inputs required for this use case are as follows:

• ONU ID – ONU ID used to identify the ONU for the XGS-PON OMCC channel.
• ALLOC ID(s) – TCONT ALLOC ID and XGEM port values assigned for this

service.
• OLT S-Tag – SVLAN ID identifying the PON Port.
• ONU C-Tag – CVLAN ID identifying the ONU.

Provisioning service requires the following steps:

1. Inventory the ONU to configure the GPON ONU ID and ALLOC IDs required for
the service.

2. Inventory the NNI Network to configure the VLAN Tagging required for the
service.

3. Set the ONU Service configuration file and related service attributes.
4. Enable the OLT Service port(s) and configure SLA(s) and VLAN(s).

The detailed API sequence for this use case is presented below:

1. Get the OLT configuration that this ONU is connected to.

GET <URL>/v1/olts/configs/<OLT ID>/

2. Inventory the ONU. Configure the GPON ONU ID and ALLOC IDs for each OLT
Service port required for this configuration. The number of OLT Service ports
configured depends on the number ALLOC IDs required for the service. If this is
a new entry, include the ‘Disable’, ‘Enable Count’ and ‘Disable Count’ in the new
ONU sub-document. The following fields need to be configured:

• OLT-CFG.ONUs.<ONU ID>. ALLOC ID (OMCC)
• OLT-CFG.ONUs.<ONU ID>. OLT-Service 0
• OLT-CFG.ONUs.<ONU ID>. OLT-Service n

OLT-CFG = {
 "_id" : "<OLT ID>",
 ...
 "ONUs" : {
 "<ONU ID>" : {
 “ALLOC ID (OMCC)” : <ONU ID>,
 “Disable” : False,
 “Enable Count” : 0,
 “Disable Count” : 0,

© 2024 Cisco and/or its affiliates. All rights reserved.

67

 “OLT-Service 0” : <ALLOC ID #1>,
 “OLT-Service n” : <ALLOC ID #n>

 }
 },
 ...
}

3. Inventory the NNI Network. Configure the VLAN Tags for the NNI Network. The
following fields need to be configured:

• OLT-CFG.NNI Networks.TAG MATCH

OLT-CFG = {
 "_id" : "<OLT ID>",
 ...
 "NNI Networks" : [

{
 "TAG MATCH" : "s<OLT S-Tag>.c<ONU C-Tag>.c0",
 "SLA-CFG" : {
 "Source" : "N/A"
 },
 "Filter" : {
 "DHCPv4" : "pass",
 "DHCPv6" : "pass",
 "EAPOL" : "pass",
 "PPPoE" : "pass"
 },
 "Learning Limit" : 2046

},
 ...

]
 ...
}

4. Write the modified OLT configuration to MongoDB.

PUT <URL>/v1/olts/configs/<OLT ID>/

5. Get the ONU configuration document from MongoDB.

GET <URL>/v1/onus/configs/<ONU ID>/

6. Configure the ONU Service Configuration file and related attributes. The
following fields need to be configured:

• ONU-CFG.ONU.SRV-CFG
• ONU-CFG.ONU.CVID
• ONU-CFG.SRV-CFG Values

ONU-CFG = {
 "_id" : "<ONU ID>",
 ...

© 2024 Cisco and/or its affiliates. All rights reserved.

68

 "ONU" : {
 "Enable" : true,
 ...
 “SRV-CFG” : “Add CTag”,
 “CVID” : <ONU C-Tag>,
 ...
 },
 ...
}

7. Enable and configure the OLT Service port(s) and related attributes. The

following fields need to be configured:
• ONU-CFG.OLT-Service.n.Enable
• ONU-CFG.OLT-Service.n.NNI Networks
• ONU-CFG.OLT-Service.n.PON Networks
• ONU-CFG.OLT-Service.n.SLA

ONU-CFG = {
 "_id" : "<ONU ID>",
 ...
 "OLT-Service 0" : {
 "Enable" : true,

...
“NNI Networks” : [“s<OLT S-Tag>.c<ONU C-Tag>.c0”],
“PON Networks” : [“s0.c<ONU C-Tag>.c0”],
...
"SLA-CFG" : "Max",
...

 },
 ...
}

8. Write the modified ONU configuration to MongoDB.

PUT <URL>/v1/onus/configs/<ONU ID>/

Use Case: Disable service for an ONU
This use case disables and removes the service configuration for an ONU. Essentially,
disabling and deleting service is the reverse of Use Case: Provision service for an ONU.
Some steps in this use case are optional. For example, if simply disabling the service
without removing all configuration, the only step required is to set ONU-CFG.OLT-
Service 0.Enable to a value of ‘false’.

Disabling service requires the following steps:

1. Disable the OLT Service port(s) and remove the VLAN configuration.
2. Set the ONU Service configuration to ‘Disabled’ and related service attributes.
3. Delete the OLT NNI Network.
4. Remove the device from ONU Inventory.

© 2024 Cisco and/or its affiliates. All rights reserved.

69

The detailed API sequence for this use case is presented below:

1. Get the ONU configuration document from MongoDB.

GET <URL>/v1/onus/configs/<ONU ID>/

2. Set the ONU Service Configuration to ‘Disabled’ and clear related attributes to

default values. The following fields need to be configured:
• ONU-CFG.ONU.SRV-CFG
• ONU-CFG.ONU.CVID
• ONU-CFG.SRV-CFG Values

ONU-CFG = {
 "_id" : "<ONU ID>",
 ...
 "ONU" : {
 "Enable" : true,
 ...
 “SRV-CFG” : “Disabled”,
 “CVID” : 0,
 ...
 },
 ...
}

3. Disable the OLT Service port(s) and clear related attributes to default values. The

following fields need to be configured:
• ONU-CFG.OLT-Service.n.Enable
• ONU-CFG.OLT-Service.n.NNI Networks
• ONU-CFG.OLT-Service.n.PON Networks
• ONU-CFG.OLT-Service.n.SLA

ONU-CFG = {
 "_id" : "<ONU ID>",
 ...
 "OLT-Service 0" : {
 "Enable" : false,

...
“NNI Networks” : [“s<OLT S-Tag>.c<ONU C-Tag>.c0”],
“PON Networks” : [“s0.c<ONU C-Tag>.c0”],
...
"SLA-CFG" : "Max",
...

 },
 ...
}

4. Write the modified ONU configuration to MongoDB.

PUT <URL>/v1/onus/configs/<ONU ID>/

© 2024 Cisco and/or its affiliates. All rights reserved.

70

5. Get the OLT configuration that this ONU is connected to.

GET <URL>/v1/olts/configs/<OLT ID>/

6. Delete the NNI Network. The NNI Network entry needs to be removed from the

OLT configuration document:
• OLT-CFG.NNI Networks

OLT-CFG = {
 "_id" : "<OLT ID>",
 ...
 "NNI Networks" : [

{
 "TAG MATCH" : "s<OLT S-Tag>.c<ONU C-Tag>.c0",
 "SLA-CFG" : {
 "Source" : "N/A"
 },
 "Filter" : {
 "DHCPv4" : "pass",
 "DHCPv6" : "pass",
 "EAPOL" : "pass",
 "PPPoE" : "pass"
 },
 "Learning Limit" : 2046

},
 ...

]
 ...
}

7. Remove the ONU from the OLT’s ONU Inventory. The ONU entry needs to be
removed from the OLT configuration document:

• OLT-CFG.ONUs.<ONU ID>.

OLT-CFG = {
 "_id" : "<OLT ID>",
 ...
 "ONUs" : {
 "<ONU ID>" : {
 “ALLOC ID (OMCC)” : <ONU ID>,
 “Disable” : False,
 “Enable Count” : 0,
 “Disable Count” : 0,
 “OLT-Service 0” : <ALLOC ID #1>,
 “OLT-Service n” : <ALLOC ID #n>

 }
 },
 ...
}

8. Write the modified OLT configuration to MongoDB.

© 2024 Cisco and/or its affiliates. All rights reserved.

71

PUT <URL>/v1/olts/configs/<OLT ID>/

Use Case: Firmware upgrade for an ONU
ONU firmware download is initiated through the ONU configuration document in
MongoDB. Modify the ONU-CFG with the desired firmware bank, files, and versions as
listed below to initiate an ONU firmware download.

1. Get the configuration document for the ONU to be upgraded.

GET <URL>/v1/onus/configs/<ONU ID>/

2. Set the firmware bank versions, firmware bank files, and firmware bank pointer to
the desired firmware settings. Update the following fields:

• ONU-CFG.ONU.FW Bank Ptr – Select bank ‘0’ or bank ‘1’
• ONU-CFG.ONU.FW Bank Files[0] – Firmware filename for bank 0
• ONU-CFG.ONU.FW Bank Versions[0] – Firmware version string for

bank 0
• ONU-CFG.ONU.FW Bank Files[1] – Firmware filename for bank 1
• ONU-CFG.ONU.FW Bank Versions[1] – Firmware version string for

bank 1

ONU-CFG = {
 "_id" : "<ONU ID>",
 ...
 “ONU” : {

 “FW Bank Files”: [
 “0” : “FW-GPON-CIEN-3802_91x-V2.3.10.bin”
 “1” : “FW-GPON-CIEN-3802_91x-V2.4.3.bin”

],
 "FW Bank Versions" : [
 "0" : “V2.3.1”
 "1" : “V2.4.3”
],
 “FW Bank Ptr”: 1,
 ...

 }
}

3. Write the modified ONU configuration to MongoDB.

PUT <URL>/v1/onus/configs/<ONU ID>/

Use Case: Reset an ONU
ONU reset is implemented as an action using the Cisco Routed PON REST API. The
following PUT command with the ONU reset endpoint triggers a reset of the ONU.

© 2024 Cisco and/or its affiliates. All rights reserved.

72

PUT <URL>/v1/onus/${ONU}/reset/

© 2024 Cisco and/or its affiliates. All rights reserved.

73

Debug and Troubleshooting
If the REST API is not working as intended, it is important to review log messages and
gather any information related to the problem that could help with debugging.

Logs
Checking the logs can often provide important details as to what is going wrong. Logs
are populated and stored on the machine where PON Manager was installed.

PON Manager logs
PON Manager logs are located at “/var/log/tibit/ponMgr.log”. Log messages including
“ERROR” can provide helpful information as to why an operation has been
unsuccessful. It is also important to check the status code associated with a request.
Reference common HTTP status codes for more information.

For example, the following error message appears in the PON Manager logs if a user
attempts to get ONU configurations but is not logged in:

The user is not authorized to view the ONU configurations and must first use the REST
API to log in as a valid user with the correct permissions.

Apache Logs

error.log
Apache error log is located here: /var/log/apache2/error.log, and is most useful when
debugging PON Manager configuration issues which can prevent the REST API from
working properly.

other_vhosts_access.log
Apache other vhost log is located here: /var/log/apache2/ other_vhosts_access.log. The
vhost access logs provide more detailed information about HTTP requests between the
web server and virtual host serving the REST API. These logs capture data such as:
time, HTTP version, response code, and browser details associated with each request.

Errors
Listed below are some common API errors relating to MongoDB or syntax issues.

© 2024 Cisco and/or its affiliates. All rights reserved.

74

MongoDB Connection
The following is a common MongoDB connection error.

The log states that the MongoDB server has gone offline due to Heartbeat Failure. One
possible cause for this error is that MongoDB is no longer running on the system where
the database is located. Another possibility is that the connection information is wrong.
The IP address or database name could have a typo or could be pointing to a database
that does not exist.

In the situation where the selected database has gone offline, the API will return status
code 500 (server error) for most requests. This is because no connection to the
database can be established and therefore the API can not retrieve the necessary data.

Validation
A request to the API may be failing due to validation errors. The following error occurred
when attempting to update an ONU-CFG without the required ‘CNTL’ property. The
server will reject a configuration that does not contain all required fields, resulting in a
400 level status code warning, and an INFO level log stating that the JSON validation
failed due to the missing required property.

Bad Request
When the client sends a request that the server does not understand, a 400 level status
code is returned. This error can occur when a user makes a request through any means
other than the browser. One example of this occurs when the URL is improperly
formatted. The URL below includes a random “%” character which causes the error.

The following “invalid URI path” error will appear in the Apache error log.

© 2024 Cisco and/or its affiliates. All rights reserved.

75

