
Cisco Meeting Server
Cisco Meeting Server Release 3.3
Call Detail Records Guide

September 16, 2021

Cisco Systems, Inc. www.cisco.com

http://www.cisco.com/

Cisco Meeting Server Release 3.3 : CDR Guide 2

Contents

Change History 3

1 Introduction 4
1.1 How to Use this Document 4

2 General Mechanism 6
2.1 Configuring the Recipient Devices 6

2.1.1 Using the Web Admin Interface to configure the CDR receivers 6
2.1.2 Using the API to configure the CDR receivers 6
2.1.3 Recipient URI 7

3 Record Types 8

4 Record Details 11
4.1 callStart Record Contents 11
4.2 callEnd Record Contents 12
4.3 callLegStart Record Contents 13
4.4 callLegEnd Record Contents 15
4.5 callLegUpdate Record Contents 19
4.6 recordingStart Record Contents 20
4.7 recordingEnd Record Contents 21
4.8 streamingStart Record Contents 21
4.9 streamingEnd Record Contents 21

5 Reason Codes in Call Leg End Records 22

6 Example Traffic Flow 24

Appendix A Example script for creating a CDR receiver 28

Cisco Legal Information 30

Cisco Trademark 31

Figures:

Figure 1: Cisco Meeting Server documentation for release 3.3 5

Cisco Meeting Server Release 3.3 : CDR Guide 3

Change History
Date Change Summary

September 16, 2021 Updated for version 3.3.

May 12, 2021 Removed distributionLink from subType in callLegStart Record Contents.

April 09, 2021 Updated for version 3.2.

July 29, 2020 Updated for version 3.0, removed references to X-Series servers.

May 05, 2020 Clarification added to Section 4.6

April 08, 2020 Updated for version 2.9.

January 07, 2020 Minor correction

September 16, 2019 callMove and displayName missing from callLegUpdate record.

August 13, 2019 Changed title to "... 2.6 and later", no changes for version 2.7.

July 19, 2019 Minor correction

April 23, 2019 Updated for version 2.6. Added canMove, movedCallLeg and
movedCallLegCallBridge to the callLegStart record.

December 12, 2018 Changed title to "... 2.4 and later", no changes for version 2.5.

September 20, 2018 Updated for version 2.4. Added endpointRecorded to the callEnd record.

December 20, 2017 Reissued for version 2.3. No additions or changes.

June 28, 2017 Added multiStreamVideo to mediaUsagePercentages in the callLegEnd
records.

June 28, 2017 Added example on creating a CDR receiver.

May 03, 2017 Updated for version 2.2. Added ownerName field to callStart records..

December 20, 2016 Updated for version 2.1. Additions and changes are indicated.

August 03, 2016 Rebranded for Cisco Meeting Server 2.0

Change History

Cisco Meeting Server Release 3.3 : CDR Guide 4

1 Introduction
The Cisco Meeting Server software can be hosted on specific servers based on Cisco Unified
Computing Server (UCS) technology or on a specification-based VM server. Cisco Meeting
Server is referred to as the Meeting Server throughout this document.

Note: Cisco Meeting Server software version 3.0 onwards does not support X-Series servers.

The Meeting Server generates Call Detail Records (CDRs) internally for key call-related events,
such as a new SIP connection arriving at the server, or a call being activated or deactivated.

The server can be configured to send these records to a remote system to be collected and
analyzed. There is no provision for records to be stored on a long-term basis on the Meeting
Server, nor any way to browse CDRs on the Meeting Server itself.

The CDR system can be used in conjunction with the Meeting Server API, with the call ID and call
leg IDs values being consistent between the two systems to allow cross referencing of events
and diagnostics.

The Meeting Server supports up to four CDR receivers enabling you to deploy different
management tools or multiple instances of the same management tool.

Note: Also refer to the Cisco Meeting Server API Reference guide.

1.1 How to Use this Document
This document is one of a number of reference guides as shown in the figure below.

It is split into sections allowing you to build your knowledge by reading from front to back. In
addition chapters 3, 4, and 5 act as a reference that can be “dipped into”. Each CDR record type
and its fields are described in detail.

This document describes a “minimum set” of information; the XML nature of the records means
that new elements may appear in new Call Bridge software versions and so you should always
allow for this when parsing the records we generate. A receiver must be able to cope with
additional, new elements, not mentioned in any existing version of the document (while at the
same time we commit to providing what the document says we provide, according to the
structure it describes).

These documents can be found on cisco.com.

1 Introduction

http://www.cisco.com/c/en/us/support/conferencing/meeting-server/tsd-products-support-series-home.html

Cisco Meeting Server Release 3.3 : CDR Guide 5

Figure 1: Cisco Meeting Server documentation for release 3.3

1 Introduction

Cisco Meeting Server Release 3.3 : CDR Guide 6

2 General Mechanism
CDRs are sent out by the Meeting Server over HTTP or HTTPS as a series of XML documents.
When new records are generated, a connection is made to the receiving system and the
receiving system should expect to receive one or multiple records on this connection. When the
Meeting Server has successfully sent a group of records to the receiver, those records are no
longer stored by the Meeting Server, and responsibility for their long-term storage then moves
to the receiving device. The Meeting Server considers the records to have been successfully
sent to the receiver if the HTTP or HTTPS connection has been successfully established, the
XML record data has been sent by the Meeting Server, and the receiver has acknowledged the
data with a "200 OK" HTTP response.

The Call Bridge supports keepalive connections to allow it to send multiple (batches of) records
on one TCP or TLS connection to a receiver.

Note: In scalable and resilient deployments where multiple Call Bridges act as a single entity,
each Call Bridge provides CDRs for the call legs that it is running. Each CDR identifies the
coSpace ID for the call leg. Then if a call is hosted over more than one Call Bridge, you can
identify the same call on different Call Bridges by the same coSpace ID.

2.1 Configuring the Recipient Devices

Note: The list of CDR receivers is held locally to an individual call bridge, it is not stored in the
database shared between clustered call bridges.

You can use either the Web Admin Interface or the API to configure the CDR receivers.

2.1.1 Using the Web Admin Interface to configure the CDR receivers

To configure the recipient of the CDRs:

 1. Open the Web Admin Interface.

 2. Go to Configure > CDR settings.

 3. In the CDR Receiver Settings section, for each receiver, enter the receiver’s HTTP or HTTPS
URI (see Section 2.1.3).

2.1.2 Using the API to configure the CDR receivers

Use the following API objects to enable up to four CDR receivers to be configured for the
Meeting Server:

2 General Mechanism

Cisco Meeting Server Release 3.3 : CDR Guide 7

 n /system/cdrReceivers/

 n /system/cdrReceivers/<CDR receiver id>

Issue a POST on the /system/cdrReceivers node to set the full URI of a new receiver. A GET
request on /system/cdrReceivers shows the currently configured receivers.

Once a CDR receiver has been configured, its details can be read and updated by use of a GET
or PUT on the /system/cdrReceivers/<CDR receiver id> node respectively. A CDR receiver can
be removed by a DELETE of this node.

2.1.3 Recipient URI

The recipient URIs, as configured on the Meeting Server, can take one of a number of forms:

 n http://monitoring.example.com/cdr_receiver1
for a simple HTTP connection to TCP port 80 on the remote host “monitoring. example
com”, to the URI “/cdr_receiver1”

 n https://monitoring. example.com/cdr_receiver1
As above, but using HTTPS, TCP port 443

 n http://monitoring. example.com:8080/cdr_receiver1
As above, but using TCP port 8080 instead of the default port number (80)

 n http://monitoring. example.com/cdr_receiver1?system_id=cms1
As above but supplying the parameter “system_id” with value “cms1” to the destination
device. The Meeting Server will just send parameters as supplied in the URI field verbatim to
the far end, and it is up to the receiving device to understand their meaning.

2 General Mechanism

Cisco Meeting Server Release 3.3 : CDR Guide 8

3 Record Types
CDRs are sent in XML as one or more "<record>" items within a parent "<records>" element.
Each record has an associated "type" value that identifies what it describes, and determines
which fields and attributes should be expected within it.

The encompassing “<records>” element includes:

 n a “session” value that takes the form of a GUID that is unique for that session. The session
GUID is created when the Call Bridge restarts; it will be the same for all active CDR receivers
for a given running Call Bridge instance, but changes when that Call Bridge restarts. It is used
by a receiving device to determine that the records it is receiving are being sent from the
same session on the same device.

 n a Call Bridge GUID if the Call Bridge is in a cluster. This identifies which Call Bridge in a cluster
is sending the record. This remains the same across all restarts of the system. Note that it is
not present in unclustered deployments. The Call Bridge GUID is the same as in the
/callBridges API object.

The “<record>” items includes:

 n a time value at which the record was generated on the Meeting Server. This timestamp is in
RFC 3339 / ISO 8601 format, for instance “2014-02-28T16:03:25Z” for 4:03pm on 28
February 2014). Currently, the Meeting Server always supplies these times in UTC.

 n the “correlatorIndex” that increments by 1 for each new record. Note: the combination of
"session GUID" and "correlatorIndex" uniquely identifies a record across all receivers,
enabling the receiver to determine whether it has received duplicate records.

The “correlatorIndex” starts at “0” for the first record that the Call Bridge generates after
booting up. The “correlatorIndex” for a record is the same across all CDR receivers. Hence
for a receiver that is configured sometime after the Call Bridge has booted, the first record it
receives may not be index 0.

When a receiver successfully receives a record, it needs to send a “200 OK” HTTP response
to the Call Bridge, the Call Bridge then sends the next set of records to the receiver. If the
“200 OK” HTTP response is not successfully received by the Call Bridge, then the Call Bridge
will resend the records resulting in the receiver receiving duplicate records.

If a remote receiver has been unavailable for a period of time such that the Meeting Server
has not been able to store all of the generated records internally, records pushed to the
remote receiver will show a gap in the “correlatorIndex”.

 n the "recordIndex” has been replaced by the “correlatorIndex”. The "recordIndex” is now
deprecated and may be removed in future releases.

For completeness, the following describes how to use the "recordIndex”.

3 Record Types

Cisco Meeting Server Release 3.3 : CDR Guide 9

The "recordIndex” can be used to detemine whether the Meeting Server has received
duplicate records.

Note: If you have multiple cdr receivers then the “recordIndex” value can differ for the same
record for different receivers.

This description assumes you only have one receiver. The “recordIndex” within a “<record>”
items determines the sequence of records, starting at “1” for the first record that the Call
Bridge generates, and increasing by 1 for each new record sent. This “recordIndex” value
allows a CDR receiver to determine whether it has received duplicate records; the
combination of session GUID value and recordIndex is unique. The Call Bridgee re-sends
any CDRs for which it had not received a positive acknowledgement from the receiver (a
“200 OK” HTTP response). If a receiver sends such a positive response but that response is
not successfully received by the Call Bridge, the receiver may receive duplicate records – the
“recordIndex” allows the receiver to detect this and not process the duplicate records.

If a remote receiver has been unavailable for a period of time such that the Meeting Server
has not been able to store all of the generated records internally, records pushed to the
remote receiver will include a numeric "numPreceedingRecordsMissing" value in the
"<record>" tag. This signals to the remote receiver that this number of records (immediately
preceding the record in whose header it appears) have been discarded and are no longer
available. A CDR receiver should not see a discontinuity in the “recordIndex” sequence even
in the presence of a non-zero value for “numPreceedingRecordsMissing”.

The record types are described briefly in Table 1 below, and in more detail in Chapter 4.

Table 1: Overview of Record Types

Record type Description

callStart This record is generated when a call is either created or first instantiated from a
coSpace. The record contains the call’s ID, its name, and the ID of any asso-
ciated coSpace.

callEnd This record is generated when a call ends, and typically will be seen after the
last call leg for the call has disconnected. The record contains the call ID, which
should match a call ID in an earlier callStart record, and summary values for the
call, such as the maximum number of call legs that were ever simultaneously act-
ive within the call.

callLegStart This record is generated when a call leg is first created, because of an incoming
connection, an outgoing call leg being established, or the user of a Cisco Meet-
ing App connecting to a coSpace. The record contains the call leg ID, the
remote party type (a SIP connection or a Cisco Meeting App device), the remote
party “name” (for instance their SIP URI) and, if meaningful, whether the call leg
was incoming or outgoing.

3 Record Types

Cisco Meeting Server Release 3.3 : CDR Guide 10

Record type Description

callLegEnd This record is generated when a call leg terminates, either because someone
has chosen to disconnect or because another user with sufficient privileges has
chosen to disconnect it. The record contains the call leg ID (which should cor-
respond to a call leg ID from an earlier callLegStart record), the reason for the
disconnection, and certain other summary fields relating to the lifetime of the
call leg in question (which audio and video codecs were in use, for example).

callLegUpdate This record is generated when a significant change occurs for a call leg, for
instance that call leg being placed into a call, or (for the outgoing case) being
answered and so transitioning to “connected” state.

recordingStart This record is generated when recording starts on a call. The record contains
the ID of the recording that is starting, the path where the recording will be
stored (directory and filename), the URL of the recording device, the ID of the
call that is being recorded and the ID of the call leg that is recording the call.

recordingEnd This record is generated when the recording on a call is ended. It contains the
ID of the recording that is ending.

streamingStart This record is generated when streaming starts on a call. The record contains
the ID of the streaming that is starting, the URL and stream name of the stream-
ing, and the URL of the streaming device.

streamingEnd This record is generated when the streaming on a call is ended. It contains the
ID of the streaming that is ending.

3 Record Types

Cisco Meeting Server Release 3.3 : CDR Guide 11

4 Record Details
This section provides details of the parameter names and values which appear within the
“<record>” tag for each record type.

4.1 callStart Record Contents

Parameter Type Description

id ID The ID of the call that is starting. This is conveyed as
an “id” attribute within the “<call>” tag that
encapsulates the callStart record.

name String The name of the call; typically this is the name of the
coSpace if the call is associated with a coSpace.

coSpace ID The ID of the coSpace associated with this call. If this
call is not associated with a coSpace (for instance, if
it is an ad hoc call) then this field will not be present.

ownerName String Name of the owner of this call, taken from one of the
following in descending priority:
the value of the 'meetingScheduler' field of the
coSpace, or
the name of the user which owns the coSpace, or
the jid of the user which owns the coSpace, or
blank (this means that none of the above exist).

tenant ID In a multi-tenant deployment, specifies the tenant

cdrTag String If a coSpace was given a tag (see the API Reference),
this is shown in the callStart CDR. The tag is an
optional, up to 100 character text string used to help
identify the call.

callType coSpace|
adHoc|
lyncConferencing|
forwarding

One of:

coSpace - this call is a coSpace instantiation

adHoc - this is an ad hoc multi-party call

lyncConferencing - this call is a Meeting Server
connection to a Lync-hosted conference

forwarding - this is a forwarded / "gateway" call

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 12

Parameter Type Description

callCorrelator ID This value can be used to identify call legs which may
be distributed across multiple call bridges, but which
are all in the same call either in the same coSpace or
an ad hoc call.

Note: For calls within a coSpace, the callCorrelator
value will be the same for the life time of the
coSpace. For every ad hoc call, the value will be
dynamically generated.

coSpaceMetaDataConfigured true | false This is set to true when metadata has been con-
figured on the coSpace that this call is in. If the call is
an adhoc call then this field is false. (From version
3.2)

Note: In distributed calls, if you see multiple overlapping "callStart" records for:

 n a single coSpace ID, these call legs comprise a distributed coSpace call i.e. a coSpace call
hosted by more than one Call Bridge. You can search for the coSpace ID using the API.

 n a single callCorrelator value, these call legs comprise a distributed call. This can be a
coSpace call but may not be; for example a “point-to-point call” in which each call leg is
hosted by a different Call Bridge.

4.2 callEnd Record Contents

Parameter Type Description

id ID The ID of the call that is ending; an earlier “callStart” record will have
been generated for the same call. This is conveyed as an “id” attribute
within the “<call>” tag that encapsulates the callEnd record.

callLegsCompleted Number The number of call legs that have completed within this call.

callLegsMaxActive Number The maximum number of call legs that were simultaneously active within
this call.

durationSeconds Number The length of time (in seconds) that this call was active for.

endpointRecorded true|false Has a value of true if the call has been recorded by an endpoint such as a
Skype or Lync client at any given time. (From version 2.4)

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 13

4.3 callLegStart Record Contents

Parameter Type Description

id ID The ID of the call leg that is starting. This is conveyed as
an “id” attribute within the “<callLeg>” tag that
encapsulates the callLegStart record.

displayName String The "friendly name" for a SIP endpoint, a user's "real
name" for an Cisco Meeting App connection, or what a
user types for a web client guest connection. This value is
blank if the far end does not provide a friendly name.

localAddress String Any local destination relevant to the call leg (e.g. what the
caller connected to in order to reach the Meeting Server.)
The interpretation of this value depends on the direction
(see below). Therefore, this is the destination address for
incoming calls, or the caller ID of outgoing calls.

Note: In some call scenarios, no localAddress applies e.g.
calling out to an Cisco Meeting App user from a coSpace
with no defined URIs.

remoteAddress String For SIP calls, the remote URI relevant to the call leg. The
interpretation of this value depends on the direction (see
below). This is the destination URI for outgoing calls, or
the source URI of incoming calls.

remoteParty String The address of the remote party of this call leg. For
outgoing calls this is the output of the dial transform and
may not contain a domain.

cdrTag String If a call leg was given a tag, this is shown in the CDR. The
tag is an optional, up to 100 character text string used to
help identify the call leg.

guestConnection true|false (optional) Connections known to be guest logins initiated
via the WebRTC App have a value of True here.

recording true|false Connections known to be recording the call have a value
of "true " here.

streaming true|false Connections known to be streaming the call have a value
of "true " here

type sip|acano The type of call leg: either “acano” for a Cisco Meeting
App connection or “sip” for a SIP connection.

subType lync|
avaya|
lyncdistribution|
webApp

A further specialization of the call leg type; if the call leg is
“sip”, possible values here are "lync", "avaya",
"lyncdistribution" or "webApp".

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 14

Parameter Type Description

lyncSubType audioVideo|
applicationSharing|
instantMessaging

A further specialization of the call leg type if the call leg
sub type is "lync".

audioVideo - this is a Lync call leg used for exchange of
audio and video between the Call Bridgeand Lync

applicationSharing - this is a Lync call leg used for
application or desktop sharing between Lync and the Call
Bridge

instantMessaging - this is a Lync call leg used for the
exchange of instant messages between Lync and the Call
Bridge

direction incoming|
outgoing

For both sip and "acano" call types:

 incoming -if the remote SIP device initiated the
connection to the Meeting Server,

outgoing - if the call leg was established from the Meeting
Server to the remote SIP device.

call ID The call ID for this call leg. If known at the call leg start
time, this may be included, otherwise it will be signaled in
a later callLegUpdate record

ownerId ID The ID that a remote, managing, system has chosen to
assign to this call leg, which has meaning only to that
remote system. This field will be absent if no such owner
ID has been assigned to this call leg.

sipCallId String If the call leg is a SIP connection, this field will hold the
unique “Call-ID” value from the SIP protocol headers, if
known at call leg start time.

groupId ID For Lync calls only, this parameter links the Presenter’s
video callLeg and their presentation stream if they share
content. This is also the ID that should be used when
performing “participant” API operations that relate to this
call leg.

A Lync presentation can create an extra callLeg in the
CDRs, and that these can be tied together using the
groupId parameter. (The callId will of course be the same,
but there can be other Lync call legs in the call that aren’t
owned by the same user – it is the groupId that is unique
to a Lync ‘connection’.)

If the Lync caller stops and restarts sharing, there will be a
different call leg ID for the content sharing connection
that for the first presentation, but the groupID will be the
same.

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 15

Parameter Type Description

replacesSipCallId String If the call leg replaces another SIP call, this field will hold
the unique "Call-ID" value (as a string) from the SIP pro-
tocol headers of the call that was replaced.

canMove true|false Indicates whether the participant owning this call leg can
be moved using the movedParticipant API command.
(From version 2.6)

movedCallLeg ID If this call leg was created as part of a participant move,
the ID is the GUID of that participant's call leg that it was
moved from. (From version 2.6)

movedCallLegCallBridge ID If this call leg was created as part of a participant move,
the ID is the GUID of the Call Bridge hosting the con-
ference that the moved participant's call leg was homed
on. (From version 2.6)

confirmationStatus required | notRe-
quired | confirmed

The value provided determines whether the participant
owning the call leg has to confirm, or has already con-
firmed to join the call, as required by the call out being
made with the confirmation=true parameter. (From version
3.2)

4.4 callLegEnd Record Contents

Parameter Type Description

id ID The ID of the call leg that is ending. This is
conveyed as an “id” attribute within the
“<callLeg>” tag that encapsulates the
callLegEnd record.

cdrTag String If a call leg was given a tag, this is shown in
the CDR. The tag is an optional, up to 100
character text string used to help identify
the call leg.

reason The reason that the call leg is ending (see
the table in Section 5).

remoteTeardown true|false true - indicates that the ending of this call
leg was initiated by the remote party

false - indicates that the ending of this call
leg was initiated by the Meeting Server

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 16

Parameter Type Description

encryptedMedia

unencryptedMedia

 One or both of these values may be
present to indicate the presence or
absence (based on the value being “true”
or “false”) of encrypted or unencrypted
media during the lifetime of the call leg. If
absent, that media type was not present for
this call leg.

durationSeconds Number The length of time (in seconds) that this
call leg was active for.

activatedDuration Number The length of time (in seconds) that this
call leg was activated.

mediaUsagePercent
ages

 Information on the percentage of this call
leg's lifetime that the different types of
media were active.The media types are:

mainVideoViewer - user was receiving
main video

mainVideoContributor - user was
contributing to main video

presentationViewer - user was receiving
presentation information

presentationContributor - user was sharing
a presentation

multistreamVideo - percentage of time that
multistreamVideo was active.

multistreamVideo Information on the transmitted multistream video during the lifetime of this call leg.

Name Type Description

maxScreens Number The maximum number of multiscreen main
video screens active during the lifetime of this
call leg; for instance this will be 2 for dual
video..

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 17

Parameter Type Description

alarm There will be one or more of these elements if the call leg experienced any alarm
conditions during its lifetime.

Name Type Description

type packetLoss|
excessiveJitter|
highRoundTripTime

packetLoss - packet loss was
observed locally or reported by the far
end for this call leg

excessiveJitter - high jitter values
were observed locally or reported by
the far end for this call leg

highRoundTripTime - a long round
trip between the Meeting Server and
the remote party was detected for
this call leg

durationPercentage Number This value gives the percentage of
the call duration for which thae alarm
condition occurred.

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 18

Parameter Type Description

rxAudio

txAudio

Provides detail on the received audio (“rxAudio”,audio received by the Meeting Server
from the remote party) and transmitted audio (“txAudio”) during the lifetime of this call
leg. The rxAudio and txAudio sections may contain the following elements:

Parameter Type Description

codec one of:
g711u
g711a
g722
g728
g729
g722_1
g722_1c
aac
speexNb
speexWb
speexUwb
isacWb
opus

the audio codec used:
g711u - G.711 mu law
g711a - G.711 a law
g722 - G.722
g728 - G.728
g729 - G.729
g722_1 - G.722.1
g722_1c - G.722.1C
(G.722.1 Annex C)
aac - AAC
speexNb - Speex
narrowband
speexWb - Speex
wideband
speexUwb - Speex ultra-
wideband
isacWb - iSAC (internet
Speech Audio Codec)
wideband
isacSwb - iSAC (internet
Speech Audio Codec)
superwideband

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 19

Parameter Type Description

rxVideo

txVideo

Provides detail on the received video (“rxVideo”, video received by the Meeting Server
from the remote party) and transmitted video (“txVideo”) during the lifetime of this call
leg. The rxVideo and txVideo sections may contain the following elements:

Name Type Description

codec one of:
h261
h263
h263+
h264
h264Lync
vp8
rtVideo

the video codec used
h261 - H.261
h263 - H.263
h263+ - H.263+
h264 - H.264
h264Lync - H.264 SVC
for Lync
vp8 - VP8
rtVideo - RTVideo

maxSizeWidth Number The width of the maximum
video resolution used

maxSizeHeight Number The height of the maximum
video resolution used

Note: If a “rxVideo” or “txVideo” section is absent, no video was sent in that direction.

ownerId ID The ID that a remote, managing, system has
chosen to assign to this call leg, which has
meaning only to that remote system.

sipCallId String If the call leg is a SIP connection, this field
will hold the unique “Call-ID” value from
the SIP protocol headers.

4.5 callLegUpdate Record Contents

Parameter Type Description

id ID The ID of the call leg that is being updated. This is conveyed as an “id”
attribute within the “<callLeg>” tag that encapsulates the
callLegUpdate record.

cdrTag String If a call leg was given a tag, this is shown in the CDR. The tag is an
optional, up to 100 character text string used to help identify the call
leg.

state connected or
value absent

If present, contains an indication of the call leg state; currently only the
“connected” value is supported. An absence of this value indicates
that the call leg has not yet reached the connected state.

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 20

Parameter Type Description

deactivated true|false Indicates if the call leg is currently deactivated

remoteAddress String For SIP calls, the remote uri relevant to the call leg. The interpretation
of this value depends on the direction (see below). Therefore, this is
the destination uri for outgoing calls, or the source uri of incoming
calls.

call

ivr

 The call ID for this call leg, or the (empty) “ivr” indication if the call leg
is currently in an IVR.

ownerId ID The ID that a remote, managing, system has chosen to assign to this
call leg, which has meaning only to that remote system.

sipCallId String If the call leg is a SIP connection, this field will hold the unique “Call-
ID” value from the SIP protocol headers, if known at call leg start time.

groupID ID For Lync calls only, this parameter links the Presenter’s video callLeg
and the Presentation stream being sent.

displayName String The "friendly name" for a SIP endpoint, a user's "real name" for an
Cisco Meeting App connection, or what a user types for a web client
guest connection. This value is blank if the far end does not provide a
friendly name.

canMove true|false Whether the participant owning this call leg can be moved using the
movedParticipant API command.

confirmationStatus required |
notRequired |
confirmed

The value provided determines whether the participant owning the call
leg has to confirm, or has already confirmed to join the call, as required
by the call out being made with the confirmation=true parameter. (From
version 3.2)

The callLegUpdate record is sent by the Meeting Server when any of the call leg characteristics
it refers to change for a call leg. For example, a CDR receiver would expect to see such an
update record if a call leg moves from an IVR into a call, or if an external management system
changed the “ownerId” associated with that call leg.

4.6 recordingStart Record Contents

Parameter Type Description

id ID The ID of the recording that is starting. This is conveyed as an “id” attribute within
the “<recording>” tag that encapsulates the recordingStart record.

path String A string holding the directory and filename of the recording. (Applicable to internal
XMPP recorder only.)

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 21

Parameter Type Description

recorderUri String The URI of the recording device if it is a SIP recorder. (Applicable to external third-
party SIP recorder only.)

call ID The ID of the call that is being recorded.

callLeg ID The ID of the call leg that is recording the call.

4.7 recordingEnd Record Contents

Parameter Type Description

id ID The ID of the recording that is ending. This is conveyed as an “id” attribute within the
“<recording>” tag that encapsulates the recordingEnd record.

4.8 streamingStart Record Contents

Parameter Type Description

id ID The ID of the streaming that is starting. This is conveyed as an “id” attribute within the
“<streaming>” tag that encapsulates the streamingStart record.

streamerUri URL The URL of the streaming device. (Applicable to the internal SIP streamer com-
ponent.)

call ID The ID of the call that is being streamed.

callLeg ID The ID of the call leg that is streaming the call.

4.9 streamingEnd Record Contents

Parameter Type Description

id ID The ID of the streaming that is ending. This is conveyed as an “id” attribute within the
“<streaming>” tag that encapsulates the streamingEnd record.

4 Record Details

Cisco Meeting Server Release 3.3 : CDR Guide 22

5 Reason Codes in Call Leg End Records
Call leg end records contain a reason code (within a “<reason>” tag) and a separate indication
of whether the Meeting Server or the remote party chose to disconnect that call leg (a
“<remoteTeardown>” section containing either “true” or “false”).

Although the party which caused the disconnection can be determined by the disconnect
reason, a separate remote or local teardown indication allows future-proofing to the extent that
if new reason codes are added that are not understood by a CDR receiver, basic knowledge of
which side initiated the disconnect can still be obtained.

The possible values for the “<reason>” code are:

Reason Description

apiInitiatedTeardown The call leg was disconnected by the Meeting Server in response to an API
request to do so

callDeactivated The call leg was disconnected by the Meeting Server because the call of
which it was part was deactivated, and the deactivate action for the call leg
was set to "disconnect". See the API Reference for details

callEnded The call leg was disconnected by the Meeting Server because the call it was
part of ended, for instance in response to an API command to destroy it

callMoved The call leg was moved to improve the efficiency in the use of the Call
Bridge resources

clientInitiatedTeardown The call leg was disconnected by the Meeting Server in response to a
request to do so by an Cisco Meeting App with sufficient privileges

confirmationTimeOut The call leg was disconnected because the remote destination did not
respond in time. The voice prompt "you've been invited to a call, press 1 to
join" will have been played, but the person on the other end did not press a
key within a minute, causing the call leg to be disconnected using this
reason code.

dnsFailure A failure to resolve the host name of a remote destination; for example, as
part of the process of establishing a connection to a remote system

encryptionRequired The call leg was disconnected because there was a requirement for
encrypted media that was not able to be met

error An error has occurred during a SIP call resulting in the disconnection of the
call leg. This may be caused by the SIP endpoint losing power or crashing
during a call. If this happens repeatedly then turn on SIP tracing.

incorrectPasscode After the maximum number of retries, the user did not supply the correct
PIN for the call or coSpace they wanted to join

5 Reason Codes in Call Leg End Records

Cisco Meeting Server Release 3.3 : CDR Guide 23

Reason Description

ivrTimeout The call leg connected to an IVR but was not able to be transitioned to a call
within the required time

ivrUnknownCall After the maximum number of retries, the user did not supply a valid call ID
to join when in the IVR

localTeardown A normal teardown of the call leg by the Meeting Server

participantLimitReached You tried to add a new participant beyond the maximum number allowed for
the call

remoteBusy The call leg disconnected because the remote party signaled that they were
busy and unable to accept the connection

remoteRejected The call leg was rejected by the remote party

remoteTeardown The call leg was disconnected by the remote party

ringingTimeout The call leg reached the remote device, which rang but was not answered
within the required time interval

tenantParticipantLimitReached You tried to add a new participant beyond the maximum number allowed for
the owning tenant

timeout The call leg was disconnected by the Meeting Server because of a protocol
timeout, for instance a SIP session timeout or the lack of a mandatory
response to a SIP request

unknownDestination The call leg was an incoming connection to a destination that did not
resolve to a valid coSpace or user

5 Reason Codes in Call Leg End Records

Cisco Meeting Server Release 3.3 : CDR Guide 24

6 Example Traffic Flow
The following trace shows a typical example traffic flow. It covers two SIP clients connecting to
a meeting, then one ending the meeting, and the other SIP call then being dropped. The XML in
this example has be formatted to make it easier to read.

Events post #1
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegStart" time="2015-07-23T07:32:55Z" recordIndex="1"
correlatorIndex="0">
 <callLeg id="fc9c85ca-8c41-4a1a-9252-b16977d1e4e1">
 <remoteParty>sipclient1@example.com</remoteParty>
 <localAddress>access1@127.0.0.1</localAddress>
 <type>sip</type>
 <direction>incoming</direction>
 <groupId>18da80f3-8a71-4255-aa90-e1677b99b588</groupId>
 <sipCallId>b8a81da5-c24c-43db-ba58-742f587faec8</sipCallId>
 </callLeg>
 </record>
 </records>

Events post #2
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callStart" time="2015-07-23T07:32:55Z" recordIndex="2"
correlatorIndex="1">
 <call id="46d49cb4-8171-4abc-97f5-b88035b1da0a">
 <name>test564_1</name>
 <callType>coSpace</callType>
 <coSpace>50605235-60cf-484a-9fa1-278ad0646243</coSpace>
 <callCorrelator>5f3300c5-ca67-40e0-a503-
91baec70dbbe</callCorrelator>
 </call>
 </record>
 <record type="callLegUpdate" time="2015-07-23T07:32:55Z"
recordIndex="3" correlatorIndex="2">
 <callLeg id="fc9c85ca-8c41-4a1a-9252-b16977d1e4e1">
 <state>connected</state>
 <call>46d49cb4-8171-4abc-97f5-b88035b1da0a</call>
 <groupId>18da80f3-8a71-4255-aa90-e1677b99b588</groupId>
 <sipCallId>b8a81da5-c24c-43db-ba58-742f587faec8</sipCallId>
 </callLeg>
 </record>
 </records>

6 Example Traffic Flow

Cisco Meeting Server Release 3.3 : CDR Guide 25

Events post #3
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegStart" time="2015-07-23T07:32:55Z" recordIndex="4"
correlatorIndex="3">
 <callLeg id="9cfdb064-3ae9-4b08-a003-6478187f375f">
 <remoteParty>sipclient2@example.com</remoteParty>
 <localAddress>access2@127.0.0.1</localAddress>
 <type>sip</type>
 <direction>incoming</direction>
 <groupId>3420c93f-f33c-4c9e-be95-d0d1bfb207f0</groupId>
 <sipCallId>a939937c-8b5e-4376-92de-97635983d7ef</sipCallId>
 </callLeg>
 </record>
 </records>

Events post #4
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegUpdate" time="2015-07-23T07:32:55Z"
recordIndex="5" correlatorIndex="4">
 <callLeg id="9cfdb064-3ae9-4b08-a003-6478187f375f">
 <state>connected</state>
 <call>46d49cb4-8171-4abc-97f5-b88035b1da0a</call>
 <groupId>3420c93f-f33c-4c9e-be95-d0d1bfb207f0</groupId>
 <sipCallId>a939937c-8b5e-4376-92de-97635983d7ef</sipCallId>
 </callLeg>
 </record>
 </records>

Events post #5
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegEnd" time="2015-07-23T07:33:05Z" recordIndex="6"
correlatorIndex="5">
 <callLeg id="9cfdb064-3ae9-4b08-a003-6478187f375f">
 <reason>remoteTeardown</reason>
 <remoteTeardown>true</remoteTeardown>
 <durationSeconds>10</durationSeconds>
 <mediaUsagePercentages>
 <mainVideoViewer>100.0</mainVideoViewer>
 <mainVideoContributor>100.0</mainVideoContributor>
 </mediaUsagePercentages>
 <unencryptedMedia>true</unencryptedMedia>
 <rxAudio>
 <codec>g722</codec>
 <packetStatistics>

6 Example Traffic Flow

Cisco Meeting Server Release 3.3 : CDR Guide 26

 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>9.701</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxAudio>
 <txAudio>
 <codec>g722_1c</codec>
 </txAudio>
 <rxVideo>
 <codec>h264</codec>
 <maxSizeWidth>768</maxSizeWidth>
 <maxSizeHeight>448</maxSizeHeight>
 <packetStatistics>
 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>8.597</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxVideo>
 <txVideo>
 <codec>h264</codec>
 <maxSizeWidth>1280</maxSizeWidth>
 <maxSizeHeight>720</maxSizeHeight>
 </txVideo>
 <sipCallId>a939937c-8b5e-4376-92de-97635983d7ef</sipCallId>
 </callLeg>
 <record>
 </records>

Events post #6
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegEnd" time="2015-07-23T07:33:05Z" recordIndex="7"
correlatorIndex="6">
 <callLeg id="fc9c85ca-8c41-4a1a-9252-b16977d1e4e1">
 <reason>callDeactivated</reason>
 <remoteTeardown>false</remoteTeardown>
 <durationSeconds>10</durationSeconds>
 <mediaUsagePercentages>
 <mainVideoViewer>100.0</mainVideoViewer>
 <mainVideoContributor>100.0</mainVideoContributor>
 </mediaUsagePercentages>

6 Example Traffic Flow

Cisco Meeting Server Release 3.3 : CDR Guide 27

 <unencryptedMedia>true</unencryptedMedia>
 <rxAudio>
 <codec>g711u</codec>
 <packetStatistics>
 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>9.702</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxAudio>
 <txAudio>
 <codec>g722_1c</codec>
 </txAudio>
 <rxVideo>
 <codec>h264</codec>
 <maxSizeWidth>1280</maxSizeWidth>
 <maxSizeHeight>720</maxSizeHeight>
 <packetStatistics>
 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>8.484</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxVideo>
 <txVideo>
 <codec>h264</codec>
 <maxSizeWidth>1024</maxSizeWidth>
 <maxSizeHeight>576</maxSizeHeight>
 </txVideo>
 <sipCallId>b8a81da5-c24c-43db-ba58-742f587faec8</sipCallId>
 </callLeg>
 </record>
 <record type="callEnd" time="2015-07-23T07:33:05Z" recordIndex="8"
correlatorIndex="7">
 <call id="46d49cb4-8171-4abc-97f5-b88035b1da0a">
 <callLegsCompleted>2</callLegsCompleted>
 <callLegsMaxActive>2</callLegsMaxActive>
 <durationSeconds>10</durationSeconds>
 </call>
 </record>
 </records>

6 Example Traffic Flow

Cisco Meeting Server Release 3.3 : CDR Guide 28

Appendix A Example script for creating a CDR
receiver
The following python script illustrates how to create a CDR receiver. The example is for
illustrative purposes only, and Cisco will not provide any support or warranty in the use of the
code. Cisco reserves copyright of the code.

#!/usr/bin/python

Example CDR receiver code for Cisco Meeting Server
Copyright - Cisco Systems (2013-2017)
No support, warranty or liability exists for this code

import BaseHTTPServer
import sys
import getopt
import ssl

class RequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):

handler = BaseHTTPServer.BaseHTTPRequestHandler
handler.protocol_version = 'HTTP/1.1'
print "using protocol version:", handler.protocol_version

def do_GET(self) :

#print 'received request for GET', self.path
self.send_response(200)
self.end_headers()

def do_POST(self) :
print 'received request for POST', self.path
length = int(self.headers['Content-Length'])
post_data = self.rfile.read(length)
print 'data:', post_data
self.send_response(200)
self.end_headers()

def log_message(self, format, *args):
return

def main(argv) :

try:

Appendix A Example script for creating a CDR receiver

Cisco Meeting Server Release 3.3 : CDR Guide 29

opts, args = getopt.getopt(argv, 'p:c:k:')
port = [val for opt,val in opts if opt=='-p'][0]
assert(len(port) > 0)
certfile_name = ''
keyfile_name = ''
for opt,val in opts :

if opt=='-c' :
certfile_name = val

if opt=='-k' :
keyfile_name = val

except:
print 'usage: cdr_receiver.py -p <port> [-c <certfile path>] [-
k <keyfile path>]'
sys.exit(2)

server_address = ('', int(port))
httpd = BaseHTTPServer.HTTPServer(server_address, RequestHandler)
if (len(certfile_name) > 0) :

print 'HTTPS mode with certfile', certfile_name
httpd.socket = ssl.wrap_socket (httpd.socket, keyfile=keyfile_
name, certfile=certfile_name, server_side=True)

try :
httpd.serve_forever()

except KeyboardInterrupt:
pass

httpd.server_close()

if __name__ == "__main__":

main(sys.argv[1:])

Appendix A Example script for creating a CDR receiver

Cisco Meeting Server Release 3.3 : CDR Guide 30

Cisco Legal Information
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE
SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE
FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT
ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE
INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE
SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE
FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program
developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University
of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND
SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE
ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING,
USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST
PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE
THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended
to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative
purposes only. Any use of actual IP addresses or phone numbers in illustrative content is
unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See
the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the
Cisco website at www.cisco.com/go/offices.

© 2016-2020 Cisco Systems, Inc. All rights reserved.

Cisco Legal Information

Cisco Meeting Server Release 3.3 : CDR Guide 31

Cisco Trademark
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates
in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their
respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1721R)

Cisco Trademark

http://www.cisco.com/go/trademarks

	Change History
	1 Introduction
	1.1 How to Use this Document

	2 General Mechanism
	2.1 Configuring the Recipient Devices
	2.1.1 Using the Web Admin Interface to configure the CDR receivers
	2.1.2 Using the API to configure the CDR receivers
	2.1.3 Recipient URI

	3 Record Types
	4 Record Details
	4.1 callStart Record Contents
	4.2 callEnd Record Contents
	4.3 callLegStart Record Contents
	4.4 callLegEnd Record Contents
	4.5 callLegUpdate Record Contents
	4.6 recordingStart Record Contents
	4.7 recordingEnd Record Contents
	4.8 streamingStart Record Contents
	4.9 streamingEnd Record Contents

	5 Reason Codes in Call Leg End Records
	6 Example Traffic Flow
	Appendix A Example script for creating a CDR receiver
	Cisco Legal Information
	Cisco Trademark

